

Pickfords Wharf, Clink Street, London, SE1 9DG www.watermangroup.com

Objection Rebuttal

Technical Note

Date:		16/12/2022					
Client Name:		London Square Developments Ltd					
Document Reference:		WIE12357-100-TN-5-2-1					
This document has been p Waterman Group's IMS (B	repared and checke S EN ISO 9001: 20	ed in accordance with 15, BS EN ISO 14001: 2015 and BS EN ISO 45001:2018)					
Issue	Prepared by	Checked & Approved by					
	Sean Whelan	Brendan McCarthy					
	Senior Engineer	Technical Director					
First	gh	~ Brucky					

Introduction

- 1.1. Waterman has been commissioned by London Square Developments Ltd to provide a rebuttal to the objections raised by London Borough of Richmond upon Thames (LBRuT) with respect to the outline planning application (22/2556/FUL) for the proposed development located at the former Greggs Bakery Site, located at Gould Road, Twickenham TW2 6RT.
- 1.2. Four objections have been raised and there has already been some discussion between the project team and LBRuT, as detailed below; the original objections are in black, initial responses from the project team in blue, and the subsequent responses from LBRuT in red.

Drainage hierarchy:

- PASS the application proposes to manage rainwater via rainwater harvesting, infiltration through permeable paving, and green infrastructure via green/brown roofs. Infiltration tests demonstrate a suitable rate of 4.47 to 4.62 x 10⁻⁶ m/s with suitable ground conditions described as Kempton Park Gravel. The SuDS features discharge into a watercourse named the River Crane. There will be 1 discharge point restricted using a pump.
- MORE INFORMATION REQUIRED consent for the proposed discharge point connection has not been provided and this is required. The proposed development would discharge primarily to ground, via infiltration through the sub-base layer of the proposed permeable paving. For any surface water unable to discharge via infiltration, a pumped outfall would discharge to the River Crane at a rate of 8.7 I/s for the residential scheme and 8.9 I/s for the commercial scheme. There were no objections to this discharge point from the EA as part of the 2019 application, which discharged at a very similar rate, therefore, it can be safely assumed that this would still be acceptable.
- As you are still discharging to the river crane, even if it is a small amount, consent is still required and has not yet been given.

Page 1 of 5 Objection Rebuttal WIE12357-100-TN-5-2-1 WIE12357

Runoff rate:

- MORE INFORMATION REQUIRED The greenfield runoff rate does not match the greenfield runoff proposed for the same site through planning application reference 22/2556/FUL as it only accounts for the impermeable area on site. The greenfield runoff rate should be calculated for the whole site area.
 We have taken a conservative approach in using the impermeable area to calculate both the greenfield runoff rate and the proposed attenuation volume. To use the entire site area to calculate the runoff rate and the impermeable area to calculate the attenuation volume would result in a larger rate and a smaller resulting attenuation volume, so would be a less conservative approach. Additionally, as we are proposing to utilise infiltration to partially dispose of surface water runoff, it has been assumed that the permeable areas of the site would discharge to ground and runoff would enter the proposed drainage system.
- This is not sufficient justification by not using the whole site area. The calculations must be amended.

Attenuation volume:

• FAIL – the application does not conform to Defra's Non-Statutory Technical Standards for Sustainable Drainage. It must be demonstrated that the site will not flood as a result of the 1 in 30 year rainfall event, that there will be no flooding of buildings as a result of events up to and including the 1 in 100 year rainfall event, and on-site flow as a result of the 1 in 100 year event with a climate change consideration must be suitably managed. Calculations should include the whole site area.

The proposed drainage strategy has been designed to accommodate all surface water runoff from the 1 in 100 year +40% event with no flooding occurring during the 1 in 30 year event. Detailed calculations would be provided at the detailed design stage.

• We are unable to pass this section without the detailed calculations.

Maintenance:

 MORE INFORMATION REQUIRED - the drainage strategy includes the maintenance tasks and frequencies for each drainage component proposed. Information on who will own the maintenance tasks is required.
 Due to the early stage of design for the scheme, a maintenance company has not yet been secured

Due to the early stage of design for the scheme, a maintenance company has not yet been secured to carry out the management and maintenance of the drainage system. This information would be submitted at the detailed design stage.

- We are unable to pass this section without the maintenance schedule and company information.
- 1.3. It is intended that this technical note will, where possible, provide the additional detail required by LBRuT such that the objections can be removed.

Drainage hierarchy

1.4. We have received feedback from the EA (see Appendix A) and they have not objected to the proposed discharge to the River Crane.

Page 2 of 5 Objection Rebuttal WIE12357-100-TN-5-2-1 WIE12357

1.5. The EA have issued a holding objection based on the proposed development being a "*missed* opportunity for restoring the River Crane" however this is a separate issue that we are working to resolve. We have responded to the EA's objection and are currently awaiting feedback.

Runoff rate

- 1.6. The Greenfield Runoff Rate of 9.1 l/s/ha has not changed between the schemes. The total runoff from the Site will be restricted to 10.3 l/s based on the total site area of 1.130 ha.
- 1.7. As only impermeable surfaces will be positively drained, runoff from these areas will be restricted to 8.7 l/s, in line with the greenfield runoff rate of 9.1 l/s/ha. Permeable surfaces will drain naturally via infiltration or runoff directly to the River Crane. Discharge from the impermeable and permeable surfaces will therefore be restricted to the total site greenfield runoff rate of 10.3 l/s.

Attenuation volume

1.8. Detailed calculations for the 1 in 30, 1 in 100, and 1 in 100 year plus climate change events are provided in Appendix B.

Maintenance

1.9. A management agent appointed by London Square will be responsible for maintenance of the SuDS and will carry out the tasks set out within the drainage strategy.

A. EA Objection

Page 4 of 5 Objection Rebuttal WIE12357-100-TN-5-2-1 WIE12357

creating a better place for people and wildlife

Thomas Faherty London Borough of Richmond upon Thames Planning Department Civic Centre (44) York Street Twickenham Middlesex TW1 3BZ Our ref:SL/2022/122209/01-L01Your ref:22/2556/FUL

Date:

6 October 2022

Dear Thomas,

Demolition of existing buildings (with retention of a single dwelling) and redevelopment of the site to provide up to 116 residential units and 175 sqm commercial floorspace (use class E) with associated hard and soft landscaping, car parking and highways works and other associated works.

Greggs Bakery, Gould Road, Twickenham, TW2 6RT.

Thank you for consulting us on the above application on 30 August 2022.

Environment Agency Position

Objection: missed opportunity for restoring the River Crane and impact on Water Framework Directive requirements

We **object** to this development as submitted and recommend planning permission is refused, in line with local and national planning policy, and Water Framework Directive (WFD) requirements.

Reasons

Based on the information submitted, there is a significant risk that the proposed development may prevent the River Crane achieving good ecological potential by preventing future improvement under the WFD. The development will permanently redevelop a 300m section of the River Crane's riparian edge, retaining the concrete bank, leaving no opportunity for future naturalisation.

There are several benefits provided by naturalised, undeveloped river corridors including:

- A filtering effect on runoff to 'clean' surface water before it enters the watercourse.
- Providing a habitat for many aquatic species including fish, invertebrates and macrophytes through the provision of refuge areas and a more diverse range of habitats for foraging and breeding.
- The provision of a wildlife corridor which improves the resilience of species to climate change and urban fragmentation.

customer service line 03708 506 506 gov.uk/environment-agency

creating a better place for people and wildlife

Recent pilot projects on the Crane have demonstrated it is possible to remove the hard engineered riverbanks and bed along this stretch of the river and "soften" to provide a naturalised riverbank with a more diverse range of habitats.

Water Framework Directive

Not providing an adequate naturalised, undeveloped river corridor here may prevent the improvement in status of the biological element of the current WFD classification (currently at moderate for fish, invertebrates and macrophytes). Urban development is listed as a reason why the Crane is not achieving good ecological potential (Catchment data explorer- River Crane).

The <u>Thames River Basin Management Plan</u> (RBMP) sets out the environmental objectives for the river basin district, including statutory objectives for water bodies and protected areas. It also includes a summary programme of measures required to achieve these objectives.

Under the Water Environment (Water Framework Directive) (England and Wales) Regulations 2017 (WFD Regulations), public bodies must have regard to the relevant RBMP in exercising their functions which affect a river basin district.

The WFD Regulations also require that all water bodies are protected from deterioration and pollution. If a significant risk of water pollution from a development cannot be avoided or adequately mitigated, planning permission should be refused.

Local Planning Policy

This objection is supported by Policy LP 18- River Corridors of the Richmond Local Plan (2018), which states "Development adjacent to the river corridors will be expected to contribute to improvements and enhancements to the river environment."

This objection is also supported by the following policies in the Richmond Local Plan:

- Policy LP 23 Water resources and infrastructure.
- Policy LP 15 Biodiversity
- Policy LP 30 Health and Wellbeing

National Planning Policy

This objection is supported by Paragraph 174 of the National Planning Policy Franework (NPPF) which states that planning policies and decisions should contribute to and enhance the natural and local environment by:

"minimising impacts on and providing net gains for biodiversity, including by establishing coherent ecological networks that are more resilient to current and future pressures".

Overcoming our objection

The applicant should provide an alternative scheme, which meets the requirements of the Water Framework (WFD), and local and national planning policy as outlined above.

customer service line 03708 506 506 gov.uk/environment-agency

To achieve this, the applicant should refer to the <u>Lower Crane Vision</u> which sets out a plan for this section of the Crane, and can be used to produce detailed designs for the reach through the development.

To support any revised scheme, the applicant should provide detailed designs for restoration of the River Crane through the development, including cross sections and plan view drawings produced by a specialist geomorphology consultant. The applicant should also provide a construction method statement, to demonstrate that the Crane will be protected during the construction phase.

Please note, as submitted, it is unlikely we would grant a Floor Risk Activity Permit (FRAP) for these works.

Informative

Flood Risk Activity Permit

The Environmental Permitting (England and Wales) Regulations 2016 require a permit to be obtained for any activities which will take place:

- on or within 8 metres of a main river (16 metres if tidal)
- on or within 8 metres of a flood defence structure or culvert (16 metres if tidal)
- on or within 16 metres of a sea defence
- involving quarrying or excavation within 16 metres of any main river, flood defence (including a remote defence) or culvert
- in a floodplain more than 8 metres from the river bank, culvert or flood defence structure (16 metres if it's a tidal main river) and you don't already have planning permission.

For further guidance please visit <u>https://www.gov.uk/guidance/flood-risk-activities-</u> <u>environmental-permits</u> or contact our National Customer Contact Centre on 03702 422 549 or by emailing enquiries@environment-agency.gov.uk. The applicant should not assume that a permit will automatically be forthcoming once planning permission has been granted, and we advise them to consult with us at the earliest opportunity.

Advice to Applicant

Biodiversity Net Gain

The biodiversity net gain report submitted (Richard Graves Associates, 5 August 2022) excludes the "rivers" element of the metric from calculations. We recommend that the biodiversity net gain report is revised to re-calculate the change in biodiversity units between the baseline state and the proposed development.

Note to Applicant

Planning advice service

Should you wish us to review any technical documents or want further advice regarding ecological enhancements to the River Crane, we can do this as part of our charged for planning advice service.

customer service line 03708 506 506 gov.uk/environment-agency

Further engagement will provide you with the opportunity to discuss and gain our views on potential options to overcome our objection with us, before formally submitting further information as part of your planning application. It should also result in a better quality and more environmentally sensitive development.

As part of our charged for service we will provide a dedicated project manager to act as a single point of contact to help resolve any problems. We currently charge £100 per hour, plus VAT. We will provide you with an estimated cost for any further discussions or review of documents. The standard terms of our charged for service are available here.

If you would like more information on our planning advice service, including a cost estimate, please contact us at <u>kslplanning@environment-agency.gov.uk.</u>

Note to Local Planning Authority

Closing comments

Thank you for contacting us regarding the above application. Our comments are based on our available records and the information submitted to us. Please quote our reference number in any future correspondence. Please provide us with a copy of the decision notice for our records. This would be greatly appreciated

If you are minded to approve the application contrary to our objection, I would be grateful if you could re-notify us to explain why, and to give us the opportunity to make further representations.

Should you have any queries regarding this response, please contact me.

Yours sincerely,

George Goodby Sustainable Places Planning Advisor

Mobile +447879802840 E-mail kslplanning@environment-agency.gov.uk

B. Detailed Surface Water Calculations

Page 5 of 5 Objection Rebuttal WIE12357-100-TN-5-2-1 WIE12357

Waterman Group							Page 1		
Pickfords Wharf									
Clink Street									
London, SE1 9DG							Micco		
Date $04/04/2022$ 17.	01	Desi	Designed by csch3						
Eile Derug powerent		Choo	kad by	<i>v</i> 000110			Drainage		
File Folds pavement	_w_SOakay.		keu by	1 000	0 1 0				
Innovyze		Sour	ce Cont	crol 202	0.1.3				
	C D 1	c 1.0							
Summary	OI RESULTS	s for it	JU year	Return	Perio	a (+40	<u>);;)</u>		
	Uplf	Drain Ti	mo • 507	minutoo					
	nall	Diain in	ile : 507	minutes.					
Storm	Max Max	Max	M	lax M	ax	Max	Status		
Event	Level Depth	Infiltra	tion Con	trol Σ Ou	tflow	Volume			
	(m) (m)	(1/s)) (1	./s) (1	/s)	(m³)			
15 min Summer	9.642 0.252		2.1	8.7	10.8	270.7	0 K		
30 min Summer	9.712 0.322		2.1	8.7	10.8	346.2	Flood Risk		
60 min Summer	9.777 0.387		2.1	8.7	10.8	416.2	Flood Risk		
120 min Summer	9.859 0.469		2.1	8.7	10.8	504.0	Flood Risk		
180 min Summer	9.896 0.506		2.1	8.7	10.8	543.8	Flood Risk		
240 min Summer	9.912 0.522		2.1	8.7	10.8	561.2	Flood Risk		
360 min Summer	9.913 0.523		2.1	8.7	10.8	562.1	Flood Risk		
480 min Summer	9.897 0.507		2.1	8.7	10.8	544.9	Flood Risk		
600 min Summer	9.879 0.489		2.1	8.7	10.8	525.3	Flood Risk		
720 min Summer	9.860 0.470		2.1	8.7	10.8	504.9	Flood Risk		
960 min Summer	9.822 0.432		2.1	8.7	10.8	464.7	Flood Risk		
1440 min Summer	9.755 0.365		2.1	8.7	10.8	392.5	Flood Risk		
2160 min Summer	9.673 0.283		2.1	8.7	10.8	303.9	O K		
2880 min Summer	9.609 0.219		2.1	8.7	10.8	235.4	O K		
4320 min Summer	9.525 0.135		2.1	8.7	10.8	145.6	O K		
5760 min Summer	9.487 0.097		2.1	8.4	10.5	104.0	O K		
7200 min Summer	9.471 0.081		2.1	7.0	9.1	86.8	O K		
8640 min Summer	9.459 0.069		2.1	6.0	8.1	74.5	O K		
10080 min Summer	9.451 0.061		2.1	5.3	7.4	65.8	O K		
15 min Winter	9.673 0.283		2.1	8.7	10.8	303.9	O K		
	0 to 2 mm	Dain		Dischaum		Deels			
	Storm	Rain (mm/hr)	Flooded	Volumo	e Time (mi	-Peak			
	Evenc	((m ³)	(m ³)	(111.)				
			、 <i>/</i>	· /					
1	5 min Summer	155.890	0.0	278.3	3	19			
3	30 min Summer	101.072	0.0	361.3	L	33			
6	50 min Summer	62.436	0.0	446.2	2	62			
12	0 min Summer	39.506	0.0	564.8	3	122			
18	30 min Summer	29.656	0.0	636.0)	182			
24	0 min Summer	23.946	0.0	684.8	3	242			
36	50 min Summer	17.419	0.0	747.3	3	360			
48	30 min Summer	13.748	0.0	786.4	1	416			
60	00 min Summer	11.382	0.0	813.9	9	474			
72	20 min Summer	9.727	0.0	834.6	5	534			
96	0 min Summer	7.552	0.0	864.3	L	662			
144	0 min Summer	5.259	0.0	902.5	5	924			
216	0 min Summer	3.651	0.0	939.8	3	1316			
288	0 min Summer	2.824	0.0	969.3	3	1676			
432	U min Summer	1.985	0.0	1022.0	J	2376			
576	00 min Summer	1.559	0.0	1070.0)	3000			
720	00 min Summer	1.303	0.0	1118.1	L	3/44			
864	10 min Summer	1.132	0.0	1166.0	ر ا	4416			
1008	30 min Summer	1.010	0.0	1214.1	L	5152			

15 min Winter 155.890

0.0

©1982-2020 Innovyze

311.8

18

Waterman Group							Page 2
Pickfords Wharf							
Clink Street							
London, SE1 9DG							Micco
Date 04/04/2022 17:	01	Desi	gned b	y csch	.3		
File Porus pavement	w soakaq	. Chec	ked by	-			Digitiga
Innovyze		Sour	ce Con	trol 2	020.1.3		
Summary	of Results	for 10	0 year	Retur	n Perio	d (+40)%)
							.
Event	Max Max Level Depth	Max	tion Co	max ntrol Σ	Max	Max	Status
livenc	(m) (m)	(1/s)	(1/s)	(1/s)	(m ³)	
	0 550 0 000		0.1	0 5	10.0		
30 min Winter 60 min Winter	9.752 0.362		2.1	8./	10.8	389.4 469.6	Flood Risk Flood Risk
120 min Winter	9.921 0.531		2.1	8.7	10.8	571.2	Flood Risk
180 min Winter	9.966 0.576		2.1	8.7	10.8	619.6	Flood Risk
240 min Winter	9.988 0.598		2.1	8.7	10.8	642.8	Flood Risk
360 min Winter	9.996 0.606		2.1	8.7	10.8	651.1	Flood Risk
480 min Winter	9.981 0.591		2.1	8.7	10.8	635.2	Flood Risk
600 min Winter	9.956 0.566		2.1	8.7	10.8	608.7	Flood Risk
720 min Winter	9.932 0.542		2.1	8.7	10.8	582.6	Flood Risk
960 min Winter	9.884 0.494		2.1	8.7	10.8	530.8	Flood Risk
2160 min Winter	9.790 0.400		2.1 2.1	8./	10.8	430.6	Flood Risk
2880 min Winter	9.672 0.282		2.1	87	10.8	205 2	0 K
4320 min Winter	9.487 0.097		2.1	8.4	10.5	103.9	0 K
5760 min Winter	9.463 0.073		2.1	6.4	8.4	78.6	0 K
7200 min Winter	9.448 0.058		2.1	5.1	7.1	62.8	0 K
8640 min Winter	9.439 0.049		2.0	4.3	6.3	52.8	O K
10080 min Winter	9.434 0.044		1.8	3.8	5.7	47.3	ОК
	0 to	Dain	El a a da a	ł Discha		Deels	
	Event	(mm/hr)	Volume	Volu	mo (mi	-reak	
	lvenc	(1111) 111)	(m ³)	(m ³)		
	0 min Wintor	101 072	0.0	2 40		22	
	0 min Winter	62 436	0.0) 40	99.8	62	
12	0 min Winter	39.506	0.0) 63	32.6	120	
18	0 min Winter	29.656	0.0) 71	2.4	178	
24	0 min Winter	23.946	0.0) 76	57.1	236	
36	0 min Winter	17.419	0.0	D 83	37.0	348	
48	0 min Winter	13.748	0.0	D 88	30.8	458	
60	0 min Winter	11.382	0.0) 91	1.6	554	
72	0 min Winter	9.727	0.0	93	34.8	572	
96	0 min Winter	1.552	0.0	J 96 101	0 9	120	
216	0 min Winter	3 651	0.0) 105	52.6	1408	
288	0 min Winter	2.824	0.0) 108	35.6	1760	
432	0 min Winter	1.985	0.0) 114	14.7	2332	
576	0 min Winter	1.559	0.0) 119	98.4	3056	
720	0 min Winter	1.303	0.0) 125	52.4	3752	
864	0 min Winter	1.132	0.0) 130	06.0	4416	
1008	0 min Winter	1.010	0.0) 135	59.9	5144	

Waterman Group		Page 3
Pickfords Wharf		
Clink Street		
London, SE1 9DG		Micco
Date 04/04/2022 17:01	Designed by csch3	
File Porus pavement w soakag	Checked by	Drainage
	Source Control 2020 1 3	
	Source control 2020.1.5	
Ra	infall Details	
Rainfall Mode	el Fr.	Н
Return Period (years	s) 10	0
FEH Rainfall Versio	on 201.	3
Site Locatio	on GB 515318 173345 TQ 15318 7334	5
Data Typ	pe Poin	t
Winter Store	ns Ye	S
Cv (Summe:	r) 0.75	0
Cv (Winter	r) 0.84	0
Shortest Storm (min:	s) 1.	5
Longest Storm (mins	s) 1008	0
Climate Change	5 +4	0
Tir	ne Area Diagram	
Tota	al Area (ha) 0.954	
T: Fr	ime (mins) Area om: To: (ha)	
	0 4 0 054	
	0 4 0.954	
Waterman Group Page 3 PickFords Wharf Clink Street London, SEI 900 Designed by csch3 File Ports parement_w_soakag Checked by Innovyze Source Control 2020.1.3 Rainfall Details Reinfall Vodel FEH Return Peried (years) 100 Site Tocation GB 515316 173345 rg 15316 73345 2013 Site Tocation GB 515316 173345 rg 15316 73345 0.840 Summer Storms Yes Whiter Storms Yes Cv (Sammet) 0.840 Shortest Storm (mins) 15 Looger 8 100 Climate Change 8 440		
aternan Group ickfords Wharf link Street ondon, SEI 906 ate 04/04/2022 17:01 ile Porus pavement_w_soakag Rainfall Details Rainfall Model FEH Return Period (years) 2013 Site Location GB 515318 173345 TQ 15318 73345 Bata Type Oata Type Numer's Scome Tes Winter Storms tes Winter Storms tes Uniter Storms 10080 Cr (Wunter) 0.750 Cr (Winter) 10080 Climate Change % +40 Time Area Diagram Total Area (ha) 0.954 0 4 0.954		
©198	32-2020 Innovyze	

<pre>ickfords Wharf link Street ondon, S31 9DG ate 04/04/2022 17:01 ile Porus pavement_w_soakag nnovyze Source Control 2020.1.3 Model Details Storage is Online Cover Level (m) 10.000 Cellular Storage Structure Invert Level (m) 9.390 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.01600 Porosity 0.30 Infiltration Coefficient Base (m/hr) 0.01600 Porosity 0.30 Infiltration Coefficient Base (m/hr) 0.01600 Porosity 0.30 Infiltration Coefficient Base (m/hr) 0.01600 Structure 0.000 3584.0 925.0 0.660 3584.0 925.0 Pump Outflow Control Invert Level (m) 9.390 Depth (m) Flow (1/e) 0.100 8.7000</pre>	Waterman Group		Page 4
<pre>Hink Street ondon, SEI 906 dite 04/04/2022 17:01 (here y source Control 2020.1.3) Model Details Model Details Storage is Online Cover Level (n) 10:000 Model Details Storage is Online Cover Level (n) 10:000 Miltration Coefficient Saie (n/hr) 0.01600 Porosity 0.33 Infiltration Coefficient Saie (n/hr) 0.01600 Porosity 0.33 Iopth (n) Area (n*) Inf. Area (n*) 0.000 3584.0 925.0 0.600 3584.0 925.0 Dupp Outflow Control Invert Level (n) 9.390 Solo 8.7000</pre>	Pickfords Wharf		
ondon, SE1 9DG Designed by csch3 Designed by csch3 ils Porus pavement_w_soakag Source Control 2020.1.3 movyze Source Control 2020.1.3 Model Details Model Details General (m) 10.000 Cellular Storage Structure Invert Level (m) 0.01600 Porosity 0.30 Infiltration Coefficient Side (m/hr) 0.0000 Porosity 0.30 Invert Level (m) 0.0000 Porosity 0.30 Infiltration Coefficient Side (m/hr) 0.0000 Doto 3584.0 925.0 0.000 3584.0 925.0 Dump Outflow Control Invert Level (m) 9.390 Depth (m) Flow (1/e) 0.100 8.7000	Clink Street		
ate 04/04/2022 17:01 ile Forus pavement_w_soakag Checked by Source Control 2020.1.3 <u>Model Details</u> Storage is Online Cover Level (m) 10.000 <u>Cellular Storage Structure</u> Invert Level (m) 9.390 Safety Factor 2.0 Infiltration Coefficient Base (m/r) 0.01600 Porosity 0.30 Infiltration Coefficient Base (m/r) 0.01600 Porosity 0.30 Infiltration Coefficient Base (m/r) 0.0000 Depth (m) Area (m*) Inf. Area (m*) 0.000 3584.0 925.0 0.600 3584.0 925.0 <u>Pump Outflow Control</u> Invert Level (m) 9.390 Depth (m) Flow (1/s) 0.100 8.7000	London, SE1 9DG		Micco
<pre>ile Porus pavement_v_soakag [checked by nnovyze Source Control 2020.1.3 Model Details Storage is online Cover Level (m) 10.000 Cellular Storage Structure Invert Level (m) 9.390 Safety Factor 2.0 Infiltration Coefficient Sade (m/hr) 0.00000 Pepth (m) Area (m') Inf. Area (m') [Pepth (m) Area (m') Inf. Area (m') 0.000 3584.0 925.0 0.600 3584.0 925.0 Pump Outflow Control Invert Level (m) 9.390 Depth (m) Flow (l/s) 0.100 8.7000</pre>	Date 04/04/2022 17:01	Designed by csch3	
<pre>Nnovyze Source Control 2020.1.3 <u>Model Details</u> Storage is Online Cover Level (m) 10.000 <u>Cellular Storage Structure</u> Invert Level (m) 9.390 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.01800 Depth (m) Area (m²) Inf. Area (m²) [Depth (m) Area (m²) Inf. Area (m²) 0.000 3584.0 925.0 <u>Pump Outflow Control</u> Invert Level (m) 9.390 Depth (m) Flow (1/s) 0.100 8.7000</pre>	File Porus pavement w soakag	. Checked by	Digiliada
Model Details Storage is Online Cover Level (m) 10.000 Cellular Storage Structure Invert Level (m) 9.390 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.01600 Borosity 0.30 Infiltration Coefficient Side (m/hr) 0.00000 Borosity 0.30 Depth (m) Area (m') Inf. Area (m') Depth (m) Area (m') Inf. Area (m') 0.000 3584.0 925.0 Pump Outflow Control Invert Level (m) 9.390 Depth (m) Flow (1/s) 0.100 8.7000	Innovyze	Source Control 2020.1.3	
Hotel Details Action and action and action	-		
Burge is Online Cover Level (m) 10.000 Called State Sta		Model Details	
Cellular Storage Structure Invert Level (m) 9.330 Safety Pactor 2.0 Difference Cefficient Base (m/hr) 0.0000 Opth (m) Area (m) Inf. Area (m) Depth (m) Area (m) Inf. Area (m) 0.00 3584.0 925.0 0.600 3584.0 925.0 Dupth (m) Area (m) Inf. Area (m) Depth (m) Depth (m) Area (m) Depth (m) Area (m) Depth (m) Depth (m) Area (m) Depth (m) Depth (m) Area (m) Depth (m	Storage is	Online Cover Level (m) 10.000	
Invert Level (m) 9.390 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.01600 Poresity 0.30 Infiltration Coefficient Side (m/hr) 0.0000 Depth (m) Area (m ³) Inf. Area (m ³) 0.000 3584.0 925.0 <u>Pump Outflow Control</u> Invert Level (m) 9.390 Depth (m) Flow (1/s) 0.100 8.7000	Cellu	lar Storage Structure	
Depth (m) Area (m²) Inf. Area (m²) 0.600 3584.0 925.0 0.000 3584.0 925.0 0.600 3584.0 925.0 Pump Outflow Control Invert Level (m) 9.390 Depth (m) Flow (1/s) 0.100 8.7000	Infiltration Coefficier Infiltration Coefficier	vert Level (m) 9.390 Safety Fact ht Base (m/hr) 0.01600 Porosi ht Side (m/hr) 0.00000	or 2.0 ty 0.30
0.000 3584.0 925.0 <u>Pump Outflow Control</u> Invert Level (m) 9.390 Depth (m) Flow (1/s) 0.100 8.7000	Depth (m) Area (m²) Inf. A	Area (m ²) Depth (m) Area (m ²) Inf.	. Area (m²)
Pump Outflow Control Invert Level (m) 9.390 Depth (m) Flow (1/s) 0.100 8.7000	0.000 3584.0	925.0 0.600 3584.0	925.0
Invert Level (m) 9.390 Depth (m) Flow (1/s) 0.100 8.7000	Pur	mp Outflow Control	
Depth (m) Flow (1/s) 0.100 8.7000	In	vert Level (m) 9.390	
0.100 8.700	ם	epth (m) Flow (l/s)	
		0.100 8.7000	

Waterman Group							Page 1
Pickfords Wharf							
Clink Street							
London, SE1 9DG							Micco
Date 16/12/2022	17:27	Desi	gned by	/ CSSW			
File Porus pave	ment w soakag	Chec	ked by				Digitigh
Innovyze		Sour	ce Cont	rol 2020	0.1.3		
	Summary of Re	esults fo	<u>r 100 y</u>	<u>ear Retu</u>	rn Pe	eriod	
	Hal	f Drain Ti	me : 340	minutes.			
Storm	Max Max	. Max	M	lax M	ax	Max	Status
Event	Level Dept	h Infiltra	tion Con	trol Σ Ou	tflow	Volume	
	(m) (m)	(1/s) (1	./s) (1	/s)	(m³)	
15 min Su	ummer 9.568 0.17	'8	2.1	8.7	10.8	191.5	0 K
30 min Su	ummer 9.617 0.22	27	2.1	8.7	10.8	244.0	O K
60 min Su	ummer 9.660 0.27	0	2.1	8.7	10.8	290.8	O K
120 min Su	ummer 9.712 0.32	2	2.1	8.7	10.8	346.5	Flood Risk
180 min Su	ummer 9.732 0.34	2	2.1	8.7	10.8	368.0	Flood Risk
240 min Su	ummer 9.738 0.34	8	2.1	8.7	10.8	373.7	Flood Risk
360 min Su	ummer 9.731 0.34	1	2.1	8.7	10.8	366.9	Flood Risk
480 min Su	ummer 9.719 0.32	.9	2.1	8.7	10.8	353.5	Flood Risk
600 min Su	ummer 9.704 0.31	. 4	2.1	8.7	10.8	337.9	Flood Risk
720 min Su	ummer 9.689 0.29	19	2.1	8.7	10.8	321.4	0 K
960 min Su	ummer 9.659 0.26	.9	2.1	8.7	10.8	288.8	OK
1440 min Su	ummer 9.605 0.21	.5	2.1	8./	10.8	231.5	O K
2160 min Su	ummer 9.544 0.15	5	2.1	8./	10.8	100.1	0 K
2000 IIIII Su 4320 min Su	111111111111111111111111111111111111	.J	2.1	0./	10.0 0 1	123.3 97.2	OK
4320 min Su 5760 min Su	111111101 9.471 0.000	24	2.1	7.1 5.5	7 6	68 7	0 K 0 K
7200 min Su	ummer 9,443 0.05	3	2.1	4.6	6.6	57.0	0 K
8640 min Su	ummer 9.437 0.04	7	1.9	4.1	6.0	50.2	0 K
10080 min Su	ummer 9.432 0.04	2	1.7	3.7	5.4	45.4	0 K
15 min Wi	nter 9.590 0.20	0	2.1	8.7	10.8	215.3	O K
	O haven	D - 1 - 1	1		m i	D e e la	
	Storm	Kain	Volume	Volume	: ⊥me :	-reak	
	Event	(1111)	(m ³)	(m ³)	(1111	.1157	
			<u>,</u> /	<u>,</u> /			
	15 min Summe	er 111.350	0.0	198.6		18	
	30 min Summe	er 72.194	0.0	257.7		33	
	60 min Summe	er 44.597	0.0	318.6		62	
	120 min Summe	er 28.219	0.0	403.3		122	
	180 min Summe	er 21.183	0.0	454.2		180	
	240 min Summe	er 17.105	0.0	489.0		240	
	360 min Summe	er 12.442	0.0	533.6		298 356	
	400 min Summe	$= 1 \qquad 9.820$	0.0	501.0 501.0		00CC 100	
	720 min Summe	=1 0.13U	0.0	506 O		422 189	
	960 min Summe	=1 0.948 =r 5.305	0.0	590.U 617 0		400 619	
	1440 min Sulling	r 3.535	0.0	644 5		880	
	2160 min Summe	2 - 2.608	0.0	671 1		1252	
	2880 min Summe	er 2.017	0.0	692.2		1584	
	4320 min Summe	er 1.418	0.0	729.8		2288	
	5760 min Summe	er 1.113	0.0	764.1		3000	

798.5

832.7

867.1

222.5

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

0.931

0.722

7200 min Summer

10080 min Summer

8640 min Summer 0.809

15 min Winter 111.350

3680

4408

5144

18

Waterman Group		Page 2
Pickfords Wharf		
Clink Street		
London, SE1 9DG		Micro
Date 16/12/2022 17:27	Designed by CSSW	
File Porus pavement_w_soakag	Checked by	Diamada
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period

	Storm		Max	Max	Max	Max		Max	Max	Status
	Event	I	Level	Depth	Infiltration	Control	Control Σ Out		Volume	
			(m)	(m)	(1/s)	(1/s)		(l/s)	(m³)	
30	min Win	nter 9	9.645	0.255	2.1	8.7		10.8	274.7	ΟK
60	min Win	nter 9	9.696	0.306	2.1	8.7		10.8	328.6	ОК
120	min Win	nter 9	9.756	0.366	2.1	8.7		10.8	394.0	Flood Risk
180	min Win	nter 9	9.782	0.392	2.1	8.7		10.8	421.4	Flood Risk
240	min Win	nter 9	9.791	0.401	2.1	8.7		10.8	431.1	Flood Risk
360	min Win	nter 9	9.785	0.395	2.1	8.7		10.8	424.3	Flood Risk
480	min Win	nter 9	9.767	0.377	2.1	8.7		10.8	405.2	Flood Risk
600	min Win	nter 9	9.748	0.358	2.1	8.7		10.8	384.9	Flood Risk
720	min Win	nter 9	9.727	0.337	2.1	8.7		10.8	362.7	Flood Risk
960	min Win	nter 9	9.685	0.295	2.1	8.7		10.8	317.1	O K
1440	min Win	nter 9	9.608	0.218	2.1	8.7		10.8	234.7	O K
2160	min Win	nter 9	9.524	0.134	2.1	8.7		10.8	143.6	0 K
2880	min Win	nter 9	9.483	0.093	2.1	8.1		10.2	100.1	0 K
4320	min Win	nter 9	9.453	0.063	2.1	5.5		7.5	67.7	ОК
5760	min Win	nter 9	9.438	0.048	2.0	4.2		6.1	51.3	O K
7200	min Win	nter 9	9.430	0.040	1.7	3.5		5.2	43.2	ОК
8640	min Win	nter 9	9.425	0.035	1.4	3.1		4.5	37.7	0 K
10080	min Win	ter 9	9.421	0.031	1.3	2.7		4.0	33.9	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			70 104	0 0	000 7	2.2
30	mın	Winter	/2.194	0.0	288.7	33
60	min	Winter	44.597	0.0	356.8	62
120	min	Winter	28.219	0.0	451.7	120
180	min	Winter	21.183	0.0	508.7	176
240	min	Winter	17.105	0.0	547.7	232
360	min	Winter	12.442	0.0	597.7	340
480	min	Winter	9.820	0.0	629.0	382
600	min	Winter	8.130	0.0	651.0	458
720	min	Winter	6.948	0.0	667.6	532
960	min	Winter	5.395	0.0	691.1	676
1440	min	Winter	3.756	0.0	721.9	950
2160	min	Winter	2.608	0.0	751.7	1296
2880	min	Winter	2.017	0.0	775.3	1588
4320	min	Winter	1.418	0.0	817.5	2332
5760	min	Winter	1.113	0.0	855.9	3000
7200	min	Winter	0.931	0.0	894.4	3744
8640	min	Winter	0.809	0.0	932.7	4408
10080	min	Winter	0.722	0.0	971.2	5240

Waterman Group							Page 1
Pickfords Wharf							
Clink Street							
London, SE1 9DG							Micco
Date 16/12/2022 17:2	6	Desi	aned by	V CSSW			
File Porus pavement	w soakad	Chec	ked by	2 00011			Drainage
-	w_SUakay	· Chec	Keu by	1 0 0 0	0 1 0		J
Innovyze		Sour	ce Cont	trol 202	0.1.3		
_							
Summ	<u>ary of Res</u>	<u>ults fo</u>	or 30 y	<u>ear Retu</u>	rn Peri	<u>_od</u>	
	Half	Drain Ti	me : 245	minutes.			
Storm	Max Max	M	ax	Max	Max	Max	Status
Event	Level Dept	h Infilt	ration (Control E	Outflow	Volume	
	(m) (m)	(1	/s)	(1/s)	(1/s)	(m³)	
15 min Summer	9.526 0.13	6	2.1	8.7	10.8	146.4	O K
30 min Summer	- 9.561 0.17	⊥ 1	2.1	8./	10.8	184.0	OK
60 min Summer	- 9.591 U.20	⊥ 0	∠.⊥ 2 1	8./ 07	10.8	∠⊥0.U	O K
120 min Summer	_ 9.628 U.23	0	2.1	×./	10.8	200.5	U K
180 min Summer	- 9.638 U.24	ð O	2.1	8./	10.8	266.6	U K
240 min Summer	9.639 0.24	9	2.1	8./	10.8	267.8	OK
360 min Summer	9.632 0.24	2	2.1	8./	10.8	260.6	OK
480 min Summer	9.621 0.23	1	2.1	8./	10.8	248.4	OK
600 min Summer	9.608 0.21	8	2.1	8.7	10.8	234.7	0 K
720 min Summer	9.595 0.20	5	2.1	8.7	10.8	220.8	0 K
960 min Summer	9.571 0.18	1	2.1	8.7	10.8	194.3	0 K
1440 min Summer	9.530 0.14	0	2.1	8.7	10.8	151.0	0 K
2160 min Summer	9.492 0.10	2	2.1	8.7	10.8	109.3	0 K
2880 min Summer	9.474 0.08	4	2.1	7.3	9.3	89.9	0 K
4320 min Summer	9.452 0.06	2	2.1	5.4	7.5	66.9	O K
5760 min Summer	9.440 0.05	0	2.1	4.4	6.4	54.1	O K
7200 min Summer	9.434 0.04	4	1.8	3.8	5.6	47.2	O K
8640 min Summer	9.429 0.03	9	1.6	3.4	5.0	42.3	O K
10080 min Summer	9.426 0.03	6	1.5	3.1	4.6	38.6	O K
15 min Winter	9.543 0.15	3	2.1	8.7	10.8	164.6	O K
	0 to a mm	Dain	F leeded	Dischaum	а <i>Пі</i> та П	 -	
	Storm	Rain (mm/hr)	Volumo	Volumo	e Time-P	eak	
	Evenc	(1111)	(m ³)	(m ³)	(11111	>)	
			(111)	(111)			
15	min Summer	85.786	0.0	152.	9	18	
30	min Summer	55.190	0.0	196.	9	33	
60	min Summer	33.902	0.0	242.	0	62	
120	min Summer	21.638	0.0	309.	1	120	
180	min Summer	16.227	0.0	347.	8	178	
240	min Summer	13.077	0.0	373.	7	204	
360	min Summer	9.483	0.0	406.	6	264	
480	min Summer	7.471	0.0	427.	1	330	
600	min Summer	6.183	0.0	441.	9	398	
720	min Summer	5.285	0.0	453.	3	464	
960	min Summer	4.112	0.0	470.	2	596	
1440	min Summer	2.884	0.0	494.	7	848	
2160	min Summer	2.028	0.0	521.	9 1	188	
2880	min Summer	1.587	0.0	544	7 1	556	
4320	min Summer	1.140	0.0	586	8 2	252	
5760	min Summer	0.912	0.0	62.5	8 2	992	
7200	min Summer	0.774	0.0	663	7 3	680	
8640	min Summer	0.681	0.0	700.	8 4	408	
10080	min Summer	0.614	0.0	737.	6 5	144	
15	min Winter	85.786	0.0	171.	3	18	

Waterman Group		Page 2
Pickfords Wharf		
Clink Street		
London, SE1 9DG		Micro
Date 16/12/2022 17:26	Designed by CSSW	
File Porus pavement_w_soakag	Checked by	Diamage
Innovyze	Source Control 2020.1.3	

Summarv	of	Results	for	30	vear	Return	Period	
<u>-</u>	-		-		4			

	Storm		Max	Max Max Max		Max Max		Max	Status
Event			Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min '	Winter	9.583	0.193	2.1	8.7	10.8	207.4	ОК
60	min	Winter	9.617	0.227	2.1	8.7	10.8	244.4	ОК
120	min 1	Winter	9.661	0.271	2.1	8.7	10.8	291.7	ОК
180	min 1	Winter	9.676	0.286	2.1	8.7	10.8	307.0	ОК
240	min 1	Winter	9.677	0.287	2.1	8.7	10.8	308.8	ОК
360	min 1	Winter	9.666	0.276	2.1	8.7	10.8	297.0	ΟK
480	min 1	Winter	9.651	0.261	2.1	8.7	10.8	280.4	ΟK
600	min 1	Winter	9.633	0.243	2.1	8.7	10.8	261.1	ΟK
720	min 1	Winter	9.614	0.224	2.1	8.7	10.8	241.2	ΟK
960	min 1	Winter	9.579	0.189	2.1	8.7	10.8	202.9	ΟK
1440	min 1	Winter	9.521	0.131	2.1	8.7	10.8	141.3	ΟK
2160	min 1	Winter	9.479	0.089	2.1	7.7	9.8	95.3	ΟK
2880	min 1	Winter	9.459	0.069	2.1	6.0	8.1	74.3	ΟK
4320	min 1	Winter	9.438	0.048	2.0	4.2	6.2	51.8	ΟK
5760	min N	Winter	9.429	0.039	1.6	3.4	5.0	42.0	ΟK
7200	min N	Winter	9.424	0.034	1.4	2.9	4.3	36.0	ΟK
8640	min 1	Winter	9.420	0.030	1.2	2.6	3.8	31.7	ΟK
10080	min 1	Winter	9.417	0.027	1.1	2.3	3.4	28.7	ОК

Storm			Rain	Flooded	Discharge	Time-Peak	
Event			(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
2.0			FF 100	0 0	000 6	2.0	
30	min	Winter	55.190	0.0	220.6	32	
60	min	Winter	33.902	0.0	271.1	62	
120	min	Winter	21.638	0.0	346.3	118	
180	min	Winter	16.227	0.0	389.6	174	
240	min	Winter	13.077	0.0	419.2	228	
360	min	Winter	9.483	0.0	455.4	284	
480	min	Winter	7.471	0.0	478.4	360	
600	min	Winter	6.183	0.0	495.0	434	
720	min	Winter	5.285	0.0	507.7	506	
960	min	Winter	4.112	0.0	526.7	644	
1440	min	Winter	2.884	0.0	554.2	892	
2160	min	Winter	2.028	0.0	584.6	1216	
2880	min	Winter	1.587	0.0	610.1	1584	
4320	min	Winter	1.140	0.0	657.3	2288	
5760	min	Winter	0.912	0.0	701.0	3000	
7200	min	Winter	0.774	0.0	743.4	3744	
8640	min	Winter	0.681	0.0	785.0	4408	
10080	min	Winter	0.614	0.0	826.1	5144	