

CALCULATIONS

Company: WIE Office: London

Sheet No: 8 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume to achieve IH124 greenfield runoff rate

LOCATION		CALCU	LATIONS		OPTIONS		
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;						
	Drainage Catchment - West 5 Area IH124 Greenfield Runoff Rate - Q10 Maximum allowable discharge	0.92 ha 7.73 l/s/ha 7.14 l/s					
	Design D1 (lkm) 0.322 E1(km) 0.306 Side Coverview 2D D2 (lkm) 0.252 E1(km) 2.539 Coverview 2D D3 (lkm) 0.252 E1(km) 2.539 Coverview 2D D4 (lkm) 0.252 E1(km) 2.539 Coverview 2D D4 (lkm) 0.252 E1(km) 2.539 Coverview 2D D4 (lkm) 0.252 E1(km) 0.2539 Coverview 2D D4 (lkm) 0.252 Coverview 2D D4 (lkm) 0.252 E1(km) 0.2539 Coverview 2D D4 (lkm) 0.252 E1(km) 0.2539 Coverview 2D D4 (lkm) 0.252 Coverview 2D D4 (l	/ (Summer) 0.750 / (Winter) 0.840 permeable Area (ha) 0.920 aximum Allowable Discharge (/a) 7.1 illitration Coefficient (m/hr) 0.00000 fety Factor 2.0 mate Change (%) 40		les require approximate storage 88 m³ and 870 m³. are estimates only and should not be used for design purposes.			
	Enter Infiltration Coefficient between	Analyse OK Cancel Help 0.00000 and 100000.00000	Ent	Analyse OK Cancel Help Inter Infiltration Coefficient between 0.00000 and 100000.00000			
	50% attenuation volume (m³) Greenfield attenuation volume (m³)	NA 769					

CALCULATIONS

Company: WIE Office: London

Sheet No: 9 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume to achieve IH124 greenfield runoff rate

LOCATION	CALCULATIONS					
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;					
	Drainage Catchment - West 6					
	Area 0.79 ha IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha					
	IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha Maximum allowable discharge 6.11 l/s					
	Variables Witto Global Variables require approximate storage					
	Micro Dialing FEH Rainfall Cv (Summer) D.750 D.840 Cv (Writer) D.790 Cv (Writer) D.840 D					
	Analyse OK Cancel Help Enter Maximum Allowable Discharge between 0.0 and 999999.0 Enter Maximum Allowable Discharge between 0.0 and 999999.0					
	Enter Maximum Allowable Discharge between 0.0 and 999999.0 Enter Maximum Allowable Discharge between 0.0 and 999999.0					
	50% attenuation volume (m³) 177					
	Greenfield attenuation volume (m³) 318.5					

I. Foul Flow Estimate

Project Title: Stag Brewery

Calculations Title: Existing Foul Flow Estimate

 Sheet No:
 1 of 3
 Project No:
 WIE18671

 By:
 M Stuart
 Date:
 18/02/2022

Checked: B McCarthy Date: 18/02/2022

		Dry Weather Flow Rate (per day)	Source	Number of	Factor	Profile (hours)	Peak Flow Rate (litres/second)
Residential					2.12	24	
Existing property =	160 litres/person/day	368.0 litres per unit	Thames Water Guidelines (2016)	0 existing units			0.0
New property =	125 litres/person/day	287.5 litres per unit	Thames Water Guidelines (2016)	0 proposed units			0.0
Occupancy =	2.3 persons						
Hotel		500.0 litres per room	British Water (2013)	15 rooms	3	24	0.3
Student Accommodation		200.0 litres per bed	Thames Water Guidelines (2016)	0 beds	3	24	0.0
Offices		750.0 litres per 100m ²	Jones (1992)	2318 m ²	3	10	1.4
Retail		400.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
Cinema		10.0 litres per seat	Jones (1992)	0 seats*	3	8	0.0
Health Club/Sports Centre		50.0 litres per customer	British Water (2013)	168 customers**	3	16	0.4
Day School		90.0 litres per pupil	British Water (2013)	0 pupils	3	10	0.0
Boarding School		175.0 litres per pupil	British Water (2013)	0 pupils	3	24	0.0
Hospital		625.0 litres per bed	Jones (1992)	0 beds	3	24	0.0
Nursing Home		350.0 litres per bed	British Water (2013)	0 beds	3	24	0.0
Restaurant		30.0 litres per cover	British Water (2013)	0 covers	3	8	0.0
Pub/Club		15.0 litres per customer	Butler and Davies (2004)	0 customers***	3	12	0.0
Warehouse		150.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
Manufacturing		550.0 litres per 100m ²	Jones (1992)	28671 m ²	3	12	11.0
Commercial		300.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
SUB TOTAL							13.1
Infiltration percentage	109	6					1.3
TOTAL	·						14.4

^{*} Foul flow rate needs to be calculated based on number of seats. An allowance of 4m² has been made for each seat.

Floor area = 0 m^2 4 m² per person

Floor area = 672 m^2 4 m² per person

*** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2 4 m² per person

^{**} Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Project Title: Stag Brewery

Calculations Title: Proposed Foul Flow Estimate

 Sheet No:
 2 of 2
 Project No:
 WIE18671

 By:
 S Whelan
 Date:
 02/08/2022

Checked: B McCarthy Date: 02/08/2022

		Dry Weather Flow Rate (per day)	Source	Number of	Factor	Profile (hours)	Peak Flow Rate (litres/second)
Residential					2.12	24	
Existing property =	160 litres/person/day	400.0 litres per unit	Thames Water Guidelines (2016)	0 existing units			0.0
New property =	125 litres/person/day	312.5 litres per unit	Thames Water Guidelines (2016)	1071 proposed units			8.2
Occupancy =	2.5 persons						
Hotel		500.0 litres per room	British Water (2013)	15 rooms	3	24	0.3
Student Accommodation		200.0 litres per bed	Thames Water Guidelines (2016)	0 beds	3	24	0.0
Offices		750.0 litres per 100m ²	Jones (1992)	4468 m ²	3	10	2.8
Retail		400.0 litres per 100m ²	Jones (1992)	4782 m ²	3	12	1.3
Cinema		10.0 litres per seat	Jones (1992)	334 seats*	3	8	0.3
Health Club/Sports Centre		50.0 litres per customer	British Water (2013)	0 customers**	3	16	0.0
Day School		90.0 litres per pupil	British Water (2013)	1200 pupils	3	10	9.0
Boarding School		175.0 litres per pupil	British Water (2013)	0 pupils	3	24	0.0
Hospital		625.0 litres per bed	Jones (1992)	0 beds	3	24	0.0
Nursing Home		350.0 litres per bed	British Water (2013)	0 beds	3	24	0.0
Restaurant		30.0 litres per cover	British Water (2013)	0 covers	3	8	0.0
Pub/Club		15.0 litres per customer	Butler and Davies (2004)	0 customers***	3	12	0.0
Warehouse		150.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
Manufacturing		550.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
Commercial		300.0 litres per 100m ²	Jones (1992)	0 m ²	3	12	0.0
SUB TOTAL	<u> </u>						21.9
Infiltration percentage	10	0%					2.2
TOTAL							24.1

^{*} Foul flow rate needs to be calculated based on number of seats. An allowance of 4m² has been made for each seat.

Floor area = 1606 m^2 4 m² per person

** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2 4 m² per person

*** Foul flow rate needs to be calculated based on number of customers. An allowance of 4m² has been made for each customer.

Floor area = 0 m^2 4 m² per person

Sheet No: 3 of 3 Project No: WIE18671

Stag Brewery By: S Whelan Date: 02/08/2022

Proposed Foul Flow Estimate by development Checked: B McCarthy Date: 02/08/2022

Calculations Title: block

Description:

Project Title:

The proposed foul flows per development block have been calculated based on the number of residential units, commercial floor space, cinema seating, hotel rooms, and number of students attending the school, as captured within the proposed foul flow estimate calculation (Sheet 2 of 3) and the development proposals (Appendix A).

Development Block	TW Manhole ref	Foul Flow (I/s)
1	4902	2.0
2	3005	1.1
3	4101	0.4
4	4101	0.3
5	4903	1.8
6	4901	0.3
7	4101	0.8
8	4101	0.9
9	6003	0.2
10	6901	0.3
11	6003	0.5
12	6003	0.5
13	3005	0.3
14	3901	0.3
15	3901	0.9
16	3007	0.6
17	3005	0.6
18	3007	0.9
19	3007	0.4
20	3007	0.1
21	3007	0.1
School	2801	9.0
Total	-	21.9

J. LBRuT SuDS Proforma

GREATER**LONDON**AUTHORITY

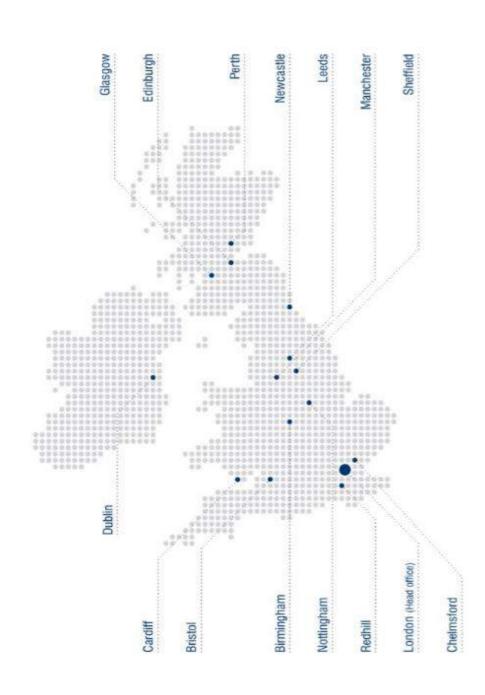
	Project / Site Name (including sub- catchment / stage / phase where appropriate)	The Former Stag Brewery	
	Address & post code	The Former Stag Brewery, Mortlake	
	OS Grid ref. (Easting, Northing)	E 520470	
S	O3 GHa Tet. (Easting, Northing)	N 176018	
etail	LPA reference (if applicable)		
1. Project & Site Details	Brief description of proposed work	Section 1	
	Total site Area	9941 m ²	
	Total existing impervious area	5890 m ²	
	Total proposed impervious area	5890 m ²	
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	See FRA	
	Existing drainage connection type and location	Section 3	
	Designer Name	Brendan McCarthy	
	Designer Position	Technical Director	
	Designer Company	Waterman	

	2a. Infiltration Feasibility				
	Superficial geology classification		Section 4		
	Bedrock geology classification		Section 4		
	Site infiltration rate		m/s		
	Depth to groundwater level		m belo	w ground level	
	Is infiltration feasible?		Yes		
	2b. Drainage Hierarchy				
ements			Feasible (Y/N)	Proposed (Y/N)	
ang	1 store rainwater for later use		Υ	Υ	
ırge Arr	2 use infiltration techniques, such as porous surfaces in non-clay areas		N		
d Discha	3 attenuate rainwater in ponds or features for gradual release	open water	N		
2. Proposed Discharge Arrangements	4 attenuate rainwater by storing ir sealed water features for gradual r		Υ	Υ	
2. P	5 discharge rainwater direct to a w	vatercourse	Υ	Υ	
	6 discharge rainwater to a surface water sewer/drain		Υ	Υ	
	7 discharge rainwater to the combined sewer.		N		
	2c. Proposed Discharge Details				
	Proposed discharge location		Section 4		
	Has the owner/regulator of the discharge location been consulted?	Section 4 and 5		5	

GREATER**LONDON**AUTHORITY

Obar	Greenfield (GF) runoff rate (I/s)	Existing	Required	Proposed
Ohar		discharge rate (l/s)	storage for GF rate (m ³)	discharge rate (I/s)
Qbai	See Sectio	n 4		
1 in 1				
1 in 30				
1 in 100				
1 in 100 + CC		-		
Climate change a	llowance used	40%		
3b. Principal Met Control	hod of Flow			
3c. Proposed SuD	S Measures			
		Catchment	Plan area	Storage
		area (m²)	(m²)	vol. (m³)
		See Sect	ion 4	D
•	ns			D
		_		0
				0
•		-		0
	o nite	-		0
	· ·	H		0
	111.5	H		5
		-		0
	<u> </u>	H		<u> </u>
Total		0	0	0
	1 in 30 1 in 100 1 in 100 + CC Climate change a 3b. Principal Met Control 3c. Proposed Sub Rainwater harves Infiltration system Green roofs Blue roofs Filter strips Filter drains Bioretention / tre Pervious paveme Swales Basins/ponds Attenuation tanks	1 in 30 1 in 100 1 in 100 + CC Climate change allowance used 3b. Principal Method of Flow Control 3c. Proposed SuDS Measures Rainwater harvesting Infiltration systems Green roofs Blue roofs Filter strips Filter drains Bioretention / tree pits Pervious pavements Swales Basins/ponds Attenuation tanks	1 in 30 1 in 100 1 in 100 + CC Climate change allowance used 3b. Principal Method of Flow Control 3c. Proposed SuDS Measures Catchment area (m²) See Sect Infiltration systems Green roofs Blue roofs Filter strips Filter drains Bioretention / tree pits Pervious pavements Swales Basins/ponds Attenuation tanks	1 in 30 1 in 100 1 in 100 + CC Climate change allowance used 3b. Principal Method of Flow Control 3c. Proposed SuDS Measures Catchment area (m²) (m²) Rainwater harvesting Infiltration systems Green roofs Blue roofs Filter strips Filter drains Bioretention / tree pits Pervious pavements Swales Basins/ponds Attenuation tanks

	4a. Discharge & Drainage Strategy	Page/section of drainage report
	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	Section 4
	Drainage hierarchy (2b)	Section 4
LC.	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	Section 4
ormatic	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Section 4
4. Supporting Information	Proposed SuDS measures & specifications (3b)	Section 4
ğ	4b. Other Supporting Details	Page/section of drainage report
Supplies	Detailed Development Layout	Appendix E
4.	Detailed drainage design drawings, including exceedance flow routes	Appendix E
	Detailed landscaping plans	Appendix A
	Maintenance strategy	Section 4
	Demonstration of how the proposed SuDS measures improve:	Section 4
	· · ·	Section 4 Section 4
	SuDS measures improve:	



K. Urban Greening Factor

UK and Ireland Office Locations

