


### <u>PLAN</u>





#### SECTION A-A' (Looking north)

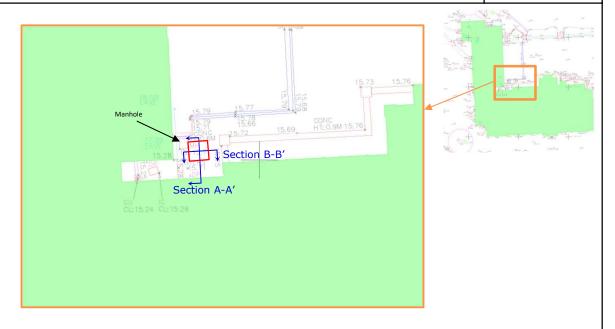


 $D = small\ disturbed\ sample,\ E = environmental\ sample\ (glass\ jar\ and\ tub),\ HV = hand\ shear\ vane\ test\ (kPa),\ pp = pocket\ penetrometer\ (kg/cm^2)$ 

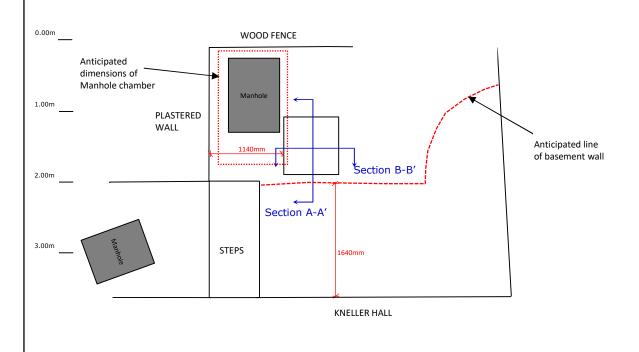
| Date:      | 09/05/22             | Groundwater details | Samples                |
|------------|----------------------|---------------------|------------------------|
| Equipment: | Hand excavated       | • Dry               | D @ 0.44m<br>D @ 0.90m |
| Stability: | Stable               |                     | E @ 1.00m              |
| Remarks:   | Photo File corrupted |                     | Logged by: SG          |



Kneller Hall, 65 Kneller Road, Twickenham, London TW2 7DN


Trial Pit No:
TP7 (1 of 3)

Client:
Radnor House School Ltd


Engineer:
AKS Ward Ltd

## <u>PLAN</u>





#### <u>PLAN</u>

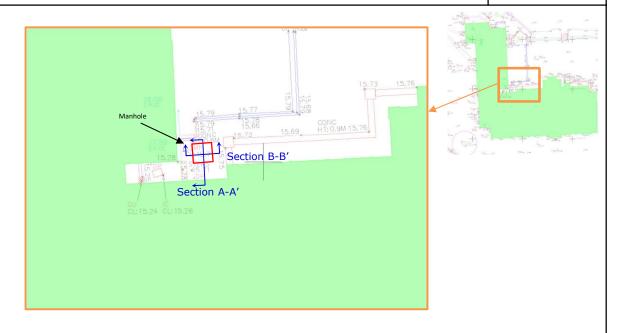


 $D = small\ disturbed\ sample,\ E = environmental\ sample\ (glass\ jar\ and\ tub),\ HV = hand\ shear\ vane\ test\ (kPa),\ pp = pocket\ penetrometer\ (kg/cm^2)$ 

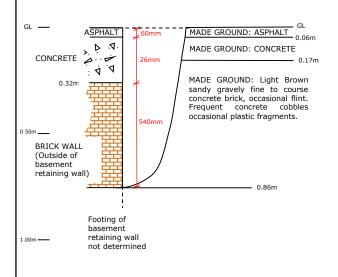
| Date:      | 09/05/22                         | Groundwater details | Samples       |
|------------|----------------------------------|---------------------|---------------|
| Equipment: | Hand excavated                   | • Dry               | D @ 0.50m     |
| Stability: | Stable                           |                     |               |
| Remarks:   | 50mill gap between the two faces |                     | Logged by: JW |



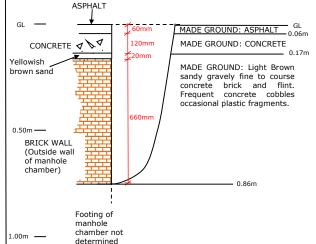
Kneller Hall, 65 Kneller Road, Twickenham, London TW2 7DN


TP7 (2 of 3)

Client: Radnor House School Ltd


Engineer: AKS Ward Ltd

## <u>PLAN</u>






### SECTION A-A' (Looking west)



#### SECTION B-B' (Looking north)



 $D = small\ disturbed\ sample,\ E = environmental\ sample\ (glass\ jar\ and\ tub),\ HV = hand\ shear\ vane\ test\ (kPa),\ pp = pocket\ penetrometer\ (kg/cm^2)$ 

| Date:      | 09/05/22                                                                       | Groundwater details | Samples       |
|------------|--------------------------------------------------------------------------------|---------------------|---------------|
| Equipment: | Hand excavated                                                                 | • Dry               | D @ 0.50m     |
| Stability: | Stable                                                                         |                     |               |
| Remarks:   | ss: 50mm gap between the basement retaining wall and the manhole chamber wall. |                     | Logged by: JW |



| Site &<br>Location | Kneller Hall, 65 Kneller Road, Twickenham, London TW2 7DN | Trial Pit No: <b>TP7</b> (3 of 3) |
|--------------------|-----------------------------------------------------------|-----------------------------------|
| Client:            | Radnor House School Ltd                                   | Report No:                        |
| Engineer:          | AKS Ward Ltd                                              | 10728/SG                          |

### **PHOTOGRAPHS**











 $D=small\ disturbed\ sample,\ E=environmental\ sample\ (glass\ jar\ and\ tub),\ HV=hand\ shear\ vane\ test\ (kPa),\ pp=pocket\ penetrometer\ (kg/cm^2)$ 

| Date:      | 09/05/22       | Groundwater details | Samples       |
|------------|----------------|---------------------|---------------|
| Equipment: | Hand excavated | • Dry               | D @ 0.50m     |
| Stability: | Stable         |                     |               |
| Remarks:   |                |                     | Logged by: JW |



| Site &<br>Location | Kilener Hany            |                                  | Trial Pit<br>No: | SK1 |
|--------------------|-------------------------|----------------------------------|------------------|-----|
| Client:            | Radnor House School Ltd | Coords: 514628.378E, 174274.344N | Report<br>No:    |     |
| Engineer:          | AKS Ward                | Level: +13.449mOD                | 10728/SG         |     |

|                |                                                                                                                                                                       | S                | amples/tes | ts              |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----------------|
| Depth (m)      | Strata description                                                                                                                                                    | Depth<br>(m)     | Туре       | Test<br>results |
| GL to 0.15m    | Grass over light greyish brown slightly gravelly, sandy TOPSOIL with frequent rootlets. Gravel is fine to coarse flint, occasional concrete and rare clinker.         | 0.10m            | D/E        |                 |
| 0.15m to 0.40m | MADE GROUND: Light brown slightly gravelly, silty sandy gravel. Gravel is fine to coarse brick, flint, concrete, occasional cobbles and rare steel rebar.             |                  |            |                 |
| 0.40m to 0.90m | MADE GROUND: Dark brown slightly gravelly to gravelly, silty sand. Gravel is fine to coarse flint, brick and concrete with frequent cobbles and boulders of concrete. | 0.50m            | D/E        |                 |
| 0.90m to 1.50m | MADE GROUND: Dark brown slightly gravelly, slightly clayey, silty sand.<br>Gravel is fine and medium flint, brick.                                                    | 1.00 to<br>1.50m | В          |                 |
| 1.50m to 2.00m | Light greenish grey and orange brown, yellow brown mottled slightly silty, slightly gravelly SAND. Gravel is subangular and subrounded, fine to coarse flint.         | 1.90m            | В          |                 |
|                | At 2.00m: Gravelly to very gravelly.                                                                                                                                  |                  |            |                 |





| Date of excavation: | 10/05/22                                 | Groundwater: | None observed |             |    |  |
|---------------------|------------------------------------------|--------------|---------------|-------------|----|--|
| Equipment:          | 2-ton tracked excavator                  |              |               |             |    |  |
| Stability:          | Stable                                   | Logged by:   | JW            | Checked by: | SG |  |
| Remarks: 0.45m(W)   | Remarks: 0.45m(W) x 1.00m(L) x 2.00m (D) |              |               |             |    |  |

 $\label{eq:control_equation} \text{Key: } D = \text{Small disturbed sample; } B = \text{Bulk disturbed sample; } HV = \text{Hand Shear Vane test (kN/m^2); } P = \text{Pocket Penetrometer (kg/cm^2)}$ 



| Site &<br>Location | Kilcher Hally           |                                  | Trial Pit<br>No: | SK2      |
|--------------------|-------------------------|----------------------------------|------------------|----------|
| Client:            | Radnor House School Ltd | Coords: 514845.148E, 174335.626N | Report<br>No:    |          |
| Engineer:          | AKS Ward                | Level: +11.22mOD                 |                  | 10728/SG |

|                |                                                                                                                                                                                                                   | Sa           | amples/tes | ts              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------------|
| Depth (m)      | Strata description                                                                                                                                                                                                | Depth<br>(m) | Туре       | Test<br>results |
| GL to 0.10m    | Grass over Light greyish brown TOPSOIL with frequent rootlets.                                                                                                                                                    | 0.10m        | D          |                 |
| 0.10m to 0.45m | MADE GROUND: Light bluish greenish grey and light brown mottled slightly gravelly, silty sand with occasional to frequent roots. Gravel is fine to coarse flint, brick and clinker.                               | 0.30m        | D          |                 |
| 0.45m to 0.65m | MADE GROUND: Firm to stiff greenish grey and brown mottled, silty, slightly gravelly clay / clayey gravel. Gravel is fine to coarse brick, flint and chalk.                                                       | 0.50m        | D          |                 |
| 0.65m to 1.10m | Firm to stiff light greenish grey, orange brown mottled slightly gravelly, very sandy, silty CLAY / very clayey silty SAND with occasional roots. Gravel is subangular to rounded, fine to coarse flint.          | 0.80m        | D          |                 |
| 1.10m to 1.50m | Grey, bluish grey, light brown and orange brown mottled clayey, silty sandy GRAVEL with pockets of bluish grey very sandy clay and a slight organic odour. Gravel is subangular to rounded, fine to coarse flint. | 1.20m        | В          |                 |
|                |                                                                                                                                                                                                                   |              |            |                 |
|                |                                                                                                                                                                                                                   |              |            |                 |





| Date of excavation:                     | 10/05/22                | Groundwater: | Seepage at 1.50m. No standing measured. |             | ng measured. |  |
|-----------------------------------------|-------------------------|--------------|-----------------------------------------|-------------|--------------|--|
| Equipment:                              | 2-ton tracked excavator |              |                                         |             |              |  |
| Stability:                              | Stable                  | Logged by:   | JW                                      | Checked by: | SG           |  |
| Remarks: 0.45m(W) x 0.90m(L) x 1.50m(D) |                         |              |                                         |             |              |  |

 $\label{eq:control_equation} \text{Key: } D = \text{Small disturbed sample; } B = \text{Bulk disturbed sample; } HV = \text{Hand Shear Vane test (kN/m^2); } P = \text{Pocket Penetrometer (kg/cm^2)}$ 



| Site &<br>Location | Kilciler Hally                |                          | Trial Pit<br>No: | HP1      |
|--------------------|-------------------------------|--------------------------|------------------|----------|
| Client:            | Radnor House School Ltd       | Coords: 514611E, 174228N | Report<br>No:    |          |
| Engineer:          | er: AKS Ward Level: +13.55mOD |                          |                  | 10728/SG |

|                |                                                                                                                                                                                                | Sa             | amples/tes | ts              |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-----------------|
| Depth (m)      | Strata description                                                                                                                                                                             | Depth<br>(m)   | Туре       | Test<br>results |
| GL to 0.85m    | Gravel over MADE GROUND: Soft brown sandy, slightly silty, gravelly clay. Gravel is angular to subrounded, fine to coarse, flint, concrete, brick, asphalt and clinker.                        | 0.30m          | D          |                 |
|                | Below 0.55m: Becoming dark grey brown and silty.                                                                                                                                               | 0.60m<br>0.70m | D<br>E     |                 |
| 0.85m to 1.06m | MADE GROUND: Soft orange brown and grey brown silty, very sandy, slightly gravelly clay. Gravel is angular to subrounded, fine and medium, brick, flint, concrete, and fine clinker fragments. | 0.90m          | D          |                 |
|                |                                                                                                                                                                                                |                |            |                 |







| Date of excavation: | 13/05/22       | Groundwater: | Dry |             |    |
|---------------------|----------------|--------------|-----|-------------|----|
| Equipment:          | Hand excavated |              |     |             |    |
| Stability:          | Stable         | Logged by:   | SG  | Checked by: | SG |

- Remarks:

   Surrounding services and hardstanding dictated position.

   Hand pit located adjacent to Electricity Sub-station and adjacent to site of historical tanks.

| Site &<br>Location | Kneller Hall,<br>65 Kneller Road, Twickenham, London TW2 7DN |                  |               | HP2      |
|--------------------|--------------------------------------------------------------|------------------|---------------|----------|
| Client:            | Radnor House School Ltd Coords: 514769E, 174220N             |                  | Report<br>No: | 10720/55 |
| Engineer:          | AKS Ward                                                     | Level: +13.21mOD |               | 10728/SG |

|                |                                                                                                                                                                                           | Sa           | amples/tes | ts              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------------|
| Depth (m)      | Strata description                                                                                                                                                                        | Depth<br>(m) | Туре       | Test<br>results |
| GL to 0.65m    | Grass over MADE GROUND: Soft grey brown silty, very sandy, gravelly clay with occasional rootlets. Gravel is angular to subrounded, fine to coarse brick, concrete, flint and rare glass. | 0.40m        | D          | PID = 0.2       |
|                |                                                                                                                                                                                           | 0.60m        | Е          |                 |
| 0.65m to 1.10m | Friable soft to firm orange, grey and orange brown mottled, silty, sandy, slightly gravelly CLAY with rare rootlets. Gravel is angular to subrounded, fine to coarse flint.               | 0.90m        | D          | PID = 0.1       |



| Date of excavation: | 13/05/22       | Groundwater: | Dry |             |    |
|---------------------|----------------|--------------|-----|-------------|----|
| Equipment:          | Hand excavated |              |     |             |    |
| Stability:          | Stable         | Logged by:   | SG  | Checked by: | SG |

- Remarks:

   Surrounding hardstanding dictated position.
   Hand pit located adjacent to site of historical tank.
   Photos of location corrupted

 $Key: D = Small \ disturbed \ sample; \ E = Environmental \ sample; \ HV = Hand \ Shear \ Vane \ test \ (kN/m^2); \ PID = Photoionization \ Detector \ (VOC \ in \ ppm)$ 



Site &

## Kneller Hall, 65 Kneller Road, Twickenham, London TW2 7DN

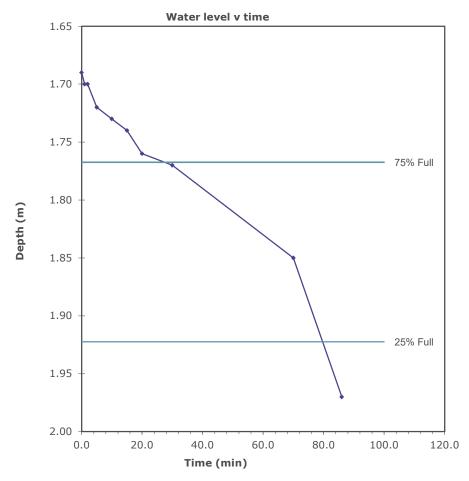
Report No:

10728/SG

### Trial pit soakage test results

TP No: SK01

Dimensions: Width = 0.45 Length = 1.00 Pit filled with gravel (Y/N) No


Voids Ratio

Depth: 2.00 m Test No: 1

Ground sequence: See trial pit logs.

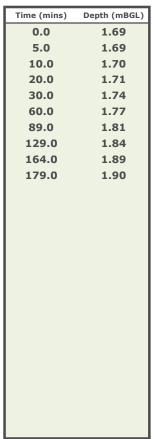
GW Standing at: 2.00 m

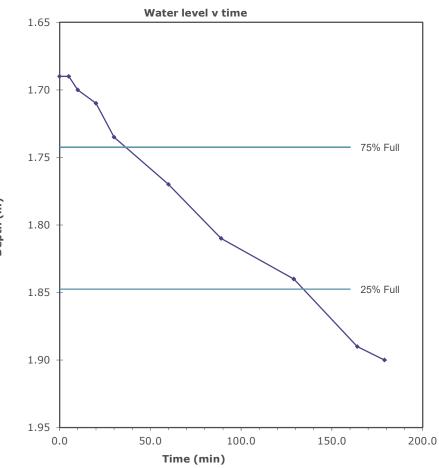
| Time (mins) | Depth (mBGL) |
|-------------|--------------|
| 0.0         | 1.69         |
| 1.0         | 1.70         |
| 2.0         | 1.70         |
| 5.0         | 1.72         |
| 10.0        | 1.73         |
| 15.0        | 1.74         |
| 20.0        | 1.76         |
| 30.0        | 1.77         |
| 70.0        | 1.85         |
| 86.0        | 1.97         |
|             |              |
|             |              |



Depth of water at start of test 1.69 m Depth of water at end of test 1.97 m Depth at 75% full 1.77 m Depth at 25% full 1.92 m Base area of pit 0.45 m² Effective soakage area  $a_{s50}$  0.90 m² Volume Change  $V_{75}$ - $V_{25}$  0.07 m³

Time used in calculation  $t_{\text{p75}}$ 


Time used in calculation  $t_{p25}$ 


Soil infiltration rate 2.48E-05 m/sec

The 'soil infiltration rate' is calculated using two selected water levels (BRE DG 365: 2016 "Soakaway design")

1650 sec

4780 sec





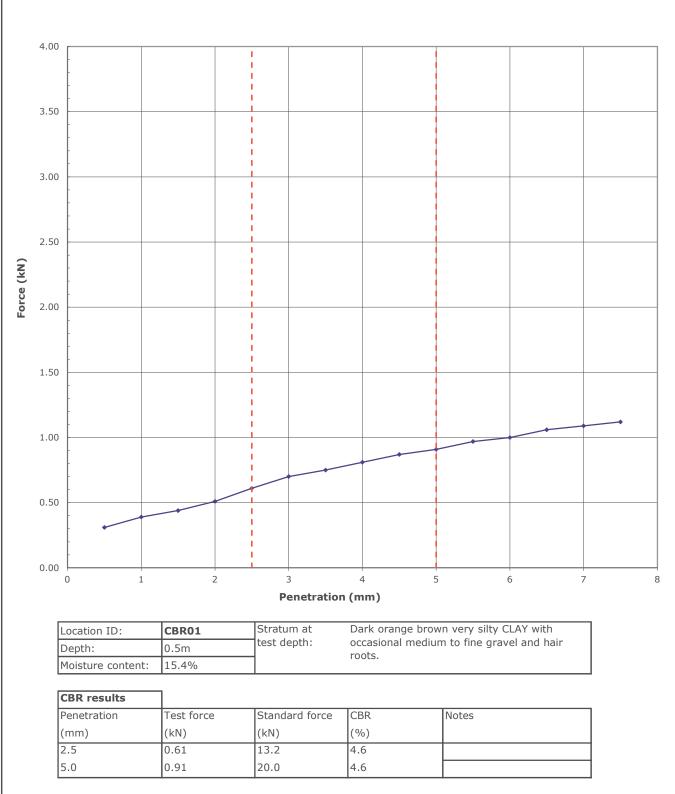
Depth of water at start of test 1.69 m Depth of water at end of test 1.90 m Depth at 75% full 1.74 m Depth at 25% full 1.85 m 0.45 m<sup>2</sup> Base area of pit Effective soakage area a<sub>s50</sub> 1.04 m<sup>2</sup> Volume Change V<sub>75</sub>-V<sub>25</sub> 0.05 m<sup>3</sup> Time used in calculation  $t_{p75}$ 2186 sec Time used in calculation  $t_{p25}$ 8055 sec

Soil infiltration rate

The 'soil infiltration rate' is calculated using two selected water levels (BRE DG 365: 2016 "Soakaway design")

7.71E-06 m/sec

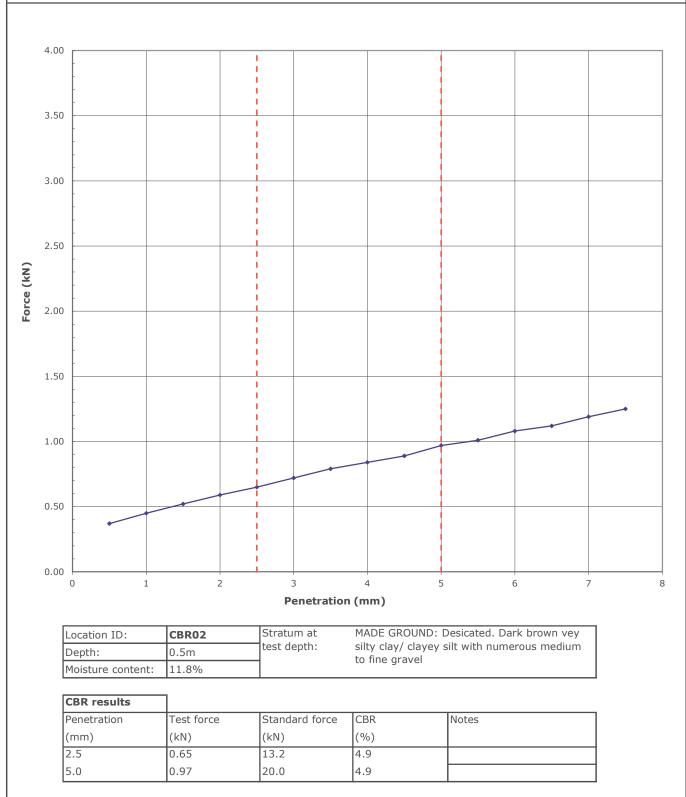
Site & Report No: Kneller Hall, 65 Kneller Road, Twickenham, London TW2 7DN 10728/SG Location Trial pit soakage test results Depth: 1.50 m SK02 Test No: 1 TP No: **Dimensions:** Width = 0.45 Ground sequence: See trial pit logs. Length = 0.90 Pit filled with gravel (Y/N) No Voids Ratio GW Standing at: 1.50 m Time (mins) Depth (mBGL) Water level v time 0.0 0.67 0.00 1.0 0.67 2.0 0.68 0.10 5.0 0.69 0.70 10.0 20.0 0.71 0.20 30.0 0.72 40.0 0.73 60.0 0.76 0.30 90.0 0.79 123.0 0.81 165.0 0.83 Depth (m) 0.40 197.0 0.84 0.50 0.60 0.70 50% max achieved 0.80 0.90 50.0 0.0 100.0 150.0 200.0 250.0 Time (min) Depth of water at start of test 0.67 m Depth of water at end of test 0.84 m Remark: GW seapage at 1.5 Depth at 75% full 0.71 m Depth at 25% full 0.80 m 0.41 m<sup>2</sup> Base area of pit Effective soakage area a<sub>s50</sub> 2.42 m<sup>2</sup> Volume Change V<sub>75</sub>-V<sub>25</sub>  $0.03 \text{ m}^{3}$ Time used in calculation  $t_{p75}$ 1350 sec Time used in calculation  $t_{p25}$ 6142 sec


The 'soil infiltration rate' is calculated using two selected water levels (BRE DG 365: 2016 "Soakaway design")

2.97E-06 m/sec

Soil infiltration rate

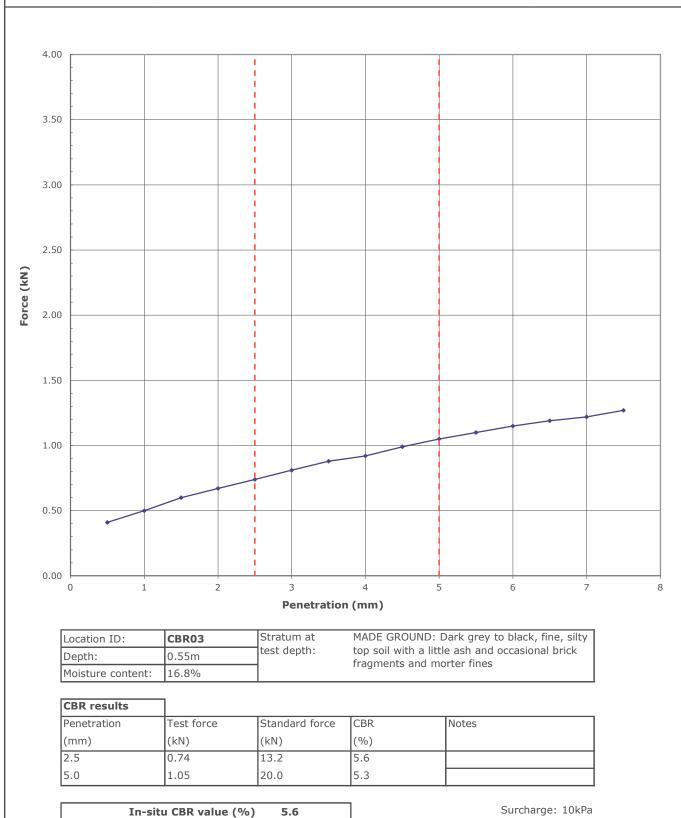



# In-situ California Bearing Ratio test result (In accordance with: BS1377:1990, Part 9, Clause 4.3 )



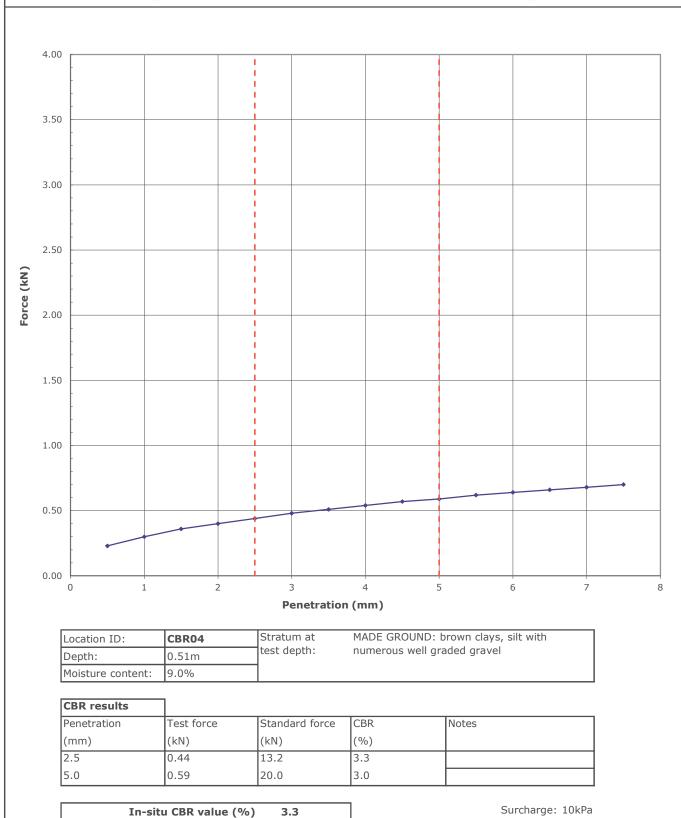
In-situ CBR value (%) 4.6 Surcharge: 10kPa




# In-situ California Bearing Ratio test result (In accordance with: BS1377:1990, Part 9, Clause 4.3 )

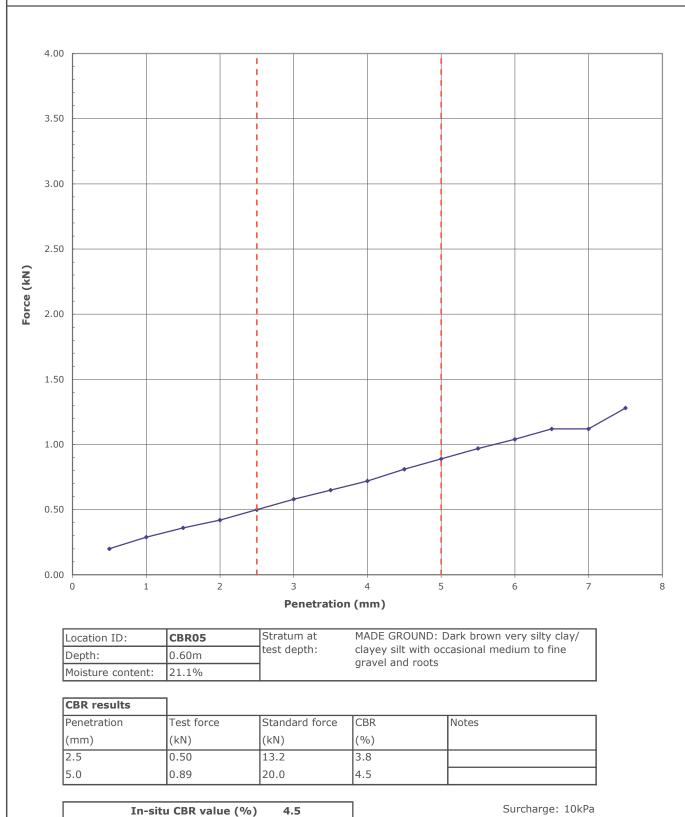


In-situ CBR value (%) 4.9 Surcharge: 10kPa



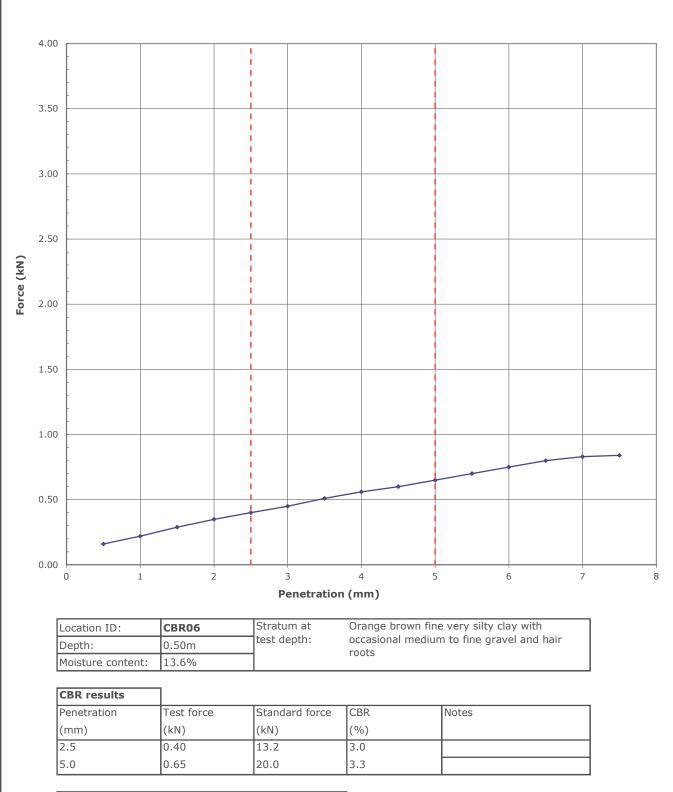

# In-situ California Bearing Ratio test result (In accordance with: BS1377:1990, Part 9, Clause 4.3 )






# In-situ California Bearing Ratio test result (In accordance with: BS1377:1990, Part 9, Clause 4.3 )






# In-situ California Bearing Ratio test result (In accordance with: BS1377:1990, Part 9, Clause 4.3 )





# In-situ California Bearing Ratio test result (In accordance with: BS1377:1990, Part 9, Clause 4.3 )



In-situ CBR value (%) 3.3 Surcharge: 10kPa



### **GPS Co-ordinates**

| Location ID | Easting    | Northing   | Elevation |
|-------------|------------|------------|-----------|
| BH1         | 514646.13  | 174285.073 | 13.3      |
| BH2         | 514578.76  | 174346.918 | 12.145    |
| вн3         | 514570.692 | 174255.076 | 13.132    |
| BH4         | 514698.241 | 174240.712 | 14.322    |
| WS1         | 514562.335 | 174318.289 | 12.562    |
| WS2         | 514617.288 | 174367.723 | 12.5      |
| WS2A        | 514617.288 | 174367.723 | 12.5      |
| WS3         | 514667.254 | 174345.155 | 12.245    |
| WS4         | 514710.154 | 174283.217 | 13.083    |
| WS5         | 514708.514 | 174360.305 | 12.149    |
| WS6         | 514859.636 | 174314.217 | 11.059    |
| WS7         | 514831.338 | 174243.802 | 11.487    |
| WS8         | 514917.537 | 174197.931 | 10.402    |
| WS9         | 514795.81  | 174180.748 | 12.248    |
| WS10        | 514876     | 174105     | 10.581    |
| TP1         | 514560.339 | 174273.038 | 12.49     |
| TP2         | 514637.952 | 174348.346 | 23.104    |
| TP3         | 514637.952 | 174348.346 | 23.104    |
| TP4         | 514668.191 | 174282.8   | 14.541    |
| TP5         | 514781.645 | 174171.229 | 12.663    |
| TP6         | 514674.11  | 174221.871 | 14.801    |
| TP7         | 514675.704 | 174200.705 | 15.846    |
| HP1         | 514611     | 174228     | 13.55     |
| HP2         | 514769     | 174220     | 13.21     |
| SK1         | 514628.378 | 174274.344 | 13.449    |
| SK2         | 514845.148 | 174335.626 | 11.22     |
| CBR1        | 514848.165 | 174303.254 | 11.145    |
| CBR2        | 514591.112 | 174323.909 | 12.559    |
| CBR3        | 514563.824 | 174287.961 | 12.581    |
| CBR4        | 514698.521 | 174254.387 | 14.262    |
| CBR5        | 514687.168 | 174306.64  | 12.389    |
| CBR6        | 514798.292 | 174219.168 | 12.229    |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                        |                   | 26/05/2022 |                                                                                               | ng equipment               | OAFOOO N. OFOFOFF                                                   |  |
|------------------------------|-------------------|------------|-----------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------|--|
|                              |                   |            | Instrume                                                                                      | ent:                       | GA5000. No. G505055                                                 |  |
| Barometri                    | ic pressure:      |            | Calibration                                                                                   | on check details:          | See note 2 below                                                    |  |
| a)                           | Trend (24hrs):    | Rising     | Next cali                                                                                     | bration date:              | Sept 2022                                                           |  |
| b)                           | At start (mB):    | 1021       |                                                                                               |                            |                                                                     |  |
|                              |                   |            | Notes:                                                                                        |                            |                                                                     |  |
|                              |                   |            | 1)                                                                                            |                            |                                                                     |  |
| Recorded                     | by:               | GW         | 1                                                                                             | metoffice.gov.u            | k website on the day of the monitoring visit                        |  |
|                              |                   |            | 2)                                                                                            |                            | ck is performed at start of monitoring against ambient air and also |  |
| Surface g                    | round conditions: | Dry        | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                            |                                                                     |  |
| Weather conditions: Overcast |                   | Overcast   | 3)                                                                                            |                            |                                                                     |  |
| Ambient a                    | air temp (°C):    | 16         |                                                                                               | O <sub>2</sub> = oxygen; F | H <sub>2</sub> S = hydrogen sulphide                                |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH01  | 09:24:34    | 50               | 3.20               | 5.50                         |

| Time | CH₄ | CO <sub>2</sub> | O <sub>2</sub> | CO    | H₂S   | PID   |
|------|-----|-----------------|----------------|-------|-------|-------|
| (s)  | (%) | (%)             | (%)            | (ppm) | (ppm) | (ppm) |
| 0    | 0.0 | 0.1             | 21.6           | 0     | 0     | 0.1   |
| 15   | 0.0 | 0.3             | 21.6           | 0     | 0     | 0.0   |
| 30   | 0.0 | 0.3             | 21.6           | 0     | 0     | 0.0   |
| 45   | 0.0 | 0.3             | 21.6           | 0     | 0     | 0.0   |
| 60   | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
| 75   | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
| 90   | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
| 105  | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
| 120  | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
| 135  | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
| 150  | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
| 165  | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
| 180  | 0.0 | 0.3             | 21.5           | 0     | 0     | 0.0   |
|      |     |                 |                |       |       |       |
|      |     |                 |                |       |       |       |
|      |     |                 |                |       |       |       |
|      |     |                 |                |       |       |       |
|      |     |                 |                |       |       |       |
|      |     |                 |                |       |       |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 0.3  |
| Min O <sub>2</sub> (%)     | 21.5 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.1  |

| Flow rate (I/hr) |      |     | Relative pressure (mb) |
|------------------|------|-----|------------------------|
| Initial          | Mean | Max |                        |
| 0.0              | -0.1 | 0.1 | 0.00                   |

REMARK: pump fail



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 26/05/2022 | Monitorin<br>Instrume | g equipment<br>nt:                                                                                            | GA5000. No. G505055 |  |
|----------------------------|----------------|------------|-----------------------|---------------------------------------------------------------------------------------------------------------|---------------------|--|
| Barometr                   | ic pressure:   |            | Calibratio            | n check details:                                                                                              | See note 2 below    |  |
| a)                         | Trend (24hrs): | Rising     | Next calib            | oration date:                                                                                                 | Sept 2022           |  |
| b)                         | At start (mB): | 1021       |                       |                                                                                                               |                     |  |
|                            |                |            | Notes:                |                                                                                                               |                     |  |
|                            |                |            | 1)                    |                                                                                                               |                     |  |
| Recorded                   | by:            | GW         | 1                     | metoffice.gov.uk website on the day of the monitoring visit                                                   |                     |  |
|                            |                |            | 2)                    | Calibration check is performed at start of monitoring against ambient ai                                      |                     |  |
| Surface ground conditions: |                | Dry        | 7                     | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture                                            |                     |  |
| Weather conditions:        |                | Overcast   | 3)                    | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                     |  |
| Ambient air temp (°C):     |                | 16         |                       |                                                                                                               |                     |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH01  | 09:32:37    | 19               | 3.13               | 24.17                        |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H <sub>2</sub> S | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|------------------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm)            | (ppn)        |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flo     | w rate (I/ | hr) | Relative pressure (mb) |
|---------|------------|-----|------------------------|
| Initial | Mean Max   |     |                        |
|         |            |     |                        |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 26/05/2022 | Monitorin<br>Instrume | g equipment<br>nt:                                                                                            | GA5000. No. G505055 |  |
|----------------------------|----------------|------------|-----------------------|---------------------------------------------------------------------------------------------------------------|---------------------|--|
| Barometr                   | ic pressure:   |            | Calibratio            | n check details:                                                                                              | See note 2 below    |  |
| a)                         | Trend (24hrs): | Rising     | Next calib            | oration date:                                                                                                 | Sept 2022           |  |
| b)                         | At start (mB): | 1021       |                       |                                                                                                               |                     |  |
|                            |                |            | Notes:                |                                                                                                               |                     |  |
|                            |                |            | 1)                    |                                                                                                               |                     |  |
| Recorded                   | by:            | GW         | 1                     | metoffice.gov.uk website on the day of the monitoring visit                                                   |                     |  |
|                            |                |            | 2)                    | Calibration check is performed at start of monitoring against ambient ai                                      |                     |  |
| Surface ground conditions: |                | Dry        | 7                     | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture                                            |                     |  |
| Weather conditions:        |                | Overcast   | 3)                    | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                     |  |
| Ambient air temp (°C):     |                | 16         |                       |                                                                                                               |                     |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН02  | 08:25:16    | 50               | 1.37               | 2.95                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | СО    | H₂S   | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|-------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (ррііі)      |
| 0    | 0.0             | 0.1             | 21.4           | 0     | 0     | 0.1          |
| 15   | 0.1             | 1.0             | 20.8           | 0     | 0     | 0.3          |
| 30   | 0.1             | 1.0             | 20.7           | 0     | 0     | 0.4          |
| 45   | 0.0             | 1.0             | 20.7           | 0     | 0     | 0.6          |
| 60   | 0.0             | 1.0             | 20.6           | 0     | 0     | 0.7          |
| 75   | 0.0             | 1.0             | 20.7           | 0     | 0     | 0.8          |
| 90   | 0.0             | 1.0             | 20.7           | 0     | 0     | 0.9          |
| 105  | 0.0             | 1.1             | 20.7           | 0     | 0     | 1.0          |
| 120  | 0.0             | 1.1             | 20.6           | 0     | 0     | 1.1          |
| 135  | 0.0             | 1.1             | 20.6           | 0     | 0     | 1.2          |
| 150  | 0.0             | 1.1             | 20.6           | 0     | 0     | 1.3          |
| 165  | 0.0             | 1.1             | 20.6           | 0     | 0     | 1.4          |
| 180  | 0.0             | 1.1             | 20.6           | 0     | 0     | 1.5          |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |

| Max CH <sub>4</sub> (%)    | 0.1  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 1.1  |
| Min O <sub>2</sub> (%)     | 20.6 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 1.5  |

| Flow rate (I/hr) |      |     | Relative pressure (mb) |
|------------------|------|-----|------------------------|
| Initial          | Mean | Max |                        |
| 0.0              | 0.2  | 0.2 | 0.00                   |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 26/05/2022 | Monitorin<br>Instrume | g equipment                                                                                                                                                            | GA5000. No. G505055                  |
|----------------------------|----------------|------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Barometr                   | ic pressure:   |            |                       | on check details:                                                                                                                                                      | See note 2 below                     |
| a)                         | Trend (24hrs): | Rising     | Next calib            | oration date:                                                                                                                                                          | Sept 2022                            |
| b)                         | At start (mB): | 1021       |                       |                                                                                                                                                                        |                                      |
|                            |                |            | Notes:                |                                                                                                                                                                        | •                                    |
|                            |                |            | 1)                    | <ol> <li>Barometric pressure trend and ambient air temperature is recorded fror<br/>metoffice.gov.uk website on the day of the monitoring visit</li> </ol>             |                                      |
| Recorded                   | by:            | GW         |                       | metonice.gov.uk website on the day of the monitoring visit                                                                                                             |                                      |
|                            |                |            | 2)                    | Calibration check is performed at start of monitoring against ambient ai periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                                      |
| Surface ground conditions: |                | Dry        |                       | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide;                                                                                                     |                                      |
| Weather conditions:        |                | Overcast   | 3)                    |                                                                                                                                                                        |                                      |
| Ambient air temp (°C):     |                | 16         |                       | $O_2$ = oxygen; F                                                                                                                                                      | H <sub>2</sub> S = hydrogen sulphide |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН02  | 08:25:16    | 19               | 1.91               | 14.80                        |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H <sub>2</sub> S | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|------------------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm)            | (PP)         |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flo     | w rate (I/ | Relative pressure (mb) |  |
|---------|------------|------------------------|--|
| Initial | Mean Max   |                        |  |
|         |            |                        |  |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 26/05/2022 | Monitorin<br>Instrume | g equipment<br>nt:                                                                                                                                                  | GA5000. No. G505055                  |
|----------------------------|----------------|------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Barometric pressure:       |                |            | Calibratio            | n check details:                                                                                                                                                    | See note 2 below                     |
| a)                         | Trend (24hrs): | Rising     | Next calib            | oration date:                                                                                                                                                       | Sept 2022                            |
| b)                         | At start (mB): | 1021       |                       |                                                                                                                                                                     |                                      |
|                            |                |            | Notes:                |                                                                                                                                                                     |                                      |
|                            |                |            | 1)                    |                                                                                                                                                                     |                                      |
| Recorded                   | by:            | GW         | 1                     | metoffice.gov.uk website on the day of the monitoring visit                                                                                                         |                                      |
|                            |                |            | 2)                    | Calibration check is performed at start of monitoring against ambient at                                                                                            |                                      |
| Surface ground conditions: |                | Dry        | 7                     | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture<br>$CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; |                                      |
| Weather conditions:        |                | Overcast   | 3)                    |                                                                                                                                                                     |                                      |
| Ambient air temp (°C):     |                | 16         |                       | O <sub>2</sub> = oxygen; F                                                                                                                                          | H <sub>2</sub> S = hydrogen sulphide |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН03  | 08:44:31    | 50               | 2.39               | 8.36                         |

| Time | CH₄ | CO <sub>2</sub> | $O_2$ | CO    | H <sub>2</sub> S | PID   |
|------|-----|-----------------|-------|-------|------------------|-------|
| (s)  | (%) | (%)             | (%)   | (ppm) | (ppm)            | (ppm) |
| 0    | 0.0 | 0.1             | 21.4  | 0     | 0                | 0.1   |
| 15   | 0.0 | 0.9             | 20.7  | 0     | 0                | 0.4   |
| 30   | 0.0 | 0.7             | 20.9  | 0     | 0                | 0.4   |
| 45   | 0.0 | 0.6             | 21.0  | 0     | 0                | 0.3   |
| 60   | 0.0 | 0.5             | 21.0  | 0     | 0                | 0.3   |
| 75   | 0.0 | 0.5             | 21.0  | 0     | 0                | 0.2   |
| 90   | 0.0 | 0.5             | 21.1  | 0     | 0                | 0.1   |
| 105  | 0.0 | 0.4             | 21.1  | 0     | 0                | 0.1   |
| 120  | 0.0 | 0.4             | 21.2  | 0     | 0                | 0.0   |
| 135  | 0.0 | 0.4             | 21.2  | 0     | 0                | 0.0   |
| 150  | 0.0 | 0.3             | 21.3  | 0     | 0                | 0.0   |
| 165  | 0.0 | 0.3             | 21.3  | 0     | 0                | 0.0   |
| 180  | 0.0 | 0.3             | 21.3  | 0     | 0                | 0.0   |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 0.9  |
| Min O <sub>2</sub> (%)     | 20.7 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.4  |

| Flow rate (l/hr) |      |     | Relative pressure (mb) |
|------------------|------|-----|------------------------|
| Initial          | Mean | Max |                        |
| 0.0              | 0.2  | 0.3 | 0.00                   |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                          |                | 26/05/2022 | Monitorin<br>Instrume                                                            | g equipment                                                                                                                                                                                                 | GA5000. No. G505055                                      |
|--------------------------------|----------------|------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Barometr                       | ic pressure:   |            |                                                                                  | on check details:                                                                                                                                                                                           | See note 2 below                                         |
| a)                             | Trend (24hrs): | Rising     | Next calib                                                                       | oration date:                                                                                                                                                                                               | Sept 2022                                                |
| b)                             | At start (mB): | 1021       |                                                                                  |                                                                                                                                                                                                             |                                                          |
|                                |                |            | Notes:                                                                           |                                                                                                                                                                                                             | •                                                        |
|                                |                |            | 1)                                                                               |                                                                                                                                                                                                             | ssure trend and ambient air temperature is recorded from |
| Recorded                       | by:            | GW         |                                                                                  | metorrice.gov.u                                                                                                                                                                                             | k website on the day of the monitoring visit             |
|                                |                |            | 2) Calibration check is performed at start of monitoring against ambient air and |                                                                                                                                                                                                             |                                                          |
| Surface ground conditions: Dry |                | Dry        |                                                                                  | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                                                          |
| Weather conditions:            |                | Overcast   | 3)                                                                               |                                                                                                                                                                                                             |                                                          |
| Ambient air temp (°C):         |                | 16         |                                                                                  |                                                                                                                                                                                                             |                                                          |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| вн03  | 08:44:31    | 19               | 2.37               | 23.55                        |

| Time | CH₄ | CO <sub>2</sub> | $O_2$ | CO    | H <sub>2</sub> S | PID   |
|------|-----|-----------------|-------|-------|------------------|-------|
| (s)  | (%) | (%)             | (%)   | (ppm) | (ppm)            | (ppm) |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0 |
|----------------------------|-----|
| Max CO <sub>2</sub> (%)    | 0.0 |
| Min O <sub>2</sub> (%)     | 0.0 |
| Max CO (ppm)               | 0   |
| Max H <sub>2</sub> S (ppm) | 0   |
| Max PID (ppm)              | 0.0 |

| Flow rate (I/hr) |          |  | Relative pressure (mb) |
|------------------|----------|--|------------------------|
| Initial          | Mean Max |  |                        |
|                  |          |  |                        |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                               | 26 (05 (2022    | Monitori                                                                  | ng equipment                                                       |                                                                     |
|----------------------------|-------------------------------|-----------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
|                            | <b>26/05/2022</b> Instrument: |                 | GA5000. No. G505055                                                       |                                                                    |                                                                     |
| Barometr                   | ic pressure:                  |                 | Calibrati                                                                 | on check details:                                                  | See note 2 below                                                    |
| a)                         | Trend (24hrs):                | Rising          | Next cal                                                                  | ibration date:                                                     | Sept 2022                                                           |
| b)                         | At start (mB):                | 1021            |                                                                           |                                                                    |                                                                     |
|                            |                               |                 | Notes:                                                                    |                                                                    | •                                                                   |
|                            |                               |                 | 1) Barometric pressure trend and ambient air temperature is recorded from |                                                                    | ·                                                                   |
| Recorded                   | by:                           | GW              |                                                                           | metoffice.gov.u                                                    | k website on the day of the monitoring visit                        |
|                            |                               |                 | 2)                                                                        |                                                                    | ck is performed at start of monitoring against ambient air and also |
| Surface ground conditions: |                               | Dry             |                                                                           | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture |                                                                     |
| Weather                    | conditions:                   | - Vicitable   / |                                                                           | , -                                                                |                                                                     |
| Ambient air temp (°C):     |                               | 16              |                                                                           | $O_2$ = oxygen; $H_2S$ = hydrogen sulphide                         |                                                                     |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH4   | 11:29:21    | 50               | 3.78               | 5.16                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | 02   | CO    | H <sub>2</sub> S | PID   |
|------|-----------------|-----------------|------|-------|------------------|-------|
| (s)  | (%)             | (%)             | (%)  | (ppm) | (ppm)            | (ppm) |
| 0    | 0.0             | 0.1             | 21.2 | 0     | 0                | 0.1   |
| 15   | 0.0             | 0.1             | 21.3 | 0     | 0                | 0.2   |
| 30   | 0.0             | 0.1             | 21.3 | 0     | 0                | 0.2   |
| 45   | 0.0             | 0.1             | 21.3 | 0     | 0                | 0.1   |
| 60   | 0.0             | 0.1             | 21.3 | 0     | 0                | 0.0   |
| 75   | 0.0             | 0.1             | 21.3 | 0     | 0                | 0.0   |
| 90   | 0.0             | 0.1             | 21.3 | 0     | 0                | 0.0   |
| 105  | 0.0             | 0.1             | 21.3 | 0     | 0                | 0.0   |
| 120  | 0.0             | 0.1             | 21.2 | 0     | 0                | 0.0   |
| 135  | 0.0             | 0.1             | 21.2 | 0     | 0                | 0.0   |
| 150  | 0.0             | 0.1             | 21.3 | 0     | 0                | 0.0   |
| 165  | 0.0             | 0.1             | 21.2 | 0     | 0                | 0.0   |
| 180  | 0.0             | 0.1             | 21.2 | 0     | 0                | 0.0   |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 0.1  |
| Min O <sub>2</sub> (%)     | 21.2 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.2  |

| Flow rate (I/hr) |      |      | Relative pressure (mb) |
|------------------|------|------|------------------------|
| Initial          | Mean | Max  |                        |
| 0.0              | -0.2 | -0.1 | 0.00                   |

REMARK: gas valve open on arrival



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 26/05/2022 | Monitorin<br>Instrume | g equipment                                                                                                                                                                         | GA5000. No. G505055                                             |  |
|----------------------------|----------------|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Barometric pressure:       |                |            |                       |                                                                                                                                                                                     | See note 2 below                                                |  |
| a)                         | Trend (24hrs): | Rising     | Next calib            | oration date:                                                                                                                                                                       | Sept 2022                                                       |  |
| b)                         | At start (mB): | 1021       |                       |                                                                                                                                                                                     |                                                                 |  |
|                            |                |            | Notes:                |                                                                                                                                                                                     | •                                                               |  |
|                            |                |            | 1)                    | Barometric pressure trend and ambient air temperature is recorded from metoffice.gov.uk website on the day of the monitoring visit                                                  |                                                                 |  |
| Recorded                   | by:            | GW         |                       | metonice.gov.ak website on the day of the monitoring visit                                                                                                                          |                                                                 |  |
|                            |                |            | 2)                    |                                                                                                                                                                                     | s performed at start of monitoring against ambient air and also |  |
| Surface ground conditions: |                | Dry        |                       | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture<br>$CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                                                                 |  |
| Weather conditions:        |                | Overcast   | 3)                    |                                                                                                                                                                                     |                                                                 |  |
| Ambient air temp (°C):     |                | 16         |                       |                                                                                                                                                                                     |                                                                 |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH4   | 11:29:21    | 19               | 3.86               | 14.69                        |

| Time | CH₄ | CO <sub>2</sub> | $O_2$ | CO    | H <sub>2</sub> S | PID   |
|------|-----|-----------------|-------|-------|------------------|-------|
| (s)  | (%) | (%)             | (%)   | (ppm) | (ppm)            | (ppm) |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0 |
|----------------------------|-----|
| Max CO <sub>2</sub> (%)    | 0.0 |
| Min O <sub>2</sub> (%)     | 0.0 |
| Max CO (ppm)               | 0   |
| Max H <sub>2</sub> S (ppm) | 0   |
| Max PID (ppm)              | 0.0 |

| Flow rate (I/hr) |          |  | Relative pressure (mb) |
|------------------|----------|--|------------------------|
| Initial          | Mean Max |  |                        |
|                  |          |  |                        |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 26/05/2022 |           | ng equipment                                                                                                                                                                                                | CAFOOO No CEOFOFF   |
|----------------------------|----------------|------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                            |                |            | Instrume  | ent:                                                                                                                                                                                                        | GA5000. No. G505055 |
| Barometri                  | ic pressure:   |            | Calibrati | on check details:                                                                                                                                                                                           | See note 2 below    |
| a)                         | Trend (24hrs): | Rising     | Next cali | bration date:                                                                                                                                                                                               | Sept 2022           |
| b)                         | At start (mB): | 1022       |           |                                                                                                                                                                                                             |                     |
|                            |                |            | Notes:    |                                                                                                                                                                                                             | •                   |
|                            |                |            | 1)        |                                                                                                                                                                                                             |                     |
| Recorded                   | by:            | GW         | 1         | metoffice.gov.uk website on the day of the monitoring visit                                                                                                                                                 |                     |
|                            |                |            | 2)        | Calibration check is performed at start of monitoring against ambient air                                                                                                                                   |                     |
| Surface ground conditions: |                | Dry        | 7         | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                     |
| Weather conditions:        |                | Overcast   | 3)        |                                                                                                                                                                                                             |                     |
| Ambient air temp (°C):     |                | 16         |           |                                                                                                                                                                                                             |                     |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS3   | 10:10:31    | 50               | 1.26               | 3.10                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H₂S   | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|-------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (PPIII)      |
| 0    | 0.0             | 0.0             | 21.4           | 0     | 0     | 0.0          |
| 15   | 3.0             | 3.2             | 4.7            | 0     | 0     | 0.0          |
| 30   | 2.8             | 3.1             | 3.2            | 0     | 0     | 0.0          |
| 45   | 2.6             | 2.9             | 4.2            | 0     | 0     | 0.1          |
| 60   | 2.5             | 2.8             | 4.6            | 0     | 0     | 0.0          |
| 75   | 2.4             | 2.7             | 5.3            | 0     | 0     | 0.1          |
| 90   | 2.2             | 2.5             | 6.5            | 0     | 0     | 0.1          |
| 105  | 2.3             | 2.6             | 5.9            | 0     | 0     | 0.1          |
| 120  | 2.2             | 2.5             | 6.3            | 0     | 0     | 0.0          |
| 135  | 2.2             | 2.5             | 6.2            | 0     | 0     | 0.0          |
| 150  | 2.1             | 2.4             | 7.0            | 0     | 0     | 0.1          |
| 165  | 2.0             | 2.3             | 7.2            | 0     | 0     | 0.1          |
| 180  | 2.0             | 2.3             | 7.4            | 0     | 0     | 0.0          |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       | ·            |
|      |                 |                 |                |       |       | ·            |

| Max CH <sub>4</sub> (%)    | 3.0 |
|----------------------------|-----|
| Max CO <sub>2</sub> (%)    | 3.2 |
| Min O <sub>2</sub> (%)     | 3.2 |
| Max CO (ppm)               | 0   |
| Max H <sub>2</sub> S (ppm) | 0   |
| Max PID (ppm)              | 0.1 |

| Flow rate (I/hr) |          |     | Relative pressure (mb) |
|------------------|----------|-----|------------------------|
| Initial          | Mean Max |     |                        |
| 0.0              | -0.1     | 0.0 | 0.00                   |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
| 1                  | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 26/05/2022 | Monitori  | ng equipment                                                                                                  |                                               |
|----------------------------|----------------|------------|-----------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                            |                | 20/05/2022 | Instrum   | ent:                                                                                                          | GA5000. No. G505055                           |
| Barometri                  | ic pressure:   |            | Calibrati | on check details:                                                                                             | See note 2 below                              |
| a)                         | Trend (24hrs): | Rising     | Next cal  | ibration date:                                                                                                | Sept 2022                                     |
| b)                         | At start (mB): | 1017       |           |                                                                                                               |                                               |
|                            |                |            | Notes:    |                                                                                                               |                                               |
|                            |                |            | 1)        |                                                                                                               |                                               |
| Recorded                   | by:            | GW         |           | metoffice.gov.u                                                                                               | uk website on the day of the monitoring visit |
|                            |                |            | 2)        | Calibration check is performed at start of monitoring against ambient air                                     |                                               |
| Surface ground conditions: |                | Dry        |           | periodically with a 5% $\mathrm{CH_4}$ , 5% $\mathrm{CO_2}$ and 6% $\mathrm{O_2}$ gas mixture                 |                                               |
| Weather conditions:        |                | Overcast   | 3)        | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                                               |
| Ambient air temp (°C):     |                | 16         |           |                                                                                                               |                                               |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS6   | 12:30:50    | 50               | 1.23               | 2.05                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | 02   | CO    | H <sub>2</sub> S | PID   |
|------|-----------------|-----------------|------|-------|------------------|-------|
| (s)  | (%)             | (%)             | (%)  | (ppm) | (ppm)            | (ppm) |
| 0    | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.3   |
| 15   | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.1   |
| 30   | 0.0             | 0.0             | 21.0 | 0     | 0                | 0.0   |
| 45   | 0.0             | 0.0             | 21.0 | 0     | 0                | 0.0   |
| 60   | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.0   |
| 75   | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.0   |
| 90   | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.0   |
| 105  | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.0   |
| 120  | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.0   |
| 135  | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.0   |
| 150  | 0.0             | 0.0             | 20.9 | 0     | 0                | 0.0   |
| 165  | 0.0             | 0.1             | 20.9 | 0     | 0                | 0.0   |
| 180  | 0.0             | 0.1             | 20.9 | 0     | 0                | 0.0   |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 0.1  |
| Min O <sub>2</sub> (%)     | 20.9 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.3  |

| Flow rate (I/hr) |      |      | Relative pressure (mb) |
|------------------|------|------|------------------------|
| Initial          | Mean | Max  |                        |
| -0.1             | -0.1 | -0.1 | 0.00                   |

REMARK: saving of flow data fail



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
| 1                  | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                          |                | 26/05/2022 | Monitorin<br>Instrume | g equipment<br>nt:                                                                                            | GA5000. No. G505055                           |
|--------------------------------|----------------|------------|-----------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Barometr                       | ic pressure:   |            | Calibratio            | n check details:                                                                                              | See note 2 below                              |
| a)                             | Trend (24hrs): | Rising     | Next calib            | oration date:                                                                                                 | Sept 2022                                     |
| b)                             | At start (mB): | 1021       |                       |                                                                                                               |                                               |
|                                |                |            | Notes:                |                                                                                                               |                                               |
|                                |                |            | 1)                    | Barometric pressure trend and ambient air temperature is recorded fro                                         |                                               |
| Recorded                       | by:            | GW         | 1                     | metoffice.gov.u                                                                                               | ık website on the day of the monitoring visit |
|                                |                |            | 2)                    | Calibration check is performed at start of monitoring against ambient air                                     |                                               |
| Surface ground conditions: Dry |                | Dry        | 7                     | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture                                            |                                               |
| Weather conditions: Ove        |                | Overcast   | 3)                    | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                                               |
| Ambient air temp (°C):         |                | 16         |                       |                                                                                                               |                                               |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS10  | 13:32:52    | 50               | DRY                | 2.98                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | 02   | CO    | H <sub>2</sub> S | PID   |
|------|-----------------|-----------------|------|-------|------------------|-------|
| (s)  | (%)             | (%)             | (%)  | (ppm) | (ppm)            | (ppm) |
| 0    | 0.0             | 0.0             | 21.0 | 0     | 0                | 0.2   |
| 15   | 0.0             | 1.4             | 20.2 | 0     | 0                | 0.3   |
| 30   | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.3   |
| 45   | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.3   |
| 60   | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.3   |
| 75   | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.2   |
| 90   | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.2   |
| 105  | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.2   |
| 120  | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.2   |
| 135  | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.2   |
| 150  | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.2   |
| 165  | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.2   |
| 180  | 0.0             | 1.5             | 20.1 | 0     | 0                | 0.1   |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 1.5  |
| Min O <sub>2</sub> (%)     | 20.1 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.3  |

| Flow rate (I/hr) |      |     | Relative pressure (mb) |
|------------------|------|-----|------------------------|
| Initial          | Mean | Max |                        |
| -0.1             | 0.1  | 0.1 | 0.00                   |

REMARK: saving of flow data fail



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 30/05/2022 | Monitori                                                               | ng equipment                                                                       |                                      |
|----------------------------|----------------|------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------|
|                            |                | 30/03/2022 | Instrum                                                                | ent:                                                                               | GA5000. No. G505055                  |
| Barometri                  | ic pressure:   |            | Calibrati                                                              | on check details:                                                                  | See note 2 below                     |
| a)                         | Trend (24hrs): | Rising     | Next cal                                                               | ibration date:                                                                     | Sept 2022                            |
| b)                         | At start (mB): | 1017       |                                                                        |                                                                                    |                                      |
|                            |                |            | Notes:                                                                 |                                                                                    |                                      |
|                            |                |            | Barometric pressure trend and ambient air temperature is recorded from |                                                                                    |                                      |
| Recorded                   | by:            | GW         |                                                                        | metoffice.gov.uk website on the day of the monitoring visit                        |                                      |
|                            |                |            | 2)                                                                     | Calibration check is performed at start of monitoring against ambient at           |                                      |
| Surface ground conditions: |                | Dry        |                                                                        | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture                 |                                      |
| Weather conditions:        |                | Overcast   | 3)                                                                     | CH <sub>4</sub> = methane; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide; |                                      |
| Ambient air temp (°C):     |                | 16         |                                                                        | O <sub>2</sub> = oxygen; F                                                         | H <sub>2</sub> S = hydrogen sulphide |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH01  | 13:39:56    | 50               | 3.21               | 5.49                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H₂S   | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|-------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (ррііі)      |
| 0    | 0.3             | 0.5             | 18.7           | 0     | 0     | 0.2          |
| 15   | 0.0             | 1.7             | 19.7           | 0     | 0     | 0.2          |
| 30   | 0.0             | 1.9             | 19.4           | 0     | 0     | 0.1          |
| 45   | 0.0             | 2.1             | 19.2           | 0     | 0     | 0.1          |
| 60   | 0.0             | 2.2             | 19.1           | 0     | 0     | 0.0          |
| 75   | 0.0             | 2.2             | 19.1           | 0     | 0     | 0.0          |
| 90   | 0.0             | 2.3             | 19.1           | 0     | 0     | 0.0          |
| 105  | 0.0             | 2.3             | 19.0           | 0     | 0     | 0.0          |
| 120  | 0.0             | 2.3             | 19.0           | 0     | 0     | 0.0          |
| 135  | 0.0             | 2.3             | 19.0           | 0     | 0     | 0.0          |
| 150  | 0.0             | 2.3             | 19.0           | 0     | 0     | 0.0          |
| 165  | 0.0             | 2.3             | 19.0           | 0     | 0     | 0.0          |
| 180  | 0.0             | 2.3             | 19.0           | 0     | 0     | 0.0          |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |

| Max CH <sub>4</sub> (%)    | 0.3  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 2.3  |
| Min O <sub>2</sub> (%)     | 18.7 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.2  |

| Flow rate (I/hr) |      |     | Relative pressure (mb) |
|------------------|------|-----|------------------------|
| Initial          | Mean | Max |                        |
| 0.0              | 0.1  | 0.1 | 0.00                   |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 20 /05 /2022 | Monitorii | ng equipment                                                                                  |                                                                     |  |
|----------------------------|----------------|--------------|-----------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
|                            |                | 30/05/2022   | Instrume  | ent:                                                                                          | GA5000. No. G505055                                                 |  |
| Barometr                   | ic pressure:   |              | Calibrati | on check details:                                                                             | See note 2 below                                                    |  |
| a)                         | Trend (24hrs): | Rising       | Next cali | ibration date:                                                                                | Sept 2022                                                           |  |
| b)                         | At start (mB): | 1012         |           |                                                                                               |                                                                     |  |
|                            |                |              | Notes:    |                                                                                               | •                                                                   |  |
|                            |                |              | 1)        |                                                                                               | ressure trend and ambient air temperature is recorded from          |  |
| Recorded                   | by:            | GW           |           | metoffice.gov.uk website on the day of the monitoring visit                                   |                                                                     |  |
| ·                          |                |              | 2)        |                                                                                               | ck is performed at start of monitoring against ambient air and also |  |
| Surface ground conditions: |                | Dry          |           | periodically with a 5% $\mathrm{CH_4}$ , 5% $\mathrm{CO_2}$ and 6% $\mathrm{O_2}$ gas mixture |                                                                     |  |
| Weather conditions:        |                | Overcast     | 3)        | CH <sub>4</sub> = methane; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide;            |                                                                     |  |
| Ambient air temp (°C):     |                | 16           |           | O <sub>2</sub> = oxygen; H                                                                    | H <sub>2</sub> S = hydrogen sulphide                                |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH01  | 13:46:56    | 19               | 3.07               | 24.20                        |

| Time | CH₄ | CO <sub>2</sub> | $O_2$ | CO    | H <sub>2</sub> S | PID   |
|------|-----|-----------------|-------|-------|------------------|-------|
| (s)  | (%) | (%)             | (%)   | (ppm) | (ppm)            | (ppm) |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |
|      |     |                 |       |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0 |
|----------------------------|-----|
| Max CO <sub>2</sub> (%)    | 0.0 |
| Min O <sub>2</sub> (%)     | 0.0 |
| Max CO (ppm)               | 0   |
| Max H <sub>2</sub> S (ppm) | 0   |
| Max PID (ppm)              | 0.0 |

| Ī | Flo     | w rate (I/ | hr)  | Relative pressure (mb) |
|---|---------|------------|------|------------------------|
| ſ | Initial | Mean       | Max  |                        |
|   | 0.0     | -2.0       | -3.0 | 0.00                   |

REMARK: pump fail



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                  |                   | 30/05/2022 | Monitorir<br>Instrume                                                                         | ng equipment                               | GA5000, No. G505055                                                 |
|------------------------|-------------------|------------|-----------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|
| Barometri              | c pressure:       |            |                                                                                               | on check details:                          | See note 2 below                                                    |
| a)                     | Trend (24hrs):    | Rising     | Next cali                                                                                     | bration date:                              | Sept 2022                                                           |
| b)                     | At start (mB):    | 1013       |                                                                                               |                                            |                                                                     |
|                        |                   |            | Notes:                                                                                        |                                            |                                                                     |
|                        |                   |            | 1)                                                                                            |                                            |                                                                     |
| Recorded               | by:               | GW         |                                                                                               | metoffice.gov.u                            | uk website on the day of the monitoring visit                       |
|                        |                   |            | 2)                                                                                            |                                            | ck is performed at start of monitoring against ambient air and also |
| Surface gi             | round conditions: | Dry        | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                                            | n a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture                  |
| Weather o              | conditions:       | Overcast   | 3) $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide;                         |                                            |                                                                     |
| Ambient air temp (°C): |                   | 16         |                                                                                               | $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                                                                     |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН02  | 10:31:29    | 50               | 1.34               | 2.95                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H₂S   | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|-------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (PPIII)      |
| 0    | 0.1             | 0.1             | 21.4           | 0     | 0     | 0.0          |
| 15   | 0.1             | 1.1             | 20.7           | 0     | 0     | 0.0          |
| 30   | 0.1             | 1.1             | 20.4           | 0     | 0     | 0.0          |
| 45   | 0.1             | 1.1             | 20.4           | 0     | 0     | 0.0          |
| 60   | 0.1             | 1.1             | 20.4           | 0     | 0     | 0.0          |
| 75   | 0.1             | 1.1             | 20.4           | 0     | 0     | 0.0          |
| 90   | 0.0             | 1.1             | 20.3           | 0     | 0     | 0.0          |
| 105  | 0.1             | 1.2             | 20.3           | 0     | 0     | 0.0          |
| 120  | 0.0             | 1.2             | 20.3           | 0     | 0     | 0.0          |
| 135  | 0.0             | 1.2             | 20.3           | 0     | 0     | 0.0          |
| 150  | 0.0             | 1.2             | 20.3           | 0     | 0     | 0.0          |
| 165  | 0.0             | 1.2             | 20.3           | 0     | 0     | 0.0          |
| 180  | 0.0             | 1.2             | 20.3           | 0     | 0     | 0.0          |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       | ·            |
|      |                 |                 |                |       |       | ·            |

| Max CH <sub>4</sub> (%) | 0.1  |
|-------------------------|------|
| Max CO <sub>2</sub> (%) | 1.2  |
| Min O <sub>2</sub> (%)  | 20.3 |
| Max CO (ppm)            | 0    |
| Max H₂S (ppm)           | 0    |
| Max PID (ppm)           | 0.0  |

| Flow rate (I/hr) |      |     | Relative pressure (mb) |
|------------------|------|-----|------------------------|
| Initial          | Mean | Max |                        |
| 0.0              | 0.1  | 0.1 | 0.00                   |

REMARK: PEZO bailed out



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 30/05/2022 | Monitorin<br>Instrume      | g equipment<br>nt:                                                                                                                                                                                                                        | GA5000. No. G505055                                                 |
|----------------------------|----------------|------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Barometric pressure:       |                |            | Calibration check details: |                                                                                                                                                                                                                                           | See note 2 below                                                    |
| a)                         | Trend (24hrs): | Rising     | Next calib                 | oration date:                                                                                                                                                                                                                             | Sept 2022                                                           |
| b)                         | At start (mB): | 1013       |                            |                                                                                                                                                                                                                                           |                                                                     |
|                            |                |            | Notes:                     |                                                                                                                                                                                                                                           | •                                                                   |
|                            |                |            | 1)                         | Barometric pressure trend and ambient air temperature is recorded from                                                                                                                                                                    |                                                                     |
| Recorded                   | by:            | GW         | 1                          | metoffice.gov.u                                                                                                                                                                                                                           | k website on the day of the monitoring visit                        |
|                            |                |            | 2)                         |                                                                                                                                                                                                                                           | ck is performed at start of monitoring against ambient air and also |
| Surface ground conditions: |                | Dry        | 7                          | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture $CH_4 = \text{methane}; CO_2 = \text{carbon dioxide}; CO = \text{carbon monoxide}; \\ O_2 = \text{oxygen}; H_2S = \text{hydrogen sulphide}$ |                                                                     |
| Weather conditions:        |                | Overcast   | 3)                         |                                                                                                                                                                                                                                           |                                                                     |
| Ambient air temp (°C):     |                | 16         |                            |                                                                                                                                                                                                                                           |                                                                     |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН02  | 10:31:29    | 19               | 14.14              | 14.83                        |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | СО    | H₂S   | PID   |
|------|-----------------|-----------------|----------------|-------|-------|-------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (ppm) |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flow rate (I/hr) |          |  | Relative pressure (mb) |
|------------------|----------|--|------------------------|
| Initial          | Mean Max |  |                        |
|                  |          |  |                        |

REMARK: PEZO bailed out



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 20 /05 /2022 | Monitori                                                                              | ng equipment                                                       |                                                                     |
|----------------------------|----------------|--------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|
|                            |                | 30/05/2022   | Instrume                                                                              | ent:                                                               | GA5000. No. G505055                                                 |
| Barometr                   | ic pressure:   |              | Calibrati                                                                             | on check details:                                                  | See note 2 below                                                    |
| a)                         | Trend (24hrs): | Rising       | Next cali                                                                             | ibration date:                                                     | Sept 2022                                                           |
| b)                         | At start (mB): | 1014         |                                                                                       |                                                                    |                                                                     |
|                            |                |              | Notes:                                                                                |                                                                    | •                                                                   |
|                            |                |              | 1) Barometric pressure trend and ambient air temperature is recorded fro              |                                                                    | ·                                                                   |
| Recorded                   | by:            | GW           |                                                                                       | metoffice.gov.u                                                    | k website on the day of the monitoring visit                        |
|                            |                |              | 2)                                                                                    |                                                                    | ck is performed at start of monitoring against ambient air and also |
| Surface ground conditions: |                | Dry          |                                                                                       | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture |                                                                     |
| Weather of                 | conditions:    | Overcast     | 3) CH <sub>4</sub> = methane; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide; |                                                                    | , -                                                                 |
| Ambient air temp (°C):     |                | 16           |                                                                                       | $O_2$ = oxygen; $H_2S$ = hydrogen sulphide                         |                                                                     |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| вн03  | 12:09:40    | 50               | 2.34               | 8.37                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H₂S   | PID   |
|------|-----------------|-----------------|----------------|-------|-------|-------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (ppm) |
| 0    | 0.0             | 0.1             | 21.2           | 0     | 0     | 0.1   |
| 15   | 0.0             | 0.6             | 20.9           | 0     | 0     | 0.2   |
| 30   | 0.0             | 0.5             | 20.9           | 0     | 0     | 0.2   |
| 45   | 0.0             | 0.4             | 20.9           | 0     | 0     | 0.2   |
| 60   | 0.0             | 0.3             | 21.0           | 0     | 0     | 0.1   |
| 75   | 0.0             | 0.3             | 21.0           | 0     | 0     | 0.1   |
| 90   | 0.0             | 0.3             | 21.2           | 0     | 0     | 0.1   |
| 105  | 0.0             | 0.3             | 21.0           | 0     | 0     | 0.1   |
| 120  | 0.0             | 0.3             | 21.0           | 0     | 0     | 0.0   |
| 135  | 0.0             | 0.3             | 21.0           | 0     | 0     | 0.0   |
| 150  | 0.0             | 0.2             | 21.0           | 0     | 0     | 0.0   |
| 165  | 0.0             | 0.2             | 21.1           | 0     | 0     | 0.0   |
| 180  | 0.0             | 0.2             | 21.1           | 0     | 0     | 0.0   |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 0.6  |
| Min O <sub>2</sub> (%)     | 20.9 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.2  |

| Flow rate (I/hr) |      |     | Relative pressure (mb) |
|------------------|------|-----|------------------------|
| Initial          | Mean | Max |                        |
| 0.1              | 0.2  | 0.2 | 0.00                   |

Remark: Bung not on properly



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                          |                | 30/05/2022                                                                    | Monitorin<br>Instrume                                         | g equipment                                                                                                                            | GA5000. No. G505055                                                 |
|--------------------------------|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| D                              |                |                                                                               |                                                               |                                                                                                                                        |                                                                     |
| Barometr                       | ic pressure:   |                                                                               | Calibratio                                                    | n check details:                                                                                                                       | See note 2 below                                                    |
| a)                             | Trend (24hrs): | Rising                                                                        | Next calib                                                    | oration date:                                                                                                                          | Sept 2022                                                           |
| b)                             | At start (mB): | 1014                                                                          |                                                               |                                                                                                                                        |                                                                     |
|                                |                |                                                                               | Notes:                                                        |                                                                                                                                        | •                                                                   |
|                                |                |                                                                               | Barometric pressure trend and ambient air temperature is reco |                                                                                                                                        | •                                                                   |
| Recorded                       | by:            | GW                                                                            | 1                                                             | metoffice.gov.u                                                                                                                        | k website on the day of the monitoring visit                        |
|                                |                |                                                                               | 2)                                                            |                                                                                                                                        | ck is performed at start of monitoring against ambient air and also |
| Surface ground conditions: Dry |                | h a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                                                               |                                                                                                                                        |                                                                     |
| Weather conditions:            |                | Overcast                                                                      | 3)                                                            | ${\rm CH_4}=$ methane; ${\rm CO_2}=$ carbon dioxide; ${\rm CO}=$ carbon monoxide; ${\rm O_2}=$ oxygen; ${\rm H_2S}=$ hydrogen sulphide |                                                                     |
| Ambient air temp (°C):         |                | 16                                                                            |                                                               |                                                                                                                                        |                                                                     |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН03  | 12:09:40    | 19               | 2.39               | 23.55                        |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H <sub>2</sub> S | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|------------------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm)            | (PP)         |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flow rate (I/hr) |             |  | Relative pressure (mb) |
|------------------|-------------|--|------------------------|
| Initial          | al Mean Max |  |                        |
|                  |             |  |                        |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
| l                  | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:      |                   | 30/05/2022 | Monitorir<br>Instrume                                                                         | ng equipment      | GA5000, No. G505055                                                    |  |  |
|------------|-------------------|------------|-----------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------|--|--|
| Barometri  | c pressure:       |            |                                                                                               | on check details: | See note 2 below                                                       |  |  |
| a)         | Trend (24hrs):    | Rising     | Next cali                                                                                     | bration date:     | Sept 2022                                                              |  |  |
| b)         | At start (mB):    | 1013       |                                                                                               |                   |                                                                        |  |  |
|            |                   |            | Notes:                                                                                        |                   | •                                                                      |  |  |
|            |                   |            | 1 '                                                                                           |                   | sure trend and ambient air temperature is recorded from                |  |  |
| Recorded   | by:               | GW         | metoffice.gov.uk website on the day of the monitoring visit                                   |                   | ik website on the day of the monitoring visit                          |  |  |
|            |                   |            |                                                                                               |                   | check is performed at start of monitoring against ambient air and also |  |  |
| Surface gi | round conditions: | Dry        | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                   | n a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture                     |  |  |
| Weather o  | conditions:       | Overcast   | 3) CH <sub>4</sub> = methane; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide;         |                   |                                                                        |  |  |
| Ambient a  | nir temp (°C):    | 16         | $O_2 = \text{oxygen}; H_2S$                                                                   |                   | <sub>2</sub> S = hydrogen sulphide                                     |  |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH04  | 14:52:33    | 50               | 3.80               | 5.18                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | $O_2$ | CO    | H <sub>2</sub> S | PID   |
|------|-----------------|-----------------|-------|-------|------------------|-------|
| (s)  | (%)             | (%)             | (%)   | (ppm) | (ppm)            | (ppm) |
| 0    | 0.0             | 0.1             | 21.3  | 0     | 0                | 0.1   |
| 15   | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.0   |
| 30   | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.0   |
| 45   | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.0   |
| 60   | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.0   |
| 75   | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.1   |
| 90   | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.1   |
| 105  | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.1   |
| 120  | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.1   |
| 135  | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.0   |
| 150  | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.0   |
| 165  | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.0   |
| 180  | 0.0             | 0.1             | 21.4  | 0     | 0                | 0.0   |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 0.1  |
| Min O <sub>2</sub> (%)     | 21.3 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.1  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| 0.2     | 0.1        | 0.4                    | 0.00 |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 30/05/2022 | Monitorin<br>Instrume | g equipment                                                                                                                                                                                                                               | GA5000. No. G505055                                       |  |
|----------------------------|----------------|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Dayanaahu                  | ia nuacauua.   |            |                       | n check details:                                                                                                                                                                                                                          | See note 2 below                                          |  |
| barometr                   | ic pressure:   |            | Calibratio            | n check details:                                                                                                                                                                                                                          | See note 2 below                                          |  |
| a)                         | Trend (24hrs): | Rising     | Next calib            | oration date:                                                                                                                                                                                                                             | Sept 2022                                                 |  |
| b)                         | At start (mB): | 1013       |                       |                                                                                                                                                                                                                                           |                                                           |  |
|                            |                |            | Notes:                |                                                                                                                                                                                                                                           | •                                                         |  |
|                            |                |            | Barometric press      |                                                                                                                                                                                                                                           | essure trend and ambient air temperature is recorded from |  |
| Recorded                   | by:            | GW         |                       | metoffice.gov.uk website on the day of the monitoring visit                                                                                                                                                                               |                                                           |  |
|                            |                |            | 2)                    | Calibration check is performed at start of monitoring against ambient a                                                                                                                                                                   |                                                           |  |
| Surface ground conditions: |                | Dry        | 7                     | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture $CH_4 = \text{methane}; CO_2 = \text{carbon dioxide}; CO = \text{carbon monoxide}; \\ O_2 = \text{oxygen}; H_2S = \text{hydrogen sulphide}$ |                                                           |  |
| Weather conditions:        |                | Overcast   | 3)                    |                                                                                                                                                                                                                                           |                                                           |  |
| Ambient air temp (°C):     |                | 16         |                       |                                                                                                                                                                                                                                           |                                                           |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН04  | 14:52:33    | 19               | 2.64               | 14.73                        |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H <sub>2</sub> S | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|------------------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm)            | (PP)         |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flo     | w rate (I/ | Relative pressure (mb) |  |
|---------|------------|------------------------|--|
| Initial | Mean Max   |                        |  |
|         |            |                        |  |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 20 /05 /2022 | Monitori                 | ng equipment                                                                       |                                                                       |  |  |
|----------------------------|----------------|--------------|--------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
|                            |                | 30/05/2022   | Instrum                  | ent:                                                                               | GA5000. No. G505055                                                   |  |  |
| Barometric pressure:       |                |              | Calibrati                | ion check details:                                                                 | See note 2 below                                                      |  |  |
| a)                         | Trend (24hrs): | Rising       | Next cal                 | ibration date:                                                                     | Sept 2022                                                             |  |  |
| b)                         | At start (mB): | 1013         |                          |                                                                                    |                                                                       |  |  |
|                            |                |              | Notes:                   |                                                                                    |                                                                       |  |  |
|                            |                |              | 1 '                      |                                                                                    | ressure trend and ambient air temperature is recorded from            |  |  |
| Recorded                   | by:            | GW           |                          | metoffice.gov.uk website on the day of the monitoring visit                        |                                                                       |  |  |
|                            |                |              | 2)                       |                                                                                    | neck is performed at start of monitoring against ambient air and also |  |  |
| Surface ground conditions: |                | Dry          |                          | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture                 |                                                                       |  |  |
| Weather conditions:        |                | Overcast     | 3)                       | CH <sub>4</sub> = methane; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide; |                                                                       |  |  |
| Ambient air temp (°C):     |                | 16           | O <sub>2</sub> = oxygen; |                                                                                    | $H_2S = hydrogen sulphide$                                            |  |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS3   | 13:20:06    | 50               | 1.23               | 3.02                         |

| Time<br>(s) | CH₄<br>(%) | CO <sub>2</sub><br>(%) | O <sub>2</sub><br>(%) | CO<br>(ppm) | H <sub>2</sub> S<br>(ppm) | PID<br>(ppm) |
|-------------|------------|------------------------|-----------------------|-------------|---------------------------|--------------|
|             |            |                        |                       |             |                           |              |
| 0           | 0.0        | 0.1                    | 21.6                  | 0           | 0                         | 0.0          |
| 15          | 2.0        | 3.8                    | 6.9                   | 0           | 0                         | 0.0          |
| 30          | 2.0        | 3.9                    | 2.5                   | 0           | 0                         | 0.1          |
| 45          | 2.0        | 3.9                    | 2.1                   | 0           | 0                         | 0.1          |
| 60          | 2.0        | 3.9                    | 2.1                   | 0           | 0                         | 0.0          |
| 75          | 2.0        | 3.9                    | 1.9                   | 0           | 0                         | 0.1          |
| 90          | 2.0        | 3.9                    | 1.7                   | 0           | 0                         | 0.1          |
| 105         | 2.1        | 4.0                    | 1.5                   | 0           | 0                         | 0.1          |
| 120         | 2.1        | 4.0                    | 1.3                   | 0           | 0                         | 0.1          |
| 135         | 2.1        | 4.0                    | 1.3                   | 0           | 0                         | 0.1          |
| 150         | 2.0        | 3.9                    | 1.2                   | 0           | 0                         | 0.1          |
| 165         | 2.0        | 3.9                    | 1.3                   | 0           | 0                         | 0.1          |
| 180         | 2.0        | 3.8                    | 1.4                   | 0           | 0                         | 0.2          |
|             |            |                        |                       |             |                           |              |
|             |            |                        |                       |             |                           |              |
|             |            |                        |                       |             |                           |              |
|             |            |                        |                       |             |                           |              |
|             |            |                        |                       |             |                           |              |
|             |            |                        |                       |             |                           |              |

| Max CH <sub>4</sub> (%)    | 2.1 |
|----------------------------|-----|
| Max CO <sub>2</sub> (%)    | 4.0 |
| Min O <sub>2</sub> (%)     | 1.2 |
| Max CO (ppm)               | 0   |
| Max H <sub>2</sub> S (ppm) | 0   |
| Max PID (ppm)              | 0.2 |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| 0.0     | 0.1        | 0.1                    | 0.00 |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                          |                | 30/05/2022                                                                    | Monitorir<br>Instrume | ng equipment<br>ent:                                                                                             | GA5000. No. G505055                                       |  |
|--------------------------------|----------------|-------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
| Barometric pressure:           |                |                                                                               | Calibration           | on check details:                                                                                                | See note 2 below                                          |  |
| a)                             | Trend (24hrs): | Rising                                                                        | Next cali             | bration date:                                                                                                    | Sept 2022                                                 |  |
| b)                             | At start (mB): | 1014                                                                          |                       |                                                                                                                  |                                                           |  |
|                                |                |                                                                               | Notes:                |                                                                                                                  | •                                                         |  |
|                                |                |                                                                               | 1 '                   |                                                                                                                  | essure trend and ambient air temperature is recorded from |  |
| Recorded                       | by:            | GW                                                                            | 1                     | metoffice.gov.uk website on the day of the monitoring visit                                                      |                                                           |  |
|                                |                |                                                                               | 2)                    |                                                                                                                  |                                                           |  |
| Surface ground conditions: Dry |                | h a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                       |                                                                                                                  |                                                           |  |
| Weather conditions:            |                | Overcast                                                                      | 3)                    | 3) $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                                                           |  |
| Ambient air temp (°C):         |                | 16                                                                            |                       |                                                                                                                  |                                                           |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS6   | 15:36:14    | 50               | 1.25               | 1.99                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H₂S   | PID   |
|------|-----------------|-----------------|----------------|-------|-------|-------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (ppm) |
| 0    | 0.0             | 0.1             | 21.5           | 0     | 0     | 0.1   |
| 15   | 0.0             | 1.3             | 20.9           | 0     | 0     | 0.1   |
| 30   | 0.0             | 1.4             | 20.7           | 0     | 0     | 0.0   |
| 45   | 0.0             | 1.4             | 20.7           | 0     | 0     | 0.0   |
| 60   | 0.0             | 1.4             | 20.6           | 0     | 0     | 0.0   |
| 75   | 0.0             | 1.4             | 20.6           | 0     | 0     | 0.0   |
| 90   | 0.0             | 1.4             | 20.6           | 0     | 0     | 0.0   |
| 105  | 0.0             | 1.5             | 20.6           | 0     | 0     | 0.0   |
| 120  | 0.0             | 1.5             | 20.6           | 0     | 0     | 0.0   |
| 135  | 0.0             | 1.5             | 20.6           | 0     | 0     | 0.0   |
| 150  | 0.0             | 1.5             | 20.5           | 0     | 0     | 0.0   |
| 165  | 0.0             | 1.5             | 20.5           | 0     | 0     | 0.0   |
| 180  | 0.0             | 1.5             | 20.5           | 0     | 0     | 0.0   |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 1.5  |
| Min O <sub>2</sub> (%)     | 20.5 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.1  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| 0.1     | 0.4        | 0.5                    | 0.00 |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 30/05/2022 | Monitorin<br>Instrume | g equipment                                                                                         | GA5000. No. G505055                                        |  |
|----------------------------|----------------|------------|-----------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------|--|
| D                          |                |            |                       |                                                                                                     |                                                            |  |
| Barometr                   | ic pressure:   |            | Calibratio            | n check details:                                                                                    | See note 2 below                                           |  |
| a)                         | Trend (24hrs): | Rising     | Next calib            | oration date:                                                                                       | Sept 2022                                                  |  |
| b)                         | At start (mB): | 1014       |                       |                                                                                                     |                                                            |  |
|                            |                |            | Notes:                |                                                                                                     | •                                                          |  |
|                            |                |            | 1) Barometric press   |                                                                                                     | ssure trend and ambient air temperature is recorded from   |  |
| Recorded                   | by:            | GW         | 1                     | metoffice.gov.uk website on the day of the monitoring visit                                         |                                                            |  |
|                            |                |            | 2)                    | Calibration check is performed at start of monitoring against ambient a                             |                                                            |  |
| Surface ground conditions: |                | Dry        | 7                     | periodically with a 5% $\mathrm{CH_{4}}$ , 5% $\mathrm{CO_{2}}$ and 6% $\mathrm{O_{2}}$ gas mixture |                                                            |  |
| Weather conditions:        |                | Overcast   | 3)                    |                                                                                                     | e; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide; |  |
| Ambient air temp (°C):     |                | 16         |                       | O <sub>2</sub> = oxygen; H                                                                          | H <sub>2</sub> S = hydrogen sulphide                       |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS10  | 15:48:42    | 50               | DRY                | 3.01                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | $O_2$ | CO    | H <sub>2</sub> S | PID   |
|------|-----------------|-----------------|-------|-------|------------------|-------|
| (s)  | (%)             | (%)             | (%)   | (ppm) | (ppm)            | (ppm) |
| 0    | 0.0             | 0.1             | 21.3  | 0     | 0                | 0.1   |
| 15   | 0.0             | 1.2             | 20.8  | 0     | 0                | 0.1   |
| 30   | 0.0             | 1.2             | 20.7  | 0     | 0                | 0.1   |
| 45   | 0.0             | 1.2             | 20.7  | 0     | 0                | 0.1   |
| 60   | 0.0             | 1.2             | 20.6  | 0     | 0                | 0.1   |
| 75   | 0.0             | 1.3             | 20.6  | 0     | 0                | 0.1   |
| 90   | 0.0             | 1.3             | 20.6  | 0     | 0                | 0.1   |
| 105  | 0.0             | 1.3             | 20.6  | 0     | 0                | 0.1   |
| 120  | 0.0             | 1.3             | 20.6  | 0     | 0                | 0.1   |
| 135  | 0.0             | 1.3             | 20.6  | 0     | 0                | 0.1   |
| 150  | 0.0             | 1.3             | 20.6  | 0     | 0                | 0.0   |
| 165  | 0.0             | 1.3             | 20.6  | 0     | 0                | 0.1   |
| 180  | 0.0             | 1.3             | 20.6  | 0     | 0                | 0.0   |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 1.3  |
| Min O <sub>2</sub> (%)     | 20.6 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.1  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| -0.2    | -0.4       | -0.2                   | 0.00 |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:               |                   | 06/06/2022 | Monitorii                                                                                     | ng equipment                                                       |                                                                               |
|---------------------|-------------------|------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                     |                   | 06/06/2022 | Instrume                                                                                      | ent:                                                               | GA5000. No. G505055                                                           |
| Barometr            | ic pressure:      |            | Calibrati                                                                                     | on check details:                                                  | See note 2 below                                                              |
| a)                  | Trend (24hrs):    | Rising     | Next cali                                                                                     | ibration date:                                                     | Sept 2022                                                                     |
| b)                  | At start (mB):    | 1014       |                                                                                               |                                                                    |                                                                               |
|                     |                   |            | Notes:                                                                                        |                                                                    | •                                                                             |
|                     |                   |            | 1)                                                                                            |                                                                    |                                                                               |
| Recorded            | by:               | GW         |                                                                                               | metoffice.gov.u                                                    | k website on the day of the monitoring visit                                  |
|                     |                   |            | 2) Calibration check is performed at start of monitoring against a                            |                                                                    | ck is performed at start of monitoring against ambient air and also           |
| Surface g           | round conditions: | Wet        | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                                                                    | h a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |
| Weather conditions: |                   | Overcast   | 3)                                                                                            | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; |                                                                               |
| Ambient a           | air temp (°C):    | 16         | O <sub>2</sub> = oxygen; H                                                                    |                                                                    | H <sub>2</sub> S = hydrogen sulphide                                          |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH01  | 11:07:14    | 50               | 3.23               | 5.41                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H₂S   | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|-------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (ррііі)      |
| 0    | 0.0             | 0.1             | 21.4           | 0     | 0     | 0.1          |
| 15   | 0.0             | 3.1             | 19.2           | 0     | 0     | 0.2          |
| 30   | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.2          |
| 45   | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 60   | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 75   | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 90   | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 105  | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 120  | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 135  | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 150  | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 165  | 0.0             | 3.1             | 18.7           | 0     | 0     | 0.1          |
| 180  | 0.0             | 3.1             | 18.8           | 0     | 0     | 0.1          |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 3.1  |
| Min O <sub>2</sub> (%)     | 18.7 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.2  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| 0.0     | -0.1       | 0.1                    | 0.00 |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 06/06/2022 |            | <u>ig equipment</u>                                                     | CAFOOO No. CEOFOFF                                         |
|----------------------------|----------------|------------|------------|-------------------------------------------------------------------------|------------------------------------------------------------|
|                            |                |            | Instrume   | nt:                                                                     | GA5000. No. G505055                                        |
| Barometr                   | ic pressure:   |            | Calibratio | on check details:                                                       | See note 2 below                                           |
| a)                         | Trend (24hrs): | Rising     | Next calil | bration date:                                                           | Sept 2022                                                  |
| b)                         | At start (mB): | 1014       |            |                                                                         |                                                            |
|                            |                |            | Notes:     |                                                                         | •                                                          |
|                            |                |            | 1)         |                                                                         | ssure trend and ambient air temperature is recorded from   |
| Recorded                   | by:            | GW         | 1          | metoffice.gov.u                                                         | k website on the day of the monitoring visit               |
| ·                          |                |            | 2)         | Calibration check is performed at start of monitoring against ambient a |                                                            |
| Surface ground conditions: |                | Wet        | 7          | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture      |                                                            |
| Weather conditions:        |                | Overcast   | 3)         |                                                                         | e; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide; |
| Ambient air temp (°C):     |                | 16         |            | O <sub>2</sub> = oxygen; F                                              | H <sub>2</sub> S = hydrogen sulphide                       |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| BH01  | 11:16:49    | 19               | 3.32               | 24.38                        |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | СО    | H₂S   | PID   |
|------|-----------------|-----------------|----------------|-------|-------|-------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (ppm) |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |
|      |                 |                 |                |       |       |       |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flo     | w rate (I/ | Relative pressure (mb) |  |
|---------|------------|------------------------|--|
| Initial | Mean Max   |                        |  |
|         |            |                        |  |

REMARK: pump fail



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 06/06/2022 |            | <u>g equipment</u>                                                                            |                                                            |
|----------------------------|----------------|------------|------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                            |                |            | Instrume   | nt:                                                                                           | GA5000. No. G505055                                        |
| Barometr                   | ic pressure:   |            | Calibratio | on check details:                                                                             | See note 2 below                                           |
| a)                         | Trend (24hrs): | Rising     | Next calil | bration date:                                                                                 | Sept 2022                                                  |
| b)                         | At start (mB): | 1016       |            |                                                                                               |                                                            |
|                            |                |            | Notes:     |                                                                                               |                                                            |
|                            |                |            | 1)         | Barometric pressure trend and ambient air temperature is recorded from                        |                                                            |
| Recorded                   | by:            | GW         | 1          | metoffice.gov.u                                                                               | ık website on the day of the monitoring visit              |
|                            |                |            | 2)         | Calibration check is performed at start of monitoring against ambient                         |                                                            |
| Surface ground conditions: |                | Wet        | 7          | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                                                            |
| Weather conditions:        |                | Overcast   | 3)         |                                                                                               | e; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide; |
| Ambient air temp (°C):     |                | 16         |            | O <sub>2</sub> = oxygen; F                                                                    | H <sub>2</sub> S = hydrogen sulphide                       |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН02  | 10:25:06    | 50               | 1.37               | 3.00                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | 02   | CO    | H <sub>2</sub> S | PID   |
|------|-----------------|-----------------|------|-------|------------------|-------|
| (s)  | (%)             | (%)             | (%)  | (ppm) | (ppm)            | (ppm) |
| 0    | 0.1             | 0.1             | 21.3 | 0     | 0                | 0.1   |
| 15   | 0.1             | 1.5             | 20.1 | 0     | 0                | 0.1   |
| 30   | 0.1             | 1.5             | 19.7 | 0     | 0                | 0.2   |
| 45   | 0.1             | 1.5             | 19.7 | 0     | 0                | 0.2   |
| 60   | 0.1             | 1.5             | 19.7 | 0     | 0                | 0.3   |
| 75   | 0.1             | 1.5             | 19.7 | 0     | 0                | 0.3   |
| 90   | 0.1             | 1.5             | 19.7 | 0     | 0                | 0.3   |
| 105  | 0.0             | 1.5             | 19.7 | 0     | 0                | 0.3   |
| 120  | 0.0             | 1.5             | 19.7 | 0     | 0                | 0.3   |
| 135  | 0.0             | 1.5             | 19.7 | 0     | 0                | 0.3   |
| 150  | 0.0             | 1.5             | 19.7 | 0     | 0                | 0.3   |
| 165  | 0.0             | 1.5             | 19.6 | 0     | 0                | 0.4   |
| 180  | 0.0             | 1.5             | 19.6 | 0     | 0                | 0.4   |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |
|      |                 |                 |      |       |                  |       |

| Max CH <sub>4</sub> (%)    | 0.1  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 1.5  |
| Min O <sub>2</sub> (%)     | 19.6 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.4  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| 0.0     | -0.1       | 0.1                    | 0.00 |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 06/06/2022 |            | g equipment                                                                                                                        |                                                            |
|----------------------------|----------------|------------|------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                            |                | ,,         | Instrume   | nt:                                                                                                                                | GA5000. No. G505055                                        |
| Barometr                   | ic pressure:   |            | Calibratio | n check details:                                                                                                                   | See note 2 below                                           |
| a)                         | Trend (24hrs): | Rising     | Next calib | oration date:                                                                                                                      | Sept 2022                                                  |
| b)                         | At start (mB): | 1015       |            |                                                                                                                                    |                                                            |
|                            |                |            | Notes:     |                                                                                                                                    |                                                            |
|                            |                |            | 1)         | Barometric pressure trend and ambient air temperature is recorded from metoffice.gov.uk website on the day of the monitoring visit |                                                            |
| Recorded                   | by:            | GW         | 1          |                                                                                                                                    |                                                            |
|                            |                |            | 2)         | Calibration check is performed at start of monitoring against ambient                                                              |                                                            |
| Surface ground conditions: |                | Wet        |            | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture                                                                 |                                                            |
| Weather conditions:        |                | Overcast   | 3)         |                                                                                                                                    | e; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide; |
| Ambient air temp (°C):     |                | 16         |            | O <sub>2</sub> = oxygen; H                                                                                                         | H <sub>2</sub> S = hydrogen sulphide                       |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН02  | 10:33:07    | 19               | 12.24              | 14.84                        |

| Time | CH₄<br>(%) | CO <sub>2</sub><br>(%) | O <sub>2</sub><br>(%) | CO<br>(ppm) | H <sub>2</sub> S<br>(ppm) | PID<br>(ppm) |
|------|------------|------------------------|-----------------------|-------------|---------------------------|--------------|
| (s)  | (70)       | (70)                   | (70)                  | (ppiii)     | (ррпт)                    | (11.7        |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |
|      |            |                        |                       |             |                           |              |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flo     | w rate (I/ | hr) | Relative pressure (mb) |
|---------|------------|-----|------------------------|
| Initial | Mean Max   |     |                        |
|         |            |     |                        |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                  |                   | 06/06/2022 | Monitorii<br>Instrume                                                                         | ng equipment                                                                                                  | GA5000, No. G505055                                           |
|------------------------|-------------------|------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Barometri              | c pressure:       |            | Calibrati                                                                                     | on check details:                                                                                             | See note 2 below                                              |
| a)                     | Trend (24hrs):    | Rising     | Next cali                                                                                     | bration date:                                                                                                 | Sept 2022                                                     |
| b)                     | At start (mB):    | 1014       |                                                                                               |                                                                                                               |                                                               |
|                        |                   |            | Notes:                                                                                        |                                                                                                               |                                                               |
|                        |                   |            | 1)                                                                                            |                                                                                                               |                                                               |
| Recorded               | by:               | GW         | 7                                                                                             | metoffice.gov.uk website on the day of the monitoring visit                                                   |                                                               |
|                        |                   |            | 2)                                                                                            | Calibration check is performed at start of monitoring against ambient a                                       |                                                               |
| Surface gi             | round conditions: | Wet        | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                                                                                                               | n a 5% CH <sub>4</sub> , 5% CO $_2$ and 6% O $_2$ gas mixture |
| Weather conditions:    |                   | Overcast   | 3)                                                                                            | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide; $O_2$ = oxygen; $H_2S$ = hydrogen sulphide |                                                               |
| Ambient air temp (°C): |                   | 16         |                                                                                               |                                                                                                               |                                                               |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| вн03  | 11:37:16    | 50               | 2.39               | 8.22                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | СО    | H₂S   | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|-------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (ррііі)      |
| 0    | 0.0             | 0.1             | 21.3           | 0     | 0     | 0.0          |
| 15   | 0.0             | 1.2             | 20.4           | 0     | 0     | 0.1          |
| 30   | 0.0             | 1.1             | 20.3           | 0     | 0     | 0.1          |
| 45   | 0.0             | 1.0             | 20.4           | 0     | 0     | 0.1          |
| 60   | 0.0             | 1.0             | 20.5           | 0     | 0     | 0.1          |
| 75   | 0.0             | 0.9             | 20.5           | 0     | 0     | 0.1          |
| 90   | 0.0             | 0.9             | 20.6           | 0     | 0     | 0.1          |
| 105  | 0.0             | 0.9             | 20.6           | 0     | 0     | 0.1          |
| 120  | 0.0             | 0.8             | 20.6           | 0     | 0     | 0.1          |
| 135  | 0.0             | 0.8             | 20.7           | 0     | 0     | 0.1          |
| 150  | 0.0             | 0.8             | 20.7           | 0     | 0     | 0.1          |
| 165  | 0.0             | 0.7             | 20.8           | 0     | 0     | 0.1          |
| 180  | 0.0             | 0.6             | 20.9           | 0     | 0     | 0.0          |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 1.2  |
| Min O <sub>2</sub> (%)     | 20.3 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.1  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| 0.0     | 0.1        | 0.1                    | 0.00 |

Remark: Bung not on properly



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                  |                   | 06/06/2022 |                                                                                               | ng equipment                                                          | CAFOOO No CEOFOFF                                  |
|------------------------|-------------------|------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|
|                        |                   |            | Instrume                                                                                      | ent:                                                                  | GA5000. No. G505055                                |
| Barometri              | ic pressure:      |            | Calibrati                                                                                     | on check details:                                                     | See note 2 below                                   |
| a)                     | Trend (24hrs):    | Rising     | Next cali                                                                                     | bration date:                                                         | Sept 2022                                          |
| b)                     | At start (mB):    | 1014       |                                                                                               |                                                                       |                                                    |
|                        |                   |            | Notes:                                                                                        |                                                                       |                                                    |
|                        |                   |            | 1)                                                                                            |                                                                       |                                                    |
| Recorded               | by:               | GW         | 1                                                                                             | metoffice.gov.u                                                       | uk website on the day of the monitoring visit      |
|                        |                   |            | 2)                                                                                            | Calibration check is performed at start of monitoring against ambient |                                                    |
| Surface g              | round conditions: | Wet        | periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |                                                                       | n a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture |
| Weather conditions:    |                   | Overcast   | 3)                                                                                            | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide;    |                                                    |
| Ambient air temp (°C): |                   | 16         |                                                                                               | $O_2 = oxygen; F$                                                     | H <sub>2</sub> S = hydrogen sulphide               |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН03  | 11:37:16    | 19               | 2.34               | 23.58                        |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | CO    | H <sub>2</sub> S | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|------------------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm)            | (PP)         |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |
|      |                 |                 |                |       |                  |              |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flo     | w rate (I/ | Relative pressure (mb) |  |
|---------|------------|------------------------|--|
| Initial | Mean       | Max                    |  |
|         |            |                        |  |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                                                                                      |                | 06/06/2022                                                                    |            | ng equipment                                                            | CAFOOO No CEOFOFF                                          |
|--------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------|------------------------------------------------------------|
|                                                                                            |                |                                                                               | Instrume   | ent:                                                                    | GA5000. No. G505055                                        |
| Barometri                                                                                  | ic pressure:   |                                                                               | Calibratio | on check details:                                                       | See note 2 below                                           |
| a)                                                                                         | Trend (24hrs): | Rising                                                                        | Next cali  | bration date:                                                           | Sept 2022                                                  |
| b)                                                                                         | At start (mB): | 1020                                                                          |            |                                                                         |                                                            |
|                                                                                            |                |                                                                               | Notes:     |                                                                         | •                                                          |
|                                                                                            |                |                                                                               | 1)         |                                                                         |                                                            |
| Recorded                                                                                   | by:            | GW                                                                            |            | metoffice.gov.uk website on the day of the monitoring visit             |                                                            |
|                                                                                            |                |                                                                               | 2)         | Calibration check is performed at start of monitoring against ambient a |                                                            |
| Surface ground conditions: Wet periodically with a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> |                | h a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |            |                                                                         |                                                            |
| Weather conditions:                                                                        |                | Overcast                                                                      | 3)         |                                                                         | e; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide; |
| Ambient air temp (°C):                                                                     |                | 16                                                                            |            | $O_2$ = oxygen; $H_2S$ = hydrogen sulphide                              |                                                            |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН04  | 12:37:36    | 50               | 3.82               | 5.00                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | $O_2$ | CO    | H₂S   | PID   |
|------|-----------------|-----------------|-------|-------|-------|-------|
| (s)  | (%)             | (%)             | (%)   | (ppm) | (ppm) | (ppm) |
| 0    | 0.0             | 0.1             | 21.4  | 0     | 0     | 0.1   |
| 15   | 0.0             | 0.2             | 21.3  | 0     | 0     | 0.0   |
| 30   | 0.0             | 0.3             | 21.2  | 0     | 0     | 0.0   |
| 45   | 0.0             | 0.4             | 21.2  | 0     | 0     | 0.0   |
| 60   | 0.0             | 0.4             | 21.1  | 0     | 0     | 0.0   |
| 75   | 0.0             | 0.4             | 21.1  | 0     | 0     | 0.0   |
| 90   | 0.0             | 0.4             | 21.1  | 0     | 0     | 0.0   |
| 105  | 0.0             | 0.4             | 21.1  | 0     | 0     | 0.0   |
| 120  | 0.0             | 0.3             | 21.2  | 0     | 0     | 0.0   |
| 135  | 0.0             | 0.4             | 21.1  | 0     | 0     | 0.0   |
| 150  | 0.0             | 0.4             | 21.1  | 0     | 0     | 0.0   |
| 165  | 0.0             | 0.3             | 21.2  | 0     | 0     | 0.0   |
| 180  | 0.0             | 0.3             | 21.2  | 0     | 0     | 0.0   |
|      |                 |                 |       |       |       |       |
|      |                 |                 |       |       |       |       |
|      |                 |                 |       |       |       |       |
|      |                 |                 |       |       |       |       |
|      |                 |                 |       |       |       |       |
|      |                 |                 |       |       |       |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 0.4  |
| Min O <sub>2</sub> (%)     | 21.1 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.1  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| -0.2    | -0.1       | 0.0                    | 0.00 |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                          |                | 06/06/2022                                                             | Monitorin<br>Instrume                                                                         | g equipment<br>nt:                                                    | GA5000. No. G505055                  |
|--------------------------------|----------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------|
| Barometr                       | ic pressure:   |                                                                        | Calibratio                                                                                    | n check details:                                                      | See note 2 below                     |
| a)                             | Trend (24hrs): | Rising                                                                 | Next calib                                                                                    | oration date:                                                         | Sept 2022                            |
| b)                             | At start (mB): | 1018                                                                   |                                                                                               |                                                                       |                                      |
|                                |                |                                                                        | Notes:                                                                                        |                                                                       |                                      |
| 1                              |                | Barometric pressure trend and ambient air temperature is recorded from |                                                                                               |                                                                       |                                      |
| Recorded                       | by:            | GW                                                                     | 1                                                                                             | metoffice.gov.uk website on the day of the monitoring visit           |                                      |
|                                |                |                                                                        | 2)                                                                                            | Calibration check is performed at start of monitoring against ambient |                                      |
| Surface ground conditions: Wet |                |                                                                        | periodically with a 5% $\mathrm{CH_4}$ , 5% $\mathrm{CO_2}$ and 6% $\mathrm{O_2}$ gas mixture |                                                                       |                                      |
| Weather conditions:            |                | Overcast                                                               | 3)                                                                                            | $CH_4$ = methane; $CO_2$ = carbon dioxide; $CO$ = carbon monoxide;    |                                      |
| Ambient air temp (°C):         |                | 16                                                                     |                                                                                               | $O_2$ = oxygen; H                                                     | H <sub>2</sub> S = hydrogen sulphide |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| ВН04  | 12:45:06    | 19               | 3.66               | 14.76                        |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | $O_2$ | CO    | H <sub>2</sub> S | PID   |
|------|-----------------|-----------------|-------|-------|------------------|-------|
| (s)  | (%)             | (%)             | (%)   | (ppm) | (ppm)            | (ppm) |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |
|      |                 |                 |       |       |                  |       |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flow rate (I/hr) |          |  | Relative pressure (mb) |
|------------------|----------|--|------------------------|
| Initial          | Mean Max |  |                        |
|                  |          |  |                        |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 06/06/2022 | Monitoring equipment |                                                                    | CATAGO N. GEOFFE                                                       |  |  |
|----------------------------|----------------|------------|----------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
|                            |                |            | Instrume             | nt:                                                                | GA5000. No. G505055                                                    |  |  |
| Barometric pressure:       |                |            | Calibratio           | on check details:                                                  | See note 2 below                                                       |  |  |
| a)                         | Trend (24hrs): | Rising     | Next calil           | bration date:                                                      | Sept 2022                                                              |  |  |
| b)                         | At start (mB): | N/A        |                      |                                                                    |                                                                        |  |  |
|                            |                |            | Notes:               |                                                                    | •                                                                      |  |  |
|                            |                |            | 1)                   |                                                                    | ssure trend and ambient air temperature is recorded from               |  |  |
| Recorded                   | by:            | GW         | 2) Calibration chec  |                                                                    | gov.uk website on the day of the monitoring visit                      |  |  |
|                            |                |            |                      |                                                                    | check is performed at start of monitoring against ambient air and also |  |  |
| Surface ground conditions: |                | Wet        | 7                    | periodically with a 5% $CH_4$ , 5% $CO_2$ and 6% $O_2$ gas mixture |                                                                        |  |  |
| Weather conditions:        |                | Overcast   | 3)                   |                                                                    | e; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide;             |  |  |
| Ambient air temp (°C):     |                | 16         |                      | $O_2$ = oxygen; $H_2S$ = hydrogen sulphide                         |                                                                        |  |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS3   | 10:45:00    | 50               | 1.10               | 3.20                         |

| Time | CH₄<br>(%) | CO <sub>2</sub><br>(%) | O <sub>2</sub><br>(%) | CO (nnm) | H <sub>2</sub> S<br>(ppm) | PID<br>(ppm) |
|------|------------|------------------------|-----------------------|----------|---------------------------|--------------|
| (s)  | (%)        | (%)                    | (%)                   | (ppm)    | (ррпт)                    | (FF )        |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |
|      |            |                        |                       |          |                           |              |

| Max CH <sub>4</sub> (%)    |  |
|----------------------------|--|
| Max CO <sub>2</sub> (%)    |  |
| Min O <sub>2</sub> (%)     |  |
| Max CO (ppm)               |  |
| Max H <sub>2</sub> S (ppm) |  |
| Max PID (ppm)              |  |

| Flo     | w rate (I/ | Relative pressure (mb) |  |
|---------|------------|------------------------|--|
| Initial | Mean       | Max                    |  |
|         |            |                        |  |

Remark: Installation flooded



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                      |                | 06 (06 (2022 | Monitorin   | ng equipment                                                                                                                                                      |                                                           |  |
|----------------------------|----------------|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|
|                            |                | 06/06/2022   | Instrume    | ent:                                                                                                                                                              | GA5000. No. G505055                                       |  |
| Barometric pressure:       |                |              | Calibration | on check details:                                                                                                                                                 | See note 2 below                                          |  |
| a)                         | Trend (24hrs): | Rising       | Next cali   | bration date:                                                                                                                                                     | Sept 2022                                                 |  |
| b)                         | At start (mB): | 1019         |             |                                                                                                                                                                   |                                                           |  |
|                            |                |              | Notes:      |                                                                                                                                                                   | •                                                         |  |
| İ                          |                |              | 1 '         |                                                                                                                                                                   | essure trend and ambient air temperature is recorded from |  |
| Recorded                   | by:            | GW           |             | metoffice.gov.uk website on the day of the monitoring visit                                                                                                       |                                                           |  |
| 1                          |                |              | 2)          | Calibration check is performed at start of monitoring against ambient                                                                                             |                                                           |  |
| Surface ground conditions: |                | Wet          |             | periodically with a 5% $\mathrm{CH_4}$ , 5% $\mathrm{CO_2}$ and 6% $\mathrm{O_2}$ gas mixture                                                                     |                                                           |  |
| Weather conditions:        |                | Overcast     | 3)          | ${\rm CH_4}={\rm methane}$ ; ${\rm CO_2}={\rm carbon}$ dioxide; ${\rm CO}={\rm carbon}$ monoxide; ${\rm O_2}={\rm oxygen}$ ; ${\rm H_2S}={\rm hydrogen}$ sulphide |                                                           |  |
| Ambient air temp (°C):     |                | 16           |             |                                                                                                                                                                   |                                                           |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS6   | 13:00:48    | 50               | 1.31               | 1.99                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | O <sub>2</sub> | СО    | H₂S   | PID<br>(ppm) |
|------|-----------------|-----------------|----------------|-------|-------|--------------|
| (s)  | (%)             | (%)             | (%)            | (ppm) | (ppm) | (hhiii)      |
| 0    | 0.0             | 0.1             | 21.2           | 0     | 0     | 0.0          |
| 15   | 0.0             | 1.7             | 20.2           | 0     | 0     | 0.0          |
| 30   | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 45   | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 60   | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 75   | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 90   | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 105  | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 120  | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 135  | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 150  | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 165  | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
| 180  | 0.0             | 1.7             | 20.0           | 0     | 0     | 0.0          |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |
|      |                 |                 |                |       |       |              |

| Max CH <sub>4</sub> (%) | 0.0  |
|-------------------------|------|
| Max CO <sub>2</sub> (%) | 1.7  |
| Min O <sub>2</sub> (%)  | 20.0 |
| Max CO (ppm)            | 0    |
| Max H₂S (ppm)           | 0    |
| Max PID (ppm)           | 0.0  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| 0.0     | 0.1        | 0.1                    | 0.00 |



| Site &<br>Location | Kneller Hall,                               | Report No: |
|--------------------|---------------------------------------------|------------|
|                    | 65 Kneller Road, Twickenham,London, TW2 7DN | 10728/SG   |

| Date:                  |                            | 06/06/2022                 | Monitorii | ng equipment                                                                 |                                                                               |  |  |
|------------------------|----------------------------|----------------------------|-----------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
|                        |                            | 06/06/2022                 | Instrume  | ent:                                                                         | GA5000. No. G505055                                                           |  |  |
| Barometric pressure:   |                            |                            | Calibrati | on check details:                                                            | See note 2 below                                                              |  |  |
| a) Trend (24hrs):      |                            | Rising                     | Next cali | ibration date:                                                               | Sept 2022                                                                     |  |  |
| b)                     | At start (mB):             | At start (mB): <b>1015</b> |           |                                                                              |                                                                               |  |  |
|                        |                            |                            | Notes:    |                                                                              | •                                                                             |  |  |
|                        |                            |                            | 1)        |                                                                              | ssure trend and ambient air temperature is recorded from                      |  |  |
| Recorded               | by:                        | GW                         |           | metoffice.gov.u                                                              | k website on the day of the monitoring visit                                  |  |  |
|                        |                            |                            | 2)        | Calibration check is performed at start of monitoring against ambient air an |                                                                               |  |  |
| Surface g              | Surface ground conditions: |                            |           | periodically with                                                            | n a 5% CH <sub>4</sub> , 5% CO <sub>2</sub> and 6% O <sub>2</sub> gas mixture |  |  |
| Weather conditions:    |                            | Overcast                   | 3)        | *                                                                            | ne; CO <sub>2</sub> = carbon dioxide; CO = carbon monoxide;                   |  |  |
| Ambient air temp (°C): |                            | 16                         |           | $O_2$ = oxygen; $H_2S$ = hydrogen sulphide                                   |                                                                               |  |  |

| BH ID | Time (24hr) | Pipe dia<br>(mm) | GW depth<br>(mbgl) | Depth to pipe base<br>(mbgl) |
|-------|-------------|------------------|--------------------|------------------------------|
| WS10  | 13:17:00    | 50               | dry                | 3.00                         |

| Time | CH <sub>4</sub> | CO <sub>2</sub> | $O_2$ | CO    | H₂S   | PID   |
|------|-----------------|-----------------|-------|-------|-------|-------|
| (s)  | (%)             | (%)             | (%)   | (ppm) | (ppm) | (ppm) |
| 0    | 0.0             | 0.1             | 21.2  | 0     | 0     | 0.0   |
| 15   | 0.0             | 1.5             | 20.4  | 0     | 0     | 0.0   |
| 30   | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 45   | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 60   | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 75   | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 90   | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 105  | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 120  | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 135  | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 150  | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 165  | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
| 180  | 0.0             | 1.5             | 20.3  | 0     | 0     | 0.0   |
|      |                 |                 |       |       |       |       |
|      |                 |                 |       |       |       |       |
|      |                 |                 |       |       |       |       |
|      |                 | _               | _     |       |       |       |
|      |                 |                 |       |       |       |       |
|      |                 |                 |       |       |       |       |

| Max CH <sub>4</sub> (%)    | 0.0  |
|----------------------------|------|
| Max CO <sub>2</sub> (%)    | 1.5  |
| Min O <sub>2</sub> (%)     | 20.3 |
| Max CO (ppm)               | 0    |
| Max H <sub>2</sub> S (ppm) | 0    |
| Max PID (ppm)              | 0.0  |

| Flo     | w rate (I/ | Relative pressure (mb) |      |
|---------|------------|------------------------|------|
| Initial | Mean       | Max                    |      |
| 0.0     | 0.1        | 0.2                    | 0.00 |



| Site &   | Kneller Hall                                | Report <b>10728</b> | 166          |
|----------|---------------------------------------------|---------------------|--------------|
| Location | 65 Kneller Road, Twickenham, London TW2 7DN | No:                 | / <b>3</b> G |

# **SUMMARY OF UNDRAINED SHEAR STRENGTH TEST RESULTS**

| Content   Cont |              |           | IMAKI |      |          |        |        |   |          | I RESULTS                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|-------|------|----------|--------|--------|---|----------|----------------------------|
| BHO1 6.50 28 2.01 1.57 130 98 12.00 I 49 BHO1 9.50 27 2.03 1.60 190 92 4.00 B 46 BHO1 12.50 27 2.02 1.59 250 240 10.00 B 120 BHO1 15.50 29 2.03 1.57 370 340 7.00 B 170 BHO1 21.50 26 2.05 1.63 430 258 10.00 B 129 BHO1 24.50 26 2.00 1.59 490 220 13.00 B 110 BHO2 5.00 30 1.96 1.50 100 102 10.00 B 51 BHO2 8.00 28 2.00 1.57 160 134 5.00 B 67 BHO2 11.00 26 2.04 1.62 220 221 9.00 B 111 BHO2 14.00 40 1.83 1.31 280 56 3.00 B (28) Water softened / Disturb BHO3 12.50 27 2.01 1.58 250 168 7.00 B 84 BHO3 15.50 25 2.02 1.62 310 493 6.00 B 247 BHO3 15.50 25 2.02 1.62 310 493 6.00 B 247 BHO3 15.50 26 2.03 1.61 430 276 10.00 B 138 BHO4 9.50 26 2.03 1.61 190 223 9.00 B 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 99 15.00 B 138 BHO4 9.50 26 2.03 1.61 190 223 9.00 B 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 890 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 890 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 890 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 890 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 890 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 890 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth<br>(m) | ) content |       |      | pressure | stress | strain |   | cohesion | Remarks                    |
| 12.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.50         | 0 28      |       | 1.57 | 130      | 98     | 12.00  | I | 49       |                            |
| 15.50   29   2.03   1.57   310   192   6.00   8   96   170   18.50   28   2.01   1.57   370   340   7.00   8   170   170   18.50   26   2.05   1.63   430   258   10.00   8   129   13.00   24.50   26   2.00   1.59   490   220   13.00   8   110   38102   3.00   31   1.91   1.45   60   97   9.00   I   49   490   38102   8.00   28   2.00   1.57   160   134   5.00   8   67   67   68   67   68   67   68   68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.50         | 50 27     | 2.03  | 1.60 | 190      | 92     | 4.00   | В | 46       |                            |
| BHO1 18.50 28 2.01 1.57 370 340 7.00 B 170 129 BHO1 21.50 26 2.05 1.63 430 258 10.00 B 129 BHO2 3.00 31 1.91 1.45 60 97 9.00 I 49 BHO2 5.00 30 1.96 1.57 160 134 5.00 B 51 BHO2 11.00 26 2.04 1.62 220 221 9.00 B 111 BHO2 14.00 40 1.83 1.31 280 56 3.00 B (28) BHO3 12.50 27 2.01 1.58 250 168 7.00 B 84 BHO3 18.50 27 2.02 1.62 310 493 6.00 B 247 BHO3 18.50 27 2.02 1.59 370 184 5.00 B 247 BHO3 18.50 27 2.02 1.59 370 184 5.00 B 92 BHO3 21.50 26 2.03 1.61 430 276 10.00 B 138 BHO4 9.50 26 2.03 1.61 190 223 9.00 B 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 89 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 89 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 89 112 BHO4 12.50 27 2.05 1.61 190 223 9.00 B 112 BHO4 12.50 27 2.05 1.61 190 223 9.00 B 112 BHO4 12.50 27 2.05 1.61 150 250 177 15.00 B 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.50        | .50 27    | 2.02  | 1.59 | 250      | 240    | 10.00  | В | 120      |                            |
| BHO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.50        | .50 29    | 2.03  | 1.57 | 310      | 192    | 6.00   | В | 96       |                            |
| BHO1 21.50 26 2.05 1.63 430 258 10.00 B 129 BHO2 3.00 31 1.91 1.45 60 97 9.00 I 49 BHO2 5.00 30 1.96 1.50 100 102 10.00 B 51 BHO2 11.00 26 2.04 1.62 220 221 9.00 B 111 BHO3 8.00 32 1.91 1.45 160 99 15.00 I 50 BHO3 12.50 27 2.01 1.58 250 168 7.00 B 84 BHO3 15.50 25 2.02 1.62 310 493 6.00 B 247 BHO3 18.50 27 2.02 1.59 370 184 5.00 B 92 BHO3 21.50 26 2.03 1.61 430 276 10.00 B 138 BHO4 9.50 26 2.03 1.61 190 223 9.00 B 112 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 891 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 891 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 891 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 891 BHO4 12.50 27 2.05 1.61 250 177 15.00 B 891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18.50        | .50 28    | 2.01  | 1.57 | 370      | 340    | 7.00   | В | 170      |                            |
| BHO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |       |      | 430      |        | 10.00  | В | 129      |                            |
| BHO2   3.00   31   1.91   1.45   60   97   9.00   I   49   8HO2   5.00   30   1.96   1.50   100   102   10.00   B   51   8HO2   11.00   26   2.04   1.62   220   221   9.00   B   111   8HO2   14.00   40   1.83   1.31   280   56   3.00   B   (28)   Water softened / Disturb   8HO3   12.50   27   2.01   1.58   250   168   7.00   B   84   8HO3   18.50   27   2.02   1.59   370   184   5.00   B   92   8HO3   21.50   26   2.03   1.61   430   276   10.00   B   138   8HO4   9.50   26   2.03   1.61   190   223   9.00   B   112   8HO4   12.50   27   2.05   1.61   250   177   15.00   B   89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.50        | .50 26    | 2.00  | 1.59 | 490      | 220    | 13.00  | В | 110      |                            |
| Section   Sect | 3.00         | 00 31     | 1.91  |      | 60       |        |        | I |          |                            |
| 8:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1            |           |       | 1.50 | 100      | 102    |        | В |          |                            |
| 38H02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.00         |           |       | 1.57 | 160      | 134    | 5.00   | В |          |                            |
| BHO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.00        |           |       | 1.62 | 220      |        | 9.00   | В | 111      |                            |
| BHO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           | 1.83  |      | l        |        | 3.00   | В | (28)     | Water softened / Disturbed |
| BH03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |       |      | l        |        |        | I | -        | ·                          |
| BH03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |       | 1.58 | 250      | 168    |        | В |          |                            |
| BH03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |           |       |      | 1        |        |        |   |          |                            |
| BH03 21.50 26 2.03 1.61 430 276 10.00 B 138 BH04 6.50 30 1.94 1.49 130 101 8.00 B 51 BH04 9.50 26 2.03 1.61 190 223 9.00 B 112 BH04 12.50 27 2.05 1.61 250 177 15.00 B 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |           |       |      | 370      |        | 5.00   | В | 92       |                            |
| BH04   6.50   30   1.94   1.49   130   101   8.00   B   51   112   130   101   130   101   130   101   130   101   130   101   130   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101   101 |              |           |       |      |          |        |        |   |          |                            |
| BH04 9.50 26 2.03 1.61 190 223 9.00 B 112 BH04 12.50 27 2.05 1.61 250 177 15.00 B 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.50         |           |       |      | 130      | 101    |        | В | 51       |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.50         | 50 26     | 2.03  |      | 190      | 223    | 9.00   | В | 112      |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |           |       |      |          |        |        |   |          |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |           |       |      |          |        |        |   |          |                            |

Testing in accordance with BS EN ISO 17892. UU = unconsolidated, undrained; MUU = multistage, unconsolidated, Date: 01 July 22

Unless stated otherwise: a) Rate of strain = 2mm/min and b) Standard latex membrame used with thickness = 0.5mm

Failure modes: B = brittle, I = intermediate, P = plastic

(Triaxial Sheet 1 of 1)



Site & Kneller Hall
Location 65 Kneller Road, Twickenham, London TW2 7DN

Report
10728/SG
No:

# **SUMMARY OF CLASSIFICATION TEST RESULTS**

|       | SUMMARY OF CLASSIFICATION TEST RESULTS |      |          |                       |                       |                    |                       |                              |                    |            |                                                                                                                                                                            |  |
|-------|----------------------------------------|------|----------|-----------------------|-----------------------|--------------------|-----------------------|------------------------------|--------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BH ID | Depth<br>(m)                           | Туре | w<br>(%) | w <sub>∟</sub><br>(%) | W <sub>P</sub><br>(%) | Pass<br>425<br>(%) | I <sub>P</sub><br>(%) | Mod<br>I <sub>P</sub><br>(%) | I <sub>L</sub> (%) | LOI<br>(%) | Description                                                                                                                                                                |  |
| BH01  | 6.50                                   | U    | 28       | 70                    | 29                    | >95                | 41                    |                              | -0.02              |            | Dark grey, fissured, silty CLAY with rare infilled burrows.                                                                                                                |  |
| BH01  | 9.50                                   | U    | 27       |                       |                       |                    |                       |                              |                    |            | Dark grey, fissured, silty CLAY with rare infilled burrows.                                                                                                                |  |
| BH01  | 12.50                                  | U    | 27       | 75                    | 31                    | >95                | 44                    |                              | -0.09              |            | Dark grey, fissured, silty CLAY with rare infilled burrows.                                                                                                                |  |
| BH01  | 15.50                                  | U    | 29       | 76                    | 30                    | >95                | 46                    |                              | -0.02              |            | Dark grey, fissured, silty CLAY with rare infilled burrows.                                                                                                                |  |
| BH01  | 18.50                                  | U    | 28       | 78                    | 31                    | >95                | 47                    |                              | -0.07              |            | Dark grey, fissured, silty CLAY with rare infilled burrows.                                                                                                                |  |
| BH01  | 21.50                                  | U    | 26       | 73                    | 31                    | >95                | 42                    |                              | -0.13              |            | Dark grey, fissured, silty CLAY with infilled burrows.                                                                                                                     |  |
| BH01  | 24.50                                  | U    | 26       | 71                    | 31                    | >95                | 40                    |                              | -0.13              |            | Dark grey, fissured, silty CLAY with infilled burrows.                                                                                                                     |  |
| BH02  | 3.00                                   | U    | 31       | 72                    | 32                    | >95                | 40                    |                              | -0.02              |            | MADE GROUND: Dark grey silty, slightly gravelly, slightly sandy clay with rare pyrite nodules. Gravel is subangular to rounded, fine and medium flint and brick fragments. |  |
|       |                                        |      |          |                       |                       |                    |                       |                              |                    |            | Dark brownish grey fissured, silty CLAY with rare infilled burrows.                                                                                                        |  |
| BH02  | 5.00                                   | D    | 19       | 74                    | 32                    | >95                | 42                    |                              | -0.33              |            | Dark brownish grey fissured, silty CLAY with rare infilled burrows.                                                                                                        |  |
| BH02  | 5.00                                   | U    | 30       | 76                    | 33                    | >95                | 43                    |                              | -0.07              |            | Dark brownish grey fissured, silty CLAY with rare infilled burrows.                                                                                                        |  |
| BH02  | 8.00                                   | U    | 28       | 68                    | 29                    | >95                | 39                    |                              | -0.04              |            | Dark brownish grey, fissured, silty CLAY.                                                                                                                                  |  |
| BH02  | 11.00                                  | U    | 26       |                       |                       |                    |                       |                              |                    |            | Dark brownish grey, fissured, silty CLAY.                                                                                                                                  |  |
| BH02  | 14.00                                  | U    | 40       | 73                    | 32                    | >95                | 41                    |                              | 0.19               |            | Orange brown slightly sandy silty CLAY.                                                                                                                                    |  |
| BHUS  | 7.40                                   | D    | 23       | 73                    | 31                    | >95                | 42                    |                              | 0.10               |            | Dark grey, silty CLAY.                                                                                                                                                     |  |
| כטרום | 7.40                                   | ט ן  | 23       | /3                    | 21                    | /93                | 44                    |                              | -0.19              |            | Doub const financed aith CLAV with const-filled burning                                                                                                                    |  |
| BH03  | 8.00                                   | U    | 32       |                       |                       |                    |                       |                              |                    |            | Dark grey, fissured, silty CLAY with rare infilled burrows.                                                                                                                |  |
| вн03  | 12.50                                  | U    | 27       | 74                    | 29                    | >95                | 45                    |                              | -0.04              |            | Dark grey, fissured, silty CLAY with rare infilled burrows.                                                                                                                |  |
| BH03  | 15.50                                  | U    | 25       |                       |                       |                    |                       |                              |                    |            | Dark grey, fissured, silty CLAY with rare infilled burrows.                                                                                                                |  |
| BH03  | 18.50                                  | U    | 27       | 79                    | 32                    | >95                | 47                    |                              | -0.11              |            | Dark grey, fissured, silty CLAY with rare and infilled burrows. Locally slightly sandy.                                                                                    |  |
| BH03  | 21.50                                  | U    | 26       | 73                    | 30                    | >95                | 43                    |                              | -0.10              |            |                                                                                                                                                                            |  |
|       |                                        |      |          |                       |                       |                    |                       |                              |                    |            |                                                                                                                                                                            |  |

Testing in accordance with BS EN ISO 17892 unless specified otherwise

Date: 26 Jun 17

Modified Plasticity Index calculated in accordance with NHBC Standards Chapter 4.2 (reported if %passing 425mm <95%)

Percent passing 425µm: by estimation, by hand\* or by sieving\*\*



(Classification Sheet 1 of 2)

Site & Kneller Hall

Location 65 Kneller Road, Twickenham, London TW2 7DN

Report No:

10728/SG

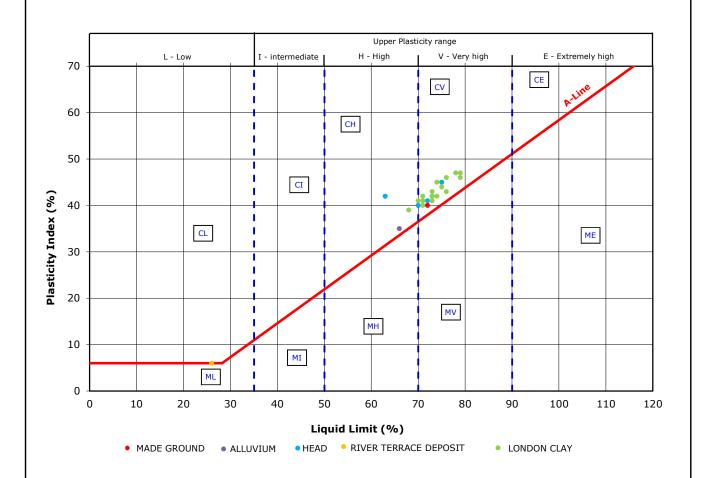
**SUMMARY OF CLASSIFICATION TEST RESULTS** 

|       | SUMMARY OF CLASSIFICATION TEST RESULTS |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                                            |
|-------|----------------------------------------|------|----------|-----------------------|-----------------------|--------------------|-----------------------|------------------------------|-----------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BH ID | Depth<br>(m)                           | Туре | w<br>(%) | w <sub>∟</sub><br>(%) | W <sub>P</sub><br>(%) | Pass<br>425<br>(%) | I <sub>P</sub><br>(%) | Mod<br>I <sub>P</sub><br>(%) | I <sub>L</sub><br>(%) | LOI<br>(%) | Description                                                                                                                                                |
| BH04  | 6.50                                   | U    | 30       | 79                    | 33                    | >95                | 46                    |                              | -0.06                 |            | Dark brownish grey, fissured silty CLAY with rare infilled burrows.                                                                                        |
| BH04  | 8.00                                   | D    | 25       | 71                    | 29                    | >95                | 42                    |                              | -0.11                 |            | Dark brownish grey, fissured silty CLAY with rare infilled burrows.                                                                                        |
| BH04  | 9.50                                   | U    | 26       |                       |                       |                    |                       |                              |                       |            | Dark brownish grey, fissured silty CLAY with rare infilled burrows.                                                                                        |
| BH04  | 12.50                                  | U    | 27       | 71                    | 30                    | >95                | 41                    |                              | -0.07                 |            | Dark brownish grey, fissured silty CLAY with rare infilled burrows.                                                                                        |
| WS1   | 2.30                                   | D    | 14       |                       |                       |                    |                       |                              |                       |            | Orange silty, slightly gravelly fine and medium SAND. Gravel is subrounded to rounded fine to medium flint. Locally slightly clayey.                       |
| WS2A  | 2.30                                   | D    | 14       | 26                    | 20                    | 27.1**             | 6                     | 2                            | -0.97                 |            | Orange grey slightly silty very sandy GRAVEL. Gravel is subangular and subrounded, fine to coarse, flint. Locally gravelly sand.                           |
| WS3   | 1.00                                   | D    | 37       | 66                    | 31                    | >95                | 35                    |                              | 0.18                  |            | Orange grey slightly silty very sandy, very clayey GRAVEL. Gravel is subangular and subrounded, fine to coarse, flint                                      |
| WS3   | 2.10                                   | D    | 32       | 75                    | 30                    | >95                | 45                    |                              | 0.05                  |            | Mottled orange brown and blue grey silty CLAY with occasional to frequent decaying rootlets. Composed of gravel sized lithorelicts in a silty clay matrix. |
| WS3   | 3.30                                   | D    | 29       | 70                    | 30                    | >95                | 40                    |                              | -0.03                 |            | Dark grey silty CLAY with occasional decaying rootlets and occasional lithorelicts.                                                                        |
| WS6   | 2.30                                   | D    | 28       |                       |                       |                    |                       |                              |                       |            | Orange brown silty CLAY composed of gravel sized lithorelicts in a brown silty clay matrix.                                                                |
| WS9   | 1.00                                   | D    | 34       | 72                    | 31                    | >95                | 41                    |                              | 0.08                  |            | Orange brown, mottled, grey and red, very silty, slightly sandy CLAY.<br>Composed of gravel sized lithorelicts in a very silty sandy clay matrix.          |
| WS9   | 3.00                                   | D    | 31       | 63                    | 21                    | >95                | 42                    |                              | 0.25                  |            | Dark grey, silty CLAY. Composed of gravel sized lithorelicts in a silty clay matrix.                                                                       |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                                            |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                                            |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                                            |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                                            |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                                            |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                                            |
|       |                                        |      |          |                       |                       |                    |                       |                              |                       |            |                                                                                                                                                            |

Testing in accordance with BS EN ISO 17892 unless specified otherwise

Date: 26 Jun 17

Modified Plasticity Index calculated in accordance with NHBC Standards Chapter 4.2 (reported if %passing 425mm <95%)


Percent passing 425<sub>µ</sub>m: by estimation, by hand\* or by sieving\*\* (Classification Sheet 2 of 2)



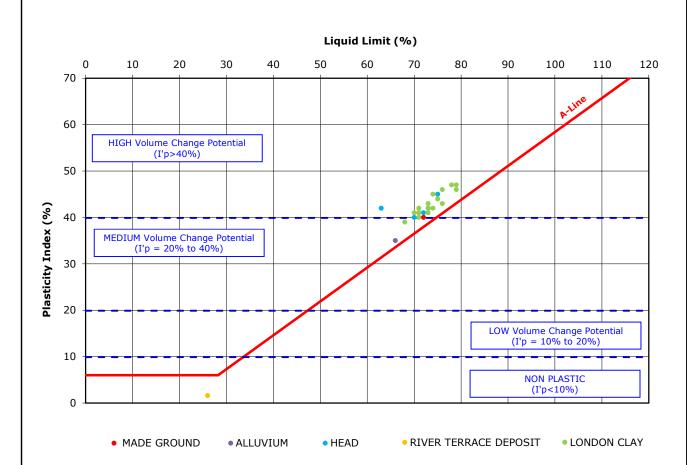
Site & Kneller Hall
Location 65 Kneller Road, Twickenham, London TW2 7DN

Report
10728/SG
No:

# **Plasticity Chart**



M - SILT [plots below the A-Line}


C - CLAY [plots above the A-Line]

Classification in accordance with BS5930:2015 "Code of practice for site investigations"



Site & Kneller Hall
Location 65 Kneller Road, Twickenham, London TW2 7DN
Report 10728/SG

# **Plasticity Chart**



Modified Plasticity Index, I'p:

$$I'p = Ip x (\% passing 425mm)$$
 (where Ip = Plasticity Index)  

$$100\%$$

Classification in accordance with NHBC Standards, Part 4 'Foundations', Chapter 4.2 'Building near trees'



무 5 5 4 5 8 4 5 5 Ŧ = 9 **South South East** 23646 RIVER TERRACE DEPOSIT WADE GROUND TONDON CLAY 18.741 OT.71 SE AT River Terrace Deposits Made Ground London Clay RIVER TERRACE DEPOSIT LONDON CLAY 19.37 89.98 13.30 Engineer: AKS Ward London Clay 18.22 38.57 15.25 Soliflucted London Clay **MSSW** 80°EZ 12.50 North Client: Radnor House School Ltd Elevation (mAOD) 9 0 q 7 8 Ŧ 7 7 4 5 Chainage (m) Offset (m)

Soil Consultants

Title: Cross Section North to South South East

Vertical Scale: 1:238

Location: 65 Kneller Road, Twickenham, London, TW2 7DN Horizontal Scale: 1:1370

Project Title: Kneller Hall

Project Id: 10728/SG

**Soil** Consultants 2 54 **East** WUE GROUND 0810 Soliflucted London Clay 21.06 366.24 04.01 LONDON GLAY 16 45 Z76.09 67 11 **London Clay** RIVER TERRACE DEPOSIT LONDON CLAY вноч 67.0 14 35 Title: West to East Section Location: 65 Kneller Road, Twickenham, London, TW2 7DN Horizontal Scale: 1:2328 Vertical Scale: 1:199 Engineer: AKS Ward **Made Ground** MADE GROUND LONDON GLAY вноз 30.8 Et.8f 15.55 250 Geologically Reworked soils 00.0 West Client: Radnor House School Ltd Elevation (mAOD) 42 4 n 12 = 2 0 Τ 9 φ 17 m Project Title: Kneller Hall Chainage (m) Project Id: 10728/SG Offset (m)

### FOREWORD TO CONTAMINATION TESTING AND ASSESSMENT

The following statements are designed to inform and guide the Client and other potential parties intending to rely upon this report, with the express intent of protecting them from misunderstanding as to the extent and thus the potential associated risks that may result from proceeding without further evaluations or guidance.

- 1] Unless otherwise stated in this report, the testing of soils and waters is based on a range of commonly occurring potential contaminants for the specific purpose of providing a general guidance evaluation for the proposed form of development. Thus, the range of potential contaminants is neither exhaustive nor specifically targeted to any previous known uses or influences upon the site.
- 2] The amount and scope of the testing should not be assumed to be exhaustive but has been selected, at this stage, to provide a reasonable, general view of the site ground conditions. In many cases this situation is quite sufficient for the site to be characterised for the purposes of development and related Health and Safety matters for persons involved in or directly affected by the site development works. It must be understood, however, that in certain circumstances aspects or areas of the site may require further investigation and testing in order to fully clarify and characterise contamination issues, both for regulatory compliance and for commercial reasons.
- 3] The scope of the contamination testing must not automatically be regarded as being sufficient to fully formulate a remediation scheme. For such a scheme it may be necessary to consider further testing to verify the effectiveness of the remedial work after the site has been treated. It must be understood that a remediation scheme which brings a site into a sufficient state for the proposed development ("fit for purpose") under current legislation and published guidance, may result in some contamination being left in-situ. It is possible that forthcoming legislation may result in a site being classified by the Local Authority and assigned a "Degree of Risk" related to previous use or known contamination.
- 4] The scope of the environmental investigation and contamination testing must not be automatically regarded as sufficient to satisfy the requirements in the wider environmental setting. The risks to adjacent properties and to the water environment are assessed by the regulatory authorities and there may be a requirement to carry out further exploration, testing and, possibly monitoring in the short or long term. It is not possible to sensibly predict the nature and extent of such additional requirements as these are the direct result of submissions to and liaison with the regulatory authorities. It is imperative, therefore, that such submissions and contacts are made as soon as possible, especially if there are perceived to be critical features of the site and proposed scheme, in this context.
- 5] New testing criteria have been implemented by the Environment Agency to enable a waste disposal classification to be made. The date of implementation of this Waste Acceptance Criteria [WAC] was July 2005. It is this testing that will be used by the waste regulatory authorities, including waste disposal sites, to designate soils for disposal in landfill sites. In certain circumstances, to satisfy the waste regulations, there may be the necessity to carry out additional testing to clarify and confirm the nature of any contamination that may be present. If commercial requirements are significant then this process may also necessitate further field operations to clarify the extent of certain features. Thus, the waste classification must be obtained from the waste regulation authorities or a licensed waste disposal site and we strongly recommend that this classification is obtained as soon as possible and certainly prior to establishing any costings or procedures for this or related aspects of the scheme.







Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

# **DETS Report No: 22-04875**

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 01/06/2022

Sample Scheduled Date: 01/06/2022

Report Issue Number: 1

Reporting Date: 10/06/2022

Authorised by:

Ela Mysiara Quality Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.



# **DETS Ltd** Unit 1, Rose Lane Industrial Estate **Rose Lane Lenham Heath** Maidstone Kent ME17 2JN Tel: 01622 850410



| Water Analysis Certificate                     |                 |               |  |  |  |  |  |  |  |  |  |
|------------------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|--|--|
| DETS Report No: 22-04875                       | Date Sampled    | 30/05/22      |  |  |  |  |  |  |  |  |  |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied |  |  |  |  |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller Road, | TP / BH No      | BH4/3.80      |  |  |  |  |  |  |  |  |  |
| Twickenham, London, TW2 7DN                    |                 |               |  |  |  |  |  |  |  |  |  |
|                                                |                 |               |  |  |  |  |  |  |  |  |  |
| Project / Job Ref: 10728/SG                    | Additional Refs | None Supplied |  |  |  |  |  |  |  |  |  |
| Order No: 10728/SG                             | Depth (m)       | 3.80          |  |  |  |  |  |  |  |  |  |
| Reporting Date: 10/06/2022                     | DETS Sample No  | 599942        |  |  |  |  |  |  |  |  |  |

| Determinand                 | Unit     | RL     | Accreditation |        |  |  |
|-----------------------------|----------|--------|---------------|--------|--|--|
| pH                          | pH Units | N/a    | ISO17025      | 6.8    |  |  |
| Electrical Conductivity     | uS/cm    | < 5    | NONE          | 745    |  |  |
| Total Cyanide               | ug/l     | < 5    | ISO17025      | < 5    |  |  |
| Sulphate as SO <sub>4</sub> | mg/l     | < 1    | ISO17025      | 51     |  |  |
| Total Organic Carbon (TOC)  | mg/l     | < 0.1  | NONE          | 9      |  |  |
| Arsenic (dissolved)         | ug/l     | < 5    | ISO17025      | 13     |  |  |
| Boron (dissolved)           | ug/l     | < 5    | ISO17025      | 49     |  |  |
| Cadmium (dissolved)         | ug/l     | < 0.4  | ISO17025      | 0.7    |  |  |
| Chromium (dissolved)        | ug/l     | < 5    | ISO17025      | < 5    |  |  |
| Chromium (hexavalent)       | ug/l     | < 20   | NONE          | < 20   |  |  |
| Copper (dissolved)          | ug/l     | < 5    | ISO17025      | 20     |  |  |
| Lead (dissolved)            |          |        |               | 109    |  |  |
| Mercury (dissolved)         | ug/l     | < 0.05 | ISO17025      | < 0.05 |  |  |
| Nickel (dissolved)          | ug/l     | < 5    | ISO17025      | 22     |  |  |
| Selenium (dissolved)        | ug/l     | < 5    | ISO17025      | 7      |  |  |
| Zinc (dissolved)            | ug/l     | < 2    | ISO17025      | 61     |  |  |
| Total Phenols (monohydric)  | ug/l     | < 10   | ISO17025      | < 10   |  |  |
| EPH (C10 - C40)             | ug/l     | < 10   | NONE          | < 10   |  |  |

Subcontracted analysis <sup>(S)</sup> Insufficient sample <sup>I/S</sup> Unsuitable Sample <sup>U/S</sup>



# DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

| Water Analysis Certificate - Speciated PAH |                 |               |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|--|--|--|--|--|--|
| DETS Report No: 22-04875                   | Date Sampled    | 30/05/22      |  |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied |  |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller   | TP / BH No      | BH4/3.80      |  |  |  |  |  |  |
| Road, Twickenham, London, TW2 7DN          |                 |               |  |  |  |  |  |  |
|                                            |                 |               |  |  |  |  |  |  |
| Project / Job Ref: 10728/SG                | Additional Refs | None Supplied |  |  |  |  |  |  |
| Order No: 10728/SG                         | Depth (m)       | 3.80          |  |  |  |  |  |  |
| Reporting Date: 10/06/2022                 | DETS Sample No  | 599942        |  |  |  |  |  |  |

| Determinand            | Unit | RL     | Accreditation |         |  |   |
|------------------------|------|--------|---------------|---------|--|---|
| Naphthalene            | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Acenaphthylene         | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Acenaphthene           | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Fluorene               | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Phenanthrene           | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Anthracene             | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Fluoranthene           | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Pyrene                 | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Benzo(a)anthracene     | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Chrysene               | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Benzo(b)fluoranthene   | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Benzo(k)fluoranthene   | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Benzo(a)pyrene         | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Indeno(1,2,3-cd)pyrene | ug/l | < 0.01 | NONE          | < 0.01  |  |   |
| Dibenz(a,h)anthracene  | ug/l | < 0.01 | NONE          | < 0.01  |  | · |
| Benzo(ghi)perylene     | ug/l | 0.008  | NONE          | < 0.008 |  |   |
| Total EPA-16 PAHs      | ug/l | < 0.16 | NONE          | < 0.16  |  |   |



# **DETS Ltd** Unit 1, Rose Lane Industrial Estate **Rose Lane Lenham Heath** Maidstone Kent ME17 2JN Tel: 01622 850410



4480

Water Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-04875
Soil Consultants Ltd
Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Reporting Date: 10/06/2022

| Matrix   | Analysed | Determinand                                                             | Brief Method Description                                                                                                                    | Method |
|----------|----------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|
|          | On       |                                                                         | •                                                                                                                                           | No     |
| Water    | UF       | Alkalinity                                                              | Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end                                       | E103   |
| Water    | F        | Ammoniacal Nitrogen                                                     | Determination of ammoniacal nitrogen by discrete analyser.                                                                                  | E126   |
| Water    | UF       |                                                                         | Determination of BTEX by headspace GC-MS                                                                                                    | E101   |
| Water    | F        |                                                                         | Determination of cations by filtration followed by ICP-MS                                                                                   | E102   |
| Water    | UF       |                                                                         | Determination using a COD reactor followed by colorimetry                                                                                   | E112   |
| Water    | F        | Chloride                                                                | Determination of chloride by filtration & analysed by ion chromatography                                                                    | E109   |
| Water    | F        | Chromium - Hexavalent                                                   | Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by                                        | E116   |
| Water    | UF       | Cyanide - Complex                                                       | Determination of complex cyanide by distillation followed by colorimetry                                                                    | E115   |
| Water    | UF       | Cyanide - Free                                                          | Determination of free cyanide by distillation followed by colorimetry                                                                       | E115   |
| Water    | UF       | Cyanide - Total                                                         | Determination of total cyanide by distillation followed by colorimetry                                                                      | E115   |
| Water    | UF       | Cyclohexane Extractable Matter (CEM)                                    | Gravimetrically determined through liquid:liquid extraction with cyclohexane                                                                | E111   |
| Water    | F        | Diesel Range Organics (C10 - C24)                                       | Determination of liquid:liquid extraction with hexane followed by GC-FID                                                                    | E104   |
| Water    | F        | Dissolved Organic Content (DOC)                                         | Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete                                       | E110   |
| Water    | UF       |                                                                         | Determination of electrical conductivity by electrometric measurement                                                                       | E123   |
| Water    | F        | EPH (C10 - C40)                                                         | Determination of liquid:liquid extraction with hexane followed by GC-FID                                                                    | E104   |
| Makes    | F        | EPH TEXAS (C6-C8, C8-C10, C10-C12,                                      | Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by                                         | F104   |
| Water    | -        | C12-C16, C16-C21, C21-C40)                                              |                                                                                                                                             | E104   |
| Water    | F        |                                                                         | Determination of Fluoride by filtration & analysed by ion chromatography                                                                    | E109   |
| Water    | F        |                                                                         | Determination of Ca and Mg by ICP-MS followed by calculation                                                                                | E102   |
| Leachate | F        |                                                                         | Based on National Rivers Authority leaching test 1994                                                                                       | E301   |
| Leachate | F        |                                                                         | Based on BS EN 12457 Pt1, 2, 3                                                                                                              | E302   |
| Water    | F        | Metals                                                                  | Determination of metals by filtration followed by ICP-MS                                                                                    | E102   |
| Water    | F        | Mineral Oil (C10 - C40)                                                 | Determination of liquid:liquid extraction with hexane followed by GI-FID                                                                    | E104   |
| Water    | F        |                                                                         | Determination of nitrate by filtration & analysed by ion chromatography                                                                     | E109   |
| Water    | UF       |                                                                         | Determination of phenols by distillation followed by colorimetry                                                                            | E121   |
| Water    | F        | PAH - Speciated (EPA 16)                                                | Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS                      | E105   |
| Water    | F        | DCP 7 Congonore                                                         | Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal                                         | E108   |
| Water    | ÜF       |                                                                         | Gravimetrically determined through liquid:liquid extraction with petroleum ether                                                            | E111   |
| Water    | UF       |                                                                         | Determination of pH by electrometric measurement                                                                                            | E107   |
| Water    | F        |                                                                         | Determination of phosphate by filtration & analysed by ion chromatography                                                                   | E109   |
| Water    | UF       |                                                                         | Determination of phosphate by flittation & analysed by for chromatography  Determination of redox potential by electrometric measurement    | E113   |
| Water    | F        |                                                                         | Determination of redox potential by electronietic measurement  Determination of sulphate by filtration & analysed by ion chromatography     | E109   |
| Water    | UF       |                                                                         | Determination of sulphide by distillation followed by colorimetry                                                                           | E118   |
| Water    | F        | SVOC                                                                    | Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection                                         | E106   |
|          |          |                                                                         | in dichloromethane followed by GC-MS                                                                                                        |        |
| Water    | UF       |                                                                         | Gravimetrically determined through liquid:liquid extraction with toluene                                                                    | E111   |
| Water    | UF       | Total Organic Carbon (TOC)                                              | Low heat with persulphate addition followed by IR detection                                                                                 | E110   |
| Water    | F        |                                                                         | Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS | E104   |
| Water    | F        | aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) | Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS | E104   |
| Water    | UF       |                                                                         | Determination of volatile organic compounds by headspace GC-MS                                                                              | E101   |
| Water    | UF       | VPH (C6-C8 & C8-C10)                                                    | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                   | E101   |

Key

F Filtered **UF Unfiltered** 





Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

# **DETS Report No: 22-04869**

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 20/05/2022

Sample Scheduled Date: 01/06/2022

Report Issue Number: 1

**Reporting Date:** 16/06/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.



# DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410



4480

| Soil Analysis Certificate                      |                 |               |  |  |  |  |  |  |
|------------------------------------------------|-----------------|---------------|--|--|--|--|--|--|
| DETS Report No: 22-04869                       | Date Sampled    | 11/05/22      |  |  |  |  |  |  |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied |  |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller Road, | TP / BH No      | WS1/0.50      |  |  |  |  |  |  |
| Twickenham, London, TW2 7DN                    |                 |               |  |  |  |  |  |  |
| Project / Job Ref: 10728/SG                    | Additional Refs | None Supplied |  |  |  |  |  |  |
| Order No: 10728/SG                             | Depth (m)       | 0.50          |  |  |  |  |  |  |
| Reporting Date: 16/06/2022                     | DETS Sample No  | 599932        |  |  |  |  |  |  |

| Determinand                 | Unit | RL      | Accreditation |       |  |  |
|-----------------------------|------|---------|---------------|-------|--|--|
| Asbestos Quantification (S) | %    | < 0.001 | ISO17025      | 0.004 |  |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)



# **DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath** Maidstone Kent ME17 2JN

Tel: 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-04869
Soil Consultants Ltd
Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG Order No: 10728/SG Reporting Date: 16/06/2022

| Soil D Born - Water Soluble Determination of water soluble born in soil by 215 bot water cotact, followed by ICP-OES 501 D Cations Determination of Extending the Property of  | Matrix | Analysed<br>On | Determinand                                                                                                       | Brief Method Description                                                                               | Method<br>No |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------|
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil   |                | Boron - Water Soluble                                                                                             | Determination of water soluble boron in soil by 2:1 bot water extract followed by ICP-DES              |              |
| Soil   D   Cations Determination of cations in soil by assua-resid allegation followed by ICP-CES   500;   Soil   AR   Chromium - Heavalett   Determination of house/left chromium is poly particular by particular by the product of   |        |                |                                                                                                                   |                                                                                                        |              |
| Soil   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                |                                                                                                                   |                                                                                                        |              |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | D              |                                                                                                                   |                                                                                                        | E009         |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil   | AR             | Chromium - Hexavalent                                                                                             |                                                                                                        | E016         |
| Soil   AR   Cyanide - Free   Determination of free cyanide by desillation followed by colorimetry   E015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soil   | AR             | Cvanide - Complex                                                                                                 |                                                                                                        | E015         |
| Soil   AR   Cychelane Text   Cychelane     |        |                |                                                                                                                   |                                                                                                        |              |
| Soil   AR   Bectrical Conductivity   Bectrimation of hexane/actories extractable hydrocarbons by CC-FID   Bectrical Conductivity   Bectrical Con   | Soil   | AR             |                                                                                                                   |                                                                                                        | E015         |
| Soil   AR   Electrical Conductivity   Electrical Conductivity   Electronetric measurement   Electrical Conductivity   Electronetrical Conductivity   Electr   | Soil   | D              | Cyclohexane Extractable Matter (CEM)                                                                              | Gravimetrically determined through extraction with cyclohexane                                         | E011         |
| Soil AR Belcrical Conductivity Determination of electrical conductivity by addition of valeer followed by electrometric measurement (2023) Soil AR Perf (210 - C40) Determination of electrical conductivity by addition of valeer followed by GC-MS (210) Determination of electrone-breame extractable hydrocarbons by GC-FID (2004) Soil AR Perf (210 - C40) Determination of electrone-breame extractable hydrocarbons by GC-FID (2004) Soil AR Perf (210 - C40) Determination of electrone-breame extractable hydrocarbons by GC-FID (2004) Soil AR Perf (210 - C40) Determination of electrone-breame extractable hydrocarbons by GC-FID (2004) Soil De Fraction Organic Carbon (PCC) Soil De Fraction Organic Carbon (PCC) Soil De Organic Matter (Sob) Determination of Toto by combustion analyser. Soil AR Exchangeable Ammoult Determination of TOC by combustion analyser. Soil AR Exchangeable Ammoult Determination of TOC by combustion analyser. Soil De Magnesium - Water (Sob) Determination of Toc by combustion analyser. Soil De Magnesium - Water (Sob) Determination of Toc by combustion analyser. Soil AR Mineral Oli (C10 - C40) Soil De Magnesium - Water Soulbed (210) Soil De Magnesium - Water Soulbed (211) Soil AR Mineral Oli (C10 - C40) Soil AR PAH - Speciated (CPA 16) Soil AR Phenols - Total (monohydric) Soil De Total (Organic C | Soil   | AR             | Diesel Range Organics (C10 - C24)                                                                                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                     | E004         |
| Soil AR FPH CTD. 400 Semination of elemental suphus by extraction followed by CC-MS Soil AR FPH CTD. 400 Semination of accordance was added in the Committed Source of the CTD. 400 Semination of accordance was accordance and accordance by CC-FID Soil AR CPH TEXAS (GS-GR, GR-CID, CLO-CID) Elementation of acctonor/hexance extractable hydrocarbons by GC-FID for CR to C40, C6 to C8 by E004 Soil D Fination Organic Carbon (FCC) Soil D Fraction Organic Carbon (FCC) D Fraction Organic Carbon (FCC) Soil D Organic Matter (SOM) Determination of TEX by Combustion analyser. E027 Soil D TOC (Total Organic Carbon (FCC) Soil D TOC (Total Organic Carbon (FCC) Soil D FOC (Fraction Organic Carbon (FCC) Soil D FOC (Fraction Organic Carbon) D Loss on Ignition @ 450cc Soil D Magnesium - Water Soil-Be Edition of Text organic Carbon by codes analyser. Soil D Magnesium - Water Soil-Be Edition of Text organic Carbon by Codes analyser. Soil D Magnesium - Water Soil-Be Edition of Soil D Magnesium - Water Soil-Be Edition Soil D Magnesium - Water Soil-B | Soil   | AR             | Electrical Conductivity                                                                                           |                                                                                                        | E022         |
| Soil   AR   EPH CID — C40) Determination of acctone/hexane extractable hydrocarbons by GC-FID   E004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil   | AR             | Electrical Conductivity                                                                                           | Determination of electrical conductivity by addition of water followed by electrometric measurement    | E023         |
| Soil   AR   EPH FEAS (C6-C8, C8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by C6-FID for 8 to C40, C6 to C8 by C12-C16, C16-C21, C21-C40) headspace GC-MS   E004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soil   | D              | Elemental Sulphur                                                                                                 | Determination of elemental sulphur by solvent extraction followed by GC-MS                             | E020         |
| Soil   AR   EPH TEXAS (CG-C3, G3-C1-C1, C1-C1-L2)   Determination of acetone/hexane extractable hydrocarbons by CG-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C21-C40)   headsgase GC-M5   E004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Soil   | AR             |                                                                                                                   |                                                                                                        | E004         |
| Soil   D   Floration - Visiter Soluble   Determination of Florating by extraction with water & analysed by ion chromatography   E009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil   | AR             |                                                                                                                   |                                                                                                        | E004         |
| Soil   D   Fluoride - Water Soluble   Determination of Fluoride by extraction with water & analysed by ion chromatography   E0097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | AR             | EPH TEXAS (C6-C8, C8-C10, C10-C12,                                                                                | Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by          | E004         |
| Soil   D   Graptic Matter (SOM)   Determination of TOC by combustion analyser.   E027   Soil   D   TOC (Total Organic Carbon)   Determination of TOC by combustion analyser.   E027   Soil   AR   Exchangeable Ammolium   Determination of TOC by combustion analyser.   E027   Soil   AR   Exchangeable Ammolium   Determination of amount by discrete analyser.   E029   Soil   D   FOC (Fraction Organic Carbon)   Determination of amount by discrete analyser.   E029   Soil   D   Loss on Ignition @ 450c   Determination of Indication of organic carbon by oxidising with potassium dichromate followed by the pattern of the patte   | Soil   | D              |                                                                                                                   |                                                                                                        | E009         |
| Soil   D   Organic Matter (SOM)   Determination of TOC by combustion analyser.   E027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                |                                                                                                                   |                                                                                                        |              |
| Soil   AR   Exchangeable Ammonium   Determination of ammonium by discrete analyser.   E629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | D              |                                                                                                                   |                                                                                                        |              |
| Soil   AR   Exchangeable Ammonium   Determination of ammonium by discrete analyser.   E629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |                                                                                                                   |                                                                                                        |              |
| Determination of fraction of organic carbon by oxidising with potassium dichromate followed by tration with intent (II) sulphate   Entration with intent (III) sulphate   Entration with intent (III) sulphate   Entration with water (III) sulphate   Entration (III) sulphate   Entration with water (III) sulphate   Entration with water (III) sulphate   Entration (III) sulphate   Entration with water (III) sulphate   Entration (III) sulphate   Entration with water (III) sulphate   Entrat   |        | AR             |                                                                                                                   |                                                                                                        |              |
| D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                |                                                                                                                   | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by         |              |
| Soil   D   Magnesium - Water Soluble   Determination of water soluble magnesium by extraction with water followed by ICP-OES   E025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soil   | D              | Loss on Ignition @ 450oC                                                                                          | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle | E019         |
| Soil AR   Mineral Oil (C10 - C40)   Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE (artifuge cartridge cartridge)   E003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soil   | D              | Magnesium - Water Soluble                                                                                         |                                                                                                        | E025         |
| Soil AR   Mineral Oil (C10 - C40)   Determination of hexane/acctone extractable hydrocarbons by GC-FID fractionating with SPE artifuge   E004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                |                                                                                                                   |                                                                                                        |              |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | AR             |                                                                                                                   | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE              |              |
| Soil   D   Nitrate - Water Soluble (2:1)   Determination of nitrate by extraction with water & analysed by ion chromatography   E009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil   | AR             | Moisture Content                                                                                                  |                                                                                                        | E003         |
| Determination of organic matter by oxidising with potassium dichromate followed by titration with incomposed process.   Edition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |                                                                                                                   |                                                                                                        |              |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil   | D              |                                                                                                                   | Determination of organic matter by oxidising with potassium dichromate followed by titration with      | E010         |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil   | AR             | PAH - Speciated (EPA 16)                                                                                          | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the          | E005         |
| Soil   D   Petroleum Ether Extract (PEE)   Gravimetrically determined through extraction with petroleum ether   E011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil   | AR             | PCB - 7 Congeners                                                                                                 | Determination of PCB by extraction with acetone and hexane followed by GC-MS                           | E008         |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil   | D              |                                                                                                                   |                                                                                                        | E011         |
| Soil   AR   Phenols - Total (monohydric)   Determination of phenols by distillation followed by colorimetry   E021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Soil   | AR             |                                                                                                                   |                                                                                                        | E007         |
| Soil   D   Phosphate - Water Soluble (2:1)   Determination of phosphate by extraction with water & analysed by ion chromatography   E009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soil   | AR             |                                                                                                                   |                                                                                                        | E021         |
| Soil   D   Sulphate (as SO4) - Total   Determination of total sulphate by extraction with 10% HCl followed by ICP-OES   E013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soil   | D              |                                                                                                                   |                                                                                                        | E009         |
| Soil   D   Sulphate (as SO4) - Water Soluble (2:1)   Determination of sulphate by extraction with water & analysed by ion chromatography   E009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil   | D              |                                                                                                                   |                                                                                                        | E013         |
| Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES E018 Soil AR Sulphide Determination of Sulphide by distillation followed by colorimetry E018 Soil D Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024  Soil AR SVOC Determination of semi-volatile organic compounds by extraction in acustone and hexane followed by GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene  Soil D Total Organic Carbon (TOC)  Soil AR THIOCYANA (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16 | Soil   | D              |                                                                                                                   |                                                                                                        | E009         |
| Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry E018  Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024  Soil AR SVOC Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS  Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry  Soil D Toluene Extractable Matter (TEM) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry  Soil D Toluene Extractable Matter (TEM) Determination of thiocyanate by extraction in caustic soda followed by acidification foliowed by acidification foliowed by acidificati |        |                |                                                                                                                   |                                                                                                        |              |
| Soil AR Suphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024  Soil AR Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS E006  Soil AR Thiocyanate (as SCN) Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS E006  Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene E011  Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C35-C35-C44, aro: C5-C7, C7 | Soil   | AR             |                                                                                                                   |                                                                                                        | E018         |
| Soil AR Summer S | Soil   | D              |                                                                                                                   |                                                                                                        | E024         |
| Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene  Soil D Total Organic Carbon (TOC)  Total Organic Carbon (TOC)  Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21- | Soil   | AR             | SVOC                                                                                                              |                                                                                                        | E006         |
| Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene E011  Soil D Total Organic Carbon (TOC)  Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)  Soil AR VOCS Determination of volatile organic compounds by headspace GC-MS C8-C10 by GC-FID Footing E001  VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Soil   | AR             | Thiocyanate (as SCN)                                                                                              |                                                                                                        | E017         |
| Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34)  AR TPH LQM (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, Cartridge for C8 to C44. C5 to C8 by headspace GC-MS  Soil AR VOCS Determination of volatile organic compounds by headspace GC-MS E001  Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Soil   | D              | Toluene Extractable Matter (TEM)                                                                                  |                                                                                                        | E011         |
| Soil AR TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C10-C12, C10-C12, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)  Soil AR VOCS Determination of volatile organic compounds by headspace GC-MS  E001  Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID Factionating with SPE E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Soil   | D              | Total Organic Carbon (TOC)                                                                                        | 1                                                                                                      | E010         |
| Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, Cartridge for C8 to C44. C5 to C8 by headspace GC-MS  Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS  E001  Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Soil   | AR             | C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,                                           | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE              | E004         |
| Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |                | C10-C12, C12-C16, C16-C35, C35-C44,<br>aro: C5-C7, C7-C8, C8-C10, C10-C12,<br>C12-C16, C16-C21, C21-C35, C35-C44) | cartridge for C8 to C44. C5 to C8 by headspace GC-MS                                                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |                                                                                                                   |                                                                                                        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                | VPH (C6-C8 & C8-C10)                                                                                              | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                              | E001         |

D Dried AR As Received





Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

# **DETS Report No: 22-04766**

Site Reference: Kneller Hall, 65 Kneller Road, Twikenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 27/05/2022

Sample Scheduled Date: 30/05/2022

Report Issue Number: 1

**Reporting Date:** 08/06/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.



# **DETS Ltd** Unit 1, Rose Lane Industrial Estate **Rose Lane Lenham Heath** Maidstone Kent ME17 2JN Tel: 01622 850410



| Water Analysis Certificate                     |                 |               |               |  |  |
|------------------------------------------------|-----------------|---------------|---------------|--|--|
| DETS Report No: 22-04766                       | Date Sampled    | 27/05/22      | 27/05/22      |  |  |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied | None Supplied |  |  |
| Site Reference: Kneller Hall, 65 Kneller Road, | TP / BH No      | WS3           | WS6           |  |  |
| Twikenham, London, TW2 7DN                     |                 |               |               |  |  |
|                                                |                 |               |               |  |  |
| Project / Job Ref: 10728/SG                    | Additional Refs | None Supplied | None Supplied |  |  |
| Order No: 10728/SG                             | Depth (m)       | 1.26          | 1.23          |  |  |
| Reporting Date: 08/06/2022                     | DETS Sample No  | 599609        | 599610        |  |  |

| Determinand                 | Unit     | RL     | Accreditation |        |        |  |
|-----------------------------|----------|--------|---------------|--------|--------|--|
| pH                          | pH Units | N/a    | ISO17025      | 7.4    | 6.9    |  |
| Electrical Conductivity     | uS/cm    | < 5    | NONE          | 2030   | 299    |  |
| Total Cyanide               | ug/l     | < 5    | ISO17025      | 62     | < 5    |  |
| Sulphate as SO <sub>4</sub> | mg/l     | < 1    | ISO17025      | 288    | 10     |  |
| Total Organic Carbon (TOC)  | mg/l     | < 0.1  | NONE          | 141    | 5.3    |  |
| Arsenic (dissolved)         | ug/l     | < 5    | ISO17025      | 22     | 5      |  |
| Boron (dissolved)           | ug/l     | < 5    | ISO17025      | 339    | 71     |  |
| Cadmium (dissolved)         | ug/l     | < 0.4  | ISO17025      | < 0.4  | 0.9    |  |
| Chromium (dissolved)        | ug/l     | < 5    | ISO17025      | < 5    | < 5    |  |
| Chromium (hexavalent)       | ug/l     | < 20   | NONE          | < 20   | < 20   |  |
| Copper (dissolved)          | ug/l     | < 5    | ISO17025      | < 5    | 25     |  |
| Lead (dissolved)            | ug/l     | < 5    | ISO17025      | 18     | 20     |  |
| Mercury (dissolved)         | ug/l     | < 0.05 | ISO17025      | < 0.05 | < 0.05 |  |
| Nickel (dissolved)          | ug/l     | < 5    | ISO17025      | < 5    | 39     |  |
| Selenium (dissolved)        | ug/l     | < 5    | ISO17025      | < 5    | < 5    |  |
| Zinc (dissolved)            | ug/l     | < 2    | ISO17025      | 62     | 24     |  |
| Total Phenols (monohydric)  | ug/l     | < 10   | ISO17025      | < 10   | < 10   |  |
| EPH (C10 - C40)             | ug/l     | < 10   | NONE          | 26     | 1835   |  |

Subcontracted analysis <sup>(S)</sup> Insufficient sample <sup>I/S</sup> Unsuitable Sample <sup>U/S</sup>



# DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

| Water Analysis Certificate - Speciated PAH |                 |               |               |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|
| DETS Report No: 22-04766                   | Date Sampled    | 27/05/22      | 27/05/22      |  |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller   | TP / BH No      | WS3           | WS6           |  |  |  |  |  |  |
| Road, Twikenham, London, TW2 7DN           |                 |               |               |  |  |  |  |  |  |
|                                            |                 |               |               |  |  |  |  |  |  |
| Project / Job Ref: 10728/SG                | Additional Refs | None Supplied | None Supplied |  |  |  |  |  |  |
| Order No: 10728/SG                         | Depth (m)       | 1.26          | 1.23          |  |  |  |  |  |  |
| Reporting Date: 08/06/2022                 | DETS Sample No  | 599609        | 599610        |  |  |  |  |  |  |

| Determinand            | Unit | RL     | Accreditation |         |         |  |
|------------------------|------|--------|---------------|---------|---------|--|
| Naphthalene            | ug/l | < 0.01 | NONE          | 0.02    | 0.01    |  |
| Acenaphthylene         | ug/l | < 0.01 | NONE          | < 0.01  | < 0.01  |  |
| Acenaphthene           | ug/l | < 0.01 | NONE          | 0.03    | < 0.01  |  |
| Fluorene               | ug/l | < 0.01 | NONE          | 0.03    | < 0.01  |  |
| Phenanthrene           | ug/l | < 0.01 | NONE          | 0.09    | < 0.01  |  |
| Anthracene             | ug/l | < 0.01 | NONE          | 0.02    | < 0.01  |  |
| Fluoranthene           | ug/l | < 0.01 | NONE          | 0.10    | 0.01    |  |
| Pyrene                 | ug/l | < 0.01 | NONE          | 0.08    | 0.01    |  |
| Benzo(a)anthracene     | ug/l | < 0.01 | NONE          | < 0.01  | < 0.01  |  |
| Chrysene               | ug/l | < 0.01 | NONE          | < 0.01  | < 0.01  |  |
| Benzo(b)fluoranthene   | ug/l | < 0.01 | NONE          | < 0.01  | < 0.01  |  |
| Benzo(k)fluoranthene   | ug/l | < 0.01 | NONE          | < 0.01  | < 0.01  |  |
| Benzo(a)pyrene         | ug/l | < 0.01 | NONE          | < 0.01  | < 0.01  |  |
| Indeno(1,2,3-cd)pyrene | ug/l | < 0.01 | NONE          | < 0.01  | < 0.01  |  |
| Dibenz(a,h)anthracene  | ug/l | < 0.01 | NONE          | < 0.01  | < 0.01  |  |
| Benzo(ghi)perylene     | ug/l | 0.008  | NONE          | < 0.008 | < 0.008 |  |
| Total EPA-16 PAHs      | ug/l | < 0.16 | NONE          | 0.37    | < 0.16  |  |



# **DETS Ltd** Unit 1, Rose Lane Industrial Estate **Rose Lane Lenham Heath** Maidstone Kent ME17 2JN Tel: 01622 850410



4480

Water Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-04766
Soil Consultants Ltd
Site Reference: Kneller Hall, 65 Kneller Road, Twikenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Reporting Date: 08/06/2022

| Matrix   | Analysed | Determinand                                                             | Brief Method Description                                                                                                                    | Method |
|----------|----------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|
|          | On       |                                                                         | ·                                                                                                                                           | No     |
| Water    | UF       | Alkalinity                                                              | Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end                                       | E103   |
| Water    | F        | Ammoniacal Nitrogen                                                     | Determination of ammoniacal nitrogen by discrete analyser.                                                                                  | E126   |
| Water    | UF       |                                                                         | Determination of BTEX by headspace GC-MS                                                                                                    | E101   |
| Water    | F        |                                                                         | Determination of cations by filtration followed by ICP-MS                                                                                   | E102   |
| Water    | UF       |                                                                         | Determination using a COD reactor followed by colorimetry                                                                                   | E112   |
| Water    | F        | Chloride                                                                | Determination of chloride by filtration & analysed by ion chromatography                                                                    | E109   |
| Water    | F        | Chromium - Hexavalent                                                   | Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by                                        | E116   |
| Water    | UF       | Cyanide - Complex                                                       | Determination of complex cyanide by distillation followed by colorimetry                                                                    | E115   |
| Water    | UF       | Cyanide - Free                                                          | Determination of free cyanide by distillation followed by colorimetry                                                                       | E115   |
| Water    | UF       | Cyanide - Total                                                         | Determination of total cyanide by distillation followed by colorimetry                                                                      | E115   |
| Water    | UF       | Cyclohexane Extractable Matter (CEM)                                    | Gravimetrically determined through liquid:liquid extraction with cyclohexane                                                                | E111   |
| Water    | F        | Diesel Range Organics (C10 - C24)                                       | Determination of liquid:liquid extraction with hexane followed by GC-FID                                                                    | E104   |
| Water    | F        | Dissolved Organic Content (DOC)                                         | Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete                                       | E110   |
| Water    | UF       |                                                                         | Determination of electrical conductivity by electrometric measurement                                                                       | E123   |
| Water    | F        | EPH (C10 - C40)                                                         | Determination of liquid:liquid extraction with hexane followed by GC-FID                                                                    | E104   |
| Makes    | F        | EPH TEXAS (C6-C8, C8-C10, C10-C12,                                      | Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by                                         | F104   |
| Water    | -        | C12-C16, C16-C21, C21-C40)                                              |                                                                                                                                             | E104   |
| Water    | F        |                                                                         | Determination of Fluoride by filtration & analysed by ion chromatography                                                                    | E109   |
| Water    | F        |                                                                         | Determination of Ca and Mg by ICP-MS followed by calculation                                                                                | E102   |
| Leachate | F        |                                                                         | Based on National Rivers Authority leaching test 1994                                                                                       | E301   |
| Leachate | F        |                                                                         | Based on BS EN 12457 Pt1, 2, 3                                                                                                              | E302   |
| Water    | F        | Metals                                                                  | Determination of metals by filtration followed by ICP-MS                                                                                    | E102   |
| Water    | F        | Mineral Oil (C10 - C40)                                                 | Determination of liquid:liquid extraction with hexane followed by GI-FID                                                                    | E104   |
| Water    | F        |                                                                         | Determination of nitrate by filtration & analysed by ion chromatography                                                                     | E109   |
| Water    | UF       |                                                                         | Determination of phenols by distillation followed by colorimetry                                                                            | E121   |
| Water    | F        | PAH - Speciated (EPA 16)                                                | Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS                      | E105   |
| Water    | F        | DCP 7 Congonore                                                         | Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal                                         | E108   |
| Water    | ÜF       |                                                                         | Gravimetrically determined through liquid:liquid extraction with petroleum ether                                                            | E111   |
| Water    | UF       |                                                                         | Determination of pH by electrometric measurement                                                                                            | E107   |
| Water    | F        |                                                                         | Determination of phosphate by filtration & analysed by ion chromatography                                                                   | E109   |
| Water    | UF       |                                                                         | Determination of phosphate by flittation & analysed by for chromatography  Determination of redox potential by electrometric measurement    | E113   |
| Water    | F        |                                                                         | Determination of redox potential by electronietic measurement  Determination of sulphate by filtration & analysed by ion chromatography     | E109   |
| Water    | UF       |                                                                         | Determination of sulphide by distillation followed by colorimetry                                                                           | E118   |
| Water    | F        | SVOC                                                                    | Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection                                         | E106   |
|          |          |                                                                         | in dichloromethane followed by GC-MS                                                                                                        |        |
| Water    | UF       |                                                                         | Gravimetrically determined through liquid:liquid extraction with toluene                                                                    | E111   |
| Water    | UF       | Total Organic Carbon (TOC)                                              | Low heat with persulphate addition followed by IR detection                                                                                 | E110   |
| Water    | F        |                                                                         | Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS | E104   |
| Water    | F        | aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) | Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS | E104   |
| Water    | UF       |                                                                         | Determination of volatile organic compounds by headspace GC-MS                                                                              | E101   |
| Water    | UF       | VPH (C6-C8 & C8-C10)                                                    | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                   | E101   |

Key

F Filtered **UF Unfiltered** 





Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

# DETS Report No: 22-04691

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 26/05/2022

Sample Scheduled Date: 26/05/2022

Report Issue Number: 1

**Reporting Date:** 06/06/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.





| Soil Analysis Certificate                      |                 |               |  |  |  |  |  |  |  |
|------------------------------------------------|-----------------|---------------|--|--|--|--|--|--|--|
| DETS Report No: 22-04691                       | Date Sampled    | 10/05/22      |  |  |  |  |  |  |  |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied |  |  |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller Road, | TP / BH No      | WS5/1.30      |  |  |  |  |  |  |  |
| Twickenham, London, TW2 7DN                    |                 |               |  |  |  |  |  |  |  |
|                                                |                 |               |  |  |  |  |  |  |  |
| Project / Job Ref: 10728/SG                    | Additional Refs | None Supplied |  |  |  |  |  |  |  |
| Order No: 10728/SG                             | Depth (m)       | 1.30          |  |  |  |  |  |  |  |
| Reporting Date: 06/06/2022                     | DETS Sample No  | 599262        |  |  |  |  |  |  |  |

| Determinand                           | Unit     | RL     | Accreditation |              |      |  |
|---------------------------------------|----------|--------|---------------|--------------|------|--|
| Asbestos Screen (S)                   | N/a      | N/a    | ISO17025      | Not Detected |      |  |
| pH                                    | pH Units | N/a    | MCERTS        | 7.2          |      |  |
| Electrical Conductivity               | uS/cm    | < 5    | NONE          | 329          |      |  |
| Total Cyanide                         | mg/kg    | < 2    | NONE          | < 2          |      |  |
| Total Sulphate as SO <sub>4</sub>     | mg/kg    | < 200  | MCERTS        | 1241         |      |  |
| Total Sulphate as SO <sub>4</sub>     | %        | < 0.02 | MCERTS        | 0.12         |      |  |
| W/S Sulphate as SO <sub>4</sub> (2:1) |          | < 10   | MCERTS        | 489          |      |  |
| W/S Sulphate as SO <sub>4</sub> (2:1) | g/l      | < 0.01 | MCERTS        | 0.49         |      |  |
| Total Sulphur                         | %        | < 0.02 | NONE          | 0.29         |      |  |
| Organic Matter (SOM)                  | %        | < 0.1  | MCERTS        | 13.9         |      |  |
| Arsenic (As)                          | mg/kg    | < 2    | MCERTS        | 3            |      |  |
| W/S Boron                             | mg/kg    | < 1    | NONE          | < 1          |      |  |
| Cadmium (Cd)                          | mg/kg    | < 0.2  | MCERTS        | < 0.2        |      |  |
| Chromium (Cr)                         | mg/kg    | < 2    | MCERTS        | 2            |      |  |
| Chromium (hexavalent)                 | mg/kg    | < 2    | NONE          | < 2          |      |  |
| Copper (Cu)                           | mg/kg    | < 4    | MCERTS        | 4            |      |  |
| Lead (Pb)                             | mg/kg    | < 3    | MCERTS        | 13           |      |  |
| Mercury (Hg)                          | mg/kg    | < 1    | MCERTS        | < 1          |      |  |
| Nickel (Ni)                           | mg/kg    | < 3    | MCERTS        | 4            |      |  |
| Selenium (Se)                         | mg/kg    | < 2    | MCERTS        | < 3          |      |  |
| Zinc (Zn)                             |          | < 3    |               | 59           |      |  |
| Total Phenols (monohydric)            | mg/kg    | < 2    | NONE          | < 2          | <br> |  |
| EPH (C10 - C40)                       | mg/kg    | < 6    | MCERTS        | 2330         |      |  |





| Soil Analysis Certificate - Speciated PAHs |                 |               |  |   |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|--|---|--|--|--|--|--|
| DETS Report No: 22-04691                   | Date Sampled    | 10/05/22      |  |   |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied |  |   |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller   | TP / BH No      | WS5/1.30      |  |   |  |  |  |  |  |
| Road, Twickenham, London, TW2 7DN          |                 |               |  |   |  |  |  |  |  |
|                                            |                 |               |  |   |  |  |  |  |  |
| Project / Job Ref: 10728/SG                | Additional Refs | None Supplied |  |   |  |  |  |  |  |
| Order No: 10728/SG                         | Depth (m)       | 1.30          |  | • |  |  |  |  |  |
| Reporting Date: 06/06/2022                 | DETS Sample No  | 599262        |  |   |  |  |  |  |  |

| Determinand            | Unit  | RL    | Accreditation |       |
|------------------------|-------|-------|---------------|-------|
| Naphthalene            | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Acenaphthylene         | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Acenaphthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Fluorene               | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Phenanthrene           | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Anthracene             | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Fluoranthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Pyrene                 | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Benzo(a)anthracene     | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Chrysene               | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Benzo(b)fluoranthene   | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Benzo(k)fluoranthene   | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Benzo(a)pyrene         | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Indeno(1,2,3-cd)pyrene | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Dibenz(a,h)anthracene  | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Benzo(ghi)perylene     | mg/kg | < 0.1 | MCERTS        | < 0.1 |
| Total EPA-16 PAHs      | mg/kg | < 1.6 | MCERTS        | < 1.6 |





| Soil Analysis Certificate - Sample Descriptions                            |  |
|----------------------------------------------------------------------------|--|
| DETS Report No: 22-04691                                                   |  |
| Soil Consultants Ltd                                                       |  |
| Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN |  |
| Project / Job Ref: 10728/SG                                                |  |
| Order No: 10728/SG                                                         |  |
| Reporting Date: 06/06/2022                                                 |  |

| DETS Sample No | TP / BH No | Additional Refs | Depth (m) | Moisture<br>Content (%) | Sample Matrix Description    |
|----------------|------------|-----------------|-----------|-------------------------|------------------------------|
| \$ 599262      | WS5/1.30   | None Supplied   | 1.30      | 29                      | Black loamy sand with stones |

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample  $^{\rm IVS}$  Unsuitable Sample  $^{\rm U/S}$ 

\$ samples exceeded recommended holding times





Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-04691
Soil Consultants Ltd
Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG Order No: 10728/SG Reporting Date: 06/06/2022

| Matrix | Analysed<br>On | Determinand                                                                                                                             | Brief Method Description                                                                                                                            | Method<br>No |
|--------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Soil   | D              | Boron - Water Soluble                                                                                                                   | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES                                                           | E012         |
| Soil   | AR             |                                                                                                                                         | Determination of BTEX by headspace GC-MS                                                                                                            | E001         |
| Soil   | D              | Cations                                                                                                                                 | Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                        | E002         |
| Soil   | D              |                                                                                                                                         | Determination of chloride by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | AR             | Chromium - Hexavalent                                                                                                                   | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of                                              | E016         |
| 3011   |                |                                                                                                                                         | 1,5 diphenylcarbazide followed by colorimetry                                                                                                       |              |
| Soil   | AR             |                                                                                                                                         | Determination of complex cyanide by distillation followed by colorimetry                                                                            | E015         |
| Soil   | AR             |                                                                                                                                         | Determination of free cyanide by distillation followed by colorimetry                                                                               | E015         |
| Soil   | AR             |                                                                                                                                         | Determination of total cyanide by distillation followed by colorimetry                                                                              | E015         |
| Soil   | D              |                                                                                                                                         | Gravimetrically determined through extraction with cyclohexane                                                                                      | E011         |
| Soil   | AR             | Diesel Range Organics (C10 - C24)                                                                                                       | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             | Electrical Conductivity                                                                                                                 | Determination of electrical conductivity by addition of saturated calcium sulphate followed by<br>electrometric measurement                         | E022         |
| Soil   | AR             | Electrical Conductivity                                                                                                                 | Determination of electrical conductivity by addition of water followed by electrometric measurement                                                 | E023         |
| Soil   | D              |                                                                                                                                         | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                          | E020         |
| Soil   | AR             |                                                                                                                                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             |                                                                                                                                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                                                  | E004         |
| Soil   | AR             | EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)                                                                           | Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS                                       | E004         |
| Soil   | D              |                                                                                                                                         | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | D              |                                                                                                                                         | Determination of TOC by combustion analyser.                                                                                                        | E027         |
| Soil   | D              |                                                                                                                                         | Determination of TOC by combustion analyser.                                                                                                        | E027         |
| Soil   | D              |                                                                                                                                         | Determination of TOC by combustion analyser.                                                                                                        | E027         |
| Soil   | AR             | Exchangeable Ammonium                                                                                                                   | Determination of ammonium by discrete analyser.                                                                                                     | E029         |
| Soil   | D              | FOC (Fraction Organic Carbon)                                                                                                           | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate                    | E010         |
| Soil   | D              | Loss on Ignition @ 450oC                                                                                                                | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace                                      | E019         |
| Soil   | D              | Magnesium - Water Soluble                                                                                                               | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                               | E025         |
| Soil   | D              | Metals                                                                                                                                  | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                 | E002         |
| Soil   | AR             | Mineral Oil (C10 - C40)                                                                                                                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                 | E004         |
| Soil   | AR             | Moisture Content                                                                                                                        |                                                                                                                                                     | E003         |
| Soil   | D              | Nitrate - Water Soluble (2:1)                                                                                                           | Determination of nitrate by extraction with water & analysed by ion chromatography                                                                  | E009         |
| Soil   | D              | Organic Matter                                                                                                                          | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                | E010         |
| Soil   | AR             | PAH - Speciated (EPA 16)                                                                                                                | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards               | E005         |
| Soil   | AR             | PCB - 7 Congeners                                                                                                                       | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                        | E008         |
| Soil   | D              |                                                                                                                                         | Gravimetrically determined through extraction with petroleum ether                                                                                  | E011         |
| Soil   | AR             | pH                                                                                                                                      | Determination of pH by addition of water followed by electrometric measurement                                                                      | E007         |
| Soil   | AR             | Phenols - Total (monohydric)                                                                                                            | Determination of phenols by distillation followed by colorimetry                                                                                    | E021         |
| Soil   | D              | Phosphate - Water Soluble (2:1)                                                                                                         | Determination of phosphate by extraction with water & analysed by ion chromatography                                                                | E009         |
| Soil   | D              |                                                                                                                                         | Determination of total sulphate by extraction with 10% HCI followed by ICP-OES                                                                      | E013         |
| Soil   | D              |                                                                                                                                         | Determination of sulphate by extraction with water & analysed by ion chromatography                                                                 | E009         |
| Soil   | D              |                                                                                                                                         | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                | E014         |
| Soil   | AR             |                                                                                                                                         | Determination of sulphide by distillation followed by colorimetry                                                                                   | E018         |
| Soil   | D              | Sulphur - Total                                                                                                                         | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                    | E024         |
| Soil   | AR             | SVOC                                                                                                                                    | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS                                              | E006         |
| Soil   | AR             | Thiocyanate (as SCN)                                                                                                                    | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry | E017         |
| Soil   | D              | Toluene Extractable Matter (TEM)                                                                                                        | Gravimetrically determined through extraction with toluene                                                                                          | E011         |
| Soil   | D              | Total Organic Carbon (TOC)                                                                                                              | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                | E010         |
| Soil   | AR             | TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE                                                           | E004         |
| Soil   | AR             | aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)                                                                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS      | E004         |
| Soil   | AR             |                                                                                                                                         | Determination of volatile organic compounds by headspace GC-MS                                                                                      | E001         |
| Soil   | AR             | VPH (C6-C8 & C8-C10)                                                                                                                    | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                           | E001         |





Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

#### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

## **DETS Report No: 22-04653**

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 26/05/2022

Sample Scheduled Date: 26/05/2022

Report Issue Number: 1

Reporting Date: 13/06/2022

Authorised by:

Ela Mysiara Quality Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.



DETS Ltd ane Industrial Estate Rose Lane nham Heath Maidstone nt ME17 2JN 01622 850410





4480

|                                                          |                | Date               |               |                                                  |                      |                              |             |
|----------------------------------------------------------|----------------|--------------------|---------------|--------------------------------------------------|----------------------|------------------------------|-------------|
| DETS Report No: 22-04                                    | 553<br>        | Sampled            | 11/05/2022    |                                                  | Compliance           | with Range                   |             |
| Soil Consultants Ltd                                     |                | Time<br>Sampled    | None Supplied | ]                                                |                      |                              |             |
| Site Reference: Kneller<br>Road, Twickenham, Lon         |                | TP / BH No         | WS6           | 8                                                |                      | ≥                            | _ ر         |
| Project / Job Ref: 1072                                  | 8/SG           | Additional<br>Refs | None Supplied | urpo                                             | Acidic               | ertili                       | reou        |
| Order No: 10728/SG                                       |                | Depth (m)          | 0.60          | Multipurpose                                     | Aci                  | Low Fertility                | Calcareous  |
| Reporting Date: 13/06/                                   | 2022           | DETS<br>Sample No  | 599152        | _                                                |                      | _                            |             |
| Determinand                                              | Reporting Unit | RL                 |               | 1                                                |                      |                              |             |
| Soil Texture                                             |                | -                  |               |                                                  |                      |                              |             |
| Clay Content (S)                                         | %              | N/a                | 25.3          |                                                  | 5 -                  | 35                           |             |
| Silt Content (S)                                         | %              | N/a                | 42.2          |                                                  |                      | 65                           |             |
| Sand Content (S)                                         | %              | N/a                | 32.5          | <del>                                     </del> |                      | - 85                         |             |
| Textural Class (S)                                       | N/a            | N/a                | Clay Loam     |                                                  | 30                   | -                            |             |
| rextural class (7)                                       | IN/a           | IV/a               | Clay Luaili   |                                                  | Clay Conto           | nt 5 - 20%                   |             |
|                                                          |                |                    |               | 2 20                                             |                      |                              | 2 20        |
| Loss on Ignition                                         | %              | < 0.01             | 2.90          | 3 - 20                                           | 3 - 30               | 2 - 20<br>nt <b>20 - 35%</b> | 3 - 20      |
| _                                                        |                |                    |               |                                                  |                      |                              |             |
|                                                          |                |                    |               | 5 - 20                                           | 5 - 30               | 2 - 20                       | 5 - 20      |
| Coarse Fragment Conte                                    |                |                    |               |                                                  |                      |                              |             |
| >2mm <sup>(S)</sup>                                      | %              | N/a                | 7.0           | 0 - 30                                           | 0 - 30               | 0 - 30                       | 0 - 30      |
| >20mm <sup>(S)</sup>                                     | %              | N/a                | 0.0           | 0 - 10                                           | 0 - 10               | 0 - 10                       | 0 - 10      |
| >50mm <sup>(S)</sup>                                     | %              | N/a                | 0.0           | 0                                                | 0                    | 0                            | 0           |
| oH <sup>MU</sup>                                         | pH Units       | N/a                | 5.9           | 5.5 - 8.5                                        | 3.5 - 5.5            | 3.5 - 9.0                    | 7.5 - 9.0   |
| Carbonate                                                | %              | < 1.4              | < 1.4         |                                                  |                      |                              | > 1         |
| Available Plant Nutrient                                 | ts             |                    |               |                                                  |                      |                              |             |
| Total Nitrogen <sup>(S)</sup>                            | %              | < 0.01             | < 0.01        | ≥ 0.15                                           | ≥ 0.15               |                              | ≥ 0.15      |
| Phosphorus (Extractable)                                 | mg/l           | < 3                | 4             | 16 - 140                                         | 16 - 140             | ≤ 15                         | 16 - 140    |
| Potassium (Extractable)                                  | mg/l           | < 20               | 140           | 121 - 1500                                       | 121 - 1500           |                              | 121 - 150   |
| Magnesium (Extractable)                                  | mg/l           | < 1                | 140           | 51 - 600                                         | 51 - 600             |                              | 51 - 600    |
| Carbon / Nitrogen Ratio <sup>(S)</sup>                   | :1             | < 0.1              | < 0.1         | < 20:1                                           | < 20 : 1             | < 20 : 1                     | < 20 : 1    |
| Exchangeable Sodium (S)                                  | %              | < 0.1              | < 0.1         |                                                  |                      | -                            |             |
| Phytotoxic Elements (by                                  | y soil pH)     | _                  |               | Multipurpos                                      | se & Specific<br>rar | Purpose To                   | psoils at p |
|                                                          |                |                    |               | < 6.0                                            | 6.0                  | - 7.0                        | > 7.0       |
| Zinc <sup>MU</sup>                                       | mg/kg          | < 3                | 36            | < 200                                            | < 200                |                              | < 300       |
| Copper <sup>MU</sup>                                     | mg/kg          | < 4                | 11            | < 100                                            | < 135                |                              | < 200       |
| Nickel MU                                                | mg/kg          | < 3                | 16            | < 60                                             | <                    | 75                           | < 110       |
| Visible Contaminants (A                                  | ir Dried Soil) |                    |               |                                                  |                      |                              |             |
| >2mm                                                     | %              | N/a                | 0.0           |                                                  | <                    | 0.5                          |             |
| Plastics                                                 | %              | N/a                | 0.00          |                                                  | < 0                  | ).25                         |             |
| Sharps                                                   | %              | N/a                | 0.0           |                                                  |                      | 0                            |             |
| Additional Analytes                                      |                | -                  | •             | Ī                                                |                      |                              |             |
| Available Sodium (S)                                     | mg/l           | < 1                | 80            |                                                  |                      |                              |             |
|                                                          | mg/l           | < 1                | 2900          | <b>†</b>                                         |                      |                              |             |
| Available Calcium (°)                                    |                |                    |               |                                                  |                      |                              |             |
| Available Calcium <sup>(S)</sup> Electrical Conductivity | uS/cm          | < 5                | 2200          | 3300                                             |                      |                              |             |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test

U Denotes ISO17025 accredited test

Subcontracted analysis (S)



DETS Ltd ane Industrial Estate Rose Lane nham Heath Maidstone nt ME17 2JN 01622 850410





4480

| Potassium (Extractable) mg/l < 20 110 121 - 1500 121 - 1500 121 - 1500 Magnesium (Extractable) mg/l < 1 54 51 - 600 51 - 600 51 - 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                |            |               | Compliance with Range                            |              |           |             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|------------|---------------|--------------------------------------------------|--------------|-----------|-------------|--|
| Road, Twickenham, London, TW2 7DN   IP / BH No   No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ite Reference: Kneller                 |                | Time       | None Supplied |                                                  |              |           |             |  |
| Determinand   Reporting Unit   RL   Sample No   Sepp153                                           |                | TP / BH No | WS10          | a a                                              |              | >         |             |  |
| Determinand   Reporting Unit   RL   Sample No   S99153   Sample No   Semple No   N/a   Soli Texture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | •              |            | None Supplied | rrpos                                            | dic          | iji<br>Fi | .eons       |  |
| Determinand   Reporting Unit   RL   Sample No   Sepp153    Order No: 10728/SG                     |                |            | GL - 0.50     | ultipı                                           | Aci          | ow Fe     | alcar       |  |
| Color   Colo | Reporting Date: 13/06/                 | 2022           |            | 599153        | Σ                                                |              | ۲         |             |  |
| Soil Texture   Clay Content (S)   %   N/a   16.7   5 - 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Determinand                            | Reporting Unit |            |               | 1                                                |              |           |             |  |
| Clay Content   S   96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | reporting ome  |            |               |                                                  |              |           |             |  |
| Silt Content (S)   %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | 0/-            | N/a        | 16.7          |                                                  | 5 -          | 35        |             |  |
| Sand Content (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cilt Content (S)                       |                |            |               | <del>                                     </del> |              |           |             |  |
| Textural Class   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                |            |               | <del>                                     </del> |              |           |             |  |
| Clay Content 5 - 20%   3 - 20   3 - 30   2 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   3 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 2 |                                        |                |            |               | <b>-</b>                                         | 30 -         | - 03      |             |  |
| Coarse Fragment Content   South Provided Plant Nutrients   South Physician (Extractable)   S | extural Class (3)                      | IN/a           | N/a        | Sandy Loam    |                                                  | Class Casala |           |             |  |
| Coarse Fragment Content   Solution   Solution   Clay Content 20 - 35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                |            |               |                                                  |              |           | 2 22        |  |
| Clay Collection   2 - 3 - 3 - 2   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   2 - 20   5 - 20   2 - 20   5 - 20   2 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - 20   5 - | oss on Ignition                        | %              | < 0.01     | 3.10          | 3 - 20                                           |              |           | 3 - 20      |  |
| Coarse Fragment Content   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .000 011 191110011                     | ,,             | 1 0.01     | 5.25          |                                                  |              |           |             |  |
| N/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                |            |               | 5 - 20                                           | 5 - 30       | 2 - 20    | 5 - 20      |  |
| N/a   0.0   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0 - 10   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | nt             |            |               |                                                  |              |           |             |  |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | >2mm <sup>(S)</sup>                    | %              | N/a        | 14.0          | 0 - 30                                           | 0 - 30       | 0 - 30    | 0 - 30      |  |
| Somm    | >20mm <sup>(S)</sup>                   | %              | N/a        | 0.0           | 0 - 10                                           | 0 - 10       | 0 - 10    | 0 - 10      |  |
| DH MU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >50mm <sup>(S)</sup>                   | %              | N/a        | 0.0           | 0                                                | 0            | 0         | 0           |  |
| Carbonate   %   < 1.4   < 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oH <sup>MU</sup>                       | pH Units       | N/a        | 5.4           | 5.5 - 8.5                                        | 3.5 - 5.5    | 3.5 - 9.0 | 7.5 - 9.0   |  |
| Available Plant Nutrients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                | < 1.4      |               |                                                  |              |           |             |  |
| Fotal Nitrogen (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | s              | •          |               |                                                  |              |           |             |  |
| Phosphorus (Extractable)   mg/l   < 3   19   16 - 140   16 - 140   ≤ 15   16 - 140     Potassium (Extractable)   mg/l   < 20   110   121 - 1500   121 - 1500     Magnesium (Extractable)   mg/l   < 1   54   51 - 600   51 - 600   51 - 600     Carbon / Nitrogen Ratio (S)   :1   < 0.1   < 0.1   < 20 : 1   < 20 : 1   < 20 : 1   < 20 : 1   < 20 : 1     Exchangeable Sodium (S)   %   < 0.1   < 0.1     Exchangeable Sodium (S)   %   < 0.1   < 0.1     Phytotoxic Elements (by soil pH)   mg/kg   < 3   36   < 200   < 200   < 200   < 300     Copper MU   mg/kg   < 3   11   < 60   < 75   < 110     Visible Contaminants (Air Dried Soil)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Nitrogen (S)                     | %              | < 0.01     | < 0.01        | ≥ 0.15                                           | ≥ 0.15       |           | ≥ 0.15      |  |
| Magnesium (Extractable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | mg/l           | < 3        |               |                                                  |              | ≤ 15      | 16 - 140    |  |
| Carbon / Nitrogen Ratio   S1 - 600   S1 -  | otassium (Extractable)                 | mg/l           | < 20       | 110           | 121 - 1500                                       | 121 - 1500   |           | 121 - 150   |  |
| Multipurpose & Specific Purpose Topsoils at prange   Co.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>1agnesium (Extractable)</b>         | mg/l           | < 1        | 54            | 51 - 600                                         | 51 - 600     |           | 51 - 600    |  |
| Multipurpose & Specific Purpose Topsoils at prange   Co.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Carbon / Nitrogen Ratio <sup>(S)</sup> | :1             | < 0.1      | < 0.1         | < 20 : 1                                         | < 20 : 1     | < 20 : 1  | < 20 : 1    |  |
| Phytotoxic Elements (by soil pH)   range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | xchangeable Sodium (S)                 | %              | < 0.1      | < 0.1         |                                                  |              |           |             |  |
| Time   Mu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Phytotoxic Elements (by                | y soil pH)     |            |               | Multipurpos                                      | -            | -         | psoils at p |  |
| Copper MU         mg/kg         < 4         13         < 100         < 135         < 200           Nickel MU         mg/kg         < 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                |            |               | < 6.0                                            | 6.0          | 7.0       | > 7.0       |  |
| Nickel MU mg/kg < 3 11 < 60 < 75 < 110  Visible Contaminants (Air Dried Soil)  >2mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                |            |               |                                                  |              | < 200     |             |  |
| Visible Contaminants (Air Dried Soil)           >2mm         %         N/a         0.0         < 0.5           Plastics         %         N/a         0.00         < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Copper MU                              |                |            |               |                                                  |              |           |             |  |
| Visible Contaminants (Air Dried Soil)         V/a         0.0         < 0.5           >2mm         %         N/a         0.00         < 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | √ickel <sup>MU</sup>                   | mg/kg          | < 3        | 11            | < 60                                             | <            | 75        | < 110       |  |
| Plastics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | ir Dried Soil) |            |               |                                                  |              |           |             |  |
| Sharps         %         N/a         0.0         0           Additional Analytes         Available Sodium (S)         mg/l         < 1         39         39           Available Calcium (S)         mg/l         < 1         2200         2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >2mm                                   | %              | N/a        | 0.0           |                                                  | < 1          | 0.5       |             |  |
| Additional Analytes           Available Sodium (S)         mg/l         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Plastics                               | %              | N/a        | 0.00          |                                                  | < 0          | .25       |             |  |
| Additional Analytes           Available Sodium (S)         mg/l         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sharps                                 | %              | N/a        | 0.0           | 1                                                | (            | )         |             |  |
| Available Sodium (S)         mg/l         < 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <u> </u>       | •          |               |                                                  |              |           |             |  |
| Available Calcium <sup>(S)</sup> mg/l < 1 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | ma/l           | < 1        | 39            |                                                  |              |           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                |            |               |                                                  |              |           |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                |            |               | 3300                                             |              |           |             |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test

U Denotes ISO17025 accredited test

Subcontracted analysis (S)





| Soil Analysis Certificate - Sample Descriptions                            |  |
|----------------------------------------------------------------------------|--|
| DETS Report No: 22-04653                                                   |  |
| Soil Consultants Ltd                                                       |  |
| Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN |  |
| Project / Job Ref: 10728/SG                                                |  |
| Order No: 10728/SG                                                         |  |
| Reporting Date: 13/06/2022                                                 |  |

| DETS Sample No | TP / BH No | Additional Refs | Depth (m) | Moisture<br>Content (%) | I Sample Matrix Description I               |
|----------------|------------|-----------------|-----------|-------------------------|---------------------------------------------|
| \$ 599152      | WS6        | None Supplied   | 0.60      | 14                      | Brown sandy clay                            |
| \$ 599153      | WS10       | None Supplied   | GL - 0.50 | 9.4                     | Brown sandy clay with stones and vegetation |

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample  $^{\rm IVS}$  Unsuitable Sample  $^{\rm IVS}$ 

\$ samples exceeded recommended holding times





Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-04653 Soil Consultants Ltd

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG Order No: 10728/SG Reporting Date: 13/06/2022

| Netrox   Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | ng Date: 13 |                                                                                                                   |                                                                                                        |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------|
| Sept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Matrix |             | Determinand                                                                                                       | Brief Method Description                                                                               | Method<br>No |
| Sept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Soil   | D           | Boron - Water Soluble                                                                                             | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES              |              |
| Soil   AR   Chronium - Hosevaleur Commission of historia by extraction with water & analysed by in chromatography   E003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |             | BTEX                                                                                                              | Determination of BTEX by headspace GC-MS                                                               |              |
| Soil AR Chromium - Heasvaler Determination of heasvalent dromnium in soil by extraction in water then by additication, addition of Soil AR Cyanide - Compile Determination of compiles counted by distillation followed by colorimetry (2015) and AR Cyanide - International Compiles counted by distillation followed by colorimetry (2015) and AR Dissel Rarge Organics (CIV - CIV |        |             |                                                                                                                   |                                                                                                        |              |
| Soil AR Cynniès - Croppe Determination of complex cynniès by distillation followed by colorimetry [51]  Soil AR Cynniès - Free Determination of free cynniès by distillation followed by colorimetry [51]  Soil AR Cynniès - Croppe Determination of free cynniès by distillation followed by colorimetry [51]  Soil AR Determination of tract cynniès by distillation followed by colorimetry [51]  Soil AR Determination of tract cynniès by distillation followed by colorimetry [51]  Soil AR Determination of tract cynniès by distillation followed by colorimetry [51]  Soil AR BEctrical Conductively Determination of return determination of hexane factore exercitable hydrocarbone by CC-FID [52]  Soil AR BECtrical Conductively Determination of electrical conductivity by addition of saturated calcium sulphate followed by electroneric measurement [52]  Soil AR BECTrical Conductively Determination of electrical conductivity by addition of saturated calcium sulphate followed by electroneric measurement [52]  Soil AR BERITANI DETERMINATION [52]  Soil AR BERITANI DETERMINATION [53]  Soil AR BERITANI DETERMINATION [54]  Soil D Finction Organic Carbon [56]  Soil D FOC (Fraction Organic Carbon [56]) Determination of TiC-by combustion analyses.  Soil D Fock (Fraction Organic Carbon [56]) Determination of TiC-by combustion analyses.  Soil D Fock (Fraction Organic Carbon [56]) Determination of Place by estraction with water & analysed by ion chromatography [56]  Soil AR BERTANIA DETERMINATION [56]  Soil AR BERTANIA D | Soil   | D           | Chloride - Water Soluble (2:1)                                                                                    |                                                                                                        | E009         |
| Soil   AR   Cyande - Free Determination of free cyande by detaillation followed by colorimetry   E015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |             |                                                                                                                   | 1,5 diphenylcarbazide followed by colorimetry                                                          |              |
| Soil   AR   Cyclehoeane Extractable Matter (CPM) Grammetroup determination followed by colorimetry   E015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   AR   Diesel Range Organics (CIO - C24)   Electrical Conductivity   Electrical Conductiv   |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   AR   Bectrical Conductivity   Betermination of electrical conductivity by addition of saturated calcium sulphate followed by   Bectrometric measurement   E023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |             |                                                                                                                   |                                                                                                        |              |
| Soil AR Belcrical Conductivity by addition of water followed by electrometric measurement (2023)  Soil AR Belcrical Conductivity by Electrometric measurement (2023)  Soil AR Bell Crical Conductivity by Electrometric measurement (2023)  Soil AR Bell Crical Conductivity by Electrometric measurement (2023)  Soil AR Bell Crical Conductivity by Electrometric measurement (2023)  Soil AR Bell Crical Conductivity by Electrometric measurement (2023)  Soil AR Bell Crical Conductivity by Electrometric measurement (2023)  Soil AR Bell Crical Conductivity (2024)  Soil De Fraction Organic Carbon (PCC)  Soil De Fraction Organic Carbon (PCC)  Soil De Trock Organic Carbon (PCC)  Soil De Magnesium - Varies (Sol) Beleasing of Trock organic Carbon (PCC)  Soil De Magnesium - Varies (Sol) Beleasing of Trock organic Carbon (PCC)  Soil De Magnesium - Varies (Sol) Beleasing of Trock organic Carbon (PCC)  Soil De Magnesium - Varies (Sol) Beleasing of Trock organic Carbon (PCC)  Soil De Magnesium - Varies (Sol) Beleasing of Trock organic Carbon (PCC)  Soil AR Mineral Oli (C10 - C40)  Soil AR PAH - Speciated (FPA 16)  Soi |        |             |                                                                                                                   |                                                                                                        |              |
| Soil D Elemental Sulphus Setemination of elemental sulphus by solvent extraction followed by GC-MS (Soil AR BPHTC10 - COID Externitation of actors/phosane extractable hydrocarbons by GC-PID (Soil AR CLC-CLC, CLC-CLC) CLC-CLC Determination of actors/phosane extractable hydrocarbons by GC-PID for C8 to C40, C6 to C8 by (Soil D Fraction Organic Carbon, (FOC) Determination of actors/phosane extractable hydrocarbons by GC-PID for C8 to C40, C6 to C8 by (Soil D Fraction Organic Carbon, (FOC) Determination of actors/phosane extractable hydrocarbons by GC-PID for C8 to C40, C6 to C8 by (Soil D Fraction Organic Carbon, (FOC) Determination of Tool by combustion analyses.  Soil D Fraction Organic Carbon, (FOC) Determination of Tool by combustion analyses.  Soil AR Exchangeable Ammount Determination of Tool by combustion analyses.  Soil D FOC (Fraction Organic Carbon) Determination of Tool by combustion analyses.  Soil D Magnesium - Water Soluble of Determination of Tool by combustion analyses.  Soil D Magnesium - Water Soluble of Determination of Magnesium by activation with water followed by ICP-OES (Soil AR Mineral OII (CLD - C40) Determination of moral by gravimetrically with the sample being ignited in a muffle furnish of the property of the sample solution of the property of the property of the sample solution of the property of  | Soil   | AR          | Electrical Conductivity                                                                                           |                                                                                                        | E022         |
| Soil   AR   EPH CIO_C40) Determination of acctone/hexane extractable hydrocarbons by CG-FID   6004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |             | <u> </u>                                                                                                          |                                                                                                        |              |
| Soil   AR   EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acctone/hexane extractable hydrocarbons by C6-FID for C8 to C40, C6 to C8 by C12-C16, C16-C21, C21-C40) headspace GC-MS   EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of acctone/hexane extractable hydrocarbons by C6-FID for C8 to C40, C6 to C8 by C12-C16, C16-C21, C21-C40) headspace GC-MS   EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of Too by combustion analyser.   E007   E009   End C70-C10-C10   E009   EPH C70-C10-C10-C10-C10-C10-C10-C10-C10-C10-C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |                                                                                                                   |                                                                                                        |              |
| Soil D Fluoride Water Soluble Determination of Fluoride by extraction with water & analysed by ion chromatography [50] Soil D Fraction Organic Carbon (FOC) Determination of Fluoride by extraction with water & analysed by ion chromatography [50] Soil D Organic Matter (SOM) Determination of TOC by combustion analyser. [50] Soil AR Exchangeable Ammonium Determination of TOC by combustion analyser. [50] Soil D FOC (Fraction Organic Carbon) Determination of TOC by combustion analyser. [50] Soil D FOC (Fraction Organic Carbon) Determination of TOC by combustion analyser. [50] Soil D Loss on Ignition @ 450oc [6] Soil D Magnesium - Water Soluble Determination of fraction of organic carbon by coidsing with potassium dichromate followed by Epo-105 Soil D Magnesium - Water Soluble Determination of macronium by discrete analyser. [50] Edemination of fraction of organic carbon by coidsing with potassium dichromate followed by Epo-105 Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-0ES [50] Soil AR Mineral Oil (CLD - C40) Determination of metas by aqua-regia digestion followed by ICP-0ES [50] Soil AR Mineral Oil (CLD - C40) Determination of metas by aqua-regia digestion followed by ICP-0ES [50] Soil AR Mineral Oil (CLD - C40) Determination of metas by aqua-regia digestion followed by ICP-0ES [50] Soil AR PAH - Speciated (EPA 16) Determination of metar by oxidising with potassium dichromate followed by ICP-0ES [50] Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with water & analysed by ion chromatography [50] D Petroleum Ether Extract (PEE) Generalization of Aphractic vertication with water & analysed by ion chromatography [50] D Petroleum Ether Extract (PEE) Generalization of PAH compounds by extraction with aean followed by ICP-0ES [50] Soil AR Phenois - Total (monohylic) Determination of PAH compounds by extraction with water & analysed by ion chromatography [50] D Petroleum Ether Extract (PEE) Generalization followed by ICP   |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   D   Fraction Organic Carbon (FOC)   Determination of TOC by combustion analyser.   6027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |             | C12-C16, C16-C21, C21-C40)                                                                                        | headspace GC-MS                                                                                        |              |
| Soil   D   Organic Matter (SOM)   Determination of TOC by combustion analyser.   6027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   AR   Exchangeable Ammonium   Determination of ammonium by discrete analyser.   E029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |             | TOC (Total Organic Carbon)                                                                                        | Determination of TOC by combustion analyser                                                            |              |
| Soil D   FOC (Fraction Organic Carbon)   Determination of Traction of organic carbon by oxidising with potassium dichromate followed by the potassium of the property of the   |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   D   Loss on Ignition @ 450cc   Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a murfle firmace   E019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             |                                                                                                                   | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by         |              |
| Soil   D   Magnesium - Water Soluble   Determination of water soluble magnesium by extraction with water followed by ICP-OES   E025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Soil   | D           | Loss on Ignition @ 450oC                                                                                          | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle | E019         |
| Soil   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soil   | D           | Magnesium - Water Soluble                                                                                         |                                                                                                        | E025         |
| Soil AR Mindsture Content Moisture content: determined gravimetrically  Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography  E009  Soil D Organic Matter  Soil AR PAH - Speciated (EPA 16)  Soil AR PAH - Speciated (EPA 16)  Soil AR PAH - Speciated (EPA 16)  Soil D Petroleum Ether Extract (EPA 16)  Soil AR PCB - 7 Congeners Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards  soil D Petroleum Ether Extract (EPA 16)  Soil AR Phenols - Total (monohytric) Determination of PAH compounds by extraction with petroleum ether E011  Soil AR Phenols - Total (monohytric) Determination of PAH by addition of water followed by electrometric measurement E007  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of phenols by distillation followed by colorimetry E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water 8 analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water 8 analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water 8 analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water 8 analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water 8 analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water 8 analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OES E014  Soil AR Thiocyanate (as SCH)  Soil AR Thiocyanate (as SCH)  The CWG (ali: CS-C6, C6-C8, C8-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C39, Petermination of patient patients of the sul |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Soil   | AR          | Mineral Oil (C10 - C40)                                                                                           | , , ,                                                                                                  | E004         |
| Soil   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soil   | AR          | Moisture Content                                                                                                  |                                                                                                        | E003         |
| Soil AR PAH - Speciated (EPA 16)  Soil AR PCB - 7 Congeners Determination of PCB by extraction with action with action with personal policy by extraction with water & analysed by ion chromatography E009  Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by electrometric measurement E001  Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by electrometric measurement E001  Soil D Phosphate - Water Soluble (2:1) Determination of phenols by distillation followed by colorimetry E009  Soil D Sulphate (as SO4) - Total Determination of phenols by distillation followed by colorimetry E009  Soil D Sulphate (as SO4) - Total Determination of phenols by distillation followed by colorimetry E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of such sulphate by extraction with water & analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water & analysed by ion chromatography E009  Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water & analysed by ion chromatography E009  Soil AR Thiocyanate (as SCN)  Soil AR Thiocyanate (as SCN)  Determination of semi-volatile organic compounds by extraction with water followed by colorimetry  Soil AR Thiocyanate (as SCN)  Soil AR Thiocyanate (as SCN)  Total Organic Carbon (TOC)  Grayimetrically determined through extraction with page are page followed by acidification followed by addition of ferric intrate followed by colorimetry  are: C5-C7, C7-G8, C8-C10, C10-C12, C12-C14, C12-C14, C12-C14, C12-C15, C16-C21, C21-C34, C12-C34, C10-C12, C12-C16, C16-C21, C21-C34, C12-C34, C10-C12, C12-C16 | Soil   | D           | Nitrate - Water Soluble (2:1)                                                                                     | Determination of nitrate by extraction with water & analysed by ion chromatography                     | E009         |
| Soil AR PERF-Speciated (EPA 16) use of surrogate and internal standards  Soil AR PCB - 7 Congeners Soil D Petroleum Ether Extract (PED) Gravimetrically determined through extraction with petroleum ether Soil AR Penols - Total (monohydric) Phosphate - Water Soluble (2:1) Phosphate - Water Soluble (2:1) D Phosphate - Water Soluble (2:1) D Phosphate - Water Soluble (2:1) D Sulphate (as SO4) - Total of Determination of phosphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) D Sulphate (as SO4) - Water Soluble (2:1) D Etermination of the Sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) D Etermination of water soluble sulphate by extraction with water & analysed by ion chromatography Soil AR Sulphate Soil AR Sulphate D Sulphate (as SO4) - Water Soluble (2:1) D Etermination of water soluble sulphate by extraction with water followed by ICP-OES E013 Soil AR Sulphate D Sulphate (as SO4) - Water Soluble (2:1) D Etermination of sulphide between the water of water soluble sulphate by extraction with water followed by ICP-OES E024 Soil AR Sulphar - Total D Etermination of sulphide by distillation followed by colorimetry Soil AR Thiocyanate (as SCN) D Sulphare (as SCN) D Sulphare (as SCN) Soil AR Thiocyanate (as SCN) D Total Organic Carbon (TCC)  Soil AR Though (as SCN) D Total Organic Carbon (TCC) TOtal Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC) TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  TOTAL Organic Carbon (TCC)  T | Soil   | D           | Organic Matter                                                                                                    |                                                                                                        | E010         |
| Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether Edition of the property process of the property of the | Soil   | AR          | PAH - Speciated (EPA 16)                                                                                          |                                                                                                        | E005         |
| Soil   AR   Phenols - Total (monohydro)   Determination of pH by addition of water followed by electrometric measurement   E007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil   |             |                                                                                                                   | Determination of PCB by extraction with acetone and hexane followed by GC-MS                           | E008         |
| Soil   AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |             |                                                                                                                   |                                                                                                        |              |
| Soil   D   Phosphate - Water Soluble (2:1)   Determination of phosphate by extraction with water & analysed by ion chromatography   E009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |             |                                                                                                                   |                                                                                                        |              |
| Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCI followed by ICP-OES E013 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphide Sulphur - Total Determination of sulphide by distillation followed by colorimetry E018 Soil AR Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024 Determination of sulphide by distillation followed by colorimetry E018 Soil AR Thiocyanate (as SCN) Soil D Toluene Extractable Matter (TEM) Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry  Soil D Total Organic Carbon (TOC) TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35  Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35  Soil AR VPL CG-C8 & C8-C10, C10-C12, C12-C35  Soil AR VPC C6-C8 & C8-C10, C10-C12, C12-C35  Soil AR VPC C6-C8 & C8-C10, Determination of volatile organic compounds by headspace GC-MS  Soil AR VPC C6-C8 & C8-C10) Determination of volatile organic compounds by headspace GC-MS C8-C10 by GC-FID Fe001                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |             |                                                                                                                   |                                                                                                        |              |
| Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |             |                                                                                                                   |                                                                                                        |              |
| Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry E018 Soil D Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024 Soil AR Sulphur - Total Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene  Soil D Total Organic Carbon (TOC)  First Cid-Cid-Cid-Cid-Cid-Cid-Cid-Cid-Cid-Cid-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |             |                                                                                                                   |                                                                                                        |              |
| Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry  Soil D Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES E024  Soil AR SVOC Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS  Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry  Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene  Soil D Total Organic Carbon (TOC)  Total Organic Carbon (TOC)  TOC C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C14, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44, aro: C5-C7, C7-C8, C8- |        |             |                                                                                                                   |                                                                                                        |              |
| Soil AR Svoc Soil D Toluene Extractable Matter (TEM) Gravimetrically determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry  Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene E011  Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C35-C35-C44, aro: C5-C7, C7-C8, C8-C10,  |        |             |                                                                                                                   |                                                                                                        |              |
| Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil D Toluene Extractable Matter (TEM) Soil D Total Organic Carbon (TOC) Soil AR THE CVG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR THE LQM (ali: C5- C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35)  AR THE LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR THE LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR THE LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR THE LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR THE LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR THE LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  Bettermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-FID fraction followed by acidification follows by acidification |        |             |                                                                                                                   |                                                                                                        |              |
| Soil AR Thiocyanate (as SCN)  Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry  Soil D Toluene Extractable Matter (TEM)  Foil Total Organic Carbon (TOC)  Soil D Total Organic Carbon (TOC)  Total Organic Carbon (TOC)  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Carbon of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE articiple for C8 to C35. C5 to C8 by headspace GC-MS  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C37-C44, C37-C4 |        |             |                                                                                                                   | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by       |              |
| Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene E011  Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE artridge for C8 to C35. C5 to C8 by headspace GC-MS  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C10-C12, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C | Soil   | AR          | Thiocyanate (as SCN)                                                                                              | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by       | E017         |
| Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  AR TPH LQM (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE artridge for C8 to C44. C5 to C8 by headspace GC-MS  E004  Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID  Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate  E010  E010  E010  E010  TPH CWG (ali: C5- C6, C6-C8, C8-C10, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE artridge for C8 to C44. C5 to C8 by headspace GC-MS  E004  Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID  E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Soil   | D           | Toluene Extractable Matter (TEM)                                                                                  | Gravimetrically determined through extraction with toluene                                             | E011         |
| Soil AR TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)  TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C10-C12, C10-C12, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44)  Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS  F001  Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID fractionating with SPE E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |             |                                                                                                                   | Determination of organic matter by oxidising with potassium dichromate followed by titration with      |              |
| Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS  Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Soil   | AR          | C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,                                           | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE              | E004         |
| Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | C10-C12, C12-C16, C16-C35, C35-C44,<br>aro: C5-C7, C7-C8, C8-C10, C10-C12,<br>C12-C16, C16-C21, C21-C35, C35-C44) | cartridge for C8 to C44. C5 to C8 by headspace GC-MS                                                   |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |                                                                                                                   |                                                                                                        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             | VPH (C6-C8 & C8-C10)                                                                                              | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                              | E001         |

| Parameter                    | Matrix Type | Suite Reference | Expanded Uncertainity<br>Measurement | Unit  |
|------------------------------|-------------|-----------------|--------------------------------------|-------|
| TOC                          | Soil        | BS EN 12457     | 12.1                                 | %     |
| Loss on Ignition             | Soil        | BS EN 12457     | 20.4                                 | %     |
| BTEX                         | Soil        | BS EN 12457     | 14.0                                 | %     |
| Sum of PCBs                  | Soil        | BS EN 12457     | 21.1                                 | %     |
| Mineral Oil                  | Soil        | BS EN 12457     | 9.0                                  | %     |
| Total PAH                    | Soil        | BS EN 12457     | 13.9                                 | %     |
| pH                           | Soil        | BS EN 12457     | 0.248                                | Units |
| Acid Neutralisation Capacity | Soil        | BS EN 12457     | 18.0                                 | %     |
| Arsenic                      | Leachate    | BS EN 12457     | 15.9                                 | %     |
| Barium                       | Leachate    | BS EN 12457     | 14.4                                 | %     |
| Cadmium                      | Leachate    | BS EN 12457     | 12.6                                 | %     |
| Chromium                     | Leachate    | BS EN 12457     | 13.4                                 | %     |
| Copper                       | Leachate    | BS EN 12457     | 13.1                                 | %     |
| Mercury                      | Leachate    | BS EN 12457     | 16.2                                 | %     |
| Molybdenum                   | Leachate    | BS EN 12457     | 13.6                                 | %     |
| Nickel                       | Leachate    | BS EN 12457     | 16.0                                 | %     |
| Lead                         | Leachate    | BS EN 12457     | 12.4                                 | %     |
| Antimony                     | Leachate    | BS EN 12457     | 14.6                                 | %     |
| Selenium                     | Leachate    | BS EN 12457     | 16.5                                 | %     |
| Zinc                         | Leachate    | BS EN 12457     | 14.5                                 | %     |
| Chloride                     | Leachate    | BS EN 12457     | 17.0                                 | %     |
| Fluoride                     | Leachate    | BS EN 12457     | 12.0                                 | %     |
| Sulphate                     | Leachate    | BS EN 12457     | 25.1                                 | %     |
| TDS                          | Leachate    | BS EN 12457     | 10.0                                 | %     |
| Phenol Index                 | Leachate    | BS EN 12457     | 12.9                                 | %     |
| DOC                          | Leachate    | BS EN 12457     | 10.0                                 | %     |
| Clay Content                 | Soil        | BS 3882: 2015   | 15.0                                 | %     |
| Silt Content                 | Soil        | BS 3882: 2015   | 14.0                                 | %     |
| Sand Content                 | Soil        | BS 3882: 2015   | 13.0                                 | %     |
| Loss on Ignition             | Soil        | BS 3882: 2015   | 20.4                                 | %     |
| pН                           | Soil        | BS 3882: 2015   | 0.248                                | Units |
| Carbonate                    | Soil        | BS 3882: 2015   | 12.0                                 | %     |
| Total Nitrogen               | Soil        | BS 3882: 2015   | 12.0                                 | %     |
| Phosphorus (Extractable)     | Soil        | BS 3882: 2015   | 24.0                                 | %     |
| Potassium (Extractable)      | Soil        | BS 3882: 2015   | 20.0                                 | %     |
| Magnesium (Extractable)      | Soil        | BS 3882: 2015   | 26.0                                 | %     |
| Zinc                         | Soil        | BS 3882: 2015   | 14.9                                 | %     |
| Copper                       | Soil        | BS 3882: 2015   | 16.0                                 | %     |
| Nickel                       | Soil        | BS 3882: 2015   | 17.7                                 | %     |
| Available Sodium             | Soil        | BS 3882: 2015   | 23.0                                 | %     |
| Available Calcium            | Soil        | BS 3882: 2015   | 23.0                                 | %     |
| Electrical Conductivity      | Soil        | BS 3882: 2015   | 10.0                                 | %     |





Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

#### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

## **DETS Report No: 22-04609**

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 25/05/2022

Sample Scheduled Date: 25/05/2022

Report Issue Number: 1

**Reporting Date:** 30/05/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.





| Soil Analysis Certificate                      |                 |               |               |               |               |               |
|------------------------------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|
| DETS Report No: 22-04609                       | Date Sampled    | None Supplied |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied |
| Site Reference: Kneller Hall, 65 Kneller Road, | TP / BH No      | BH01/8.0      | BH01/20.0     | BH02/3.0      | BH02/7.0      | BH03/17.0     |
| Twickenham, Twickenham, London, TW2 7DN        |                 |               |               |               |               |               |
| Project / Job Ref: 10728/SG                    | Additional Refs | None Supplied |
| Order No: 10728/SG                             | Depth (m)       | 8.00          | 20.00         | 3.00          | 7.00          | 17.00         |
| Reporting Date: 30/05/2022                     | DETS Sample No  | 598989        | 598990        | 598991        | 598992        | 598993        |

| Determinand                           | Unit     | RL     | Accreditation |      |      |      |      |      |
|---------------------------------------|----------|--------|---------------|------|------|------|------|------|
| pH                                    | pH Units | N/a    | MCERTS        | 8.1  | 8.4  | 7.3  | 8.0  | 8.2  |
| Total Sulphate as SO <sub>4</sub>     | mg/kg    | < 200  | MCERTS        | 926  | 1024 | 1023 | 1585 | 1130 |
| Total Sulphate as SO <sub>4</sub>     | %        | < 0.02 | MCERTS        | 0.09 | 0.10 | 0.10 | 0.16 | 0.11 |
| W/S Sulphate as SO <sub>4</sub> (2:1) | mg/l     | < 10   | MCERTS        | 303  | 301  | 198  | 474  | 330  |
| W/S Sulphate as SO <sub>4</sub> (2:1) | g/l      | < 0.01 | MCERTS        | 0.30 | 0.30 | 0.20 | 0.47 | 0.33 |
| Total Sulphur                         | %        | < 0.02 | NONE          | 0.34 | 0.36 | 0.51 | 0.65 | 0.33 |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

(n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation





| Soil Analysis Certificate                                                                 |                 |               |               |               |               |               |
|-------------------------------------------------------------------------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|
| DETS Report No: 22-04609                                                                  | Date Sampled    | None Supplied |
| Soil Consultants Ltd                                                                      | Time Sampled    | None Supplied |
| Site Reference: Kneller Hall, 65 Kneller Road,<br>Twickenham, Twickenham, London, TW2 7DN | TP / BH No      | BH04/11.0     | WS1/2.30      | WS2A/5.0      | WS3/2.30      | WS4/0.90      |
|                                                                                           |                 |               |               |               |               |               |
| Project / Job Ref: 10728/SG                                                               | Additional Refs | None Supplied |
| Order No: 10728/SG                                                                        | Depth (m)       | 11.00         | 2.30          | 5.00          | 2.30          | 0.90          |
| Reporting Date: 30/05/2022                                                                | DETS Sample No  | 598994        | 598995        | 598996        | 598997        | 598998        |

| Determinand                           | Unit     | RL     | Accreditation |      |        |      |      |        |
|---------------------------------------|----------|--------|---------------|------|--------|------|------|--------|
| рН                                    | pH Units | N/a    | MCERTS        | 7.7  | 8.0    | 8.0  | 8.1  | 6.1    |
| Total Sulphate as SO <sub>4</sub>     | mg/kg    | < 200  | MCERTS        | 1125 | < 200  | 492  | 227  | < 200  |
| Total Sulphate as SO <sub>4</sub>     | %        | < 0.02 | MCERTS        | 0.11 | < 0.02 | 0.05 | 0.02 | < 0.02 |
| W/S Sulphate as SO <sub>4</sub> (2:1) | mg/l     | < 10   | MCERTS        | 327  | 18     | 129  | 32   | < 10   |
| W/S Sulphate as SO <sub>4</sub> (2:1) | g/l      | < 0.01 | MCERTS        | 0.33 | 0.02   | 0.13 | 0.03 | < 0.01 |
| Total Sulphur                         | %        | < 0.02 | NONE          | 0.66 | < 0.02 | 0.14 | 0.02 | < 0.02 |





| Soil Analysis Certificate                      |                 |               |               |               |               |               |
|------------------------------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|
| DETS Report No: 22-04609                       | Date Sampled    | None Supplied |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied |
| Site Reference: Kneller Hall, 65 Kneller Road, | TP / BH No      | WS5/0.70      | WS6/1.00      | WS7/0.70      | WS9/4.00      | WS10/0.80     |
| Twickenham, Twickenham, London, TW2 7DN        |                 |               |               |               |               |               |
| Project / Job Ref: 10728/SG                    | Additional Refs | None Supplied |
| Order No: 10728/SG                             | Depth (m)       | 0.70          | 1.00          | 0.70          | 4.00          | 0.80          |
| Reporting Date: 30/05/2022                     | DETS Sample No  | 598999        | 599000        | 599001        | 599002        | 599003        |

| Determinand                           | Unit     | RL     | Accreditation |        | (n)    |        |      |        |
|---------------------------------------|----------|--------|---------------|--------|--------|--------|------|--------|
| рН                                    | pH Units | N/a    | MCERTS        | 7.9    | 7.3    | 6.7    | 8.0  | 6.7    |
| Total Sulphate as SO <sub>4</sub>     | mg/kg    | < 200  | MCERTS        | 480    | < 200  | < 200  | 892  | < 200  |
| Total Sulphate as SO <sub>4</sub>     | %        | < 0.02 | MCERTS        | 0.05   | < 0.02 | < 0.02 | 0.09 | < 0.02 |
| W/S Sulphate as SO <sub>4</sub> (2:1) | mg/l     | < 10   | MCERTS        | < 10   | < 10   | < 10   | 196  | < 10   |
| W/S Sulphate as SO <sub>4</sub> (2:1) | g/l      | < 0.01 | MCERTS        | < 0.01 | < 0.01 | < 0.01 | 0.20 | < 0.01 |
| Total Sulphur                         | %        | < 0.02 | NONE          | 0.02   | < 0.02 | < 0.02 | 0.41 | < 0.02 |





| Soil Analysis Certificate                      |                 |               |  |  |
|------------------------------------------------|-----------------|---------------|--|--|
| DETS Report No: 22-04609                       | Date Sampled    | None Supplied |  |  |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied |  |  |
| Site Reference: Kneller Hall, 65 Kneller Road, | TP / BH No      | SK1/0.50      |  |  |
| Twickenham, Twickenham, London, TW2 7DN        |                 |               |  |  |
|                                                |                 |               |  |  |
| Project / Job Ref: 10728/SG                    | Additional Refs | None Supplied |  |  |
| Order No: 10728/SG                             | Depth (m)       | 0.50          |  |  |
| Reporting Date: 30/05/2022                     | DETS Sample No  | 599004        |  |  |

| Determinand                           | Unit     | RL     | Accreditation |      |  |  |
|---------------------------------------|----------|--------|---------------|------|--|--|
| pH                                    | pH Units | N/a    | MCERTS        | 8.0  |  |  |
| Total Sulphate as SO <sub>4</sub>     | mg/kg    | < 200  | MCERTS        | 2563 |  |  |
| Total Sulphate as SO <sub>4</sub>     | %        | < 0.02 | MCERTS        | 0.26 |  |  |
| W/S Sulphate as SO <sub>4</sub> (2:1) | mg/l     | < 10   | MCERTS        | 15   |  |  |
| W/S Sulphate as SO <sub>4</sub> (2:1) | g/l      | < 0.01 | MCERTS        | 0.01 |  |  |
| Total Sulphur                         | %        | < 0.02 | NONE          | 0.08 |  |  |





Soil Analysis Certificate - Sample Descriptions DETS Report No: 22-04609 Soil Consultants Ltd Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, Twickenham, London, TW2 7DN Project / Job Ref: 10728/SG Order No: 10728/SG Reporting Date: 30/05/2022

| DETS Sample No | TP / BH No | Additional Refs | Depth (m) | Moisture<br>Content (%) | Sample Matrix Description                 |
|----------------|------------|-----------------|-----------|-------------------------|-------------------------------------------|
| ^ 598989       | BH01/8.0   | None Supplied   | 8.00      | 17.3                    | Brown clay                                |
| ^ 598990       | BH01/20.0  | None Supplied   | 20.00     | 16                      | Brown clay                                |
| ^ 598991       | BH02/3.0   | None Supplied   | 3.00      | 15.1                    | Brown clay                                |
| ^ 598992       | BH02/7.0   | None Supplied   | 7.00      | 18.1                    | Brown clay                                |
| ^ 598993       | BH03/17.0  | None Supplied   | 17.00     | 18.6                    | Brown clay                                |
| ^ 598994       | BH04/11.0  | None Supplied   | 11.00     | 18.5                    | Brown clay                                |
| ^ 598995       | WS1/2.30   | None Supplied   | 2.30      | 13                      | Brown sandy clay                          |
| ^ 598996       | WS2A/5.0   | None Supplied   | 5.00      | 14.9                    | Brown sandy clay with stones              |
| ^ 598997       | WS3/2.30   | None Supplied   | 2.30      | 23.9                    | Brown clay                                |
| ^ 598998       | WS4/0.90   | None Supplied   | 0.90      |                         | Brown sandy clay with stones              |
| ^ 598999       | WS5/0.70   | None Supplied   | 0.70      | 16                      | Brown sandy clay with stones and concrete |
| ^ 599000       | WS6/1.00   | None Supplied   | 1.00      | 5.3                     | Brown sandy gravel with stones            |
| ^ 599001       | WS7/0.70   | None Supplied   | 0.70      | 13                      | Brown sandy clay                          |
| ^ 599002       | WS9/4.00   | None Supplied   | 4.00      | 20.4                    | Brown clay                                |
| ^ 599003       | WS10/0.80  | None Supplied   | 0.80      | 6.5                     | Brown sandy clay with stones              |
| ^ 599004       | SK1/0.50   | None Supplied   | 0.50      | 5.2                     | Brown sandy clay with stones              |

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample  $^{\rm I/S}$  Unsuitable Sample  $^{\rm U/S}$ 

 $<sup>\</sup>begin{tabular}{ll} \begin{tabular}{ll} \beg$ 





Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-04609 Soil Consultants Ltd

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG Order No: 10728/SG Reporting Date: 30/05/2022

Matrix Analysed Determinand **Brief Method Description** Method On No E012 Soi D Boron - Water Soluble Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES Soil AR BTE Determination of BTEX by headspace GC-MS E001 Soil D Cations Determination of cations in soil by aqua-regia digestion followed by ICP-OES E002 D E009 Chloride - Water Soluble (2:1 Determination of chloride by extraction with water & analysed by ion chromatography Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of Soil AR Chromium - Hexavalen E016 ,5 diphenylcarbazide followed by colorimetry E015 AR Determination of complex cyanide by distillation followed by colorimetry Soil Cyanide - Complex Soil AR Cyanide - Free Determination of free cyanide by distillation followed by colorimetry E015 Cyanide - Tota Soil AR Determination of total cyanide by distillation followed by colorimetry E015 Soil D Cyclohexane Extractable Matter (CEM) Gravimetrically determined through extraction with cyclohexane E011 Soil ΔR Diesel Range Organics (C10 - C24) Determination of hexane/acetone extractable hydrocarbons by GC-FID E004 Determination of electrical conductivity by addition of saturated calcium sulphate followed by Soil AR **Electrical Conductivity** E022 electrometric measurement AR **Electrical Conductivity** E023 Soil Determination of electrical conductivity by addition of water followed by electrometric measurement Soil D Elemental Sulphur Determination of elemental sulphur by solvent extraction followed by GC-MS E020 AR EPH (C10 - C40 Determination of acetone/hexane extractable hydrocarbons by GC-FID E004 Soil Soil ΔR EPH Product II Determination of acetone/hexane extractable hydrocarbons by GC-FID E004 EPH TEXAS (C6-C8, C8-C10, C10-C12 Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by Soil AR E004 C12-C16, C16-C21, C21-C40 neadspace GC-MS Soil D Fluoride - Water Soluble Determination of Fluoride by extraction with water & analysed by ion chromatography F009 Soil D Fraction Organic Carbon (FOC Determination of TOC by combustion analyser E027 Soil D Organic Matter (SOM Determination of TOC by combustion analyser. E027 Soil D TOC (Total Organic Carbon Determination of TOC by combustion analyser E027 Soil AR Exchangeable Ammonium Determination of ammonium by discrete analyser. E029 Determination of fraction of organic carbon by oxidising with potassium dichromate followed by Soil D FOC (Fraction Organic Carbon E010 itration with iron (II) sulphate Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle D Soil Loss on Ignition @ 450o0 Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES E025 D Determination of metals by aqua-regia digestion followed by ICP-OES E002 Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE Soil AR Mineral Oil (C10 - C40 E004 AR E003 Soil Moisture Content Moisture content; determined gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography E009 Determination of organic matter by oxidising with potassium dichromate followed by titration with Soil D Organic Matte E010 Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the Soil AR PAH - Speciated (EPA 16 E005 use of surrogate and internal standards AR PCB - 7 Congeners F008 Soil Determination of PCB by extraction with acetone and hexane followed by GC-MS Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether E011 Soil AR Determination of pH by addition of water followed by electrometric measurement E007 pŀ Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry E021 Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCl followed by ICP-OES E013 D Sulphate (as SO4) - Water Soluble (2:1) Soil Determination of sulphate by extraction with water & analysed by ion chromatography E009 Sulphate (as SO4) - Water Soluble (2:1) Soil D Determination of water soluble sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry E018 Soil D Sulphur - Tota Determination of total sulphur by extraction with aqua-regia followed by ICP-OES F024 Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by Soil AR E006 Determination of thiocyanate by extraction in caustic soda followed by acidification followed by AR Soil Thiocvanate (as SCN F017 addition of ferric nitrate followed by colorimetry D Soil Toluene Extractable Matter (TEM Gravimetrically determined through extraction with toluene E011 Determination of organic matter by oxidising with potassium dichromate followed by titration with D Total Organic Carbon (TOC E010 Soil iron (II) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10 C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE AR E004 Soil aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35 TPH LQM (ali: C5-C6, C6-C8, C8-C10 C10-C12, C12-C16, C16-C35, C35-C44 Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE AR E004 Soil aro: C5-C7, C7-C8, C8-C10, C10-C12 cartridge for C8 to C44. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35, C35-C44 Soil AR VOC Determination of volatile organic compounds by headspace GC-MS F001 Soil AR VPH (C6-C8 & C8-C10 Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID F001

D Dried AR As Received





Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

#### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

## **DETS Report No: 22-04512**

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 20/05/2022

Sample Scheduled Date: 20/05/2022

Report Issue Number: 1

**Reporting Date:** 09/06/2022

Authorised by:

Ela Mysiara Quality Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.



DETS Ltd ane Industrial Estate Rose Lane nham Heath Maidstone nt ME17 2JN 01622 850410





4480

|                                                  |                | Date               |               |                                                  |                                          |                      |             |  |
|--------------------------------------------------|----------------|--------------------|---------------|--------------------------------------------------|------------------------------------------|----------------------|-------------|--|
| DETS Report No: 22-04!                           | 512            | Sampled            | 11/05/2022    |                                                  | Compliance                               | with Range           |             |  |
| Soil Consultants Ltd                             |                | Time<br>Sampled    | None Supplied |                                                  |                                          |                      |             |  |
| Site Reference: Kneller<br>Road, Twickenham, Lon |                | TP / BH No         | WS7           | Se                                               |                                          | ₽                    | ر<br>س      |  |
| Project / Job Ref: 1072                          | 8/SG           | Additional<br>Refs | None Supplied | dr.p                                             | Acidic                                   | ertili               | Calcareous  |  |
| Order No: 10728/SG                               |                | Depth (m)          | 0.10          | Multipurpose                                     | Ac                                       | Low Fertility        | Calca       |  |
| Reporting Date: 09/06/                           | 2022           | DETS<br>Sample No  | 598619        | _                                                |                                          |                      |             |  |
| Determinand                                      | Reporting Unit | RL                 |               | 1                                                |                                          |                      |             |  |
| Soil Texture                                     | •              | -                  |               |                                                  |                                          |                      |             |  |
| Clay Content (S)                                 | %              | N/a                | 17.6          | <del>                                     </del> | 5 -                                      | 35                   |             |  |
| Silt Content (S)                                 | %              | N/a                | 31.9          | <del>                                     </del> |                                          | 65                   |             |  |
| Sand Content (S)                                 | %              | N/a                | 50.5          | <del>                                     </del> |                                          |                      |             |  |
| Textural Class (S)                               | N/a            | N/a                | Sandy Loam    |                                                  | 30                                       | 30 - 85              |             |  |
| rextural class (7)                               | IN/a           | IV/a               | Saliuy Luaili |                                                  | Clay Conto                               | Clay Content 5 - 20% |             |  |
|                                                  |                |                    |               | 2 20                                             |                                          | 3 - 20               |             |  |
| oss on Ignition                                  | %              | < 0.01             | 4.90          | 3 - 20                                           | 3 - 30 2 - 20 3<br>Clay Content 20 - 35% |                      |             |  |
| Ĭ                                                |                |                    |               |                                                  |                                          | 2 - 20               |             |  |
|                                                  |                |                    |               | 5 - 20                                           | 5 - 30                                   | 5 - 20               |             |  |
| Coarse Fragment Conte                            |                |                    |               |                                                  |                                          |                      |             |  |
| >2mm <sup>(S)</sup>                              | %              | N/a                | 9.0           | 0 - 30                                           | 0 - 30                                   | 0 - 30               | 0 - 30      |  |
| >20mm <sup>(S)</sup>                             | %              | N/a                | 0.0           | 0 - 10                                           | 0 - 10                                   | 0 - 10               | 0 - 10      |  |
| >50mm <sup>(S)</sup>                             | %              | N/a                | 0.0           | 0                                                | 0                                        | 0                    | 0           |  |
| oH <sup>M∪</sup>                                 | pH Units       | N/a                | 5.2           | 5.5 - 8.5                                        | 3.5 - 5.5                                | 3.5 - 9.0            | 7.5 - 9.0   |  |
| Carbonate                                        | %              | < 1.4              | < 1.4         |                                                  |                                          |                      | > 1         |  |
| Available Plant Nutrient                         | s              |                    |               |                                                  |                                          |                      |             |  |
| Total Nitrogen <sup>(S)</sup>                    | %              | < 0.01             | < 0.01        | ≥ 0.15                                           | ≥ 0.15                                   |                      | ≥ 0.15      |  |
| Phosphorus (Extractable)                         | mg/l           | < 3                | 28            | 16 - 140                                         | 16 - 140                                 | ≤ 15                 | 16 - 140    |  |
| Potassium (Extractable)                          | mg/l           | < 20               | 70            | 121 - 1500                                       | 121 - 1500                               |                      | 121 - 150   |  |
| Magnesium (Extractable)                          | mg/l           | < 1                | 56            | 51 - 600                                         | 51 - 600                                 |                      | 51 - 600    |  |
| Carbon / Nitrogen Ratio <sup>(S)</sup>           | :1             | < 0.1              | 360           | < 20 : 1                                         | < 20 : 1                                 | < 20 : 1             | < 20 : 1    |  |
| Exchangeable Sodium (S)                          | %              | < 0.1              | < 0.1         |                                                  |                                          |                      |             |  |
| Phytotoxic Elements (by                          | y soil pH)     |                    |               | Multipurpos                                      | e & Specific<br>ran                      | Purpose To           | psoils at p |  |
|                                                  |                |                    |               | < 6.0                                            | 6.0                                      | - 7.0                | > 7.0       |  |
| Zinc <sup>MU</sup>                               | mg/kg          | < 3                | 33            | < 200                                            |                                          | 200                  | < 300       |  |
| Copper <sup>MU</sup>                             | mg/kg          | < 4                | 14            | < 100                                            |                                          | 135                  | < 200       |  |
| Nickel MU                                        | mg/kg          | < 3                | 8             | < 60                                             | <                                        | 75                   | < 110       |  |
| Visible Contaminants (A                          | ir Dried Soil) |                    |               |                                                  |                                          |                      |             |  |
| >2mm                                             | %              | N/a                | 0.0           |                                                  | < 1                                      | 0.5                  |             |  |
| Plastics                                         | %              | N/a                | 0.00          |                                                  | < 0                                      | ).25                 |             |  |
| Sharps                                           | %              | N/a                | 0.0           |                                                  | (                                        | 0                    |             |  |
| Additional Analytes                              |                | -                  |               | Ī                                                |                                          |                      |             |  |
| Available Sodium (S)                             | mg/l           | < 1                | 80            | 1                                                |                                          |                      |             |  |
| Available Calcium (S)                            | mg/l           | < 1                | 1300          | 1                                                |                                          |                      |             |  |
|                                                  |                |                    | _500          |                                                  |                                          |                      |             |  |
| Electrical Conductivity                          | uS/cm          | < 5                | 2000          | 3300                                             |                                          |                      |             |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test

U Denotes ISO17025 accredited test

Subcontracted analysis (S)



DETS Ltd ine Industrial Estate Rose Lane nham Heath Maidstone nt ME17 2JN 01622 850410





4480

| DETS Report No: 22-045                       | 512            | Date                       | 11/05/2022    |              | Compliance           | with Range    |             |  |
|----------------------------------------------|----------------|----------------------------|---------------|--------------|----------------------|---------------|-------------|--|
| Soil Consultants Ltd                         |                | Sampled<br>Time<br>Sampled | None Supplied |              |                      |               |             |  |
| Site Reference: Kneller                      |                | TP / BH No                 | WS8           | 1 ,          |                      |               |             |  |
| Road, Twickenham, Lon                        |                | Additional                 |               | . so         |                      | i t           | sno         |  |
| Project / Job Ref: 10728                     | 3/SG           | Refs                       | None Supplied | Multipurpose | Acidic               | Low Fertility | Calcareous  |  |
| Order No: 10728/SG                           |                | Depth (m)                  | 0.20          | lulti.       | Ă                    | wo-           | Galc        |  |
| Reporting Date: 09/06/                       | 2022           | DETS<br>Sample No          | 598620        |              |                      | _             |             |  |
| Determinand                                  | Reporting Unit | RL                         |               |              |                      |               |             |  |
| Soil Texture                                 |                |                            |               |              |                      |               |             |  |
| Clay Content (S)                             | %              | N/a                        | 50.0          |              | 5 -                  | 35            |             |  |
| Silt Content (S)                             | %              | N/a                        | 47.0          |              | 0 -                  | 65            |             |  |
| Sand Content (S)                             | %              | N/a                        | 3.0           |              | 30 -                 |               |             |  |
| Textural Class <sup>(S)</sup>                | N/a            | N/a                        | Silty Clay    |              | -                    |               |             |  |
| r exteral class                              | , 4-           | .,,                        | ,,            |              | Clay Content 5 - 20% |               |             |  |
|                                              |                |                            |               | 3 - 20       | 3 - 30               | 3 - 20        |             |  |
| Loss on Ignition                             | %              | < 0.01                     | 5.70          | 3 20         |                      | 3 - 30        |             |  |
|                                              |                |                            |               | 5 - 20       |                      |               |             |  |
| Casusa Evasument Canta                       |                |                            |               | 3 - 20       | 3 - 30               |               |             |  |
| Coarse Fragment Conte<br>>2mm <sup>(S)</sup> |                | N/a                        | 0.0           | 0 20         | 0 20                 | 0 20          | 0 20        |  |
| >2mm (5)<br>>20mm (S)                        | %              | N/a                        |               | 0 - 30       | 0 - 30               | 0 - 30        | 0 - 30      |  |
| >20mm (S)                                    | %              | N/a                        | 0.0           | 0 - 10       | 0 - 10               | 0 - 10        | 0 - 10      |  |
| >50mm <sup>(S)</sup>                         | %              | N/a                        | 0.0           | 0            | 0                    | 0             | 0           |  |
| pH <sup>MU</sup>                             | pH Units       | N/a                        | 5.5           | 5.5 - 8.5    | 3.5 - 5.5            | 3.5 - 9.0     | 7.5 - 9.0   |  |
| Carbonate                                    | %              | < 1.4                      | < 1.4         |              |                      |               | > 1         |  |
| Available Plant Nutrient                     |                | 0.04                       |               |              | 0.45                 |               |             |  |
| Total Nitrogen (5)                           | %              | < 0.01                     | < 0.01        | ≥ 0.15       | ≥ 0.15               |               | ≥ 0.15      |  |
| Phosphorus (Extractable)                     | mg/l           | < 3                        | 43            | 16 - 140     | 16 - 140             | ≤ 15          | 16 - 140    |  |
| Potassium (Extractable)                      | mg/l           | < 20                       | 65            | 121 - 1500   | 121 - 1500           |               | 121 - 150   |  |
| Magnesium (Extractable)                      | mg/l           | < 1                        | 55            | 51 - 600     | 51 - 600             |               | 51 - 600    |  |
| Carbon / Nitrogen Ratio <sup>(S)</sup>       | :1             | < 0.1                      | 340           | < 20 : 1     | < 20 : 1             | < 20 : 1      | < 20 : 1    |  |
| Exchangeable Sodium (S)                      | %              | < 0.1                      | < 0.1         |              |                      |               | -           |  |
| Phytotoxic Elements (by                      | / soil pH)     |                            | -             | Multipurpos  | se & Specific<br>ran | ige           | psoils at p |  |
|                                              |                |                            | 1             | < 6.0        |                      | - 7.0         | > 7.0       |  |
| Zinc <sup>MU</sup>                           | mg/kg          | < 3                        | 45            | < 200        |                      | 200           | < 300       |  |
| Copper <sup>MU</sup>                         | mg/kg          | < 4                        | 20            | < 100        |                      | 135           | < 200       |  |
| Nickel <sup>MU</sup>                         | mg/kg          | < 3                        | 10            | < 60         | <                    | 75            | < 110       |  |
| Visible Contaminants (A                      |                |                            |               |              |                      |               |             |  |
| >2mm                                         | %              | N/a                        | 0.0           | < 0.5        |                      |               |             |  |
| Plastics                                     | %              | N/a                        | 0.00          | < 0.25       |                      |               |             |  |
| Sharps                                       | %              | N/a                        | 0.0           |              | (                    | )             |             |  |
| Additional Analytes                          |                |                            |               |              |                      |               |             |  |
| Available Sodium <sup>(S)</sup>              | mg/l           | < 1                        | 110           |              |                      |               |             |  |
| Available Calcium <sup>(S)</sup>             | mg/l           | < 1                        | 2000          |              |                      |               |             |  |
| Electrical Conductivity                      | uS/cm          | < 5                        | 2100          | 3300         |                      |               | 1           |  |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test

U Denotes ISO17025 accredited test

Subcontracted analysis (S)





| Soil Analysis Certificate - Sample Descriptions                            |  |  |  |  |  |
|----------------------------------------------------------------------------|--|--|--|--|--|
| DETS Report No: 22-04512                                                   |  |  |  |  |  |
| Soil Consultants Ltd                                                       |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN |  |  |  |  |  |
| Project / Job Ref: 10728/SG                                                |  |  |  |  |  |
| Order No: 10728/SG                                                         |  |  |  |  |  |
| Reporting Date: 09/06/2022                                                 |  |  |  |  |  |

| DETS Sample No | TP / BH No | Additional Refs | Depth (m) | Moisture<br>Content (%) | Sample Matrix Description        |
|----------------|------------|-----------------|-----------|-------------------------|----------------------------------|
| 598619         | WS7        | None Supplied   | 0.10      | 10.7                    | Brown sandy clay with vegetation |
| 598620         | WS8        | None Supplied   | 0.20      | 12                      | Brown sandy clay with vegetation |

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample  $^{\rm VS}$  Unsuitable Sample  $^{\rm VS}$ 





Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-04512
Soil Consultants Ltd
Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG Order No: 10728/SG Reporting Date: 09/06/2022

| Matrix       | Analysed<br>On | Determinand                                                             | Brief Method Description                                                                                                                                             | Method<br>No |  |  |  |  |
|--------------|----------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| Soil<br>Soil | D<br>AR        |                                                                         | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES Determination of BTEX by headspace GC-MS                                   | E012<br>E001 |  |  |  |  |
| Soil         | D              |                                                                         | Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                                         | E002         |  |  |  |  |
| Soil         | D              | Chloride - Water Soluble (2:1)                                          | Determination of chloride by extraction with water & analysed by ion chromatography                                                                                  | E009         |  |  |  |  |
| Soil         | AR             | Chromium - Hexavalent                                                   | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition o<br>1,5 diphenylcarbazide followed by colorimetry               |              |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of complex cyanide by distillation followed by colorimetry                                                                                             | E015         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of free cyanide by distillation followed by colorimetry                                                                                                | E015         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of total cyanide by distillation followed by colorimetry Gravimetrically determined through extraction with cyclohexane                                | E015         |  |  |  |  |
| Soil<br>Soil | D<br>AR        |                                                                         | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                                                                                   | E011<br>E004 |  |  |  |  |
| Soil         | AR             | Electrical Conductivity                                                 | Determination of electrical conductivity by addition of saturated calcium sulphate followed by                                                                       | E022         |  |  |  |  |
| Soil         | AR             | Flectrical Conductivity                                                 | electrometric measurement  Determination of electrical conductivity by addition of water followed by electrometric measurement                                       | E023         |  |  |  |  |
|              |                |                                                                         | · ·                                                                                                                                                                  |              |  |  |  |  |
| Soil         | D<br>AR        |                                                                         | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                                           | E020<br>E004 |  |  |  |  |
| Soil<br>Soil | AR             |                                                                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID  Determination of acetone/hexane extractable hydrocarbons by GC-FID                               | E004         |  |  |  |  |
| Soil         | AR             | EPH TEXAS (C6-C8, C8-C10, C10-C12,                                      | Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by                                                                        | E004         |  |  |  |  |
| Soil         | D              | C12-C16, C16-C21, C21-C40) Fluoride - Water Soluble                     | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                                  | E009         |  |  |  |  |
| Soil         | D              | Fraction Organic Carbon (FOC)                                           | Determination of Fluoride by extraction with water & analysed by for circumatography  Determination of TOC by combustion analyser.                                   | E027         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of TOC by combustion analyser.                                                                                                                         | E027         |  |  |  |  |
| Soil         | D              | TOC (Total Organic Carbon)                                              | Determination of TOC by combustion analyser.                                                                                                                         | E027         |  |  |  |  |
| Soil         | AR             | Exchangeable Ammonium                                                   | Determination of ammonium by discrete analyser.                                                                                                                      | E029         |  |  |  |  |
| Soil         | D              | FOC (Fraction Organic Carbon)                                           | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                     | E010         |  |  |  |  |
| Soil         | D              | Loss on Ignition @ 450oC                                                | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace                                                       | E019         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                                                | E025         |  |  |  |  |
| Soil         | D              | Metals                                                                  | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                                  | E002         |  |  |  |  |
| Soil         | AR             | Mineral Oil (C10 - C40)                                                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                                  | E004         |  |  |  |  |
| Soil         | AR             |                                                                         | Moisture content; determined gravimetrically                                                                                                                         | E003         |  |  |  |  |
| Soil         | D              | Nitrate - Water Soluble (2:1)                                           | Determination of nitrate by extraction with water & analysed by ion chromatography                                                                                   | E009         |  |  |  |  |
| Soil         | D              | Organic Matter                                                          | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                                 | E010         |  |  |  |  |
| Soil         | AR             | PAH - Speciated (EPA 16)                                                | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the<br>use of surrogate and internal standards                             | E005         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                                         | E008         |  |  |  |  |
| Soil         | D              |                                                                         | Gravimetrically determined through extraction with petroleum ether                                                                                                   | E011         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of pH by addition of water followed by electrometric measurement                                                                                       | E007         |  |  |  |  |
| Soil         | AR<br>D        |                                                                         | Determination of phenols by distillation followed by colorimetry                                                                                                     | E021<br>E009 |  |  |  |  |
| Soil<br>Soil | D              |                                                                         | Determination of phosphate by extraction with water & analysed by ion chromatography  Determination of total sulphate by extraction with 10% HCl followed by ICP-OES | E013         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of total sulphate by extraction with water & analysed by ion chromatography                                                                            | E009         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                                 | E014         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of sulphide by distillation followed by colorimetry                                                                                                    | E018         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                                     | E024         |  |  |  |  |
| Soil         | AR             | SVOC                                                                    | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS                                                               | E006         |  |  |  |  |
| Soil         | AR             | Thiocyanate (as SCN)                                                    | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry                  | E017         |  |  |  |  |
| Soil         | D              | Toluene Extractable Matter (TEM)                                        | Gravimetrically determined through extraction with toluene                                                                                                           | E011         |  |  |  |  |
| Soil         | D              | Total Organic Carbon (TOC)                                              | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                                 | E010         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS                       | E004         |  |  |  |  |
| Soil         | AR             | aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) |                                                                                                                                                                      | E004         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of volatile organic compounds by headspace GC-MS                                                                                                       | E001         |  |  |  |  |
| Soil         | AR             | VPH (C6-C8 & C8-C10)                                                    | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                                            | E001         |  |  |  |  |

| Parameter                    | Matrix Type | Suite Reference | Expanded Uncertainity<br>Measurement | Unit  |
|------------------------------|-------------|-----------------|--------------------------------------|-------|
| TOC                          | Soil        | BS EN 12457     | 12.1                                 | %     |
| Loss on Ignition             | Soil        | BS EN 12457     | 20.4                                 | %     |
| BTEX                         | Soil        | BS EN 12457     | 14.0                                 | %     |
| Sum of PCBs                  | Soil        | BS EN 12457     | 21.1                                 | %     |
| Mineral Oil                  | Soil        | BS EN 12457     | 9.0                                  | %     |
| Total PAH                    | Soil        | BS EN 12457     | 13.9                                 | %     |
| pH                           | Soil        | BS EN 12457     | 0.248                                | Units |
| Acid Neutralisation Capacity | Soil        | BS EN 12457     | 18.0                                 | %     |
| Arsenic                      | Leachate    | BS EN 12457     | 15.9                                 | %     |
| Barium                       | Leachate    | BS EN 12457     | 14.4                                 | %     |
| Cadmium                      | Leachate    | BS EN 12457     | 12.6                                 | %     |
| Chromium                     | Leachate    | BS EN 12457     | 13.4                                 | %     |
| Copper                       | Leachate    | BS EN 12457     | 13.1                                 | %     |
| Mercury                      | Leachate    | BS EN 12457     | 16.2                                 | %     |
| Molybdenum                   | Leachate    | BS EN 12457     | 13.6                                 | %     |
| Nickel                       | Leachate    | BS EN 12457     | 16.0                                 | %     |
| Lead                         | Leachate    | BS EN 12457     | 12.4                                 | %     |
| Antimony                     | Leachate    | BS EN 12457     | 14.6                                 | %     |
| Selenium                     | Leachate    | BS EN 12457     | 16.5                                 | %     |
| Zinc                         | Leachate    | BS EN 12457     | 14.5                                 | %     |
| Chloride                     | Leachate    | BS EN 12457     | 17.0                                 | %     |
| Fluoride                     | Leachate    | BS EN 12457     | 12.0                                 | %     |
| Sulphate                     | Leachate    | BS EN 12457     | 25.1                                 | %     |
| TDS                          | Leachate    | BS EN 12457     | 10.0                                 | %     |
| Phenol Index                 | Leachate    | BS EN 12457     | 12.9                                 | %     |
| DOC                          | Leachate    | BS EN 12457     | 10.0                                 | %     |
| Clay Content                 | Soil        | BS 3882: 2015   | 15.0                                 | %     |
| Silt Content                 | Soil        | BS 3882: 2015   | 14.0                                 | %     |
| Sand Content                 | Soil        | BS 3882: 2015   | 13.0                                 | %     |
| Loss on Ignition             | Soil        | BS 3882: 2015   | 20.4                                 | %     |
| pH                           | Soil        | BS 3882: 2015   | 0.248                                | Units |
| Carbonate                    | Soil        | BS 3882: 2015   | 12.0                                 | %     |
| Total Nitrogen               | Soil        | BS 3882: 2015   | 12.0                                 | %     |
| Phosphorus (Extractable)     | Soil        | BS 3882: 2015   | 24.0                                 | %     |
| Potassium (Extractable)      | Soil        | BS 3882: 2015   | 20.0                                 | %     |
| Magnesium (Extractable)      | Soil        | BS 3882: 2015   | 26.0                                 | %     |
| Zinc                         | Soil        | BS 3882: 2015   | 14.9                                 | %     |
| Copper                       | Soil        | BS 3882: 2015   | 16.0                                 | %     |
| Nickel                       | Soil        | BS 3882: 2015   | 17.7                                 | %     |
| Available Sodium             | Soil        | BS 3882: 2015   | 23.0                                 | %     |
| Available Calcium            | Soil        | BS 3882: 2015   | 23.0                                 | %     |
| Electrical Conductivity      | Soil        | BS 3882: 2015   | 10.0                                 | %     |





Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

#### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

## **DETS Report No: 22-04512**

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 20/05/2022

Sample Scheduled Date: 20/05/2022

Report Issue Number: 1

**Reporting Date:** 09/06/2022

Authorised by:

Ela Mysiara Quality Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.



DETS Ltd ane Industrial Estate Rose Lane nham Heath Maidstone nt ME17 2JN 01622 850410





4480

|                                                                                                       |                | Date               |               |                                                  |                     |                              |             |
|-------------------------------------------------------------------------------------------------------|----------------|--------------------|---------------|--------------------------------------------------|---------------------|------------------------------|-------------|
| DETS Report No: 22-04512                                                                              |                | Sampled            | 11/05/2022    |                                                  | Compliance          | with Range                   |             |
| Soil Consultants Ltd<br>Site Reference: Kneller Hall, 65 Kneller<br>Road, Twickenham, London, TW2 7DN |                | Time<br>Sampled    | None Supplied |                                                  |                     |                              |             |
|                                                                                                       |                | TP / BH No         | WS7           | Se                                               |                     | ₽                            | ر<br>س      |
| Project / Job Ref: 1072                                                                               | 8/SG           | Additional<br>Refs | None Supplied | dr.p                                             | Acidic              | ertili                       | Calcareous  |
| Order No: 10728/SG                                                                                    |                | Depth (m)          | 0.10          | Multipurpose                                     | Ac                  | Low Fertility                | Calca       |
| Reporting Date: 09/06/                                                                                | 022            | DETS<br>Sample No  | 598619        | _                                                |                     | _                            |             |
| Determinand                                                                                           | Reporting Unit | RL                 |               | 1                                                |                     |                              |             |
| Soil Texture                                                                                          | •              | -                  |               |                                                  |                     |                              |             |
| Clay Content (S)                                                                                      | %              | N/a                | 17.6          | <del>                                     </del> | 5 -                 | 35                           |             |
| Silt Content (S)                                                                                      | %              | N/a                | 31.9          | <del>                                     </del> |                     | 65                           |             |
| Sand Content (S)                                                                                      | %              | N/a                | 50.5          | <del>                                     </del> |                     | - 85                         |             |
| Textural Class (S)                                                                                    | N/a            | N/a                | Sandy Loam    |                                                  | 30                  | -                            |             |
| rextural class (7)                                                                                    | IN/a           | IV/a               | Saliuy Luaili |                                                  | Clay Conto          | nt 5 - 20%                   |             |
|                                                                                                       |                |                    |               | 2 20                                             |                     |                              | 2 20        |
| oss on Ignition                                                                                       | %              | < 0.01             | 4.90          | 3 - 20                                           | 3 - 30              | 2 - 20<br>nt <b>20 - 35%</b> | 3 - 20      |
| 70                                                                                                    |                |                    |               |                                                  |                     |                              |             |
|                                                                                                       |                |                    |               | 5 - 20                                           | 5 - 30              | 2 - 20                       | 5 - 20      |
| Coarse Fragment Conte                                                                                 |                |                    |               |                                                  |                     |                              |             |
| >2mm <sup>(S)</sup>                                                                                   | %              | N/a                | 9.0           | 0 - 30                                           | 0 - 30              | 0 - 30                       | 0 - 30      |
| >20mm <sup>(S)</sup>                                                                                  | %              | N/a                | 0.0           | 0 - 10                                           | 0 - 10              | 0 - 10                       | 0 - 10      |
| >50mm <sup>(S)</sup>                                                                                  | %              | N/a                | 0.0           | 0                                                | 0                   | 0                            | 0           |
| oH <sup>M∪</sup>                                                                                      | pH Units       | N/a                | 5.2           | 5.5 - 8.5                                        | 3.5 - 5.5           | 3.5 - 9.0                    | 7.5 - 9.0   |
| Carbonate                                                                                             | %              | < 1.4              | < 1.4         |                                                  |                     |                              | > 1         |
| Available Plant Nutrient                                                                              | s              |                    |               |                                                  |                     |                              |             |
| Total Nitrogen <sup>(S)</sup>                                                                         | %              | < 0.01             | < 0.01        | ≥ 0.15                                           | ≥ 0.15              |                              | ≥ 0.15      |
| Phosphorus (Extractable)                                                                              | mg/l           | < 3                | 28            | 16 - 140                                         | 16 - 140            | ≤ 15                         | 16 - 140    |
| Potassium (Extractable)                                                                               | mg/l           | < 20               | 70            | 121 - 1500                                       | 121 - 1500          |                              | 121 - 150   |
| Magnesium (Extractable)                                                                               | mg/l           | < 1                | 56            | 51 - 600                                         | 51 - 600            |                              | 51 - 600    |
| Carbon / Nitrogen Ratio <sup>(S)</sup>                                                                | :1             | < 0.1              | 360           | < 20 : 1                                         | < 20 : 1            | < 20 : 1                     | < 20 : 1    |
| Exchangeable Sodium (S)                                                                               | %              | < 0.1              | < 0.1         |                                                  |                     |                              |             |
| Phytotoxic Elements (by                                                                               | y soil pH)     |                    |               | Multipurpos                                      | e & Specific<br>ran | Purpose To                   | psoils at p |
|                                                                                                       |                |                    |               | < 6.0                                            | 6.0                 | - 7.0                        | > 7.0       |
| Zinc <sup>MU</sup>                                                                                    | mg/kg          | < 3                | 33            | < 200                                            |                     | 200                          | < 300       |
| Copper <sup>MU</sup>                                                                                  | mg/kg          | < 4                | 14            | < 100                                            |                     | 135                          | < 200       |
| Nickel MU                                                                                             | mg/kg          | < 3                | 8             | < 60                                             | <                   | 75                           | < 110       |
| Visible Contaminants (A                                                                               | ir Dried Soil) |                    |               |                                                  |                     |                              |             |
| >2mm                                                                                                  | %              | N/a                | 0.0           |                                                  | < 1                 | 0.5                          |             |
| Plastics                                                                                              | %              | N/a                | 0.00          |                                                  | < 0                 | ).25                         |             |
| Sharps                                                                                                | %              | N/a                | 0.0           |                                                  | (                   | 0                            |             |
| Additional Analytes                                                                                   |                | -                  |               | Ī                                                |                     |                              |             |
| Available Sodium (S)                                                                                  | mg/l           | < 1                | 80            | 1                                                |                     |                              |             |
| Available Calcium (S)                                                                                 | mg/l           | < 1                | 1300          | 1                                                |                     |                              |             |
|                                                                                                       |                |                    | _500          |                                                  |                     |                              |             |
| Electrical Conductivity                                                                               | uS/cm          | < 5                | 2000          | 3300                                             |                     |                              |             |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test

U Denotes ISO17025 accredited test

Subcontracted analysis (S)



DETS Ltd ine Industrial Estate Rose Lane nham Heath Maidstone nt ME17 2JN 01622 850410





4480

| DETS Report No: 22-045                                           | 512            | Date                       | 11/05/2022    |              | Compliance           | with Range    |             |
|------------------------------------------------------------------|----------------|----------------------------|---------------|--------------|----------------------|---------------|-------------|
| Soil Consultants Ltd<br>Site Reference: Kneller Hall, 65 Kneller |                | Sampled<br>Time<br>Sampled | None Supplied |              |                      |               |             |
|                                                                  |                | TP / BH No                 | WS8           | 1 ,          |                      |               |             |
| Road, Twickenham, Lon                                            |                | Additional                 |               | . so         |                      | i t           | sno         |
| Project / Job Ref: 10728                                         | 3/SG           | Refs                       | None Supplied | l dind       | Acidic               | Ferti         | Calcareous  |
| Order No: 10728/SG                                               |                | Depth (m)                  | 0.20          | Multipurpose | Ă                    | Low Fertility | Galc        |
| Reporting Date: 09/06/                                           | 2022           | DETS<br>Sample No          | 598620        |              |                      | _             |             |
| Determinand                                                      | Reporting Unit | RL                         |               |              |                      |               |             |
| Soil Texture                                                     |                |                            |               |              |                      |               |             |
| Clay Content (S)                                                 | %              | N/a                        | 50.0          |              | 5 -                  | 35            |             |
| Silt Content (S)                                                 | %              | N/a                        | 47.0          |              | 0 -                  | 65            |             |
| Sand Content (S)                                                 | %              | N/a                        | 3.0           |              | 30 -                 | - 85          |             |
| Textural Class <sup>(S)</sup>                                    | N/a            | N/a                        | Silty Clay    |              |                      | -             |             |
| r exteral class                                                  | , 4-           | .,,                        | ,,            |              | Clay Conte           | nt 5 - 20%    |             |
|                                                                  |                |                            |               | 3 - 20       | 3 - 30               | 2 - 20        | 3 - 20      |
| Loss on Ignition                                                 | %              | < 0.01                     | 5.70          | 3 20         |                      | nt 20 - 35%   | 0 20        |
|                                                                  |                |                            |               | 5 - 20       | 5 - 30               | 2 - 20        | 5 - 20      |
| Casusa Evasument Canta                                           |                |                            |               | 3 - 20       | 3 - 30               | 2 - 20        | 3 - 20      |
| Coarse Fragment Conte<br>>2mm <sup>(S)</sup>                     |                | N/a                        | 0.0           | 0 20         | 0 20                 | 0 20          | 0 20        |
| >2mm (5)<br>>20mm (S)                                            | %              | N/a                        |               | 0 - 30       | 0 - 30               | 0 - 30        | 0 - 30      |
| >20mm (S)                                                        | %              | N/a                        | 0.0           | 0 - 10       | 0 - 10               | 0 - 10        | 0 - 10      |
| >50mm <sup>(S)</sup>                                             | %              | N/a                        | 0.0           | 0            | 0                    | 0             | 0           |
| pH <sup>MU</sup>                                                 | pH Units       | N/a                        | 5.5           | 5.5 - 8.5    | 3.5 - 5.5            | 3.5 - 9.0     | 7.5 - 9.0   |
| Carbonate                                                        | %              | < 1.4                      | < 1.4         |              |                      |               | > 1         |
| Available Plant Nutrient                                         |                | 0.04                       |               |              | 0.45                 |               |             |
| Total Nitrogen (5)                                               | %              | < 0.01                     | < 0.01        | ≥ 0.15       | ≥ 0.15               |               | ≥ 0.15      |
| Phosphorus (Extractable)                                         | mg/l           | < 3                        | 43            | 16 - 140     | 16 - 140             | ≤ 15          | 16 - 140    |
| Potassium (Extractable)                                          | mg/l           | < 20                       | 65            | 121 - 1500   | 121 - 1500           |               | 121 - 150   |
| Magnesium (Extractable)                                          | mg/l           | < 1                        | 55            | 51 - 600     | 51 - 600             |               | 51 - 600    |
| Carbon / Nitrogen Ratio <sup>(S)</sup>                           | :1             | < 0.1                      | 340           | < 20 : 1     | < 20 : 1             | < 20 : 1      | < 20 : 1    |
| Exchangeable Sodium (S)                                          | %              | < 0.1                      | < 0.1         |              |                      |               | -           |
| Phytotoxic Elements (by                                          | / soil pH)     |                            | -             | Multipurpos  | se & Specific<br>ran | ige           | psoils at p |
|                                                                  |                |                            | 1             | < 6.0        |                      | - 7.0         | > 7.0       |
| Zinc <sup>MU</sup>                                               | mg/kg          | < 3                        | 45            | < 200        |                      | 200           | < 300       |
| Copper <sup>MU</sup>                                             | mg/kg          | < 4                        | 20            | < 100        |                      | 135           | < 200       |
| Nickel <sup>MU</sup>                                             | mg/kg          | < 3                        | 10            | < 60         | <                    | 75            | < 110       |
| Visible Contaminants (A                                          |                |                            |               |              |                      |               |             |
| >2mm                                                             | %              | N/a                        | 0.0           |              |                      | 0.5           |             |
| Plastics                                                         | %              | N/a                        | 0.00          |              | < 0                  | .25           |             |
| Sharps                                                           | %              | N/a                        | 0.0           |              | (                    | )             |             |
| Additional Analytes                                              |                |                            |               |              |                      |               |             |
| Available Sodium <sup>(S)</sup>                                  | mg/l           | < 1                        | 110           |              |                      |               |             |
| Available Calcium <sup>(S)</sup>                                 | mg/l           | < 1                        | 2000          |              |                      |               |             |
| Electrical Conductivity                                          | uS/cm          | < 5                        | 2100          | 3300         |                      |               | 1           |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-received portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test

U Denotes ISO17025 accredited test

Subcontracted analysis (S)





| Soil Analysis Certificate - Sample Descriptions                            |  |  |  |  |  |
|----------------------------------------------------------------------------|--|--|--|--|--|
| DETS Report No: 22-04512                                                   |  |  |  |  |  |
| Soil Consultants Ltd                                                       |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN |  |  |  |  |  |
| Project / Job Ref: 10728/SG                                                |  |  |  |  |  |
| Order No: 10728/SG                                                         |  |  |  |  |  |
| Reporting Date: 09/06/2022                                                 |  |  |  |  |  |

| DETS Sample No | TP / BH No | Additional Refs | Depth (m) | Moisture<br>Content (%) | Sample Matrix Description        |
|----------------|------------|-----------------|-----------|-------------------------|----------------------------------|
| 598619         | WS7        | None Supplied   | 0.10      | 10.7                    | Brown sandy clay with vegetation |
| 598620         | WS8        | None Supplied   | 0.20      | 12                      | Brown sandy clay with vegetation |

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample  $^{\rm VS}$  Unsuitable Sample  $^{\rm VS}$ 





Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-04512
Soil Consultants Ltd
Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG Order No: 10728/SG Reporting Date: 09/06/2022

| Matrix       | Analysed<br>On | Determinand                                                             | Brief Method Description                                                                                                                                             | Method<br>No |  |  |  |  |
|--------------|----------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| Soil<br>Soil | D<br>AR        |                                                                         | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES Determination of BTEX by headspace GC-MS                                   | E012<br>E001 |  |  |  |  |
| Soil         | D              |                                                                         | Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                                         | E002         |  |  |  |  |
| Soil         | D              | Chloride - Water Soluble (2:1)                                          | Determination of chloride by extraction with water & analysed by ion chromatography                                                                                  | E009         |  |  |  |  |
| Soil         | AR             | Chromium - Hexavalent                                                   | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition o<br>1,5 diphenylcarbazide followed by colorimetry               |              |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of complex cyanide by distillation followed by colorimetry                                                                                             | E015         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of free cyanide by distillation followed by colorimetry                                                                                                | E015         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of total cyanide by distillation followed by colorimetry Gravimetrically determined through extraction with cyclohexane                                | E015         |  |  |  |  |
| Soil<br>Soil | D<br>AR        |                                                                         | Determination of hexane/acetone extractable hydrocarbons by GC-FID                                                                                                   | E011<br>E004 |  |  |  |  |
| Soil         | AR             | Electrical Conductivity                                                 | Determination of electrical conductivity by addition of saturated calcium sulphate followed by                                                                       | E022         |  |  |  |  |
| Soil         | AR             | Flectrical Conductivity                                                 | electrometric measurement  Determination of electrical conductivity by addition of water followed by electrometric measurement                                       | E023         |  |  |  |  |
|              |                |                                                                         | · ·                                                                                                                                                                  |              |  |  |  |  |
| Soil         | D<br>AR        |                                                                         | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                                           | E020<br>E004 |  |  |  |  |
| Soil<br>Soil | AR             |                                                                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID  Determination of acetone/hexane extractable hydrocarbons by GC-FID                               | E004         |  |  |  |  |
| Soil         | AR             | EPH TEXAS (C6-C8, C8-C10, C10-C12,                                      | Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by                                                                        | E004         |  |  |  |  |
| Soil         | D              | C12-C16, C16-C21, C21-C40) Fluoride - Water Soluble                     | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                                  | E009         |  |  |  |  |
| Soil         | D              | Fraction Organic Carbon (FOC)                                           | Determination of Fluoride by extraction with water & analysed by for circumatography  Determination of TOC by combustion analyser.                                   | E027         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of TOC by combustion analyser.                                                                                                                         | E027         |  |  |  |  |
| Soil         | D              | TOC (Total Organic Carbon)                                              | Determination of TOC by combustion analyser.                                                                                                                         | E027         |  |  |  |  |
| Soil         | AR             | Exchangeable Ammonium                                                   | Determination of ammonium by discrete analyser.                                                                                                                      | E029         |  |  |  |  |
| Soil         | D              | FOC (Fraction Organic Carbon)                                           | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                     | E010         |  |  |  |  |
| Soil         | D              | Loss on Ignition @ 450oC                                                | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace                                                       | E019         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                                                | E025         |  |  |  |  |
| Soil         | D              | Metals                                                                  | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                                  | E002         |  |  |  |  |
| Soil         | AR             | Mineral Oil (C10 - C40)                                                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                                  | E004         |  |  |  |  |
| Soil         | AR             |                                                                         | Moisture content; determined gravimetrically                                                                                                                         | E003         |  |  |  |  |
| Soil         | D              | Nitrate - Water Soluble (2:1)                                           | Determination of nitrate by extraction with water & analysed by ion chromatography                                                                                   | E009         |  |  |  |  |
| Soil         | D              | Organic Matter                                                          | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                                 | E010         |  |  |  |  |
| Soil         | AR             | PAH - Speciated (EPA 16)                                                | Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the<br>use of surrogate and internal standards                             | E005         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                                         | E008         |  |  |  |  |
| Soil         | D              |                                                                         | Gravimetrically determined through extraction with petroleum ether                                                                                                   | E011         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of pH by addition of water followed by electrometric measurement                                                                                       | E007         |  |  |  |  |
| Soil         | AR<br>D        |                                                                         | Determination of phenols by distillation followed by colorimetry                                                                                                     | E021<br>E009 |  |  |  |  |
| Soil<br>Soil | D              |                                                                         | Determination of phosphate by extraction with water & analysed by ion chromatography  Determination of total sulphate by extraction with 10% HCl followed by ICP-OES | E013         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of total sulphate by extraction with water & analysed by ion chromatography                                                                            | E009         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of water soluble sulphate by extraction with water followed by ICP-OES                                                                                 | E014         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of sulphide by distillation followed by colorimetry                                                                                                    | E018         |  |  |  |  |
| Soil         | D              |                                                                         | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                                     | E024         |  |  |  |  |
| Soil         | AR             | SVOC                                                                    | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS                                                               | E006         |  |  |  |  |
| Soil         | AR             | Thiocyanate (as SCN)                                                    | Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry                  | E017         |  |  |  |  |
| Soil         | D              | Toluene Extractable Matter (TEM)                                        | Gravimetrically determined through extraction with toluene                                                                                                           | E011         |  |  |  |  |
| Soil         | D              | Total Organic Carbon (TOC)                                              | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                                 | E010         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS                       | E004         |  |  |  |  |
| Soil         | AR             | aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) |                                                                                                                                                                      | E004         |  |  |  |  |
| Soil         | AR             |                                                                         | Determination of volatile organic compounds by headspace GC-MS                                                                                                       | E001         |  |  |  |  |
| Soil         | AR             | VPH (C6-C8 & C8-C10)                                                    | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                                            | E001         |  |  |  |  |

| Parameter                    | Matrix Type | Suite Reference | Expanded Uncertainity<br>Measurement | Unit  |
|------------------------------|-------------|-----------------|--------------------------------------|-------|
| TOC                          | Soil        | BS EN 12457     | 12.1                                 | %     |
| Loss on Ignition             | Soil        | BS EN 12457     | 20.4                                 | %     |
| BTEX                         | Soil        | BS EN 12457     | 14.0                                 | %     |
| Sum of PCBs                  | Soil        | BS EN 12457     | 21.1                                 | %     |
| Mineral Oil                  | Soil        | BS EN 12457     | 9.0                                  | %     |
| Total PAH                    | Soil        | BS EN 12457     | 13.9                                 | %     |
| pH                           | Soil        | BS EN 12457     | 0.248                                | Units |
| Acid Neutralisation Capacity | Soil        | BS EN 12457     | 18.0                                 | %     |
| Arsenic                      | Leachate    | BS EN 12457     | 15.9                                 | %     |
| Barium                       | Leachate    | BS EN 12457     | 14.4                                 | %     |
| Cadmium                      | Leachate    | BS EN 12457     | 12.6                                 | %     |
| Chromium                     | Leachate    | BS EN 12457     | 13.4                                 | %     |
| Copper                       | Leachate    | BS EN 12457     | 13.1                                 | %     |
| Mercury                      | Leachate    | BS EN 12457     | 16.2                                 | %     |
| Molybdenum                   | Leachate    | BS EN 12457     | 13.6                                 | %     |
| Nickel                       | Leachate    | BS EN 12457     | 16.0                                 | %     |
| Lead                         | Leachate    | BS EN 12457     | 12.4                                 | %     |
| Antimony                     | Leachate    | BS EN 12457     | 14.6                                 | %     |
| Selenium                     | Leachate    | BS EN 12457     | 16.5                                 | %     |
| Zinc                         | Leachate    | BS EN 12457     | 14.5                                 | %     |
| Chloride                     | Leachate    | BS EN 12457     | 17.0                                 | %     |
| Fluoride                     | Leachate    | BS EN 12457     | 12.0                                 | %     |
| Sulphate                     | Leachate    | BS EN 12457     | 25.1                                 | %     |
| TDS                          | Leachate    | BS EN 12457     | 10.0                                 | %     |
| Phenol Index                 | Leachate    | BS EN 12457     | 12.9                                 | %     |
| DOC                          | Leachate    | BS EN 12457     | 10.0                                 | %     |
| Clay Content                 | Soil        | BS 3882: 2015   | 15.0                                 | %     |
| Silt Content                 | Soil        | BS 3882: 2015   | 14.0                                 | %     |
| Sand Content                 | Soil        | BS 3882: 2015   | 13.0                                 | %     |
| Loss on Ignition             | Soil        | BS 3882: 2015   | 20.4                                 | %     |
| pH                           | Soil        | BS 3882: 2015   | 0.248                                | Units |
| Carbonate                    | Soil        | BS 3882: 2015   | 12.0                                 | %     |
| Total Nitrogen               | Soil        | BS 3882: 2015   | 12.0                                 | %     |
| Phosphorus (Extractable)     | Soil        | BS 3882: 2015   | 24.0                                 | %     |
| Potassium (Extractable)      | Soil        | BS 3882: 2015   | 20.0                                 | %     |
| Magnesium (Extractable)      | Soil        | BS 3882: 2015   | 26.0                                 | %     |
| Zinc                         | Soil        | BS 3882: 2015   | 14.9                                 | %     |
| Copper                       | Soil        | BS 3882: 2015   | 16.0                                 | %     |
| Nickel                       | Soil        | BS 3882: 2015   | 17.7                                 | %     |
| Available Sodium             | Soil        | BS 3882: 2015   | 23.0                                 | %     |
| Available Calcium            | Soil        | BS 3882: 2015   | 23.0                                 | %     |
| Electrical Conductivity      | Soil        | BS 3882: 2015   | 10.0                                 | %     |





Steph Grimes Soil Consultants Ltd Chiltern House Earl Howe Road Holmer Green High Wycombe Buckinghamshire HP15 6QT

#### **Derwentside Environmental Testing Services Ltd**

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

## DETS Report No: 22-04511

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Sample Receipt Date: 20/05/2022

Sample Scheduled Date: 20/05/2022

Report Issue Number: 1

**Reporting Date:** 30/05/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.





Soil Analysis Certificate DETS Report No: 22-04511 Soil Consultants Ltd Date Sampled 11/05/22 10/05/22 11/05/22 10/05/22 10/05/22 Time Sampled None Supplied None Supplied None Supplied None Supplied None Supplied Site Reference: Kneller Hall, 65 Kneller Road, TP / BH No WS9/0.40 WS1/0.50 WS3/0.70 WS2A/1.60 WS2/0.80 Twickenham, London, TW2 7DN Project / Job Ref: 10728/SG Additional Refs None Supplied None Supplied None Supplied None Supplied None Supplied Order No: 10728/SG Depth (m) 0.40 0.50 0.70 1.60 0.80 **DETS Sample No** Reporting Date: 30/05/2022 598604 598606 598607 598608

| Determinand                           | Unit          | RL     | Accreditation |                            |              |              |  |
|---------------------------------------|---------------|--------|---------------|----------------------------|--------------|--------------|--|
| Asbestos Screen (S)                   | N/a           | N/a    | ISO17025      | Detected                   | Not Detected | Not Detected |  |
| Sample Matrix <sup>(S)</sup>          | Material Type | N/a    | NONE          | Bundles of<br>otile fibres |              |              |  |
| Asbestos Type (S)                     | PLM Result    | N/a    | ISO17025      | Chrysotile                 |              |              |  |
| рН                                    | pH Units      | N/a    | MCERTS        | 7.2                        | 7.5          | 6.9          |  |
| Electrical Conductivity               | uS/cm         | < 5    | NONE          | 471                        | 312          | 419          |  |
| Total Cyanide                         | mg/kg         | < 2    | NONE          | 8                          | < 2          | < 2          |  |
| Total Sulphate as SO <sub>4</sub>     | mg/kg         | < 200  | MCERTS        | 668                        | 1609         | 1505         |  |
| Total Sulphate as SO <sub>4</sub>     | %             | < 0.02 | MCERTS        | 0.07                       | 0.16         | 0.15         |  |
| W/S Sulphate as SO <sub>4</sub> (2:1) | mg/l          | < 10   | MCERTS        | 68                         | 115          | 235          |  |
| W/S Sulphate as SO <sub>4</sub> (2:1) | g/l           | < 0.01 | MCERTS        | 0.07                       | 0.12         | 0.23         |  |
| Total Sulphur                         | %             | < 0.02 | NONE          | 0.08                       | 0.11         | 0.14         |  |
| Organic Matter (SOM)                  | %             | < 0.1  | MCERTS        | 5.6                        | 1.4          | 15.1         |  |
| Arsenic (As)                          | mg/kg         | < 2    | MCERTS        | 11                         | 12           | 29           |  |
| W/S Boron                             | mg/kg         | < 1    | NONE          | 2.5                        | < 1          | 1.9          |  |
| Cadmium (Cd)                          | mg/kg         | < 0.2  | MCERTS        | 0.2                        | < 0.2        | 1.4          |  |
| Chromium (Cr)                         | mg/kg         | < 2    | MCERTS        | 13                         | 27           | 26           |  |
| Chromium (hexavalent)                 | mg/kg         | < 2    | NONE          | < 2                        | < 2          | < 2          |  |
| Copper (Cu)                           | mg/kg         | < 4    | MCERTS        | 32                         | 27           | 110          |  |
| Lead (Pb)                             | mg/kg         | < 3    | MCERTS        | 134                        | 68           | 478          |  |
| Mercury (Hg)                          | mg/kg         | < 1    | MCERTS        | < 1                        | < 1          | 1.2          |  |
| Nickel (Ni)                           | mg/kg         | < 3    | MCERTS        | 12                         | 22           | 31           |  |
| Selenium (Se)                         | mg/kg         | < 2    | MCERTS        | < 3                        | < 3          | < 3          |  |
| Zinc (Zn)                             | mg/kg         | < 3    | MCERTS        | 76                         | 72           | 493          |  |
| Total Phenols (monohydric)            | mg/kg         | < 2    | NONE          | < 2                        | < 2          | < 2          |  |
| EPH (C10 - C40)                       | mg/kg         | < 6    | MCERTS        | 56                         | 3500         | 86           |  |





| Soil Analysis Certificate                      |                 |               |               |               |               |               |  |  |  |  |
|------------------------------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|--|--|--|--|
| DETS Report No: 22-04511                       | Date Sampled    | 09/05/22      | 09/05/22      | 09/05/22      | 13/05/22      | 13/05/22      |  |  |  |  |
| Soil Consultants Ltd                           | Time Sampled    | None Supplied |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller Road, | TP / BH No      | TP6/1.00      | BH02/0.80     | BH02/1.60     | HP1/0.70      | HP2/0.60      |  |  |  |  |
| Twickenham, London, TW2 7DN                    |                 |               |               |               |               |               |  |  |  |  |
|                                                |                 |               |               |               |               |               |  |  |  |  |
| Project / Job Ref: 10728/SG                    | Additional Refs | None Supplied |  |  |  |  |
| Order No: 10728/SG                             | Depth (m)       | 1.00          | 0.80          | 0.80          | 0.70          | 0.60          |  |  |  |  |
| Reporting Date: 30/05/2022                     | DETS Sample No  | 598609        | 598610        | 598611        | 598612        | 598613        |  |  |  |  |

| Determinand                           | Unit          | RL     | Accreditation |              |              |   |              |
|---------------------------------------|---------------|--------|---------------|--------------|--------------|---|--------------|
| Asbestos Screen (S)                   | N/a           | N/a    | ISO17025      | Not Detected | Not Detected | N | lot Detected |
| Sample Matrix <sup>(S)</sup>          | Material Type | N/a    | NONE          |              |              |   |              |
| Asbestos Type (S)                     | PLM Result    | N/a    | ISO17025      |              |              |   |              |
| pH                                    | pH Units      | N/a    | MCERTS        | 7.8          | 7.4          |   | 7.8          |
| Electrical Conductivity               | uS/cm         | < 5    | NONE          | 141          | 194          |   | 209          |
| Total Cyanide                         | mg/kg         | < 2    | NONE          | < 2          | < 2          |   | < 2          |
| Total Sulphate as SO <sub>4</sub>     | mg/kg         | < 200  | MCERTS        | 834          | 436          |   | 988          |
| Total Sulphate as SO <sub>4</sub>     | %             | < 0.02 | MCERTS        | 0.08         | 0.04         |   | 0.10         |
| W/S Sulphate as SO <sub>4</sub> (2:1) | mg/l          | < 10   | MCERTS        | 19           | 12           |   | 69           |
| W/S Sulphate as SO <sub>4</sub> (2:1) | g/l           | < 0.01 | MCERTS        | 0.02         | 0.01         |   | 0.07         |
| Total Sulphur                         | %             | < 0.02 | NONE          | 0.03         | 0.02         |   | 0.04         |
| Organic Matter (SOM)                  | %             | < 0.1  | MCERTS        | 1.2          | 2.9          |   | 1.9          |
| Arsenic (As)                          | mg/kg         | < 2    | MCERTS        | 8            | 14           |   | 12           |
| W/S Boron                             | mg/kg         | < 1    | NONE          | < 1          | < 1          |   | < 1          |
| Cadmium (Cd)                          | mg/kg         | < 0.2  | MCERTS        | < 0.2        | 0.7          |   | 0.4          |
| Chromium (Cr)                         | mg/kg         | < 2    | MCERTS        | 12           | 16           |   | 15           |
| Chromium (hexavalent)                 | mg/kg         | < 2    | NONE          | < 2          | < 2          |   | < 2          |
| Copper (Cu)                           | mg/kg         | < 4    | MCERTS        | 11           | 108          |   | 24           |
| Lead (Pb)                             | mg/kg         | < 3    | MCERTS        | 65           | 181          |   | 62           |
| Mercury (Hg)                          | mg/kg         | < 1    | MCERTS        | < 1          | < 1          |   | < 1          |
| Nickel (Ni)                           | mg/kg         | < 3    | MCERTS        | 10           | 15           |   | 11           |
| Selenium (Se)                         | mg/kg         | < 2    | MCERTS        | < 3          | < 3          |   | < 3          |
| Zinc (Zn)                             | mg/kg         | < 3    | MCERTS        | 26           | 201          |   | 236          |
| Total Phenols (monohydric)            | mg/kg         | < 2    | NONE          | < 2          | < 2          |   | < 2          |
| EPH (C10 - C40)                       | mg/kg         | < 6    | MCERTS        | < 6          | 61           |   | 39           |





| Soil Analysis Certificate                                                     |                 |               |               |               |               |  |
|-------------------------------------------------------------------------------|-----------------|---------------|---------------|---------------|---------------|--|
| DETS Report No: 22-04511                                                      | Date Sampled    | None Supplied | None Supplied | None Supplied | 12/05/22      |  |
| Soil Consultants Ltd                                                          | Time Sampled    | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Site Reference: Kneller Hall, 65 Kneller Road,<br>Twickenham, London, TW2 7DN | TP / BH No      | BH01          | BH03          | BH04          | WS4           |  |
| Project / Job Ref: 10728/SG                                                   | Additional Refs | None Supplied | None Supplied | None Supplied | None Supplied |  |
| Order No: 10728/SG                                                            | Depth (m)       | 0.80          | 1.40          | 1.00          | 0.20          |  |
| Reporting Date: 30/05/2022                                                    | DETS Sample No  | 598614        | 598615        | 598616        | 598617        |  |

| Determinand                           | Unit          | RL     | Accreditation |              |  |
|---------------------------------------|---------------|--------|---------------|--------------|--|
| Asbestos Screen (S)                   | N/a           | N/a    | ISO17025      | Not Detected |  |
| Sample Matrix <sup>(S)</sup>          | Material Type | N/a    | NONE          |              |  |
| Asbestos Type (S)                     | PLM Result    | N/a    | ISO17025      |              |  |
| pH                                    | pH Units      | N/a    | MCERTS        | 7.7          |  |
| Electrical Conductivity               | uS/cm         | < 5    | NONE          | 136          |  |
| Total Cyanide                         | mg/kg         | < 2    | NONE          | < 2          |  |
| Total Sulphate as SO <sub>4</sub>     | mg/kg         | < 200  | MCERTS        | < 200        |  |
| Total Sulphate as SO <sub>4</sub>     | %             | < 0.02 | MCERTS        | < 0.02       |  |
| W/S Sulphate as SO <sub>4</sub> (2:1) | mg/l          | < 10   | MCERTS        | < 10         |  |
| W/S Sulphate as SO <sub>4</sub> (2:1) | g/l           | < 0.01 | MCERTS        | < 0.01       |  |
| Total Sulphur                         | %             | < 0.02 | NONE          | < 0.02       |  |
| Organic Matter (SOM)                  | %             | < 0.1  | MCERTS        | 0.7          |  |
| Arsenic (As)                          | mg/kg         | < 2    | MCERTS        | 12           |  |
| W/S Boron                             | mg/kg         | < 1    | NONE          | < 1          |  |
| Cadmium (Cd)                          | mg/kg         | < 0.2  | MCERTS        | < 0.2        |  |
| Chromium (Cr)                         | mg/kg         | < 2    | MCERTS        | 18           |  |
| Chromium (hexavalent)                 | mg/kg         | < 2    | NONE          | < 2          |  |
| Copper (Cu)                           | mg/kg         | < 4    | MCERTS        | 8            |  |
| Lead (Pb)                             | mg/kg         | < 3    | MCERTS        | 35           |  |
| Mercury (Hg)                          | mg/kg         | < 1    | MCERTS        | < 1          |  |
| Nickel (Ni)                           | mg/kg         | < 3    | MCERTS        | 14           |  |
| Selenium (Se)                         | mg/kg         | < 2    | MCERTS        | < 3          |  |
| Zinc (Zn)                             | mg/kg         | < 3    | MCERTS        | 33           |  |
| Total Phenols (monohydric)            | mg/kg         | < 2    | NONE          | < 2          |  |
| EPH (C10 - C40)                       | mg/kg         | < 6    | MCERTS        | < 6          |  |





| Soil Analysis Certificate - Speciated PAHs |                 |               |               |               |               |               |
|--------------------------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|
| DETS Report No: 22-04511                   | Date Sampled    | 11/05/22      | 10/05/22      | 10/05/22      | 09/05/22      | 09/05/22      |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied |
| Site Reference: Kneller Hall, 65 Kneller   | TP / BH No      | WS1/0.50      | WS3/0.70      | WS2A/1.60     | TP6/1.00      | BH02/0.80     |
| Road, Twickenham, London, TW2 7DN          |                 |               |               |               |               |               |
| Project / Job Ref: 10728/SG                | Additional Refs | None Supplied |
| Order No: 10728/SG                         | Depth (m)       | 0.50          | 0.70          | 1.60          | 1.00          | 0.80          |
| Reporting Date: 30/05/2022                 | DETS Sample No  | 598604        | 598606        | 598607        | 598609        | 598610        |

| Determinand            | Unit  | RL    | Accreditation |       |       |       |       |       |
|------------------------|-------|-------|---------------|-------|-------|-------|-------|-------|
| Naphthalene            | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
| Acenaphthylene         | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
| Acenaphthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
| Fluorene               | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
| Phenanthrene           | mg/kg | < 0.1 | MCERTS        | 0.38  | 0.23  | 0.73  | < 0.1 | 0.14  |
| Anthracene             | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
| Fluoranthene           | mg/kg | < 0.1 | MCERTS        | 1.16  | 0.74  | 2.59  | < 0.1 | 0.55  |
| Pyrene                 | mg/kg | < 0.1 | MCERTS        | 1.01  | 0.69  | 2.17  | < 0.1 | 0.59  |
| Benzo(a)anthracene     | mg/kg | < 0.1 | MCERTS        | 0.60  | 0.41  | 1.18  | < 0.1 | 0.44  |
| Chrysene               | mg/kg | < 0.1 | MCERTS        | 0.64  | 0.38  | 1.31  | < 0.1 | 0.42  |
| Benzo(b)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 0.85  | 0.48  | 1.74  | < 0.1 | 0.65  |
| Benzo(k)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 0.37  | 0.22  | 0.73  | < 0.1 | 0.28  |
| Benzo(a)pyrene         | mg/kg | < 0.1 | MCERTS        | 0.70  | 0.34  | 1.61  | < 0.1 | 0.56  |
| Indeno(1,2,3-cd)pyrene | mg/kg | < 0.1 | MCERTS        | 0.61  | 0.34  | 1.64  | < 0.1 | 0.57  |
| Dibenz(a,h)anthracene  | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 |
| Benzo(ghi)perylene     | mg/kg | < 0.1 | MCERTS        | 0.41  | 0.22  | 0.99  | < 0.1 | 0.41  |
| Total EPA-16 PAHs      | mg/kg | < 1.6 | MCERTS        | 6.7   | 4     | 14.7  | < 1.6 | 4.6   |





| Soil Analysis Certificate - Speciated PAHs |                 |               |               |  |  |  |  |  |  |
|--------------------------------------------|-----------------|---------------|---------------|--|--|--|--|--|--|
| DETS Report No: 22-04511                   | Date Sampled    | 13/05/22      | None Supplied |  |  |  |  |  |  |
| Soil Consultants Ltd                       | Time Sampled    | None Supplied | None Supplied |  |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller   | TP / BH No      | HP2/0.60      | BH04          |  |  |  |  |  |  |
| Road, Twickenham, London, TW2 7DN          |                 |               |               |  |  |  |  |  |  |
| Project / Job Ref: 10728/SG                | Additional Refs | None Supplied | None Supplied |  |  |  |  |  |  |
| Order No: 10728/SG                         | Depth (m)       | 0.60          | 1.00          |  |  |  |  |  |  |
| Reporting Date: 30/05/2022                 | DETS Sample No  | 598613        | 598616        |  |  |  |  |  |  |

| Determinand            | Unit  | RL    | Accreditation |       |       |  |  |
|------------------------|-------|-------|---------------|-------|-------|--|--|
| Naphthalene            | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |  |
| Acenaphthylene         | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |  |
| Acenaphthene           | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |  |
| Fluorene               | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |  |
| Phenanthrene           | mg/kg | < 0.1 | MCERTS        | 0.32  | < 0.1 |  |  |
| Anthracene             | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |  |
| Fluoranthene           | mg/kg | < 0.1 | MCERTS        | 0.82  | < 0.1 |  |  |
| Pyrene                 | mg/kg | < 0.1 | MCERTS        | 0.75  | < 0.1 |  |  |
| Benzo(a)anthracene     | mg/kg | < 0.1 | MCERTS        | 0.42  | < 0.1 |  |  |
| Chrysene               | mg/kg | < 0.1 | MCERTS        | 0.37  | < 0.1 |  |  |
| Benzo(b)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 0.43  | < 0.1 |  |  |
| Benzo(k)fluoranthene   | mg/kg | < 0.1 | MCERTS        | 0.21  | < 0.1 |  |  |
| Benzo(a)pyrene         | mg/kg | < 0.1 | MCERTS        | 0.36  | < 0.1 |  |  |
| Indeno(1,2,3-cd)pyrene | mg/kg | < 0.1 | MCERTS        | 0.34  | < 0.1 |  |  |
| Dibenz(a,h)anthracene  | mg/kg | < 0.1 | MCERTS        | < 0.1 | < 0.1 |  |  |
| Benzo(ghi)perylene     | mg/kg | < 0.1 | MCERTS        | 0.21  | < 0.1 |  |  |
| Total EPA-16 PAHs      | mg/kg | < 1.6 | MCERTS        | 4.2   | < 1.6 |  |  |





| Soil Analysis Certificate - TPH CWG Banded                                    |                 |               |               |               |  |  |  |  |  |
|-------------------------------------------------------------------------------|-----------------|---------------|---------------|---------------|--|--|--|--|--|
| DETS Report No: 22-04511                                                      | Date Sampled    | 11/05/22      | 13/05/22      | 13/05/22      |  |  |  |  |  |
| Soil Consultants Ltd                                                          | Time Sampled    | None Supplied | None Supplied | None Supplied |  |  |  |  |  |
| Site Reference: Kneller Hall, 65 Kneller<br>Road, Twickenham, London, TW2 7DN | TP / BH No      | WS1/0.50      | HP1/0.70      | HP2/0.60      |  |  |  |  |  |
| Project / Job Ref: 10728/SG                                                   | Additional Refs | None Supplied | None Supplied | None Supplied |  |  |  |  |  |
| Order No: 10728/SG                                                            | Depth (m)       | 0.50          | 0.70          | 0.60          |  |  |  |  |  |
| Reporting Date: 30/05/2022                                                    | DETS Sample No  | 598604        | 598612        | 598613        |  |  |  |  |  |

| Determinand          | Unit  | RL     | Accreditation |        |        |        |  |
|----------------------|-------|--------|---------------|--------|--------|--------|--|
| Aliphatic >C5 - C6   | mg/kg | < 0.01 | NONE          | < 0.01 | < 0.01 | < 0.01 |  |
| Aliphatic >C6 - C8   | mg/kg | < 0.05 | NONE          | < 0.05 | < 0.05 | < 0.05 |  |
| Aliphatic >C8 - C10  | mg/kg | < 2    | MCERTS        | < 2    | < 2    | < 2    |  |
| Aliphatic >C10 - C12 | mg/kg | < 2    | MCERTS        | < 2    | < 2    | < 2    |  |
| Aliphatic >C12 - C16 | mg/kg | < 3    | MCERTS        | < 3    | < 3    | < 3    |  |
| Aliphatic >C16 - C21 | mg/kg | < 3    | MCERTS        | < 3    | < 3    | < 3    |  |
| Aliphatic >C21 - C34 | mg/kg | < 10   | MCERTS        | < 10   | < 10   | < 10   |  |
| Aliphatic (C5 - C34) | mg/kg | < 21   | NONE          | < 21   | < 21   | < 21   |  |
| Aromatic >C5 - C7    | mg/kg | < 0.01 | NONE          | < 0.01 | < 0.01 | < 0.01 |  |
| Aromatic >C7 - C8    | mg/kg | < 0.05 | NONE          | < 0.05 | < 0.05 | < 0.05 |  |
| Aromatic >C8 - C10   | mg/kg | < 2    | MCERTS        | < 2    | < 2    | < 2    |  |
| Aromatic >C10 - C12  | mg/kg | < 2    | MCERTS        | < 2    | < 2    | < 2    |  |
| Aromatic >C12 - C16  | mg/kg | < 2    | MCERTS        | < 2    | < 2    | < 2    |  |
| Aromatic >C16 - C21  | mg/kg | < 3    | MCERTS        | 3      | < 3    | 4      |  |
| Aromatic >C21 - C35  | mg/kg | < 10   | MCERTS        | < 10   | < 10   | < 10   |  |
| Aromatic (C5 - C35)  | mg/kg | < 21   | NONE          | < 21   | < 21   | < 21   |  |
| Total >C5 - C35      | mg/kg | < 42   | NONE          | < 42   | < 42   | < 42   |  |





| Soil Analysis Certificate - BTEX / MTBE  |                 |               |               |               |  |
|------------------------------------------|-----------------|---------------|---------------|---------------|--|
| DETS Report No: 22-04511                 | Date Sampled    | 11/05/22      | 13/05/22      | 13/05/22      |  |
| Soil Consultants Ltd                     | Time Sampled    | None Supplied | None Supplied | None Supplied |  |
| Site Reference: Kneller Hall, 65 Kneller | TP / BH No      | WS1/0.50      | HP1/0.70      | HP2/0.60      |  |
| Road, Twickenham, London, TW2 7DN        |                 |               |               |               |  |
|                                          |                 |               |               |               |  |
| Project / Job Ref: 10728/SG              | Additional Refs | None Supplied | None Supplied | None Supplied |  |
| Order No: 10728/SG                       | Depth (m)       | 0.50          | 0.70          | 0.60          |  |
| Reporting Date: 30/05/2022               | DETS Sample No  | 598604        | 598612        | 598613        |  |

| Determinand  | Unit  | RL  | Accreditation |     |     |     |  |
|--------------|-------|-----|---------------|-----|-----|-----|--|
| Benzene      | ug/kg | < 2 | MCERTS        | < 2 | < 2 | < 2 |  |
| Toluene      | ug/kg | < 5 | MCERTS        | < 5 | < 5 | < 5 |  |
| Ethylbenzene | ug/kg | < 2 | MCERTS        | < 2 | < 2 | < 2 |  |
| p & m-xylene | ug/kg | < 2 | MCERTS        | < 2 | < 2 | < 2 |  |
| o-xylene     | ug/kg | < 2 | MCERTS        | < 2 | < 2 | < 2 |  |
| MTBE         | ug/kg | < 5 | MCERTS        | < 5 | < 5 | < 5 |  |





| Soil Analysis Certificate - Volatile Organic | Compounds (VOC) |               |               |  |  |
|----------------------------------------------|-----------------|---------------|---------------|--|--|
| DETS Report No: 22-04511                     | Date Sampled    | 11/05/22      | 13/05/22      |  |  |
| Soil Consultants Ltd                         | Time Sampled    | None Supplied | None Supplied |  |  |
| Site Reference: Kneller Hall, 65 Kneller     | TP / BH No      | WS1/0.50      | HP1/0.70      |  |  |
| Road, Twickenham, London, TW2 7DN            |                 |               |               |  |  |
| Project / Job Ref: 10728/SG                  | Additional Refs | None Supplied | None Supplied |  |  |
| Order No: 10728/SG                           | Depth (m)       | 0.50          | 0.70          |  |  |
| Reporting Date: 30/05/2022                   | DETS Sample No  | 598604        | 598612        |  |  |

| Determinand                              | Unit           | RL          | Accreditation |             |             |                                                  |              |
|------------------------------------------|----------------|-------------|---------------|-------------|-------------|--------------------------------------------------|--------------|
| Dichlorodifluoromethane                  | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Vinyl Chloride                           | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Chloromethane                            | ug/kg          | < 10        | MCERTS        | < 10        | < 10        |                                                  |              |
| Chloroethane                             | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Bromomethane                             | ug/kg          | < 10        | MCERTS        | < 10        | < 10        |                                                  |              |
| Trichlorofluoromethane                   | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,1-Dichloroethene                       | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| MTBE                                     | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| trans-1,2-Dichloroethene                 | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,1-Dichloroethane                       | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| cis-1,2-Dichloroethene                   | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 2,2-Dichloropropane                      | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  | _            |
| Chloroform                               | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Bromochloromethane                       | ug/kg<br>ug/kg | < 5         | MCERTS        | < 5         | < 5         |                                                  | +            |
| 1,1,1-Trichloroethane                    | ug/kg<br>ug/kg | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
|                                          |                | < 10        | MCERTS        | < 10        | < 10        |                                                  |              |
| 1,1-Dichloropropene Carbon Tetrachloride | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,2-Dichloroethane                       | ug/kg          |             | MCERTS        |             |             |                                                  |              |
|                                          | ug/kg          | < 5         |               | < 5         | < 5         |                                                  |              |
| Benzene                                  | ug/kg          | < 2         | MCERTS        | < 2         | < 2         |                                                  |              |
| 1,2-Dichloropropane                      | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Trichloroethene                          | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Bromodichloromethane                     | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Dibromomethane                           | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| TAME                                     | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| cis-1,3-Dichloropropene                  | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Toluene                                  | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| trans-1,3-Dichloropropene                | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,1,2-Trichloroethane                    | ug/kg          | < 10        | MCERTS        | < 10        | < 10        |                                                  |              |
| 1,3-Dichloropropane                      | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Tetrachloroethene                        | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Dibromochloromethane                     | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,2-Dibromoethane                        | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Chlorobenzene                            | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,1,1,2-Tetrachloroethane                | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Ethyl Benzene                            | ug/kg          | < 2         | MCERTS        | < 2         | < 2         |                                                  |              |
| m,p-Xylene                               | ug/kg          | < 2         | MCERTS        | < 2         | < 2         |                                                  |              |
| o-Xylene                                 | ug/kg          | < 2         | MCERTS        | < 2         | < 2         |                                                  |              |
| Styrene                                  | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Bromoform                                | ug/kg          | < 10        | MCERTS        | < 10        | < 10        |                                                  |              |
| Isopropylbenzene                         | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,1,2,2-Tetrachloroethane                | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,2,3-Trichloropropane                   | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| n-Propylbenzene                          | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| Bromobenzene                             | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 2-Chlorotoluene                          | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,3,5-Trimethylbenzene                   | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  | 1            |
| 4-Chlorotoluene                          | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| tert-Butylbenzene                        | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |
| 1,2,4-Trimethylbenzene                   | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  | 1            |
| sec-Butylbenzene                         | ug/kg          | < 5         | MCERTS        | < 5         | < 5         | <del>                                     </del> | 1            |
| p-Isopropyltoluene                       | ug/kg          | < 5         | MCERTS        | < 5         | < 5         | <del>                                     </del> | 1            |
| 1,3-Dichlorobenzene                      | ug/kg          | < 5         | MCERTS        | < 5         | < 5         | <del>                                     </del> | +            |
| 1,4-Dichlorobenzene                      | ug/kg<br>ug/kg | < 5         | MCERTS        | < 5         | < 5         | <del>                                     </del> | +            |
| n-Butylbenzene                           | ug/kg<br>ug/kg | < 5         | MCERTS        | < 5         | < 5         | <del>                                     </del> | +            |
|                                          |                |             |               |             |             | <del>                                     </del> | 1            |
| 1,2-Dichlorobenzene                      | ug/kg          | < 5<br>< 10 | MCERTS        | < 5<br>< 10 | < 5<br>< 10 |                                                  | <b> </b>     |
| .,2-Dibromo-3-chloropropane              | ug/kg          |             | MCERTS        |             |             |                                                  | <del> </del> |
| Hexachlorobutadiene                      | ug/kg          | < 5         | MCERTS        | < 5         | < 5         |                                                  |              |





| Soil Analysis Certificate - Semi Volatile Org | anic Compounds (S | /OC)          |               |  |  |
|-----------------------------------------------|-------------------|---------------|---------------|--|--|
| DETS Report No: 22-04511                      | Date Sampled      | 11/05/22      | 13/05/22      |  |  |
| Soil Consultants Ltd                          | Time Sampled      | None Supplied | None Supplied |  |  |
| Site Reference: Kneller Hall, 65 Kneller      | TP / BH No        | WS1/0.50      | HP1/0.70      |  |  |
| Road, Twickenham, London, TW2 7DN             |                   |               |               |  |  |
| Project / Job Ref: 10728/SG                   | Additional Refs   | None Supplied | None Supplied |  |  |
| Order No: 10728/SG                            | Depth (m)         | 0.50          | 0.70          |  |  |
| Reporting Date: 30/05/2022                    | DETS Sample No    | 598604        | 598612        |  |  |

|                             |       |        |               |        |        | - |  |
|-----------------------------|-------|--------|---------------|--------|--------|---|--|
| Determinand                 | Unit  | RL     | Accreditation |        |        |   |  |
| Phenol                      | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| 1,2,4-Trichlorobenzene      | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |   |  |
| 2-Nitrophenol               | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| Nitrobenzene                | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| 0-Cresol                    | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| bis(2-chloroethoxy)methane  | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| bis(2-chloroethyl)ether     | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| 2,4-Dichlorophenol          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| 2-Chlorophenol              | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |   |  |
| 1,3-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |   |  |
| 1,4-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |   |  |
| 1,2-Dichlorobenzene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |   |  |
| 2,4-Dimethylphenol          | mg/kg | < 0.15 | ISO17025      | < 0.15 | < 0.15 |   |  |
| Isophorone                  | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| Hexachloroethane            | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| p-Cresol                    | mg/kg | < 0.15 | MCERTS        | < 0.15 | < 0.15 |   |  |
| 2,4,6-Trichlorophenol       | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| 2,4,5-Trichlorophenol       | mg/kg | < 0.15 | MCERTS        | < 0.15 | < 0.15 |   |  |
| 2-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| 4-Chloro-3-methylphenol     | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| 2-Methylnaphthalene         | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| Hexachlorocyclopentadiene   | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| Hexachlorobutadiene         | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |   |  |
| 2,6-Dinitrotoluene          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| Dimethyl phthalate          | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| 2-Chloronaphthalene         | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| 4-Chloroanaline             | mg/kg | < 0.15 | NONE          | < 0.15 | < 0.15 |   |  |
| 4-Nitrophenol               | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| 4-Chlorophenyl phenyl ether | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| 3-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| 4-Nitroaniline              | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| 4-Bromophenyl phenyl ether  | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| Hexachlorobenzene           | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| 2,4-Dinitrotoluene          | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| Diethyl phthalate           | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| Dibenzofuran                | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| Azobenzene                  | mg/kg | < 0.1  | NONE          | < 0.1  | < 0.1  |   |  |
| Dibutyl phthalate           | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |   |  |
| Carbazole                   | mg/kg | < 0.1  | ISO17025      | < 0.1  | < 0.1  |   |  |
| bis(2-ethylhexyl)phthalate  | mg/kg | < 0.15 | MCERTS        | < 0.15 | < 0.15 |   |  |
| Benzyl butyl phthalate      | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |
| Di-n-octyl phthalate        | mg/kg | < 0.1  | MCERTS        | < 0.1  | < 0.1  |   |  |



Tel: 01622 850410

| Soil Analysis Certificate - PCB (7 Congener | s)              |               |  |  |
|---------------------------------------------|-----------------|---------------|--|--|
| DETS Report No: 22-04511                    | Date Sampled    | 13/05/22      |  |  |
| Soil Consultants Ltd                        | Time Sampled    | None Supplied |  |  |
| Site Reference: Kneller Hall, 65 Kneller    | TP / BH No      | HP1/0.70      |  |  |
| Road, Twickenham, London, TW2 7DN           |                 |               |  |  |
|                                             |                 |               |  |  |
| Project / Job Ref: 10728/SG                 | Additional Refs | None Supplied |  |  |
| Order No: 10728/SG                          | Depth (m)       | 0.70          |  |  |
| Reporting Date: 30/05/2022                  | DETS Sample No  | 598612        |  |  |

| Determinand             | Unit  | RL    | Accreditation |         |  |  |
|-------------------------|-------|-------|---------------|---------|--|--|
| PCB Congener 28         | mg/kg | 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 52         | mg/kg | 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 101        | mg/kg | 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 118        | mg/kg | 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 138        | mg/kg | 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 153        | mg/kg | 0.008 | NONE          | < 0.008 |  |  |
| PCB Congener 180        | mg/kg | 0.008 | NONE          | < 0.008 |  |  |
| Total PCB (7 Congeners) | ma/ka | < 0.1 | NONE          | < 0.1   |  |  |





| DETS Report No: 22-04511                                     |              | Date<br>Sampled    | 11/05/22         |                   | Landfill Was | te Acceptance (                        | Criteria Limit    |
|--------------------------------------------------------------|--------------|--------------------|------------------|-------------------|--------------|----------------------------------------|-------------------|
| Soil Consultants Ltd                                         |              | Time<br>Sampled    | None<br>Supplied |                   |              |                                        |                   |
| Site Reference: Kneller Hall,<br>Road, Twickenham, London, T |              | TP / BH No         | WS9/0.40         |                   |              | Stable Non-                            |                   |
| Project / Job Ref: 10728/SG                                  |              | Additional<br>Refs | None<br>Supplied |                   | Inert Waste  |                                        | Hazardou<br>Waste |
| Order No: 10728/SG                                           |              | Depth (m)          | 0.40             |                   | Landfill     | waste in non-<br>hazardous<br>Landfill | Landfill          |
| Reporting Date: 30/05/2022                                   | 2            | DETS<br>Sample No  | 598603           |                   |              | Lanum                                  |                   |
| Determinand                                                  | Unit         | MDL                |                  |                   |              |                                        |                   |
| TOC <sup>MU</sup>                                            | %            | < 0.1              | 2.4              |                   | 3%           | 5%                                     | 6%                |
| Loss on Ignition                                             | %            | < 0.01             | 3.60             |                   |              |                                        | 10%               |
| BTEX <sup>MU</sup>                                           | mg/kg        | < 0.05             | < 0.05           |                   | 6            |                                        |                   |
| Sum of PCBs                                                  | mg/kg        | < 0.1              | < 0.1            |                   | 1            |                                        |                   |
| Mineral Oil <sup>MU</sup>                                    | mg/kg        | < 10               | < 10             |                   | 500          |                                        |                   |
| Total PAH <sup>MU</sup>                                      | mg/kg        | < 1.7              | < 1.7            |                   | 100          |                                        |                   |
| pH <sup>MU</sup>                                             | pH Units     | N/a                | 7.6              |                   |              | >6                                     |                   |
| Acid Neutralisation Capacity                                 | mol/kg (+/-) | < 1                | < 1              |                   |              | To be                                  | To be evaluated   |
| Eluate Analysis                                              |              |                    | 10:1             | Cumulativ<br>10:1 |              | for compliance<br>N 12457-3 at I       | leaching te       |
| Liuate Analysis                                              |              |                    | mg/l             | mg/kg             | using by     | (mg/kg)                                | L/3 10 I/ Kg      |
| Arsenic <sup>U</sup>                                         | 1            |                    | < 0.01           | < 0.1             | 0.5          | (mg/kg)                                | 25                |
| Barium <sup>U</sup>                                          | -            |                    | < 0.02           | < 0.2             | 20           | 100                                    | 300               |
| Cadmium <sup>U</sup>                                         | -            |                    | < 0.005          | < 0.005           | 0.04         | 1                                      | 5                 |
| Chromium <sup>U</sup>                                        | ┨            |                    | < 0.005          | < 0.05            | 0.5          | 10                                     | 70                |
| Copper <sup>U</sup>                                          | -            |                    | < 0.003          | < 0.05            | 2            | 50                                     | 100               |
|                                                              | -            |                    |                  |                   | 0.01         |                                        |                   |
| Mercury <sup>U</sup>                                         | -            |                    | < 0.0005         | < 0.005           |              | 0.2                                    | 2                 |
| Molybdenum <sup>U</sup>                                      | -            |                    | 0.001            | 0.01              | 0.5          | 10                                     | 30                |
| Nickel <sup>U</sup>                                          | _            |                    | < 0.007          | < 0.07            | 0.4          | 10                                     | 40                |
| Lead <sup>U</sup>                                            | _            |                    | < 0.005          | < 0.05            | 0.5          | 10                                     | 50                |
| Antimony <sup>U</sup>                                        | 4            |                    | < 0.005          | < 0.05            | 0.06         | 0.7                                    | 5                 |
| Selenium <sup>U</sup>                                        | _            |                    | < 0.005          | < 0.05            | 0.1          | 0.5                                    | 7                 |
| Zinc <sup>U</sup>                                            | _            |                    | 0.008            | 0.08              | 4            | 50                                     | 200               |
| Chloride <sup>U</sup>                                        |              |                    | 1.2              | 12                | 800          | 15000                                  | 25000             |
| Fluoride <sup>U</sup>                                        |              |                    | < 0.5            | < 5               | 10           | 150                                    | 500               |
| Sulphate <sup>U</sup>                                        |              |                    | 1.2              | 12                | 1000         | 20000                                  | 50000             |
| TDS                                                          |              |                    | 24               | 240               | 4000         | 60000                                  | 100000            |
| Phenol Index                                                 |              |                    | < 0.01           | < 0.1             | 1            | -                                      | -                 |
| DOC                                                          |              |                    | 3.3              | 32.7              | 500          | 800                                    | 1000              |
| Leach Test Information                                       |              |                    |                  |                   |              |                                        |                   |
|                                                              |              |                    |                  |                   |              |                                        |                   |
|                                                              |              |                    |                  |                   |              |                                        |                   |
|                                                              |              |                    |                  |                   |              |                                        |                   |
|                                                              |              |                    |                  |                   | 1            |                                        |                   |
| Sample Mass (kg)                                             |              |                    | 0.10             |                   | <b>⊣</b>     |                                        |                   |
| Dry Matter (%)                                               |              |                    | 88.7             |                   | 4            |                                        |                   |
| Moisture (%)                                                 |              |                    | 12.8             |                   |              |                                        |                   |
| Stage 1                                                      |              |                    |                  |                   |              |                                        |                   |
| Volume Eluate L10 (litres)                                   |              |                    | 0.89             |                   | 4            |                                        |                   |
|                                                              |              |                    |                  |                   | -1           |                                        |                   |
|                                                              |              |                    |                  |                   | I            |                                        |                   |
|                                                              |              |                    |                  |                   |              |                                        |                   |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or aseceived portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation





| DETS Report No: 22-04511                                     |              | Date<br>Sampled    | 10/05/22         |                   | Landfill Was | te Acceptance                          | Criteria Limi     |
|--------------------------------------------------------------|--------------|--------------------|------------------|-------------------|--------------|----------------------------------------|-------------------|
| Soil Consultants Ltd                                         |              | Time<br>Sampled    | None<br>Supplied |                   |              |                                        |                   |
| Site Reference: Kneller Hall,<br>Road, Twickenham, London, T |              | TP / BH No         | WS2/0.80         |                   |              | Stable Non-                            |                   |
| Project / Job Ref: 10728/SG                                  |              | Additional<br>Refs | None<br>Supplied |                   | Inert Waste  |                                        | Hazardou<br>Waste |
| Order No: 10728/SG                                           |              | Depth (m)          | 0.80             |                   | Landfill     | waste in non-<br>hazardous<br>Landfill | Landfill          |
| Reporting Date: 30/05/2022                                   |              | DETS<br>Sample No  | 598608           |                   |              | Landini                                |                   |
| Determinand                                                  | Unit         | MDL                |                  |                   |              |                                        |                   |
| TOC <sup>MU</sup>                                            | %            | < 0.1              | 1                |                   | 3%           | 5%                                     | 6%                |
| Loss on Ignition                                             | %            | < 0.01             | 3.80             |                   |              |                                        | 10%               |
| BTEX <sup>MU</sup>                                           | mg/kg        | < 0.05             | < 0.05           |                   | 6            |                                        |                   |
| Sum of PCBs                                                  | mg/kg        | < 0.1              | < 0.1            |                   | 1            |                                        |                   |
| Mineral Oil <sup>MU</sup>                                    | mg/kg        | < 10               | < 10             |                   | 500          |                                        |                   |
| Total PAH <sup>MU</sup>                                      | mg/kg        | < 1.7              | < 1.7            |                   | 100          |                                        |                   |
| pH <sup>MU</sup>                                             | pH Units     | N/a                | 7.4              |                   |              | >6                                     |                   |
| Acid Neutralisation Capacity                                 | mol/kg (+/-) | < 1                | < 1              |                   |              | To be                                  | To be evaluated   |
| Eluate Analysis                                              | •            |                    | 10:1             | Cumulativ<br>10:1 |              | for compliance<br>EN 12457-3 at        | leaching te       |
| Eluace Allarysis                                             |              |                    | mg/l             | mg/kg             | using bo     | (mg/kg)                                | L/ 5 10 1/ kg     |
| Arsenic <sup>U</sup>                                         |              |                    | < 0.01           | < 0.1             | 0.5          | 2                                      | 25                |
| Barium <sup>U</sup>                                          | -            |                    | < 0.02           | < 0.2             | 20           | 100                                    | 300               |
| Cadmium <sup>U</sup>                                         | -            |                    | < 0.0005         | < 0.005           | 0.04         | 1                                      | 5                 |
| Chromium <sup>U</sup>                                        | ┨            |                    | < 0.005          | < 0.05            | 0.5          | 10                                     | 70                |
| Copper <sup>U</sup>                                          | $\dashv$     |                    | < 0.003          | < 0.1             | 2            | 50                                     | 100               |
| Mercury <sup>U</sup>                                         | -            |                    | < 0.005          | < 0.005           | 0.01         | 0.2                                    | 2                 |
|                                                              | -            |                    |                  |                   | 0.01         | 10                                     |                   |
| Molybdenum <sup>U</sup>                                      | -            |                    | 0.001            | 0.01              |              |                                        | 30                |
| Nickel <sup>U</sup>                                          |              |                    | < 0.007          | < 0.07            | 0.4          | 10                                     | 40                |
| Lead <sup>U</sup>                                            | 4            |                    | < 0.005          | < 0.05            | 0.5          | 10                                     | 50                |
| Antimony <sup>U</sup>                                        | 4            |                    | < 0.005          | < 0.05            | 0.06         | 0.7                                    | 5                 |
| Selenium <sup>U</sup>                                        | 4            |                    | < 0.005          | < 0.05            | 0.1          | 0.5                                    | 7                 |
| Zinc <sup>U</sup>                                            | _            |                    | < 0.005          | < 0.05            | 4            | 50                                     | 200               |
| Chloride <sup>U</sup>                                        |              |                    | 2.8              | 28                | 800          | 15000                                  | 25000             |
| Fluoride <sup>U</sup>                                        |              |                    | < 0.5            | < 5               | 10           | 150                                    | 500               |
| Sulphate <sup>U</sup>                                        |              |                    | 2.5              | 25                | 1000         | 20000                                  | 50000             |
| TDS                                                          |              |                    | 34               | 340               | 4000         | 60000                                  | 100000            |
| Phenol Index                                                 |              |                    | < 0.01           | < 0.1             | 1            | -                                      | -                 |
| DOC                                                          |              |                    | 3.1              | 31.1              | 500          | 800                                    | 1000              |
| Leach Test Information                                       |              |                    |                  |                   |              |                                        |                   |
|                                                              |              |                    |                  |                   |              |                                        |                   |
|                                                              |              |                    |                  |                   | _            |                                        |                   |
|                                                              |              |                    |                  |                   |              |                                        |                   |
|                                                              |              |                    |                  |                   | 1            |                                        |                   |
| Sample Mass (kg)                                             |              |                    | 0.10             |                   | _            |                                        |                   |
| Dry Matter (%)                                               |              |                    | 85.8             |                   | _            |                                        |                   |
| Moisture (%)                                                 |              |                    | 16.6             |                   | _            |                                        |                   |
| Stage 1                                                      |              |                    |                  |                   |              |                                        |                   |
| Volume Eluate L10 (litres)                                   |              |                    | 0.88             |                   | 4            |                                        |                   |
|                                                              |              |                    |                  |                   | -            |                                        |                   |
|                                                              |              |                    |                  |                   | 1            |                                        |                   |
|                                                              |              |                    |                  |                   | _            |                                        |                   |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or aseceived portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation





|                                                              |              | Date               |                  |           |                |                         |                    |
|--------------------------------------------------------------|--------------|--------------------|------------------|-----------|----------------|-------------------------|--------------------|
| DETS Report No: 22-04511                                     |              | Sampled            | 09/05/22         |           | Landfill Was   | te Acceptance           | Criteria Limi      |
| Soil Consultants Ltd                                         |              | Time<br>Sampled    | None<br>Supplied |           |                |                         |                    |
| Site Reference: Kneller Hall,<br>Road, Twickenham, London, 1 |              | TP / BH No         | BH02/1.60        |           |                | Stable Non-<br>reactive |                    |
| Project / Job Ref: 10728/SG                                  |              | Additional<br>Refs | None<br>Supplied |           | Inert Waste    |                         | Hazardous<br>Waste |
| Order No: 10728/SG                                           |              | Depth (m)          | 0.80             |           |                | hazardous<br>Landfill   | Landfill           |
| Reporting Date: 30/05/2022                                   | 2            | DETS<br>Sample No  | 598611           |           |                |                         |                    |
| Determinand                                                  | Unit         |                    |                  |           |                |                         |                    |
| TOC <sup>MU</sup>                                            | %            | < 0.1              | 0.5              |           | 3%             | 5%                      | 6%                 |
| Loss on Ignition                                             | %            | < 0.01             | 2.80             |           |                |                         | 10%                |
| BTEX <sup>MU</sup>                                           | mg/kg        | < 0.05             | < 0.05           |           | 6              |                         |                    |
| Sum of PCBs                                                  | mg/kg        | < 0.1              | < 0.1            |           | 1 500          |                         |                    |
| Mineral Oil <sup>MU</sup>                                    | mg/kg        | < 10               | < 10             |           | 500            |                         |                    |
| Total PAH <sup>MU</sup>                                      | mg/kg        | < 1.7              | < 1.7            |           | 100            |                         |                    |
| pH <sup>MU</sup>                                             | pH Units     | N/a                | 7.5              |           |                | >6<br>To be             | To bo              |
| Acid Neutralisation Capacity                                 | mol/kg (+/-) | < 1                | < 1              |           |                | evaluated               | To be evaluated    |
|                                                              | -            |                    | 10:1             | Cumulativ | e Limit values | for compliance          |                    |
| Eluate Analysis                                              |              |                    |                  | 10:1      | using BS       | EN 12457-3 at           | L/S 10 l/kg        |
|                                                              |              |                    | mg/l             | mg/kg     |                | (mg/kg)                 |                    |
| Arsenic <sup>U</sup>                                         |              |                    | < 0.01           | < 0.1     | 0.5            | 2                       | 25                 |
| Barium <sup>U</sup>                                          |              |                    | 0.03             | 0.3       | 20             | 100                     | 300                |
| Cadmium <sup>U</sup>                                         | _            |                    | < 0.0005         | < 0.005   | 0.04           | 1                       | 5                  |
| Chromium <sup>U</sup>                                        |              |                    | < 0.005          | < 0.05    | 0.5            | 10                      | 70                 |
| Copper <sup>U</sup>                                          |              |                    | < 0.01           | < 0.1     | 2              | 50                      | 100                |
| Mercury <sup>U</sup>                                         | _            |                    | < 0.0005         | < 0.005   | 0.01           | 0.2                     | 2                  |
| Molybdenum <sup>U</sup>                                      |              |                    | 0.002            | 0.02      | 0.5            | 10                      | 30                 |
| Nickel <sup>U</sup>                                          | _            |                    | < 0.007          | < 0.07    | 0.4            | 10                      | 40                 |
| Lead <sup>U</sup>                                            |              |                    | < 0.005          | < 0.05    | 0.5            | 10                      | 50                 |
| Antimony <sup>U</sup>                                        | _            |                    | < 0.005          | < 0.05    | 0.06           | 0.7                     | 5                  |
| Selenium <sup>U</sup>                                        | _            |                    | < 0.005          | < 0.05    | 0.1            | 0.5                     | 7                  |
| Zinc <sup>U</sup>                                            | _            |                    | < 0.005          | < 0.05    | 4              | 50                      | 200                |
| Chloride <sup>U</sup>                                        | <b>⊣</b>     |                    | 1.5              | 15        | 800            | 15000                   | 25000              |
| Fluoride <sup>U</sup>                                        | <b>⊣</b>     |                    | 0.6              | 6.1       | 10             | 150                     | 500                |
| Sulphate <sup>U</sup>                                        | 4            |                    | 3.8              | 38        | 1000           | 20000                   | 50000              |
| TDS                                                          | 4            |                    | 40               | 400       | 4000           | 60000                   | 100000             |
| Phenol Index                                                 | 4            |                    | < 0.01           | < 0.1     | 1              | -                       |                    |
| DOC                                                          |              |                    | 7.8              | 77.8      | 500            | 800                     | 1000               |
| Leach Test Information                                       |              |                    |                  |           | _              |                         |                    |
|                                                              |              |                    |                  |           |                |                         |                    |
|                                                              |              |                    |                  | +         | 4              |                         |                    |
|                                                              |              |                    |                  |           |                |                         |                    |
|                                                              |              |                    |                  | +         | 4              |                         |                    |
| County Mass (lee)                                            |              |                    | 0.10             | +         | _              |                         |                    |
| Sample Mass (kg)                                             |              |                    | 0.10             | +         | 4              |                         |                    |
| Dry Matter (%)                                               |              |                    | 86.1             | +         | _              |                         |                    |
| Moisture (%)                                                 |              |                    | 16.2             | +         | _              |                         |                    |
| Stage 1                                                      |              |                    | 0.00             |           | _              |                         |                    |
| Volume Eluate L10 (litres)                                   |              |                    | 0.88             | + + -     |                |                         |                    |
|                                                              |              |                    |                  | + + -     | $\dashv$       |                         |                    |
|                                                              |              |                    | I                |           |                |                         |                    |
|                                                              |              |                    |                  |           | _              |                         |                    |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or aseceived portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation





| DETS Report No: 22-04511                                   |              | Date<br>Sampled    | None              |                  | Landfill Was | te Acceptance (            | Criteria Limit     |
|------------------------------------------------------------|--------------|--------------------|-------------------|------------------|--------------|----------------------------|--------------------|
| Soil Consultants Ltd                                       |              | Time<br>Sampled    | None<br>Supplied  |                  |              |                            |                    |
| Site Reference: Kneller Hall,<br>Road, Twickenham, London, |              | TP / BH No         | Supplied<br>BH01  |                  |              | Stable Non-                |                    |
| Project / Job Ref: 10728/SG                                |              | Additional<br>Refs | None<br>Supplied  |                  | Inert Waste  | reactive<br>HAZARDOUS      | Hazardous<br>Waste |
| Order No: 10728/SG                                         |              | Depth (m)          | 0.80              |                  | Landfill     | waste in non-<br>hazardous | Landfill           |
| Reporting Date: 30/05/2022                                 | 2            | DETS<br>Sample No  | 598614            |                  |              | Landfill                   |                    |
| Determinand                                                | Unit         |                    |                   |                  |              |                            |                    |
| TOC <sup>MU</sup>                                          | %            |                    | 2.4               |                  | 3%           | 5%                         | 6%                 |
| Loss on Ignition                                           | %            | < 0.01             | 4.20              |                  |              |                            | 10%                |
| BTEX <sup>MU</sup>                                         | mg/kg        | < 0.05             | < 0.05            |                  | 6            |                            | 1                  |
| Sum of PCBs                                                | mg/kg        | < 0.1              | < 0.1             |                  | 1            |                            |                    |
| Mineral Oil <sup>MU</sup>                                  | mg/kg        | < 10               | < 10              |                  | 500          |                            |                    |
| Total PAH <sup>MU</sup>                                    | mg/kg        | < 1.7              | 27.2              |                  | 100          |                            |                    |
| pH <sup>MU</sup>                                           | pH Units     | N/a                | 6.5               |                  |              | >6                         |                    |
| Acid Neutralisation Capacity                               | mol/kg (+/-) | < 1                | < 1               |                  |              | To be<br>evaluated         | To be<br>evaluated |
|                                                            |              |                    | 10:1              | Cumulativ        |              | for compliance             |                    |
| Eluate Analysis                                            |              |                    |                   | 10:1             | using BS     | EN 12457-3 at I            | ./S 10 l/kg        |
|                                                            |              |                    | mg/l              | mg/kg            |              | (mg/kg)                    |                    |
| Arsenic <sup>U</sup>                                       | _            |                    | < 0.01            | < 0.1            | 0.5          | 2                          | 25                 |
| Barium <sup>U</sup>                                        | _            |                    | < 0.02            | < 0.2            | 20           | 100                        | 300                |
| Cadmium <sup>U</sup>                                       | _            |                    | < 0.0005          | < 0.005          | 0.04         | 1                          | 5                  |
| Chromium <sup>U</sup>                                      |              |                    | < 0.005           | < 0.05           | 0.5          | 10                         | 70                 |
| Copper <sup>U</sup>                                        | -            |                    | < 0.01            | < 0.1            | 0.01         | 50                         | 100                |
| Mercury <sup>U</sup>                                       |              |                    | < 0.0005<br>0.001 | < 0.005          | 0.01         | 0.2<br>10                  | 30                 |
| Molybdenum <sup>U</sup><br>Nickel <sup>U</sup>             |              |                    | < 0.007           | 0.01<br>< 0.07   | 0.4          | 10                         | 40                 |
| Lead <sup>U</sup>                                          | -            |                    | < 0.007           | < 0.05           | 0.5          | 10                         | 50                 |
| Antimony <sup>U</sup>                                      |              |                    | < 0.005           | < 0.05           | 0.06         | 0.7                        | 5                  |
| Selenium <sup>U</sup>                                      | -            |                    | < 0.005           |                  | 0.1          | 0.5                        | 7                  |
| Zinc <sup>U</sup>                                          |              |                    | < 0.005           | < 0.05<br>< 0.05 | 4            | 50                         | 200                |
| Zinc <sup>-</sup><br>Chloride <sup>U</sup>                 | ⊣            |                    | 1.6               | < 0.05<br>16     | 800          | 15000                      | 25000              |
| Cnioride <sup>u</sup>                                      | <b>⊣</b>     |                    | < 0.5             | < 5              | 10           | 15000                      | 500                |
| Fluoride <sup>s</sup><br>Sulphate <sup>U</sup>             | ⊣            |                    | 3.5               | 35               | 1000         | 20000                      | 50000              |
| TDS                                                        | ┥            |                    | 30                | 300              | 4000         | 60000                      | 100000             |
| Phenol Index                                               | -            |                    | < 0.01            | < 0.1            | 1            | -                          | -                  |
| DOC                                                        | ┪            |                    | 4.1               | 41.2             | 500          | 800                        | 1000               |
| Leach Test Information                                     | •            |                    |                   | 11.2             | 1 300        |                            | 1000               |
|                                                            |              |                    |                   |                  | 1            |                            |                    |
|                                                            | 1            |                    |                   |                  | 1            |                            |                    |
|                                                            |              |                    |                   |                  | ┑            |                            |                    |
|                                                            |              |                    |                   |                  |              |                            |                    |
|                                                            |              |                    |                   |                  | 7            |                            |                    |
| Sample Mass (kg)                                           |              |                    | 0.11              |                  | 1            |                            |                    |
| Dry Matter (%)                                             |              |                    | 82.8              |                  | 7            |                            |                    |
| Moisture (%)                                               |              |                    | 20.8              |                  | 7            |                            |                    |
| Stage 1                                                    |              |                    |                   |                  |              |                            |                    |
| Volume Eluate L10 (litres)                                 |              |                    | 0.88              |                  |              |                            |                    |
| , ,                                                        |              |                    |                   |                  |              |                            |                    |
|                                                            |              |                    |                   |                  |              |                            |                    |
|                                                            |              |                    |                   |                  |              |                            |                    |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or aseceived portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation





| DETS Report No: 22-04511 Date Sampled  Soil Consultants Ltd Time Sampled               |              |                    | None                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Landfill Waste Acceptance Criteria Limits |                                        |                    |
|----------------------------------------------------------------------------------------|--------------|--------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|--------------------|
|                                                                                        |              |                    | Supplied<br>None<br>Supplied |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |                    |
| Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN  TP / BH No |              |                    | ВН03                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Stable Non-                            |                    |
| Project / Job Ref: 10728/SG                                                            |              | Additional<br>Refs | None<br>Supplied             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inert Waste<br>Landfill                   | reactive<br>HAZARDOUS                  | Hazardous<br>Waste |
| Order No: 10728/SG                                                                     |              | Depth (m)          | 508615                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | waste in non-<br>hazardous<br>Landfill | Landfill           |
| Reporting Date: 30/05/2022                                                             | 2            | DETS<br>Sample No  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |                    |
| Determinand                                                                            | Unit         | MDL                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |                    |
| TOC <sup>MU</sup>                                                                      | %            | < 0.1              | 0.6                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3%                                        | 5%                                     | 6%                 |
| Loss on Ignition                                                                       | %            | < 0.01             | 2.10                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        | 10%                |
| BTEX <sup>MU</sup>                                                                     | mg/kg        | < 0.05             | < 0.05                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                         |                                        |                    |
| Sum of PCBs                                                                            | mg/kg        | < 0.1              | < 0.1                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
| Mineral Oil MU                                                                         | mg/kg        | < 10               | < 10                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500                                       |                                        |                    |
| Total PAH <sup>MU</sup>                                                                | mg/kg        | < 1.7              | < 1.7                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                       |                                        |                    |
| pH <sup>MU</sup>                                                                       | pH Units     | N/a                | 7.5                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | >6                                     | <br>               |
| Acid Neutralisation Capacity                                                           | mol/kg (+/-) | < 1                | < 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | To be evaluated                        | To be evaluated    |
|                                                                                        |              |                    | 10:1                         | Cumulativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | for compliance                         |                    |
| Eluate Analysis                                                                        |              |                    | //                           | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | using BS                                  | EN 12457-3 at I                        | L/S 10 I/kg        |
| !!                                                                                     |              |                    | mg/l                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                       | (mg/kg)                                | 25                 |
| Arsenic <sup>U</sup>                                                                   | _            |                    | < 0.01                       | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5                                       | 2                                      | 25                 |
| Barium <sup>U</sup>                                                                    | _            |                    | < 0.02                       | < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                        | 100                                    | 300                |
| Cadmium <sup>U</sup>                                                                   | _            |                    | < 0.0005                     | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.04                                      | 1                                      | 5                  |
| Chromium <sup>U</sup>                                                                  | =            |                    | < 0.005                      | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                       | 10                                     | 70                 |
| Copper <sup>U</sup>                                                                    | -            |                    | < 0.01                       | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01                                      | 50                                     | 100                |
| Mercury <sup>U</sup>                                                                   |              |                    | < 0.0005<br>0.002            | < 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                      | 0.2<br>10                              | 30                 |
| Molybdenum <sup>U</sup><br>Nickel <sup>U</sup>                                         |              |                    | < 0.002                      | 0.02<br>< 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4                                       | 10                                     | 40                 |
| Lead <sup>U</sup>                                                                      | -            |                    | < 0.007                      | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                       | 10                                     | 50                 |
| Antimony <sup>U</sup>                                                                  |              |                    | < 0.005                      | < 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.06                                      | 0.7                                    | 5                  |
| Selenium <sup>U</sup>                                                                  | -            |                    | < 0.005                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1                                       | 0.5                                    | 7                  |
| Zinc <sup>U</sup>                                                                      |              |                    | < 0.005                      | < 0.05<br>< 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                         | 50                                     | 200                |
| Zinc************************************                                               | $\dashv$     |                    | 1.6                          | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 800                                       | 15000                                  | 25000              |
| Cnioride <sup>u</sup>                                                                  | <b>⊣</b>     |                    | < 0.5                        | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                        | 15000                                  | 500                |
| Sulphate <sup>U</sup>                                                                  | $\dashv$     |                    | 2.0                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1000                                      | 20000                                  | 50000              |
| TDS                                                                                    | -1           |                    | 59                           | 590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4000                                      | 60000                                  | 100000             |
| Phenol Index                                                                           | -            |                    | < 0.01                       | < 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                         | -                                      | -                  |
| DOC                                                                                    | ┪            |                    | 3.4                          | 33.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500                                       | 800                                    | 1000               |
| Leach Test Information                                                                 | •            |                    | . J                          | 33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300                                       |                                        | 1000               |
|                                                                                        | 1            |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
|                                                                                        |              |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
|                                                                                        | _            |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                         |                                        |                    |
|                                                                                        |              |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |                    |
|                                                                                        |              |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
| Sample Mass (kg)                                                                       |              |                    | 0.10                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
| Dry Matter (%)                                                                         |              |                    | 88.1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
| Moisture (%)                                                                           |              |                    | 13.4                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
| Stage 1                                                                                |              |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
| Volume Eluate L10 (litres)                                                             |              |                    | 0.89                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
| - \/                                                                                   |              |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                         |                                        |                    |
|                                                                                        |              |                    |                              | The state of the s | 7                                         |                                        |                    |
|                                                                                        |              |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                        |                    |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or aseceived portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation





| DETS Report No: 22-04511  Soil Consultants Ltd  Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN  TP / BH No |              |                   | 12/05/22                |                                                  | Landfill Waste Acceptance Criteria Limits |                       |                    |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------------------------|--------------------------------------------------|-------------------------------------------|-----------------------|--------------------|
|                                                                                                                                        |              |                   | None<br>Supplied<br>WS4 |                                                  |                                           | Stable Non-           |                    |
|                                                                                                                                        |              |                   |                         |                                                  |                                           |                       |                    |
| Order No: 10728/SG                                                                                                                     |              | Depth (m)         | (m) 0.20                |                                                  |                                           | hazardous<br>Landfill | Landfill           |
| Reporting Date: 30/05/2022                                                                                                             | 2            | DETS<br>Sample No |                         |                                                  |                                           |                       |                    |
| Determinand                                                                                                                            | Unit         | MDL               |                         |                                                  |                                           |                       |                    |
| TOC <sup>MU</sup>                                                                                                                      | %            | < 0.1             | 1.5                     |                                                  | 3%                                        | 5%                    | 6%                 |
| Loss on Ignition                                                                                                                       | %            | < 0.01            | 3.90                    |                                                  |                                           |                       | 10%                |
| BTEX <sup>MU</sup>                                                                                                                     | mg/kg        | < 0.05            | < 0.05                  |                                                  | 6                                         |                       |                    |
| Sum of PCBs                                                                                                                            | mg/kg        | < 0.1             | < 0.1                   |                                                  | 1                                         |                       |                    |
| Mineral Oil <sup>MU</sup>                                                                                                              | mg/kg        | < 10              | < 10                    |                                                  | 500                                       |                       |                    |
| Total PAH <sup>MU</sup>                                                                                                                | mg/kg        | < 1.7             | 22.7                    |                                                  | 100                                       |                       |                    |
| pH <sup>MU</sup>                                                                                                                       | pH Units     | N/a               | 5.5                     |                                                  |                                           | >6                    |                    |
| Acid Neutralisation Capacity                                                                                                           | mol/kg (+/-) | < 1               | < 1                     |                                                  |                                           | To be<br>evaluated    | To be<br>evaluated |
|                                                                                                                                        |              |                   | 10:1                    | Cumulativ                                        |                                           | for compliance        |                    |
| Eluate Analysis                                                                                                                        |              |                   | //                      | 10:1                                             | using BS I                                | EN 12457-3 at I       | ./S 10 I/kg        |
| !!                                                                                                                                     | _            |                   | mg/l                    | mg/kg                                            | 0.5                                       | (mg/kg)               | 25                 |
| Arsenic <sup>U</sup>                                                                                                                   | 4            |                   | < 0.01                  | < 0.1                                            | 0.5                                       | 2                     | 25                 |
| Barium <sup>U</sup>                                                                                                                    | 4            |                   | < 0.02                  | < 0.2                                            | 20                                        | 100                   | 300                |
| Cadmium <sup>U</sup>                                                                                                                   | _            |                   | < 0.0005                | < 0.005                                          | 0.04                                      | 1                     | 5                  |
| Chromium <sup>U</sup>                                                                                                                  | _            |                   | < 0.005<br>< 0.01       | < 0.05<br>< 0.1                                  | 0.5                                       | 10<br>50              | 70<br>100          |
| Copper <sup>U</sup>                                                                                                                    | -            |                   | < 0.005                 |                                                  | 0.01                                      | 0.2                   | 2                  |
| Mercury <sup>U</sup><br>Molybdenum <sup>U</sup>                                                                                        | -            |                   | < 0.0003                | < 0.005                                          | 0.01                                      | 10                    | 30                 |
| Mickel <sup>U</sup>                                                                                                                    | -            |                   | < 0.001                 | < 0.01<br>< 0.07                                 | 0.4                                       | 10                    | 40                 |
| Lead <sup>U</sup>                                                                                                                      | -            |                   | < 0.007                 | < 0.05                                           | 0.5                                       | 10                    | 50                 |
| Antimony <sup>U</sup>                                                                                                                  | -            |                   | < 0.005                 | < 0.05                                           | 0.06                                      | 0.7                   | 5                  |
| Selenium <sup>U</sup>                                                                                                                  | -            |                   | < 0.005                 |                                                  | 0.00                                      | 0.5                   | 7                  |
| Zinc <sup>U</sup>                                                                                                                      | -            |                   | 0.010                   | < 0.05<br>0.10                                   | 4                                         | 50                    | 200                |
| Zinc <sup>-</sup><br>Chloride <sup>U</sup>                                                                                             | ⊣            |                   | 1.4                     | 14                                               | 800                                       | 15000                 | 25000              |
| Cnioride <sup>0</sup>                                                                                                                  | ⊣            |                   | < 0.5                   | < 5                                              | 10                                        | 15000                 | 500                |
| Fluoride <sup>s</sup> Sulphate <sup>U</sup>                                                                                            | ⊣            |                   | < 1.0                   | < 10                                             | 1000                                      | 20000                 | 50000              |
| TDS                                                                                                                                    | ⊣            |                   | 15                      | 150                                              | 4000                                      | 60000                 | 100000             |
| Phenol Index                                                                                                                           | 1            |                   | < 0.01                  | < 0.1                                            | 1                                         | -                     | -                  |
| DOC                                                                                                                                    | -            |                   | 2.6                     | 25.9                                             | 500                                       | 800                   | 1000               |
| Leach Test Information                                                                                                                 | •            |                   | 2.0                     | 23.9                                             | 300                                       | 000                   | 1000               |
|                                                                                                                                        | 1            |                   |                         |                                                  | ┪                                         |                       |                    |
|                                                                                                                                        | 1            |                   |                         |                                                  | 1                                         |                       |                    |
|                                                                                                                                        | -            |                   |                         | <del>                                     </del> | ┪                                         |                       |                    |
|                                                                                                                                        |              |                   |                         |                                                  |                                           |                       |                    |
|                                                                                                                                        |              |                   |                         |                                                  | ┪                                         |                       |                    |
| Sample Mass (kg)                                                                                                                       |              |                   | 0.10                    | i i                                              | 1                                         |                       |                    |
| Dry Matter (%)                                                                                                                         |              |                   | 93.1                    |                                                  | 7                                         |                       |                    |
| Moisture (%)                                                                                                                           |              |                   | 7.4                     |                                                  | 1                                         |                       |                    |
| Stage 1                                                                                                                                |              |                   | · · · ·                 |                                                  | 1                                         |                       |                    |
| Volume Eluate L10 (litres)                                                                                                             |              |                   | 0.89                    |                                                  | 7                                         |                       |                    |
|                                                                                                                                        |              |                   |                         | <del>                                     </del> | -1                                        |                       |                    |
|                                                                                                                                        |              |                   |                         |                                                  |                                           |                       |                    |
|                                                                                                                                        |              |                   |                         |                                                  | -                                         |                       |                    |

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or aseceived portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation





| Soil Analysis Certificate - Sample Descriptions                            |   |
|----------------------------------------------------------------------------|---|
| DETS Report No: 22-04511                                                   |   |
| Soil Consultants Ltd                                                       |   |
| Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN |   |
| Project / Job Ref: 10728/SG                                                | , |
| Order No: 10728/SG                                                         |   |
| Reporting Date: 30/05/2022                                                 |   |

| DETS Sample No | TP / BH No | Additional Refs | Depth (m) | Moisture<br>Content (%) | Sample Matrix Description                 |
|----------------|------------|-----------------|-----------|-------------------------|-------------------------------------------|
| 598603         | WS9/0.40   | None Supplied   | 0.40      | 11.3                    | Brown sandy clay with stones              |
| 598604         | WS1/0.50   | None Supplied   | 0.50      | 16.2                    | Black sandy clay with stones              |
| 598606         | WS3/0.70   | None Supplied   | 0.70      | 22.8                    | Grey sandy clay                           |
| 598607         | WS2A/1.60  | None Supplied   | 1.60      | 46.4                    | Black loamy sand with vegetation          |
| 598608         | WS2/0.80   | None Supplied   | 0.80      | 14.2                    | Brown sandy clay with stones              |
| \$ 598609      | TP6/1.00   | None Supplied   | 1.00      | 13.7                    | Brown sandy clay with stones and concrete |
| \$ 598610      | BH02/0.80  | None Supplied   | 0.80      |                         | Brown sandy clay with stones and concrete |
| \$ 598611      | BH02/1.60  | None Supplied   | 0.80      | 13.9                    | Brown sandy clay with stones              |
| 598612         | HP1/0.70   | None Supplied   | 0.70      | 16.2                    | Brown sandy clay with stones              |
| 598613         | HP2/0.60   | None Supplied   | 0.60      | 8.7                     | Brown sandy clay with stones and concrete |
| ^ 598614       | BH01       | None Supplied   | 0.80      | 17.2                    | Brown sandy clay with stones              |
| ^ 598615       | BH03       | None Supplied   | 1.40      | 11.8                    | Brown sandy clay with stones              |
| ^ 598616       | BH04       | None Supplied   | 1.00      | 9.1                     | Brown sandy clay with stones              |
| 598617         | WS4        | None Supplied   | 0.20      | 6.9                     | Brown sandy clay with stones              |

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample <sup>I/S</sup> Unsuitable Sample <sup>U/S</sup>

 $<sup>\</sup>begin{tabular}{ll} \begin{tabular}{ll} \beg$ 





Soil Analysis Certificate - Methodology & Miscellaneous Information DETS Report No: 22-04511
Soil Consultants Ltd

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG Order No: 10728/SG Reporting Date: 30/05/2022

| Matrix       | Analysed<br>On | Determinand                                                             | Brief Method Description                                                                                                                                                              | Method<br>No |
|--------------|----------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Soil         | D              |                                                                         | Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES                                                                                             | E012         |
| Soil<br>Soil | AR<br>D        |                                                                         | Determination of BTEX by headspace GC-MS Determination of cations in soil by aqua-regia digestion followed by ICP-OES                                                                 | E001<br>E002 |
| Soil         | D              |                                                                         | Determination of cations in soil by aqua-regia digestion followed by icr-ocs  Determination of chloride by extraction with water & analysed by ion chromatography                     | E002         |
| Soil         | AR             | Chromium - Hexavalent                                                   | Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of                                                                                | E016         |
|              |                |                                                                         | 1,5 diphenylcarbazide followed by colorimetry                                                                                                                                         |              |
| Soil<br>Soil | AR<br>AR       |                                                                         | Determination of complex cyanide by distillation followed by colorimetry  Determination of free cyanide by distillation followed by colorimetry                                       | E015<br>E015 |
| Soil         | AR             |                                                                         | Determination of total cyanide by distillation followed by colorimetry                                                                                                                | E015         |
| Soil         | D              |                                                                         | Gravimetrically determined through extraction with cyclohexane                                                                                                                        | E011         |
| Soil         | AR             | Diesel Range Organics (C10 - C24)                                       | Determination of hexane/acetone extractable hydrocarbons by GC-FID  Determination of electrical conductivity by addition of saturated calcium sulphate followed by                    | E004         |
| Soil         | AR             | Electrical Conductivity                                                 | electrometric measurement                                                                                                                                                             | E022         |
| Soil         | AR             | ,                                                                       | Determination of electrical conductivity by addition of water followed by electrometric measurement                                                                                   | E023         |
| Soil         | D              |                                                                         | Determination of elemental sulphur by solvent extraction followed by GC-MS                                                                                                            | E020         |
| Soil<br>Soil | AR<br>AR       |                                                                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID  Determination of acetone/hexane extractable hydrocarbons by GC-FID                                                | E004<br>E004 |
|              |                |                                                                         | Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by                                                                                         |              |
| Soil         | AR             | C12-C16, C16-C21, C21-C40)                                              | headspace GC-MS                                                                                                                                                                       | E004         |
| Soil         | D              | Fluoride - Water Soluble                                                | Determination of Fluoride by extraction with water & analysed by ion chromatography                                                                                                   | E009         |
| Soil<br>Soil | D<br>D         |                                                                         | Determination of TOC by combustion analyser.  Determination of TOC by combustion analyser.                                                                                            | E027<br>E027 |
| Soil         | D              |                                                                         | Determination of TOC by combustion analyser.                                                                                                                                          | E027         |
| Soil         | AR             | Exchangeable Ammonium                                                   | Determination of ammonium by discrete analyser.                                                                                                                                       | E029         |
| Soil         | D              | FOC (Fraction Organic Carbon)                                           | Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                                      | E010         |
| Soil         | D              | Loss on Ignition @ 450oC                                                | Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace                                                                        | E019         |
| Soil         | D              |                                                                         | Determination of water soluble magnesium by extraction with water followed by ICP-OES                                                                                                 | E025         |
| Soil         | D              | Metals                                                                  | Determination of metals by aqua-regia digestion followed by ICP-OES                                                                                                                   | E002         |
| Soil         | AR             | Mineral Oil (C10 - C40)                                                 | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge                                                                                   | E004         |
| Soil         | AR             |                                                                         | Moisture content; determined gravimetrically                                                                                                                                          | E003         |
| Soil         | D              |                                                                         | Determination of nitrate by extraction with water & analysed by ion chromatography  Determination of organic matter by oxidising with potassium dichromate followed by titration with | E009         |
| Soil         | D              | Organic Matter                                                          | iron (II) sulphate  Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the                                                                     | E010         |
| Soil         | AR             | PAH - Speciated (EPA 16)                                                | use of surrogate and internal standards                                                                                                                                               | E005         |
| Soil         | AR<br>D        |                                                                         | Determination of PCB by extraction with acetone and hexane followed by GC-MS                                                                                                          | E008<br>E011 |
| Soil<br>Soil | AR             |                                                                         | Gravimetrically determined through extraction with petroleum ether  Determination of pH by addition of water followed by electrometric measurement                                    | E011         |
| Soil         | AR             |                                                                         | Determination of phenols by distillation followed by colorimetry                                                                                                                      | E021         |
| Soil         | D              |                                                                         | Determination of phosphate by extraction with water & analysed by ion chromatography                                                                                                  | E009         |
| Soil         | D              |                                                                         | Determination of total sulphate by extraction with 10% HCl followed by ICP-OES                                                                                                        | E013         |
| Soil<br>Soil | D<br>D         |                                                                         | Determination of sulphate by extraction with water & analysed by ion chromatography  Determination of water soluble sulphate by extraction with water followed by ICP-OES             | E009<br>E014 |
| Soil         | AR             |                                                                         | Determination of water soluble sulphate by extraction with water followed by 1cr-ocs                                                                                                  | E014         |
| Soil         | D              |                                                                         | Determination of total sulphur by extraction with aqua-regia followed by ICP-OES                                                                                                      | E024         |
| Soil         | AR             | SVOC                                                                    | Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS                                                                                | E006         |
| Soil         | AR             | Thiocyanate (as SCN)                                                    | Determination of this example by systection in caustic code followed by acidification followed by                                                                                     | E017         |
| Soil         | D              | Toluene Extractable Matter (TEM)                                        | Gravimetrically determined through extraction with toluene                                                                                                                            | E011         |
| Soil         | D              | Total Organic Carbon (TOC)                                              | Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate                                                                  | E010         |
| Soil         | AR             |                                                                         | Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS                                        | E004         |
| Soil         | AR             | aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) |                                                                                                                                                                                       | E004         |
| Soil         | AR             |                                                                         | Determination of volatile organic compounds by headspace GC-MS                                                                                                                        | E001         |
| Soil         | AR             | VPH (Cb-C8 & C8-C10)                                                    | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                                                             | E001         |





4480

Water Analysis Certificate - Methodology & Miscellaneous Information DETS Report No: 22-04511 Soil Consultants Ltd

Site Reference: Kneller Hall, 65 Kneller Road, Twickenham, London, TW2 7DN

Project / Job Ref: 10728/SG

Order No: 10728/SG

Reporting Date: 30/05/2022

| Matrix   | Analysed | Determinand                                                             | Brief Method Description                                                                                                                    | Method |
|----------|----------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Maura    | On       | Determinand                                                             | brief Metilod Description                                                                                                                   | No     |
| Water    | UF       | Alkalinity                                                              | Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end                                       | E103   |
| Water    | F        | Ammoniacal Nitrogen                                                     | Determination of ammoniacal nitrogen by discrete analyser.                                                                                  | E126   |
| Water    | UF       |                                                                         | Determination of BTEX by headspace GC-MS                                                                                                    | E101   |
| Water    | F        |                                                                         | Determination of cations by filtration followed by ICP-MS                                                                                   | E102   |
| Water    | UF       | Chemical Oxygen Demand (COD)                                            | Determination using a COD reactor followed by colorimetry                                                                                   | E112   |
| Water    | F        | Chloride                                                                | Determination of chloride by filtration & analysed by ion chromatography                                                                    | E109   |
| Water    | F        |                                                                         | Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by                                        | E116   |
| Water    | UF       | Cyanide - Complex                                                       | Determination of complex cyanide by distillation followed by colorimetry                                                                    | E115   |
| Water    | UF       | Cyanide - Free                                                          | Determination of free cyanide by distillation followed by colorimetry                                                                       | E115   |
| Water    | UF       | Cyanide - Total                                                         | Determination of total cyanide by distillation followed by colorimetry                                                                      | E115   |
| Water    | UF       | Cyclohexane Extractable Matter (CEM)                                    | Gravimetrically determined through liquid:liquid extraction with cyclohexane                                                                | E111   |
| Water    | F        | Diesel Range Organics (C10 - C24)                                       | Determination of liquid:liquid extraction with hexane followed by GC-FID                                                                    | E104   |
| Water    | F        | Dissolved Organic Content (DOC)                                         | Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete                                       | E110   |
| Water    | UF       |                                                                         | Determination of electrical conductivity by electrometric measurement                                                                       | E123   |
| Water    | F        | EPH (C10 - C40)                                                         | Determination of liquid:liquid extraction with hexane followed by GC-FID                                                                    | E104   |
| Water    | F        | EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)           | Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by                                         | E104   |
| Water    | F        |                                                                         | Determination of Fluoride by filtration & analysed by ion chromatography                                                                    | E109   |
| Water    | F        |                                                                         | Determination of Ca and Mg by ICP-MS followed by calculation                                                                                | E102   |
| Leachate | F        |                                                                         | Based on National Rivers Authority leaching test 1994                                                                                       | E301   |
| Leachate | F        |                                                                         | Based on BS EN 12457 Pt1, 2, 3                                                                                                              | E302   |
| Water    | F        |                                                                         | Determination of metals by filtration followed by ICP-MS                                                                                    | E102   |
| Water    | F        |                                                                         | Determination of liquid:liquid extraction with hexane followed by GI-FID                                                                    | E104   |
| Water    | F        |                                                                         | Determination of nitrate by filtration & analysed by ion chromatography                                                                     | E109   |
| Water    | UF       |                                                                         | Determination of phenols by distillation followed by colorimetry                                                                            | E121   |
| Water    | F        | PAH - Speciated (EPA 16)                                                | Determination of BAH compounds by concentration through CDE cartridge, collection in                                                        | E105   |
| Water    | F        | PCR - 7 Congeners                                                       | Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal                                         | E108   |
| Water    | UF       |                                                                         | Gravimetrically determined through liquid:liquid extraction with petroleum ether                                                            | E111   |
| Water    | UF       |                                                                         | Determination of pH by electrometric measurement                                                                                            | E107   |
| Water    | F        |                                                                         | Determination of phosphate by filtration & analysed by ion chromatography                                                                   | E109   |
| Water    | UF       |                                                                         | Determination of redox potential by electrometric measurement                                                                               | E113   |
| Water    | F        |                                                                         | Determination of readx potential by electrometric measurement  Determination of sulphate by filtration & analysed by ion chromatography     | E109   |
| Water    | UF       | Sulnhide                                                                | Determination of sulphide by distillation followed by colorimetry                                                                           | E118   |
| Water    | F        | SVOC                                                                    | Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS    | E106   |
| Water    | UF       | Toluene Extractable Matter (TEM)                                        | Gravimetrically determined through liquid:liquid extraction with toluene                                                                    | E111   |
| Water    | UF       |                                                                         | Low heat with persulphate addition followed by IR detection                                                                                 | E110   |
| Water    | F        | TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, | Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS | E104   |
| Water    | F        | aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) | Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS | E104   |
| Water    | UF       |                                                                         | Determination of volatile organic compounds by headspace GC-MS                                                                              | E101   |
| Water    | UF       | VPH (C6-C8 & C8-C10)                                                    | Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID                                                                   | E101   |

Key

F Filtered UF Unfiltered

| Parameter                    | Matrix Type | Suite Reference | Expanded Uncertainity<br>Measurement | Unit  |
|------------------------------|-------------|-----------------|--------------------------------------|-------|
| TOC                          | Soil        | BS EN 12457     | 12.1                                 | %     |
| Loss on Ignition             | Soil        | BS EN 12457     | 20.4                                 | %     |
| BTEX                         | Soil        | BS EN 12457     | 14.0                                 | %     |
| Sum of PCBs                  | Soil        | BS EN 12457     | 21.1                                 | %     |
| Mineral Oil                  | Soil        | BS EN 12457     | 9.0                                  | %     |
| Total PAH                    | Soil        | BS EN 12457     | 13.9                                 | %     |
| pH                           | Soil        | BS EN 12457     | 0.248                                | Units |
| Acid Neutralisation Capacity | Soil        | BS EN 12457     | 18.0                                 | %     |
| Arsenic                      | Leachate    | BS EN 12457     | 15.9                                 | %     |
| Barium                       | Leachate    | BS EN 12457     | 14.4                                 | %     |
| Cadmium                      | Leachate    | BS EN 12457     | 12.6                                 | %     |
| Chromium                     | Leachate    | BS EN 12457     | 13.4                                 | %     |
| Copper                       | Leachate    | BS EN 12457     | 13.1                                 | %     |
| Mercury                      | Leachate    | BS EN 12457     | 16.2                                 | %     |
| Molybdenum                   | Leachate    | BS EN 12457     | 13.6                                 | %     |
| Nickel                       | Leachate    | BS EN 12457     | 16.0                                 | %     |
| Lead                         | Leachate    | BS EN 12457     | 12.4                                 | %     |
| Antimony                     | Leachate    | BS EN 12457     | 14.6                                 | %     |
| Selenium                     | Leachate    | BS EN 12457     | 16.5                                 | %     |
| Zinc                         | Leachate    | BS EN 12457     | 14.5                                 | %     |
| Chloride                     | Leachate    | BS EN 12457     | 17.0                                 | %     |
| Fluoride                     | Leachate    | BS EN 12457     | 12.0                                 | %     |
| Sulphate                     | Leachate    | BS EN 12457     | 25.1                                 | %     |
| TDS                          | Leachate    | BS EN 12457     | 10.0                                 | %     |
| Phenol Index                 | Leachate    | BS EN 12457     | 12.9                                 | %     |
| DOC                          | Leachate    | BS EN 12457     | 10.0                                 | %     |
| Clay Content                 | Soil        | BS 3882: 2015   | 15.0                                 | %     |
| Silt Content                 | Soil        | BS 3882: 2015   | 14.0                                 | %     |
| Sand Content                 | Soil        | BS 3882: 2015   | 13.0                                 | %     |
| Loss on Ignition             | Soil        | BS 3882: 2015   | 20.4                                 | %     |
| pН                           | Soil        | BS 3882: 2015   | 0.248                                | Units |
| Carbonate                    | Soil        | BS 3882: 2015   | 12.0                                 | %     |
| Total Nitrogen               | Soil        | BS 3882: 2015   | 12.0                                 | %     |
| Phosphorus (Extractable)     | Soil        | BS 3882: 2015   | 24.0                                 | %     |
| Potassium (Extractable)      | Soil        | BS 3882: 2015   | 20.0                                 | %     |
| Magnesium (Extractable)      | Soil        | BS 3882: 2015   | 26.0                                 | %     |
| Zinc                         | Soil        | BS 3882: 2015   | 14.9                                 | %     |
| Copper                       | Soil        | BS 3882: 2015   | 16.0                                 | %     |
| Nickel                       | Soil        | BS 3882: 2015   | 17.7                                 | %     |
| Available Sodium             | Soil        | BS 3882: 2015   | 23.0                                 | %     |
| Available Calcium            | Soil        | BS 3882: 2015   | 23.0                                 | %     |
| Electrical Conductivity      | Soil        | BS 3882: 2015   | 10.0                                 | %     |

Kneller Hall

65 Kneller Road, Twickenham, London TW2 7DN

Report No:

10728/SG

#### Site photographs

#### Photo No 1

Description:

General view of Kneller Hall

Direction: Looking N

Date: 05/05/22



#### Photo No 2

**Description:** 

View of rear of Kneller Hall

Direction: Looking SSW





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

#### Photo No 3

#### Description:

General view of pond in central south west of site, to the rear of Kneller Hall. Appears concrete lined

Direction: Looking NW

Date: 05/05/22



#### Photo No 4

#### **Description:**

View of rear light well into basement of Kneller Hall. (light wells to front and rear of Kneller Hall)

Direction: Looking SW





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

#### Photo No 5

#### **Description:**

General view of multiple extensions to Kneller Hall and dilapidated decking.

Direction: Looking SW

Date: 05/05/22




#### Photo No 6

#### **Description:**

View of basement plant room on northernmost portion of Kneller Hall.

Direction: Looking SE





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

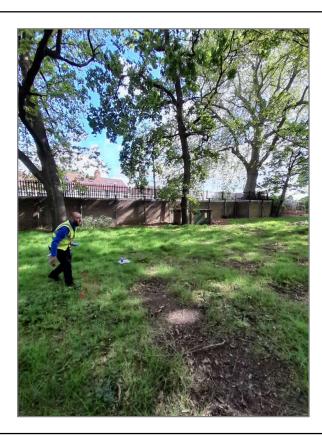
#### Photo No 7

#### **Description:**

General view of sports pitches on the east half of site. Twickenham Stadium in background.

Direction: Looking E

Date: 05/05/22




#### Photo No 8

#### **Description:**

View of north boundary of site (western half), with gas cupboard in heavily wooded area.

Direction: Looking NE





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

#### Photo No 9

#### **Description:**

General view of wooded area on the northern portion of site and car park in north west corner of site.

Direction: Looking NE

Date: 05/05/22



#### Photo No 10

#### **Description:**

View of garages in north western portion of site, with instrument rehearsal rooms beyond.

Direction: Looking N





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

#### Photo No 11

#### Description:

General view of instrument practice rooms and wooded area, with outdoor band stand beyond.

Direction: Looking SE

Date: 05/05/22



#### Photo No 12

#### Description:

View of eastern half of wooded northern boundary.

Direction: Looking E





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

#### Photo No 13

#### Description:

General view of wooded boundary and teaching building in the western corner of site.

Direction: Looking SW

Date: 05/05/22



#### Photo No 14

#### **Description:**

View of car park and accommodation and teaching blocks in the south western portion of site.

Direction: Looking NW





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

#### Photo No 15

#### **Description:**

General view of accommodation structures. Basement plant room in grassed courtyard area circled in red.

Direction: Looking NE

Date: 05/05/22



#### Photo No 16

#### **Description:**

View of grassed courtyard area, accommodation blocks and basement plant room.

Direction: Looking NE





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

#### Photo No 17

Description:

General view of Band Practice Hall plant basement and evidence of repairs.

Direction: Looking E

Date: 05/05/22



#### Photo No 18

**Description:** 

General view of Band Practice Hall plant basement.

Direction: Looking E





Kneller Hall 65 Kneller Road, Twickenham, London TW2 7DN Report No:

10728/SG

#### Site photographs

#### Photo No 19

#### **Description:**

Internal view of Band Practice Hall roof, showing wall pin retaining bars.

Direction: Looking W

Date: 05/05/22



#### Photo No 20

#### **Description:**

General view of Band Practice Hall with external concrete supports and wall retaining pins circled in red.

Direction: Looking SW



