CHART DATUMS & STANDARD LEVELS IN THE PORT OF LONDON

 Chart Datum is set to approximately the level of Lowest Astronomical Tide (L.A.T.)

Low Water levels in the upper reaches of the tidal Thames are greatly
affected by the land water flow at Teddington Weir. They frequently fall
below chart datum when this flow is significantly reduced, typically
during the summer months.

3. Maintained level and chart datum above Richmond half tide weir are

both 1.72 metres above Ordnance Datum (Newlyn).

 Trinity High Water (T.H.W.) is deemed, by the Port of London Act, 1968, to be a level having a value of 11.4 feet (i.e. 3.475 metres) above Ordnance Datum (Newlyn).

TOTAL NEW YORK	Level of Chart Datum below	St	Standard levels above local C.D.								
Tidal Station	Ordnance Datum (Newlyn) m	Mean Low Water Springs MLWS	Mean Low Water Neaps MLWN	Mean High Water Neaps MHWN	Mean High Water Springs MHWS	Highest Astronomica Tide (HAT)					
WALTON	2.16	0.5	1.1	3.5	4.3	4.7					
MARGATE	2.50	0.6	1.3	4.0	4.8	5.1					
SHIVERING SAND	10=8	0.6	1.4	4.4	5.4	5.7					
SOUTHEND	2.90	0.6	1.4	4.8	5.9	6.3					
CANVEY	2.97	0.6	1.4	5.0	6.1	6.6					
CORYTON	3.05	0.6	1.5	5.1	6.2	6.7					
TILBURY	3.12	0.6	1.5	5.4	6.6	7.0					
GREENHITHE	3.20	0.6	1.6	5.6	6.7	7.2					
DAGENHAM	3.28	0.6	1.6	5.8	7.0	7.5					
NORTH WOOLWICH	3.35	0.6	1.6	5.9	7.2	7.7					
TOWER	3.20	0.5	1.5	5.9	7.1	7.6					
BLACKFRIARS	3.05	0.5	1.4	5.8	7.0	7.5					
WESTMINSTER	2.90	0.5	1.3	5.7	6.9	7.4					
VAUXHALL	2.59	0.3	1.0	5.4	6.6	7.1					
VICTORIA RAIL	2.44	0.3	0.9	5.3	6.5	6.9					
ALBERT BRIDGE	2.29	0.3	0.9	5.1	6.3	6.8					
WANDSWORTH	2.13	0.3	0.9	5.0	6.2	6.7					
PUTNEY	1.98	0.3	8.0	4.9	6.1	6.6					
HAMMERSMITH	1.68	0.3	0.7	4.7	5.8	6.4					
BARNES	1.37	0.2	0.6	4.4	5.5	6.1					
CHISWICK	1.22	0.2	0.5	4.3	5.3	6.0					
KEW	1.07	0.2	0.5	4.2	5.2	5.9					
BRENTFORD	0.91	0.1	0.4	4.0	5.0	5.7					
RICHMOND	0.61	0.1	0.2	3.8	4.8	5.5					
TWICKENHAM	Note 3	5=		1.5	2.5	3.2					

H. Surface Water Calculations

Sean Whelan

Default

1.52

1.29

3.49

4.84

5.67

Greenfield runoff rates

Q_{BAR} (I/s):

1 in 1 year (l/s):

1 in 30 years (l/s):

1 in 100 year (l/s):

1 in 200 years (l/s):

Edited

2.42

2.06

5.57

7.73

9.06

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Site name:	Stag Brewery			Latitude:	51.47029° N
				Longitude:	0.26635° W
Site location:	Stag Brewery				
in line with Environmen	nt Agency guidanc	e "Rainfa ll runoff m	anagement for de		922927723
SC030219 (2013), the (Defra, 2015). This info the drainage of surface	rmation on greenf	ield runoff rates ma			Jul 12 2022 09:19
Runoff estimation	n approach	IH124			
Site characterist	tics			Notes	
Total site area (ha):	1			(1) Is Q _{BAR} < 2.0 I/s/ha?	
Methodology				(1) 13 QBAR < 2.0 1/3/11a:	
Q _{BAR} estimation m	ethod: Calc	ulate from SPR	and SAAR	When Q _{BAR} is < 2.0 l/s/ha then li	miting discharge rates are set
SPR estimation me	ethod: Calc	ulate from SOIL	type	at 2.0 l/s/ha.	
Soil characterist	ics Defau	ult Edite	ed		
				(2) Are flow rates < 5.0 I/s?	
SOIL type:	2	3		` '	
SOIL type: HOST class:	2 N/A	3 N/A			O Va apparent for disabores is
				Where flow rates are less than 5. usually set at 5.0 l/s if blockage f	•
HOST class:	N/A 0.3	N/A	Edited	Where flow rates are less than 5. usually set at 5.0 l/s if blockage f materials is possible. Lower cons	rom vegetation and other sent flow rates may be set
HOST class: SPR/SPRHOST:	N/A 0.3	N/A 0.37	Edited 605	Where flow rates are less than 5. usually set at 5.0 l/s if blockage f	rom vegetation and other sent flow rates may be set
HOST class: SPR/SPRHOST: Hydrological cha	N/A 0.3 aracteristics	N/A 0.37 Default		Where flow rates are less than 5. usually set at 5.0 l/s if blockage fraterials is possible. Lower consumers the blockage risk is addressinage elements.	rom vegetation and other sent flow rates may be set
HOST class: SPR/SPRHOST: Hydrological cha SAAR (mm):	N/A 0.3 aracteristics	N/A 0.37 Default 598	605	Where flow rates are less than 5. usually set at 5.0 l/s if blockage f materials is possible. Lower consumers the blockage risk is addre	rom vegetation and other sent flow rates may be set
HOST class: SPR/SPRHOST: Hydrological cha SAAR (mm): Hydrological region	N/A 0.3 aracteristics 1: or 1 year:	N/A 0.37 Default 598	605	Where flow rates are less than 5. usually set at 5.0 l/s if blockage f materials is possible. Lower conswhere the blockage risk is addredrainage elements. (3) Is SPR/SPRHOST ≤ 0.3? Where groundwater levels are lower than 15.	rom vegetation and other sent flow rates may be set ssed by using appropriate we enough the use of
HOST class: SPR/SPRHOST: Hydrological cha SAAR (mm): Hydrological region Growth curve factor	N/A 0.3 aracteristics a: or 1 year: or 30 years:	N/A 0.37 Default 598 6 0.85	605 6 0.85	Where flow rates are less than 5. usually set at 5.0 l/s if blockage f materials is possible. Lower conswhere the blockage risk is addredrainage elements. (3) Is SPR/SPRHOST ≤ 0.3? Where groundwater levels are low soakaways to avoid discharge of	rom vegetation and other sent flow rates may be set ssed by using appropriate w enough the use of ffsite would normally be
HOST class: SPR/SPRHOST: Hydrological cha SAAR (mm): Hydrological region Growth curve factor Growth curve factor	N/A 0.3 aracteristics or 1 year: or 30 years: or 100 years:	N/A 0.37 Default 598 6 0.85 2.3	605 6 0.85 2.3	Where flow rates are less than 5. usually set at 5.0 l/s if blockage f materials is possible. Lower conswhere the blockage risk is addredrainage elements. (3) Is SPR/SPRHOST ≤ 0.3? Where groundwater levels are lower than 15.	rom vegetation and other sent flow rates may be set ssed by using appropriate w enough the use of ffsite would normally be

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Company: WIE Office: London

Sheet No: 1 of 9 Project No: WIE18671

 By
 S Whelan
 Date
 29/07/2022

 Checked:
 B McCarthy
 Date
 29/07/2022

Project Title Former Stag Brewery, Mortlake

Calculations Title Existing Discharge Rate - Modified Rational Method

LOCATION							LATIONS							OPTI	ONS
	Calculation	s based	on: Desig	n and A	nalysis	of urba	an storm d	rainag	e. Th	e W	allingfo	rd Pr	ocedure,		
	Volume 1 F	Principles	s methods	and pra	actice.										
	User Input	t Data													
	Total site a											5.69	ha		
	SAAR (Fro	m FEH)										605			
	Rainfall Int		rom FEH)								5	1.80			
	PIMP (% ir	• •										100	%		
	Soil Type	1									(0.40			
	Very Low Runoff (well drained sandy, loamy or earthy peat soils) 0.15														
	Low Runof						• •				(0.30			
	Moderate (•				(0.40			
	High Runo										(0.45			
	Very High		•		lands)						(0.50			
					,										
ig. 9.7	UCWI (Fro	m Figure	9.7 of Wa	allingfor	d Meth	nod)						52			
Eqn. 13	Qp (peak o	lischarge	e) = 2.78 C	v CR i	A										
	Where:		ák Dischai			rainfall i	ntensity			A =	Total A	rea			
From FEH	Average ra	infall Inte	ensity (i)												
		00_60 is	- 11	51.80 r	nm										
Eqn 7.20	Cv = PR/10	00													
=qn 7.3			MP) + (25.	0 SOIL) + (0.0)78 UC\	NI) - 20.7							+	
	· · · · · · · · · · · · · · · · · · ·		entage of		, ,)		100	%			+	
Page 52		· ·	PIMP can n				<u>'</u>			40				+	
9			alue of PIN							100				+	
		Soil:	0.40		JCWI:	52								+ +	
	PR =										76.26			+ +	
	Thus Cv =										0.76				
Sec 7.10		nmended	d for simula	ation an	ıd desi	an)					1.3				
•		CR (Recommended for simulation and designation)			J. ,					0					
	Qp for 1 in	100 vea	r 60 minu	te dura	tion =			812.3	l/s	or	14	12.8	l/s/ha	+ +	
	ZP . 0. 2 III								-,,				5/5	+ +	
	50% of the	existing	runoff rate	<i>j</i> =			405.0	l/s			71.3	I/s/h	na	+ +	
	30,000 110	37.1311119		-			.00.0	., -		1		., 3, 1		 \perp	

Company: WIE
Sheet No: 2 of 9

WIE 2 of 9

Office: London
Project No: WIE18671

By S Whelan
Checked: B McCarthy

Date 29/07/2022
Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume, IH124 Greenfield Runoff Rate

LOCATION				CALC	CULATIONS									OPT	IONS
	In order to calculate the vol Storage Estimate has been					drainage version 2	2016.1, Sc	ource C	ontrol r	nodule	, Quick				
	IH124 Greenfield Runoff Ra	ate - Q100													
	7.7	l/s/ha													
Summary	Attenuation volumes requ	uired by Drainag	e Catchment												
	Catchment	Area (ha)	Allowable runoff Rate (l/s)	Required attenuation (m ³)											
	East - 1	0.30	2.4	251											
	East - 2	0.25	1.9	210											
	East - 3	0.18	1.4	150											
	West - school	1.31	10.1	1095											
	West - 4	1.07	8.3	893											
	West - 5	0.92	7.1	769											
	West - 6	0.79	6.1	319											
	Total	4.84	37.4	3686											
		Greenfield runoff rate (l/s/ha)	Existing (l/s/ha)	Req'd storage (m3)	Proposed discharge rate* (l/s)	Percentage Reduction									
	Qbar	2.42	43.3	-	7.7	82%								+	
	1 in 1	2.06	35.0	-	7.7	78%									
	1 in 30	5.57	98.4	-	7.7										
	1 in 100	7.73	142.8		7.7										
	1 in 100+40CC	10.82	199.8	3686.0	7.7	96%									
	* A constant proposed disc 1 year runoff from the site is			worst-case disch	narge for lower re	turn period events	s. Despite	the ass	sumed h	nigher o	discharge	e rate, 1	in		

WIE London Company: Office:

3 of 9 WIE18671 Sheet No: Project No:

S Whelan 29/07/2022 Ву Date

B McCarthy 29/07/2022 Checked: Date

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS		OPTIONS							
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;									
	Drainage Catchment - East 1									
	Area 0.30 ha									
	IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha									
	Maximum allowable discharge 2.35 l/s									
	// Quick Storage Estimate	ick Storage Estimate								
	Variables Version 1999 \color	Results Global Variables require approximate storage of between 218 m² and 284 m². These values are estimates only and should not be used for design purposes. Results Design enview 2D erview 3D								
	Analyse OK Cancel Help	Analyse OK Cancel Help								
	Enter Climate Change between -100 and 600:	Enter Climate Change between -100 and 600								
	50% attenuation volume (m³) 140									
	Greenfield attenuation volume (m³) 251									

Company: WIE Office: London

Sheet No: 4 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS OF	PTIONS
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;	
	Drainage Catchment - East 2 Area 0.25 ha	
	IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha	
	Maximum allowable discharge 1.94 l/s	
	Quick Storage Estimate	
	Analyse OK Cancel Help Enter Infiltration Coefficient between 0,00000 and 100000,000000 Enter Infiltration Coefficient between 0,00000 and 100000,000000	
	Enter Infiltration Coefficient between 0.00000 and 100000.00000 Enter Infiltration Coefficient between 0.00000 and 100000.00000	
	50% attenuation volume (m³) 116.5	
	Greenfield attenuation volume (m³) 210	

WIE London Company: Office:

5 of 9 WIE18671 Sheet No: Project No:

S Whelan 29/07/2022 Ву Date 29/07/2022

B McCarthy Checked: Date

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS	OPTIONS						
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;							
	Drainage Catchment - East 3 Area 0.18 ha							
	IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha							
	Maximum allowable discharge 1.39 l/s							
	Variables Variables Variables Variables Results Variables Results C (Winter) Variables Results C (Winter) Variables Results C (Winter) Variables Results C (Winter) Variables Results Results C (Winter) Daylor (Winter) Daylor (Winter) Daylor (Winter) Daylor (Winter) Design Design							
	D1 (1km) 0.322 E (1km) D.306 Safety Factor 2.0 Overview 2D Overview 3D Overview 3D							
	Enter Infiltration Coefficient between 0.00000 and 100000.00000 Enter Infiltration Coefficient between 0.00000 and 100000.00000							
	50% attenuation volume (m³) 84							
	Greenfield attenuation volume (m³) 150							

Company: WIE Office: London

Sheet No: 6 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS									
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;									
	Drainage Catchment - School									
		31 ha								
	· ·	'3 l/s/ha								
	Maximum allowable discharge 10.1	4 l/s		1						
	Quick Storage Estimate		Results Global Variables require approximate storage of between 951 m³ and 1233 m². These values are estimates only and should not be used for design purposes. Variables Results Design Overview 2D Overview 3D Vt							
	Analyse	OK Cancel Help	Analyse OK Cancel Help							
	Enter Maximum Allowable Discharge between 0.0 and 999	999.0	Enter Maximum Allowable Discharge between 0.0 and 999999.0							
	50% attenuation volume (m³) NA Greenfield attenuation volume (m³) 109	15								

WIE London Company: Office:

7 of 9 WIE18671 Sheet No: Project No:

S Whelan 29/07/2022 Ву Date 29/07/2022

B McCarthy Checked: Date

Project Title Former Stag Brewery, Mortlake

LOCATION		CALCU	ILATIONS					OPTIO)NS
	In order to calculate the volume of surface water Control module, Quick Storage Estimate has been						2016.1, Source		
	Drainage Catchment - West 4								
	Area 1.07	ha							
	IH124 Greenfield Runoff Rate - Q10 7.73								
	Maximum allowable discharge 8.30	1/s							_
	Quick Storage Estimate			stimate					
	Variables FEH Rainfall Cv (Summer)	0.750 0.840 1.070 8.3 0.00000 2.0	Micro Drainage Variables Results Design Overview 2D Overview 3D Vt	Results Global Variables of between 776 i These values an		ximate storage a ³ . ally and should not be used	d for design purposes.		
	Analyse OK	Cancel Help				Analyse	OK Cancel Help		
	Enter Infiltration Coefficient between 0.0000 and 100000.00000		Enter Infiltration Coefficient between 0.0000 and 100000.0000						
	50% attenuation volume (m ³) 499								
	Greenfield attenuation volume (m³) 893								

Company: WIE Office: London

Sheet No: 8 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION		CALCU	LATIONS		OPTIONS
	In order to calculate the volume of secontrol module, Quick Storage Estir			Microdrainage version 2016.1, Source ich are shown below;	
	Drainage Catchment - West 5 Area IH124 Greenfield Runoff Rate - Q10 Maximum allowable discharge	0.92 ha 7.73 l/s/ha 7.14 l/s			
	Design D1 (lkm) 0.322 E1(km) 0.306 Side C5 (lkm) 0.253 C5 (lkm) 0.253 C5 (lkm) 0.253 C5 (lkm) 0.253 C5 (lkm) 0.306 Side C5 (lkm) 0.252 C5 (lkm) 0.306 Side C5 (lkm) 0.252 C5 (lkm) 0.253 C5 (lkm) 0	r (Summer) 0.750 r (Winter) 0.840 permeable Area (ha) 0.920 aximum Allowable Discharge (/a) 7.1 illitration Coefficient (m/hr) 0.00000 effety Factor 2.0 mate Change (%) 40		es require approximate storage 88 m³ and 870 m³. are estimates only and should not be used for design purposes.	
	Enter Infiltration Coefficient between	Analyse OK Cancel Help 0.00000 and 100000.00000	Entr		
	50% attenuation volume (m³) Greenfield attenuation volume (m³)	NA 769			

Company: WIE Office: London

Sheet No: 9 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION		PTIONS									
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;										
	Drainage Catchment - West 6										
	Area 0.79 ha										
	IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha Maximum allowable discharge 6.11 l/s										
	Quick Storage Estimate Quick Storage Estim										
	Variables Version 1999										
	Analyse OK Cancel Help Enter Maximum Allowable Discharge between 0.0 and 999999.0 Enter Maximum Allowable Discharge between 0.0 and 999999.0										
	50% attenuation volume (m³) 177										
	Greenfield attenuation volume (m³) 318.5										

I. Foul Flow Estimate

Project Title: Stag Brewery

Calculations Title: Existing Foul Flow Estimate

 Sheet No:
 1 of 3
 Project No:
 WIE18671

 By:
 M Stuart
 Date:
 18/02/2022

Checked: B McCarthy Date: 18/02/2022

		Dry Weather Flow Rate (per day)	Source	Number of	Factor	Profile (hours)	Peak Flow Rate (litres/second)
Residential					2.12	24	
Existing property =	160 litres/person/day	368.0 litres per unit	Thames Water Guidelines (2016)	0 existing units			0.0
New property =	125 litres/person/day	287.5 litres per unit	Thames Water Guidelines (2016)	0 proposed units			0.0
Occupancy =	2.3 persons						
Hotel		500.0 litres per room	British Water (2013)	15 rooms	3	24	0.3
Student Accommodation		200.0 litres per bed	Thames Water Guidelines (2016)	0 beds	3	24	0.0
Offices		750.0 litres per 100m²	Jones (1992)	2318 m ²	3	10	1.4
Retail		400.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
Cinema		10.0 litres per seat	Jones (1992)	0 seats*	3	8	0.0
Health Club/Sports Centre		50.0 litres per customer	British Water (2013)	168 customers**	3	16	0.4
Day School		90.0 litres per pupil	British Water (2013)	0 pupils	3	10	0.0
Boarding School		175.0 litres per pupil	British Water (2013)	0 pupils	3	24	0.0
Hospital		625.0 litres per bed	Jones (1992)	0 beds	3	24	0.0
Nursing Home		350.0 litres per bed	British Water (2013)	0 beds	3	24	0.0
Restaurant		30.0 litres per cover	British Water (2013)	0 covers	3	8	0.0
Pub/Club		15.0 litres per customer	Butler and Davies (2004)	0 customers***	3	12	0.0
Warehouse		150.0 litres per 100m²	Jones (1992)	0 m ²	3	12	0.0
Manufacturing		550.0 litres per 100m²	Jones (1992)	28671 m ²	3	12	11.0
Commercial		300.0 litres per 100m²	Jones (1992)	0 m ²	3	12	0.0
SUB TOTAL							13.1
Infiltration percentage	10	%					1.3
TOTAL							14.4

^{*} Foul flow rate needs to be calculated based on number of seats. An allowance of 4m² has been made for each seat.

Floor area = 0 m^2 4 m² per person

Floor area = 672 m^2 4 m² per person

*** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2 4 m² per person

^{**} Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Project Title: Stag Brewery

Calculations Title: Proposed Foul Flow Estimate

 Sheet No:
 2 of 2
 Project No:
 WIE18671

 By:
 S Whelan
 Date:
 02/08/2022

Checked: B McCarthy Date: 02/08/2022

		Dry Weather Flow Rate (per day)	Source	Number of	Factor	Profile (hours)	Peak Flow Rate (litres/second)
Residential					2.12	24	
Existing property =	160 litres/person/day	400.0 litres per unit	Thames Water Guidelines (2016)	0 existing units			0.0
New property =	125 litres/person/day	312.5 litres per unit	Thames Water Guidelines (2016)	1071 proposed units			8.2
Occupancy =	2.5 persons						
Hotel		500.0 litres per room	British Water (2013)	15 rooms	3	24	0.3
Student Accommodation		200.0 litres per bed	Thames Water Guidelines (2016)	0 beds	3	24	0.0
Offices		750.0 litres per 100m²	Jones (1992)	4468 m²	3	10	2.8
Retail		400.0 litres per 100m ²	Jones (1992)	4782 m ²	3	12	1.3
Cinema		10.0 litres per seat	Jones (1992)	334 seats*	3	8	0.3
Health Club/Sports Centre		50.0 litres per customer	British Water (2013)	0 customers**	3	16	0.0
Day School		90.0 litres per pupil	British Water (2013)	1200 pupils	3	10	9.0
Boarding School		175.0 litres per pupil	British Water (2013)	0 pupils	3	24	0.0
Hospital		625.0 litres per bed	Jones (1992)	0 beds	3	24	0.0
Nursing Home		350.0 litres per bed	British Water (2013)	0 beds	3	24	0.0
Restaurant		30.0 litres per cover	British Water (2013)	0 covers	3	8	0.0
Pub/Club		15.0 litres per customer	Butler and Davies (2004)	0 customers***	3	12	0.0
Warehouse		150.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
Manufacturing		550.0 litres per 100m²	Jones (1992)	0 m ²	3	12	0.0
Commercial		300.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
SUB TOTAL							21.9
Infiltration percentage	10%						2.2
TOTAL							24.1

^{*} Foul flow rate needs to be calculated based on number of seats. An allowance of 4m² has been made for each seat.

Floor area = 1606 m^2 4 m² per person

** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2 4 m² per person

*** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2 4 m² per person

Sheet No: 3 of 3 Project No: WIE18671

Stag Brewery By: S Whelan Date: 02/08/2022

Proposed Foul Flow Estimate by development Checked: B McCarthy Date: 02/08/2022

Calculations Title: block

Description:

Project Title:

The proposed foul flows per development block have been calculated based on the number of residential units, commercial floor space, cinema seating, hotel rooms, and number of students attending the school, as captured within the proposed foul flow estimate calculation (Sheet 2 of 3) and the development proposals (Appendix A).

Development Block	TW Manhole ref	Foul Flow (I/s)
1	4902	2.0
2	3005	1.1
3	4101	0.4
4	4101	0.3
5	4903	1.8
6	4901	0.3
7	4101	0.8
8	4101	0.9
9	6003	0.2
10	6901	0.3
11	6003	0.5
12	6003	0.5
13	3005	0.3
14	3901	0.3
15	3901	0.9
16	3007	0.6
17	3005	0.6
18	3007	0.9
19	3007	0.4
20	3007	0.1
21	3007	0.1
School	2801	9.0
Total	-	21.9

J. LBRuT SuDS Proforma

GREATER**LONDON**AUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	The Former Stag Brewery		
	Address & post code	The Former Stag Brewery, Mortlake		
	OS Grid ref. (Easting, Northing)	E 520470		
1. Project & Site Details	O3 GHa Tet. (Easting, Northing)	N 176018		
	LPA reference (if applicable)			
	Brief description of proposed work	Section 1		
	Total site Area	9941 m ²		
	Total existing impervious area	5890 m ²		
	Total proposed impervious area	5890 m		
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	See FRA		
	Existing drainage connection type and location	Section 3		
	Designer Name	Brendan McCarthy		
	Designer Position	Technical Director		
	Designer Company	Waterman		

	2a. Infiltration Feasibility						
	Superficial geology classification	Section 4					
	Bedrock geology classification		Section 4				
	Site infiltration rate		m/s				
	Depth to groundwater level		m below ground level				
	Is infiltration feasible?		Yes				
	2b. Drainage Hierarchy						
ements		Feasible (Y/N)	Proposed (Y/N)				
ang	1 store rainwater for later use		Υ	Υ			
ırge Arr	2 use infiltration techniques, such as porous surfaces in non-clay areas		N				
d Discha	3 attenuate rainwater in ponds or open water features for gradual release		N				
2. Proposed Discharge Arrangements	4 attenuate rainwater by storing in tanks or sealed water features for gradual release		Υ	Υ			
2. P	5 discharge rainwater direct to a w	Υ	Υ				
	6 discharge rainwater to a surface water sewer/drain		Υ	Υ			
	7 discharge rainwater to the comb	N					
	2c. Proposed Discharge Details						
	Proposed discharge location	Section 4					
	Has the owner/regulator of the discharge location been consulted?		Section 4 and 5				

GREATER**LONDON**AUTHORITY

Obar	Greenfield (GF) runoff rate (I/s)	Existing	Required	Proposed	
Ohar		discharge rate (l/s)	storage for GF rate (m ³)	discharge rate (I/s)	
Qbui	See Sectio	n 4			
1 in 1				Ī	
1 in 30					
1 in 100					
1 in 100 + CC		-			
Climate change allowance used		40%			
3b. Principal Method of Flow Control					
3c. Proposed SuDS Measures					
		Catchment	Plan area	Storage	
		area (m²)	(m²)	vol. (m³)	
		See Sect	ion 4	D	
Infiltration systems				D	
		_		0	
				0	
		-		0	
		-		0	
·		H		0	
		H		5	
		-		5	
	<u> </u>	H		<u> </u>	
Total		0	0	0	
	1 in 30 1 in 100 1 in 100 + CC Climate change a 3b. Principal Met Control 3c. Proposed Sub Rainwater harves Infiltration system Green roofs Blue roofs Filter strips Filter drains Bioretention / tre Pervious paveme Swales Basins/ponds Attenuation tanks	1 in 30 1 in 100 1 in 100 + CC Climate change allowance used 3b. Principal Method of Flow Control 3c. Proposed SuDS Measures Rainwater harvesting Infiltration systems Green roofs Blue roofs Filter strips Filter drains Bioretention / tree pits Pervious pavements Swales Basins/ponds Attenuation tanks	1 in 30 1 in 100 1 in 100 + CC Climate change allowance used 3b. Principal Method of Flow Control 3c. Proposed SuDS Measures Catchment area (m²) Rainwater harvesting Infiltration systems Green roofs Blue roofs Filter strips Filter drains Bioretention / tree pits Pervious pavements Swales Basins/ponds Attenuation tanks	1 in 30 1 in 100 1 in 100 + CC Climate change allowance used 3b. Principal Method of Flow Control 3c. Proposed SuDS Measures Catchment area (m²) (m²) Rainwater harvesting Infiltration systems Green roofs Blue roofs Filter strips Filter drains Bioretention / tree pits Pervious pavements Swales Basins/ponds Attenuation tanks	

	4a. Discharge & Drainage Strategy	Page/section of drainage report	
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results		
	Drainage hierarchy (2b)	Section 4	
LC.	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	Section 4	
ormatic	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Section 4	
4. Supporting Information	Proposed SuDS measures & specifications (3b)	Section 4	
ğ	4b. Other Supporting Details	Page/section of drainage report	
Supplies	Detailed Development Layout	Appendix E	
4.	Detailed drainage design drawings, including exceedance flow routes	Appendix E	
	Detailed landscaping plans	Appendix A	
	Maintenance strategy	Section 4	
		Section 4	
	Demonstration of how the proposed SuDS measures improve:	Section 4	
	· · ·	Section 4 Section 4	
	SuDS measures improve:		

K. Urban Greening Factor

UK and Ireland Office Locations

