

Kingston

Drainage Strategy

Bridge House

March 2022 201345/DS/JR/KBL/02 *Rev A*

LANMOR Consulting Ltd, Thorogood House, 34 Tolworth Close Surbiton, Surrey, KT6 7EW

Tel: 0208 339 7899 Fax: 0208 339 7898 E-mail: info@lanmor.co.uk Internet: www.lanmor.co.uk

DOCUMENT STATUS

Project:	Kingston Bridge Ho	use		
Title:	Drainage Strategy			
Client:	Westcombe Group			
Reference:	201345/DS/JR/KBL,	/02		
Produced by:	JR		Date:	
Checked by:	KBL		Date:	
Approved by:	KBL		Date:	
lssue/revision	<u>Date</u>	<u>Status</u>		<u>Issued by</u>
First	23/03/2022	. с. т.рр. ста.		JR
Α	05/01/2023	For Approval		KBL

CONTENTS

1	INTR	ODUCTION4
	1.1	Scope
2	SITE	LOCATION AND DESCRIPTION5
	2.1	Location5
	2.2	Existing Geology5
	2.3	Proposed Development
3	EXIST	TING DRAINAGE7
	3.1	Existing Foul Drainage
	3.2	Existing Surface Water Drainage
4	PROF	POSED DRAINAGE REGIME
	4.1	Proposed Foul Drainage
	4.2	Proposed Surface Water Drainage
5	SURF	ACE WATER DRAINAGE MAINTENANCE11
	5.1	General11
	5.2	Inspection, Manhole, Catchpit Chambers and Pipes 11
	5.3	Drainage Channels and Gullies
6	SUM	MARY AND CONCLUSION16

TABLES

TABLE 5.1 – MANHOLE, CATCHPIT AND PIPES MAINTENANCE	
TABLE 5.2 – CHANNEL AND GULLY MAINTENANCE	
TABLE 5.3 – PERMEABLE PAVING MAINTENANCE SCHEDULE	
TABLE 5.4 – BLUE ROOF MAINTENANCE	15
FIGURES	
FIGURE3	
FIGURE 2.1 – SITE LOCATION	5
FIGURE 4.1 – ARRIVAL VIEW OF SITE	8
APPENDICES	
APPENDIX A	
Drawings FLU.1191.3.03 – 09 – Existing Floor Plans	
Drawings FLU.1191.3.11 – 17 – Proposed Floor Plans	
APPENDIX B	
Thames Water Record Drawings	
APPENDIX C	
Drawings FLU.1191.3.10 – Proposed Site Layout	
APPENDIX D	
Drawing 201345/DS/01 – Propsoed SuDS layout	
Microdrainage Calulations	
Drainage Proforma	

1 INTRODUCTION

1.1 Scope

- 1.1.1 Lanmor Consulting has been commissioned by Westcombe Group to prepare a Drainage Strategy for the proposed development at Kingston Bridge House, Church Road, Hampton Wick, KT1 4AG. This report has been prepared in support of redevelopment of the site and has been commissioned to advise on the feasibility of providing a solution for the foul and surface water drainage for the proposed development.
- 1.1.2 This report will consider the drainage regime for the site and sets out the drainage strategy for the development including discharge rates and any requirements for attenuation.
- 1.1.3 The information within this report will be refined, modified, and updated as the detailed design is progressed. The scope of the works for this drainage strategy report is outlined below:
 - Review available data in relation to on-site drainage and other drainage networks near the site
 - Review of the ground conditions for the suitability of Sustainable Drainage Systems (SuDS)
 - Consider the use of SuDS as an option for disposal of surface water runoff from the proposed development
 - An assessment of the run-off likely to be generated.
 - Undertake drainage assessments to establish attenuation requirements to deal with any increase in surface water runoff from the development.

2 SITE LOCATION AND DESCRIPTION

2.1 Location

- 2.1.1 The site is located with the Borough of Richmond. The site is located at the junction of Church Grove and Hampton Court Road, opposite the Kings Field. The River Thames is located just east of the site, approximately 140m away. Figure 2.1 below shows the location of the site.
- 2.1.2 Kingston Bridge House is currently made up of student living facilities which spans over 7 floors. Drawings FLU.1191.3.03 09 in Appendix A show the plans for the existing development.

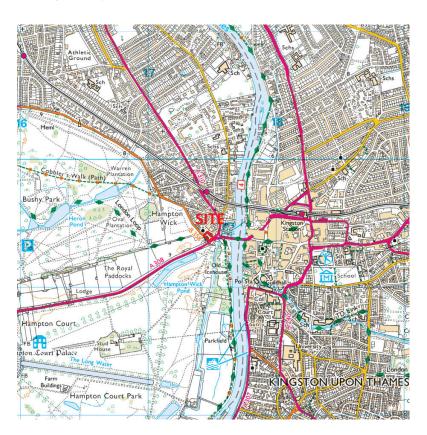


Figure 2.1 – Site Location

2.2 Existing Geology

2.2.1 The British Geological Survey indicates that the site has an underlying bedrock of London Clay Formation, which consists primarily of clay, silt and sand. Sedimentary bedrock formed between 56 and 47.8 million years ago during the Palaeogene period. 2.2.2 Superficial deposits have also been recorded at the site. The superficial geology consists Kempton Park Gravel Member, which is made up of sand and gravel. These deposits were formed between 1.6 and 1.8 million years ago during the Quaternary period.

2.3 Proposed Development

- 2.3.1 The proposed development will consist of the conversion of the existing student living accommodation to residential apartments a total of 70 units will be provided.
- 2.3.2 Drawings FLU.1191.3.11 17 included in Appendix B shows the proposed makeup of the development at Kingston Bridge House.

3 EXISTING DRAINAGE

3.1 Existing Foul Drainage

- 3.1.1 As part of the investigation, Thames Water asset mapping was requested. The records show that there is an existing foul sewer located beneath Church Grove flowing from northwest to southeast. The pipe is 175mm in diameter and flows to another network located beneath Hampton Court Road. The nearest manholes located to the site are 4301 and 4302. Unfortunately, Thames Water have not provided any level information for either of these manholes.
- 3.1.2 The next nearest manholes are 4306 and 4308, which are located to towards the south of the site at the junction between Hampton Court Road and Church Grove.

 Manhole 4305 has no information. Manhole 4308 has a cover level of 7.61m and an invert level of 5.48m.

3.2 Existing Surface Water Drainage

- 3.2.1 According to the sewer records, there is an existing surface water located to the southeast of the site beneath Hampton Court Road, flowing from the southwest to the northeast. The sewer is a 450mm diameter pipe with the nearest manhole to the site being 4306. Manhole 4306 has a cover level of 7.49m and an invert level of 5.18m.
- 3.2.2 The Thames Water records can be found in Appendix B of this report.

4 PROPOSED DRAINAGE REGIME

4.1 Proposed Foul Drainage

- 4.1.1 The proposed foul drainage will utilise the existing foul drainage pipe network on site. The existing building accommodates approximately 216 students and has the potential to generate up to 10 l/s foul flows.
- 4.1.2 The proposed development will include for 70 new residential units with up to 210 residents in the development. Based on Sewers for Adoption 0.046 l/s per dwelling the 70 residential units might generate 3.2 l/s.
- 4.1.3 The proposed discharge rate will be a reduction on the current facility and therefore there will be no capacity issues with the existing drainage network as it will be approximately 50% less.

4.2 Proposed Surface Water Drainage

4.2.1 The development proposals do not involve any extension of to the existing buildings. The existing site is largely hard surfaced as indicated in Figure 4.1 below.

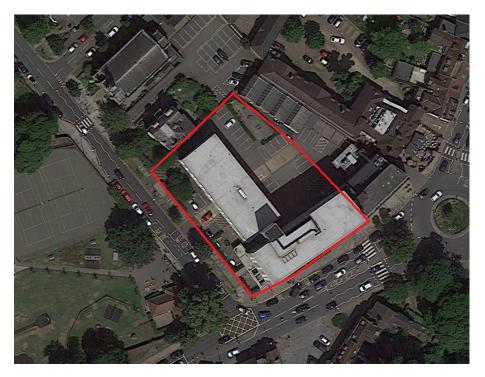


Figure 4.1 - Arrival View of Site

- 4.2.2 The proposed development will incorporate landscaped areas so the proposals will reduce the impermeable area on site. Sustainable Drainage Systems (SuDS) were considered as part of this assessment for disposing of the surface water run from the development. A copy of the proposed site plan is included in Appendix C as drawing FLU.1191.3.10. The building is already drained, and it is not possible to introduce any recycling of rainwater, or attenuation within the building, however the roof can be adjusted to provide a green/blue roof.
- 4.2.3 Also, for rainwater harvesting to be affective the harvesting tank needs to be empty to receive the next storm. For these reasons, rainwater harvesting has been discounted. With adjustments to the roof and parapets to provide safe access new green/blue roofs can be provided to collect and discharge runoff and attenuate for a 1 in 100 year +40% storm event. Each roof will need to be provided with 2 outlets, discharge at maximum rate of 0.5 I/s the minimum recommended by the manufacturers. This will give a total runoff rate from the upper and lower roofs of 2 I/s.
- 4.2.4 Next on the sustainable drainage hierarchy is the use of ground infiltration techniques such as soakaways and infiltration basins. BGS records indicate the underlying bedrock to consist of London Clay. Therefore, since the ground conditions are not viable infiltration for the hardstanding arears via permeable paving has been discounted.
- 4.2.5 The hierarchy suggest the next method of discharge is to a watercourse. The River Thames is the nearest but is located 140m away to the east of the site and is too far from the site to discharge surface water run-off there. Thus it is not possible to adopt this method of discharge.
- 4.2.6 Therefore, in accordance with the SuDS hierarchy, surface water runoff will discharge to the existing surface water sewer, the proposed development will reduce the volume and rate of discharge from the development due to the introduction of soft landscaped areas. The existing drainage network for the building is already in place and connected to the existing Thames Water sewer, the drainage will therefore be utilised for the proposed development.

- 4.2.7 The drainage proforma is included in Appendix D and shows the proposed / existing drainage areas and discharge rates.
- 4.2.8 The existing parking area is currently impermeable, part of this will be landscape so will be permeable and the remainder will be replaced with a new hard surfaced car park. This gives the opportunity to incorporate permeable paving into the development which will further reduce the runoff for the site. The rear car park will therefore have permeable surface over a 300m gravel layer with a restricted discharge to the on-site drainage system.
- 4.2.9 Drawing 201345/DS/01 included in appendix D shows the proposed SuDS features on site and the Microdrainage calculation are also included in Appendix D demonstrating the paving has been designed to accommodate a 1 in 1, 1 in 30, 1in 100 and 1 in 100 year +40% storm event.

5 SURFACE WATER DRAINAGE MAINTENANCE

5.1 General

- 5.1.1 Regularly inspection of the surface water drainage network for blockages and clearing unwanted debris / silt from the system should improve the performance of the surface water network and decrease the need for future repairs. In the event of blockages, high pressure water jets can be used to clear the gullies and pipes to ensure they are functioning correctly, this should be undertaken by certified trained professionals.
- 5.1.2 The level and frequency of maintenance required on site is dependent on the type of facility. The type of maintenance will fall into one of three categories "regular maintenance", "occasional maintenance" and "remedial maintenance".
- 5.1.3 Regular maintenance of the drainage features will include, inspections, removal of litter / debris and sweeping of the surfaces. Occasional maintenance will include removal of sediment etc. and remedial maintenance may include structural repairs and infiltration reconditioning if required.
- 5.1.4 Following completion of the development a Management Company will be set up to maintain all the communal areas, including the drainage. It will be their responsibility to maintain the drainage networks.

5.2 Inspection, Manhole, Catchpit Chambers and Pipes

- 5.2.1 The appropriate health and safety equipment must be used when accessing manholes. Confined space certificates must be held by any personnel entering a manhole and the appropriate permits should be obtained.
- 5.2.2 Pipes are intended to be the main conveyance across the development. They are intended to be dry except for during rainfall events. These have been designed to be self-cleaning where possible for smaller diameter pipes, and for larger diameters the risk is reduced due to the overall pipe size.

5.2.3 For the Inspection, Manhole, Catchpit Chambers and Pipes, the following maintenance will be required.

Manhole / Pipe Maintenance Schedule		
	Required Action	Typical Frequency
Regular maintenance	Inspect for evidence of poor operation via water level in chambers. If required, take remedial action.	3-monthly, 48 hours after large storms.
	Check and remove large vegetation growth near pipe runs.	Monthly or as required
	Remove sediment from structures.	Annually or as required
Remedial Actions	Rod through poorly performing runs as initial remediation.	As required
	If continued poor performance jet and CCTV survey poorly performing runs.	As required
Monitoring	Inspect/check all inlets, outlets, to ensure that they are in good condition and operating as designed.	Annually
	Survey inside of pipe manholes for sediment build-up and remove if necessary	Every 5 years or as required

Table 5.1 – Manhole, Catchpit and Pipes Maintenance

5.3 Drainage Channels and Gullies

5.3.1 For the Inspection, drainage channel and gullies, the following maintenance will be required.

Channel and Gully Maintenance Schedule			
	Required Action	Typical Frequency	
Regular maintenance	Litter and debris removal	Monthly or as required	
maintenance	Check and remove large vegetation growth near channel runs	Monthly or as required	
	Inspect for evidence of poor operation and/or weed growth. If required, take remedial action. Inspect silt accumulation rates and establish appropriate brushing frequencies. Silt can also be caused by adjacent landscaping areas which should be reprofiled to provide a flat area or berm adjacent to the paving	3-monthly, 48 hours after large storms	
Remedial Actions	Inspect access/outlet boxes and rod through poorly performing channels and outlets as initial remediation.	As required	
Monitoring	Inspect/check all inlets, outlets, to ensure that they are in good condition and operating as designed.	Annually	
	Survey inside of gullies for sediment build-up and remove if necessary	Every year or as required	

Table 5.2 – Channel and Gully Maintenance

Permeable Paving

5.3.2 For permeable paving areas, the following maintenance is recommended.

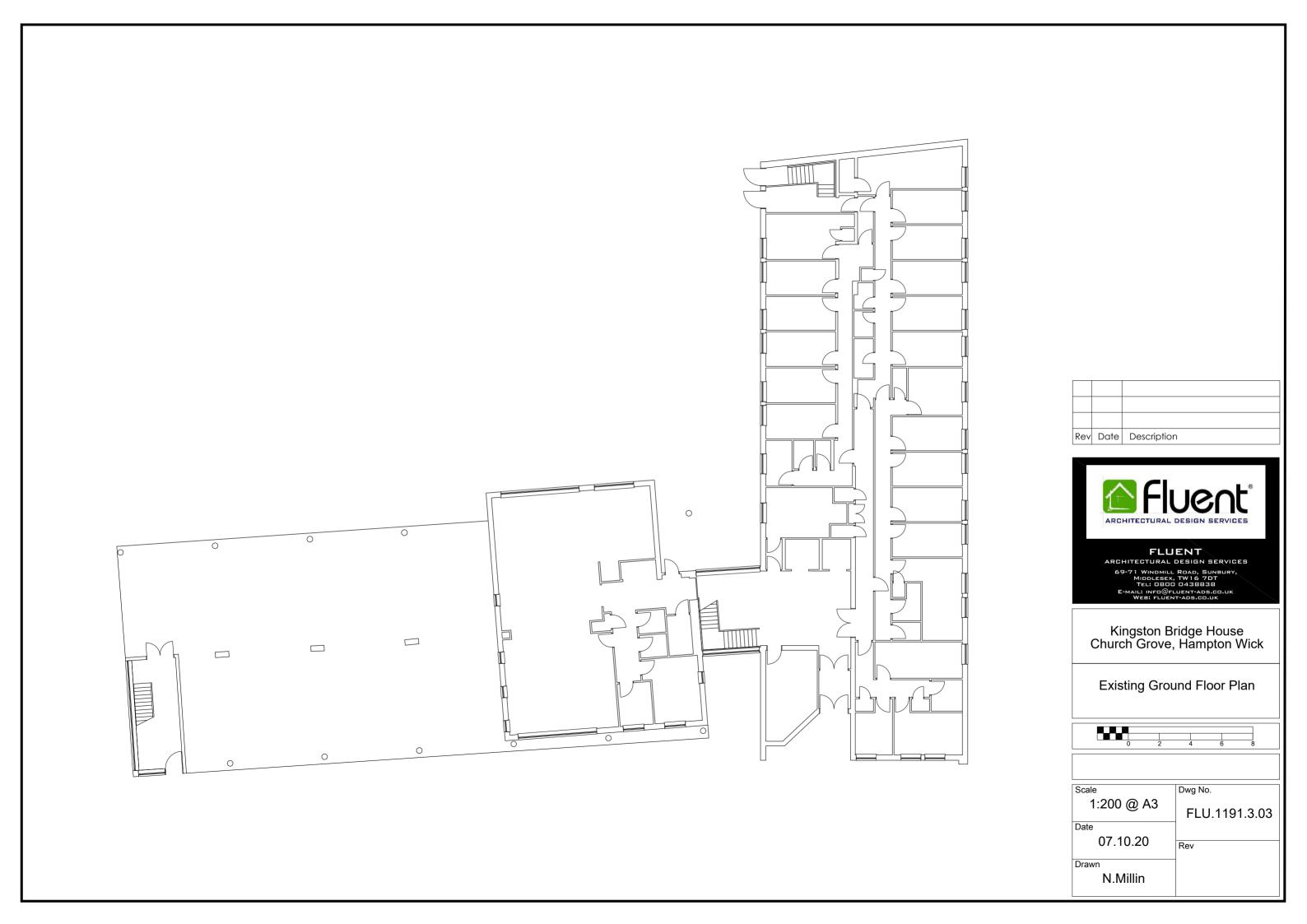
Permeable Paving Maintenance Schedule			
	Required Action	Typical Frequency	
Regular maintenance	Remove debris and leaves etc.	Once a year, after autumn leaf fall, or reduced frequency as required, based on site-specific observations of clogging or manufacturer's recommendations — pay particular attention to areas where water runs onto pervious surfaces from adjacent impermeable areas as this area is most likely to collect the most sediment.	
Occasional	Stabilise and mow contributing and adjacent areas	As required	
maintenance	Removal of weeds	As required- once per year on less frequently used pavements	
Remedial	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required	
Actions	Remedial work to any depressions, rutting etc	As required	
	Rehabilitation of surface and upper substructure	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)	
	Inspect for evidence of poor operation and/or weed growth - if required, take remedial action.	Three-monthly, 48 hours after large storms in the first six months	
Monitoring	Inspect silt accumulation rates and establish appropriate frequencies for rehabilitation	Annually	
	Monitor inspection chambers	Annually	

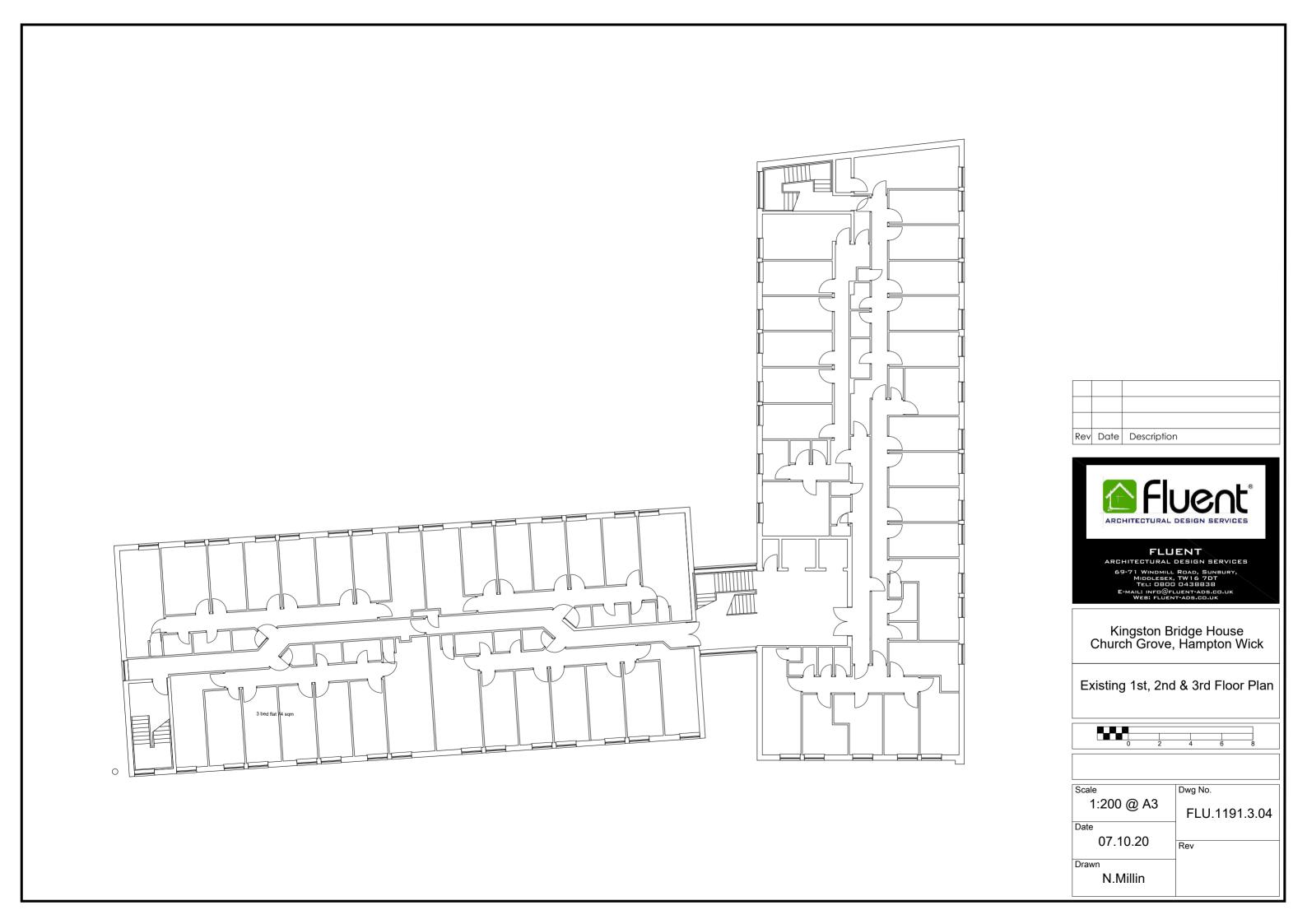
Table 5.3 – Permeable Paving Maintenance Schedule

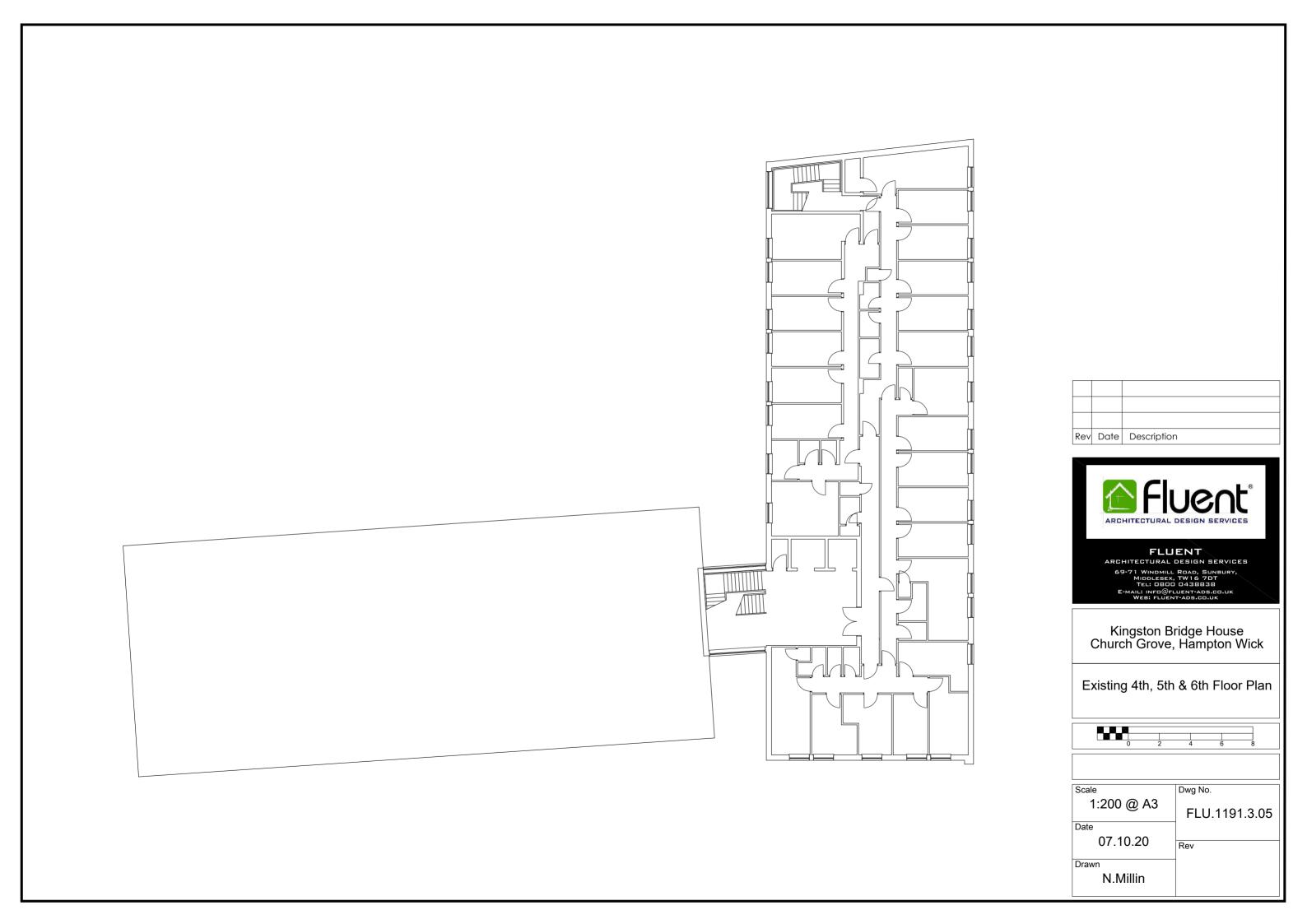
Green Roofs

5.3.3 For Green roofs, the following maintenance is recommended.

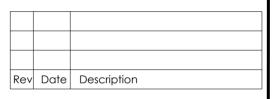
Green Roof Maintenance Schedule		
	Required Action	Typical Frequency
	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually and after severe storms
Regular inspections	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (ie year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
Regular maintenance	Post establishment, replace dead plants as required (where > 5% of coverage)	Annually (in autumn)
	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting (if appropriate) as required — clippings should be removed and not allowed to accumulate	Six monthly or as required
Remedial Actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

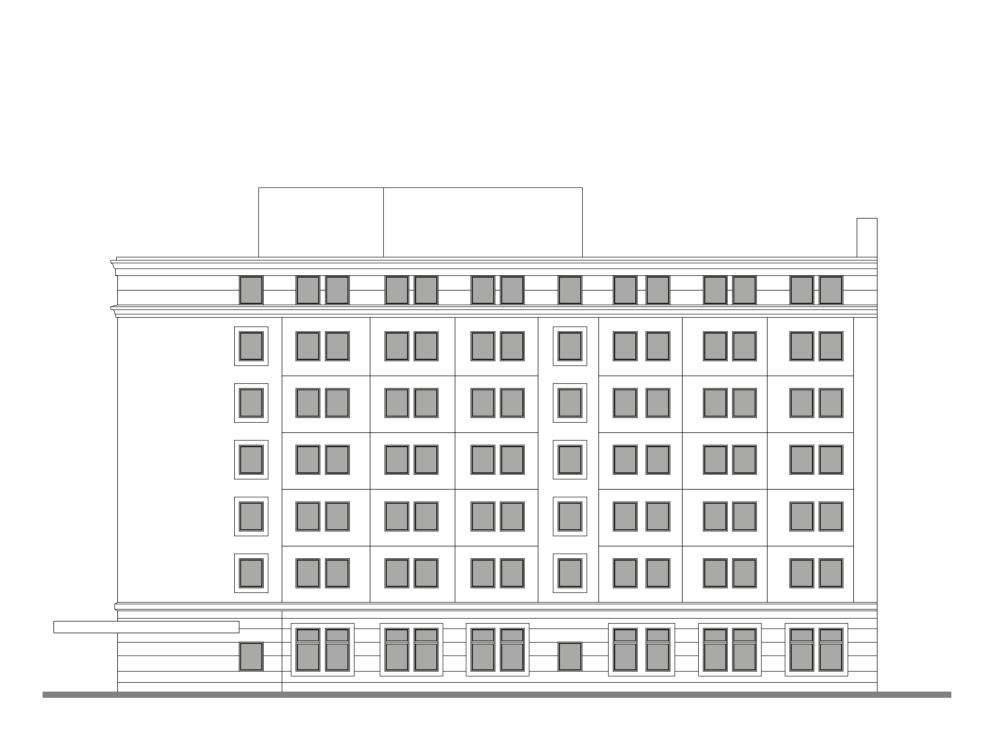

Table 5.4 – Blue Roof Maintenance


6 SUMMARY AND CONCLUSION

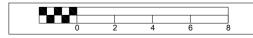

- 6.1.1 The proposals seek permission to convert the existing building to provide 70 residential. The majority of the site is currently hard surfaced, and the building is positively drained to the public surface water.
- 6.1.2 The proposed drainage strategy is to reuse the existing drainage network, for the proposed conversion. Additional soft landscape area will be provided in the existing hard surfaced parking areas which will result in a reduction in the volume and rate of discharge leaving the site. Permeable paving and green/blue roofs will be also be used to attenuate the runoff from the development.
- 6.1.3 The foul sewage currently serves 216 students, the proposed 70 apartments will generate 50% of the current discharge so there will no issue with the capacity for the proposed development.
- 6.1.4 The proposed development will result in a reduction in the discharge of both foul and surface water discharges from the development. For the reasons set out above, the proposed development is considered suitable for the development, as there will be no negative impacts on the public sewers or result in increased flood risk in the area.

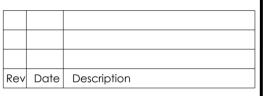
APPENDIX A


Drawings FLU.1191.3.03 – 09 – Existing Floor Plans



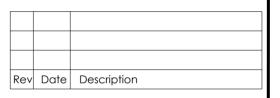
Existing Front Elevation





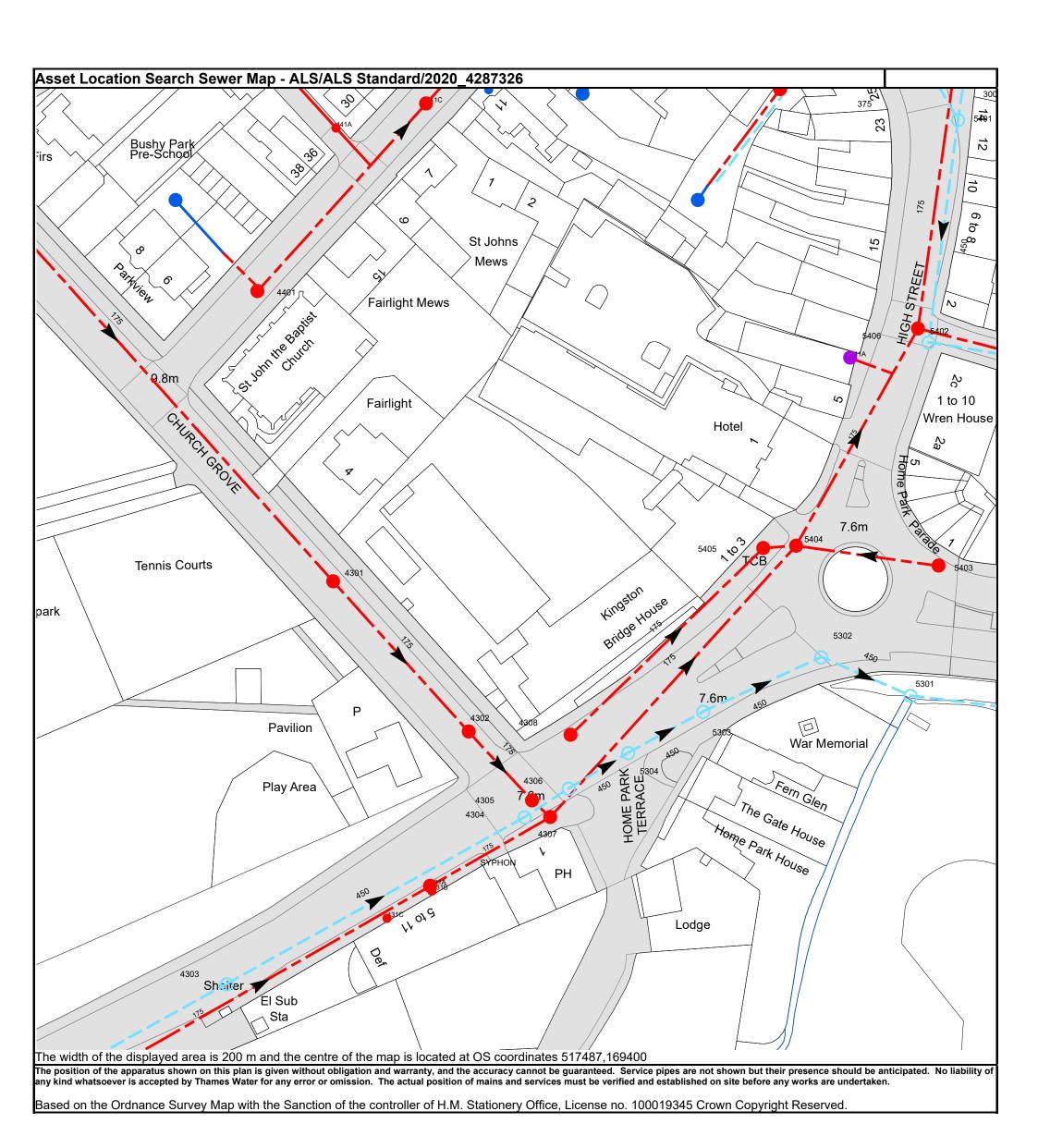
Existing Side Elevation





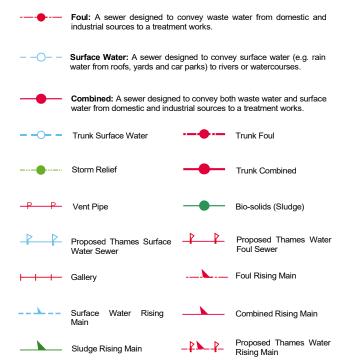
Existing Rear Elevation

Existing Side Elevation



APPENDIX B

Thames Water Record Drawings


<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 **T** 0845 070 9148 **E** <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Manhole Reference	Manhole Cover Level	Manhole Invert Level
441C	n/a	n/a
541A	n/a	n/a
4301	n/a	n/a
5403	n/a	n/a
5405	n/a	n/a
5404	n/a	n/a
5402	n/a	n/a
5406	n/a	n/a
4401	n/a	n/a
44ZY	n/a	n/a
54ZT	n/a	n/a
441A	n/a	n/a
5401	n/a	n/a
54ZY	n/a	n/a
441B	n/a	n/a
54ZR	n/a	n/a
4303	7.23	5.39
431C	n/a	n/a
431B	n/a	n/a
431A	n/a	n/a
4307	7.55	5.43
4304	7.46	5.19
4305	n/a	n/a
4306	7.49	5.18
5304	7.53	5.11
4308	7.61	5.48
4302	n/a	n/a
5303	n/a	n/a
5301	n/a	n/a
5302	n/a	n/a

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Public Sewer Types (Operated & Maintained by Thames Water)

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

Dam Chase

Fitting

Meter

♦ Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

Drop Pipe

Ancillary

✓ Weir

End Items

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

Undefined End

/ Inle

Notes:

----- Vacuum

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

Other Symbols

Symbols used on maps which do not fall under other general categories

▲ / ▲ Public/Private Pumping Station

* Change of characteristic indicator (C.O.C.I.)

M Invert Level

<1 Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement

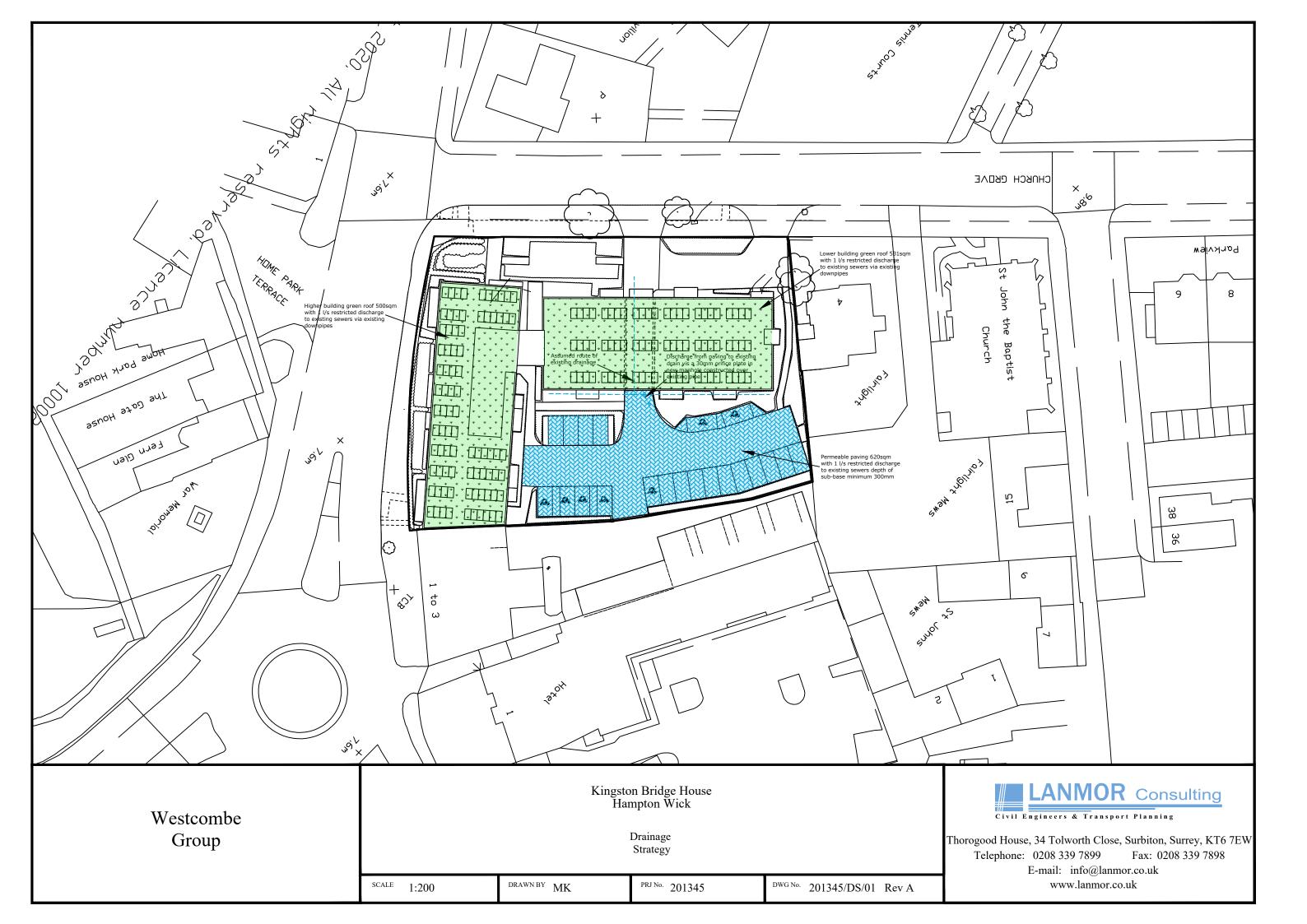
/// Operational Site

Chamber Chamber

Tunnel

Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)


APPENDIX C

Drawings FLU.1191.3.10 – Proposed Site Layout

APPENDIX D

Drawing 201345/DS/01 – Propsoed SuDS layout

Lanmor Consulting Ltd		Page 1
Thorogood House	Kingston Bridge House	
34 Tolworth Close	Hampton Wick	
Surbition Surrey KT6 7EW		Micro
Date 30/10/2020	Designed by MK	
File	Checked by RS	Drainage
XP Solutions	Source Control 2015.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) $100\,$ SAAR (mm) $600\,$ Urban $0.000\,$ Area (ha) $0.277\,$ Soil $0.300\,$ Region Number Region $6\,$

Results 1/s

QBAR Rural 0.4

QBAR Urban 0.4

Q100 years 1.3

Q1 year 0.4

Q30 years 1.0

Q100 years 1.3

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:05	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Half Drain Time : 100 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)		Max Volume (m³)	Status
1 5		7	99.473	0 022	0.0	0 1	0 1	0.6	0 1/
						0.1	0.1		O K
			99.488		0.0	0.3	0.3		O K
60	min S	Summer	99.497	0.047	0.0	0.3	0.3	2.4	O K
120	min S	Summer	99.503	0.053	0.0	0.4	0.4	3.0	O K
180	min S	Summer	99.506	0.056	0.0	0.4	0.4	3.3	O K
240	min S	Summer	99.508	0.058	0.0	0.4	0.4	3.5	O K
360	min S	Summer	99.510	0.060	0.0	0.4	0.4	3.7	O K
480	min S	Summer	99.510	0.060	0.0	0.4	0.4	3.8	O K
600	min S	Summer	99.510	0.060	0.0	0.4	0.4	3.7	O K
720	min S	Summer	99.509	0.059	0.0	0.4	0.4	3.6	O K
960	min S	Summer	99.507	0.057	0.0	0.4	0.4	3.4	O K
1440	min S	Summer	99.503	0.053	0.0	0.4	0.4	2.9	O K
2160	min S	Summer	99.497	0.047	0.0	0.3	0.3	2.3	O K
2880	min S	Summer	99.492	0.042	0.0	0.3	0.3	1.8	O K
4320	min S	Summer	99.486	0.036	0.0	0.2	0.2	1.4	O K
5760	min S	Summer	99.482	0.032	0.0	0.2	0.2	1.1	O K
7200	min S	Summer	99.479	0.029	0.0	0.2	0.2	0.9	O K
8640	min S	Summer	99.477	0.027	0.0	0.2	0.2	0.7	O K
10080	min S	Summer	99.475	0.025	0.0	0.1	0.1	0.6	O K
15	min V	Winter	99.480	0.030	0.0	0.2	0.2	1.0	ОК

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	31.271	0.0	0.6	19
30	min	Summer	20.316	0.0	1.7	33
60	min	Summer	12.800	0.0	2.9	62
120	min	Summer	7.899	0.0	4.2	108
180	min	Summer	5.927	0.0	5.1	138
240	min	Summer	4.828	0.0	5.7	170
360	min	Summer	3.597	0.0	6.7	238
480	min	Summer	2.909	0.0	7.3	306
600	min	Summer	2.468	0.0	7.8	374
720	min	Summer	2.157	0.0	8.2	440
960	min	Summer	1.744	0.0	8.9	568
1440	min	Summer	1.294	0.0	9.7	820
2160	min	Summer	0.960	0.0	10.5	1168
2880	min	Summer	0.776	0.0	10.8	1528
4320	min	Summer	0.575	0.0	11.0	2248
5760	min	Summer	0.465	0.0	10.7	2944
7200	min	Summer	0.395	0.0	10.4	3680
8640	min	Summer	0.345	0.0	10.2	4408
10080	min	Summer	0.308	0.0	10.1	5144
15	min	Winter	31.271	0.0	1.0	18

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:05	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min Winter	99.494	0.044	0.0	0.3	0.3	2.0	O K
60	min Winter	99.504	0.054	0.0	0.4	0.4	3.0	O K
120	min Winter	99.510	0.060	0.0	0.4	0.4	3.8	O K
180	min Winter	99.513	0.063	0.0	0.4	0.4	4.1	O K
240	min Winter	99.514	0.064	0.0	0.4	0.4	4.3	O K
360	min Winter	99.515	0.065	0.0	0.4	0.4	4.4	O K
480	min Winter	99.514	0.064	0.0	0.4	0.4	4.3	O K
600	min Winter	99.512	0.062	0.0	0.4	0.4	4.1	O K
720	min Winter	99.511	0.061	0.0	0.4	0.4	3.9	O K
960	min Winter	99.507	0.057	0.0	0.4	0.4	3.4	O K
1440	min Winter	99.500	0.050	0.0	0.4	0.4	2.6	O K
2160	min Winter	99.492	0.042	0.0	0.3	0.3	1.8	O K
2880	min Winter	99.487	0.037	0.0	0.3	0.3	1.4	O K
4320	min Winter	99.480	0.030	0.0	0.2	0.2	1.0	O K
5760	min Winter	99.476	0.026	0.0	0.1	0.1	0.7	O K
7200	min Winter	99.474	0.024	0.0	0.1	0.1	0.6	O K
8640	min Winter	99.471	0.021	0.0	0.1	0.1	0.5	O K
10080	min Winter	99.469	0.019	0.0	0.1	0.1	0.4	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0			00 016	0 0	0.0	2.0
		Winter		0.0	2.3	32
60	min	Winter	12.800	0.0	3.6	60
120	min	Winter	7.899	0.0	5.1	116
180	min	Winter	5.927	0.0	6.1	144
240	min	Winter	4.828	0.0	6.8	182
360	min	Winter	3.597	0.0	7.9	258
480	min	Winter	2.909	0.0	8.6	332
600	min	Winter	2.468	0.0	9.2	402
720	min	Winter	2.157	0.0	9.7	470
960	min	Winter	1.744	0.0	10.5	604
1440	min	Winter	1.294	0.0	11.5	850
2160	min	Winter	0.960	0.0	12.5	1188
2880	min	Winter	0.776	0.0	13.0	1532
4320	min	Winter	0.575	0.0	13.5	2248
5760	min	Winter	0.465	0.0	13.5	2992
7200	min	Winter	0.395	0.0	13.2	3672
8640	min	Winter	0.345	0.0	12.8	4328
10080	min	Winter	0.308	0.0	12.5	5136

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:05	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Return Period (years) 1 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.411 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

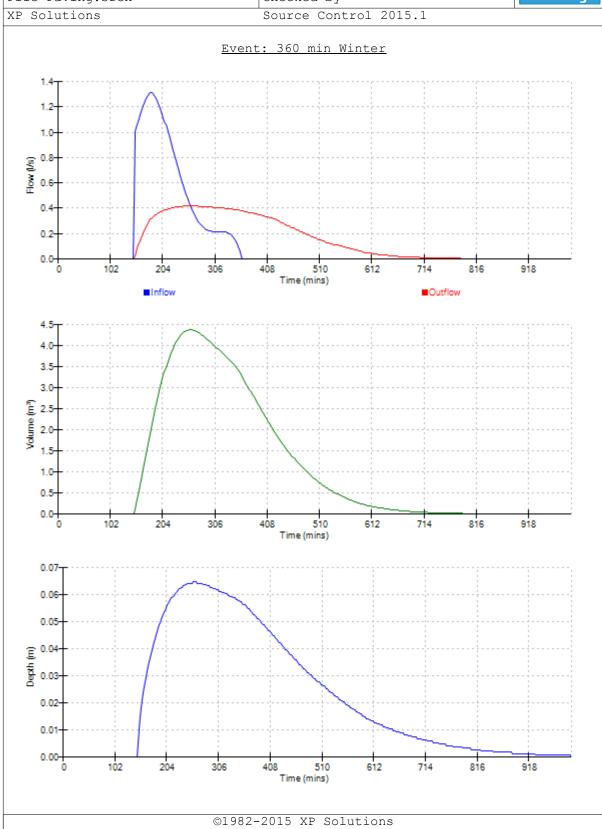
Total Area (ha) 0.063

 Time From:
 (mins) (ha)

 0
 4

 0
 0

Lanmor Consulting Ltd		Page 4
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micro
Date 05/01/2023 14:05	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	


Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

14.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
44.0	Length (m)	1000	Membrane Percolation (mm/hr)
500.0	Slope (1:X)	171.1	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0.300	Cap Volume Depth (m)	99.450	Invert Level (m)

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micro
Date 05/01/2023 14:05	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:16	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	99.806	0.006	0.0	3.1	Flood Risk
30	min	Summer	99.808	0.008	0.0	4.0	Flood Risk
60	min	Summer	99.810	0.010	0.0	5.1	Flood Risk
120	min	Summer	99.812	0.012	0.0	6.2	Flood Risk
180	min	Summer	99.813	0.013	0.0	6.9	Flood Risk
240	min	Summer	99.814	0.014	0.0	7.4	Flood Risk
360	min	Summer	99.815	0.015	0.1	8.0	Flood Risk
480	min	Summer	99.816	0.016	0.1	8.4	Flood Risk
600	min	Summer	99.816	0.016	0.1	8.7	Flood Risk
720	min	Summer	99.817	0.017	0.1	8.9	Flood Risk
960	min	Summer	99.817	0.017	0.1	9.1	Flood Risk
1440	min	Summer	99.818	0.018	0.1	9.4	Flood Risk
2160	min	Summer	99.818	0.018	0.1	9.7	Flood Risk
2880	min	Summer	99.819	0.019	0.1	9.8	Flood Risk
4320	min	Summer	99.819	0.019	0.1	9.8	Flood Risk
5760	min	Summer	99.818	0.018	0.1	9.7	Flood Risk
7200	min	Summer	99.818	0.018	0.1	9.5	Flood Risk
8640	min	Summer	99.818	0.018	0.1	9.3	Flood Risk
10080	min	Summer	99.817	0.017	0.1	9.1	Flood Risk
15	min	Winter	99.807	0.007	0.0	3.5	Flood Risk
30	min	Winter	99.808	0.008	0.0	4.5	Flood Risk

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			31.271	0.0	0.6	19
		Summer	20.316	0.0	1.0	34
60	min	Summer	12.800	0.0	2.3	64
120	min	Summer	7.899	0.0	3.1	124
180	min	Summer	5.927	0.0	3.7	184
240	min	Summer	4.828	0.0	4.1	242
360	min	Summer	3.597	0.0	4.8	362
480	min	Summer	2.909	0.0	5.2	482
600	min	Summer	2.468	0.0	5.6	600
720	min	Summer	2.157	0.0	6.0	720
960	min	Summer	1.744	0.0	6.5	818
1440	min	Summer	1.294	0.0	7.1	1050
2160	min	Summer	0.960	0.0	10.6	1448
2880	min	Summer	0.776	0.0	11.3	1844
4320	min	Summer	0.575	0.0	12.0	2640
5760	min	Summer	0.465	0.0	15.7	3456
7200	min	Summer	0.395	0.0	16.5	4184
8640	min	Summer	0.345	0.0	17.0	4928
10080	min	Summer	0.308	0.0	17.3	5656
15	min	Winter	31.271	0.0	0.8	19
30	min	Winter	20.316	0.0	1.2	34

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:16	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	99.811	0.011	0.0	5.7	Flood Risk
120	min	Winter	99.813	0.013	0.0	6.9	Flood Risk
180	min	Winter	99.814	0.014	0.1	7.7	Flood Risk
240	min	Winter	99.816	0.016	0.1	8.2	Flood Risk
360	min	Winter	99.817	0.017	0.1	9.0	Flood Risk
480	min	Winter	99.818	0.018	0.1	9.4	Flood Risk
600	min	Winter	99.818	0.018	0.1	9.7	Flood Risk
720	min	Winter	99.819	0.019	0.1	9.9	Flood Risk
960	min	Winter	99.819	0.019	0.1	10.1	Flood Risk
1440	min	Winter	99.820	0.020	0.1	10.4	Flood Risk
2160	min	Winter	99.820	0.020	0.1	10.6	Flood Risk
2880	min	Winter	99.820	0.020	0.1	10.6	Flood Risk
4320	min	Winter	99.819	0.019	0.1	10.3	Flood Risk
5760	min	Winter	99.819	0.019	0.1	9.9	Flood Risk
7200	min	Winter	99.818	0.018	0.1	9.6	Flood Risk
8640	min	Winter	99.817	0.017	0.1	9.2	Flood Risk
10080	min	Winter	99.817	0.017	0.1	8.9	Flood Risk

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	12.800	0.0	2.7	64
		Winter	7.899	0.0	3.7	122
180	mın	Winter	5.927	0.0	4.3	180
240	min	Winter	4.828	0.0	4.8	238
360	min	Winter	3.597	0.0	5.6	354
480	min	Winter	2.909	0.0	6.2	468
600	min	Winter	2.468	0.0	6.6	580
720	min	Winter	2.157	0.0	7.0	686
960	min	Winter	1.744	0.0	7.5	876
1440	min	Winter	1.294	0.0	8.3	1094
2160	min	Winter	0.960	0.0	12.1	1552
2880	min	Winter	0.776	0.0	13.0	1988
4320	min	Winter	0.575	0.0	13.8	2812
5760	min	Winter	0.465	0.0	17.8	3632
7200	min	Winter	0.395	0.0	18.7	4400
8640	min	Winter	0.345	0.0	19.3	5184
10080	min	Winter	0.308	0.0	19.6	5952

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:16	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Return Period (years) 1 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.411 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.053

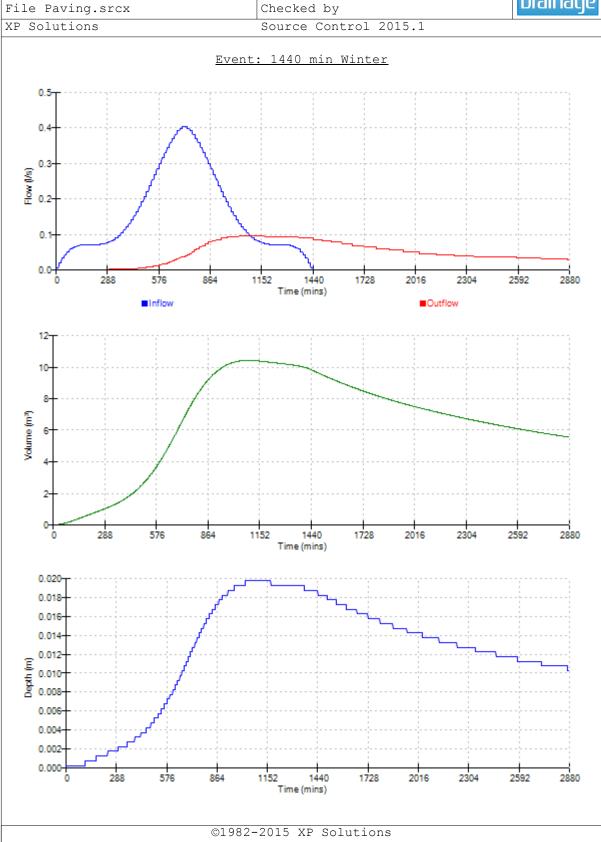
 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.053

Lanmor Consulting Ltd					
Thorogood House					
34 Tolworth Close		4			
Surbition Surrey KT6 7EW		Micco			
Date 05/01/2023 14:16	Designed by Kunal	Desipago			
File Paving.srcx	Checked by	Drainage			
XP Solutions	Source Control 2015.1				

Storage is Online Cover Level (m) 100.000


Tank or Pond Structure

Invert Level (m) 99.800

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 531.0 0.200 531.0

Orifice Outflow Control

Lanmor Consulting Ltd					
Thorogood House					
34 Tolworth Close		ا ا			
Surbition Surrey KT6 7EW		Micco			
Date 05/01/2023 14:16	Designed by Kunal	Desinado			
File Paving.srcx	Checked by	Drainage			
XP Solutions	Source Control 2015.1				

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micro
Date 05/01/2023 14:21	Designed by Kunal	
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	99.806	0.006	0.0	2.9	Flood Risk
30	min	Summer	99.808	0.008	0.0	3.8	Flood Risk
60	min	Summer	99.810	0.010	0.0	4.8	Flood Risk
120	min	Summer	99.812	0.012	0.0	5.8	Flood Risk
180	min	Summer	99.813	0.013	0.0	6.5	Flood Risk
240	min	Summer	99.814	0.014	0.0	6.9	Flood Risk
360	min	Summer	99.815	0.015	0.1	7.6	Flood Risk
480	min	Summer	99.816	0.016	0.1	7.9	Flood Risk
600	min	Summer	99.816	0.016	0.1	8.1	Flood Risk
720	min	Summer	99.817	0.017	0.1	8.3	Flood Risk
960	min	Summer	99.817	0.017	0.1	8.5	Flood Risk
1440	min	Summer	99.818	0.018	0.1	8.8	Flood Risk
2160	min	Summer	99.818	0.018	0.1	9.1	Flood Risk
2880	min	Summer	99.818	0.018	0.1	9.2	Flood Risk
4320	min	Summer	99.818	0.018	0.1	9.1	Flood Risk
5760	min	Summer	99.818	0.018	0.1	9.0	Flood Risk
7200	min	Summer	99.818	0.018	0.1	8.8	Flood Risk
8640	min	Summer	99.817	0.017	0.1	8.6	Flood Risk
10080	min	Summer	99.817	0.017	0.1	8.4	Flood Risk
15	min	Winter	99.807	0.007	0.0	3.3	Flood Risk
30	min	Winter	99.809	0.009	0.0	4.3	Flood Risk

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	31.271	0.0	0.6	19
30	min	Summer	20.316	0.0	1.0	34
60	min	Summer	12.800	0.0	2.2	64
120	min	Summer	7.899	0.0	3.0	124
180	min	Summer	5.927	0.0	3.6	184
240	min	Summer	4.828	0.0	4.0	242
360	min	Summer	3.597	0.0	4.6	362
480	min	Summer	2.909	0.0	5.1	482
600	min	Summer	2.468	0.0	5.5	600
720	min	Summer	2.157	0.0	5.8	714
960	min	Summer	1.744	0.0	6.2	810
1440	min	Summer	1.294	0.0	6.9	1026
2160	min	Summer	0.960	0.0	10.1	1428
2880	min	Summer	0.776	0.0	10.8	1844
4320	min	Summer	0.575	0.0	11.5	2636
5760	min	Summer	0.465	0.0	14.9	3408
7200	min	Summer	0.395	0.0	15.7	4176
8640	min	Summer	0.345	0.0	16.2	4928
10080	min	Summer	0.308	0.0	16.4	5656
15	min	Winter	31.271	0.0	0.8	19
30	min	Winter	20.316	0.0	1.2	34

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:21	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Stat	tus
60	min	Winter	99.811	0.011	0.0	5.3	Flood	Risk
120	min	Winter	99.813	0.013	0.0	6.5	Flood	Risk
180	min	Winter	99.814	0.014	0.1	7.2	Flood	Risk
240	min	Winter	99.816	0.016	0.1	7.8	Flood	Risk
360	min	Winter	99.817	0.017	0.1	8.4	Flood	Risk
480	min	Winter	99.818	0.018	0.1	8.8	Flood	Risk
600	min	Winter	99.818	0.018	0.1	9.1	Flood	Risk
720	min	Winter	99.818	0.018	0.1	9.2	Flood	Risk
960	min	Winter	99.819	0.019	0.1	9.4	Flood	Risk
1440	min	Winter	99.819	0.019	0.1	9.7	Flood	Risk
2160	min	Winter	99.820	0.020	0.1	9.9	Flood	Risk
2880	min	Winter	99.820	0.020	0.1	9.8	Flood	Risk
4320	min	Winter	99.819	0.019	0.1	9.5	Flood	Risk
5760	min	Winter	99.818	0.018	0.1	9.1	Flood	Risk
7200	min	Winter	99.818	0.018	0.1	8.8	Flood	Risk
8640	min	Winter	99.817	0.017	0.1	8.5	Flood	Risk
10080	min	Winter	99.817	0.017	0.1	8.3	Flood	Risk

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak
Even	t	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
		10 000	0 0	0.6	<i>C</i> 4
					64
min	Winter	7.899	0.0	3.6	122
min	Winter	5.927	0.0	4.2	180
min	Winter	4.828	0.0	4.7	238
min	Winter	3.597	0.0	5.4	354
min	Winter	2.909	0.0	6.0	468
min	Winter	2.468	0.0	6.4	578
min	Winter	2.157	0.0	6.7	686
min	Winter	1.744	0.0	7.3	866
min	Winter	1.294	0.0	8.0	1082
min	Winter	0.960	0.0	11.6	1532
min	Winter	0.776	0.0	12.4	1960
min	Winter	0.575	0.0	13.2	2772
min	Winter	0.465	0.0	16.9	3584
min	Winter	0.395	0.0	17.8	4328
min	Winter	0.345	0.0	18.4	5096
min	Winter	0.308	0.0	18.6	5848
	min	min Winter	min Winter 7.899 min Winter 7.899 min Winter 5.927 min Winter 4.828 min Winter 3.597 min Winter 2.909 min Winter 2.468 min Winter 2.157 min Winter 1.744 min Winter 1.294 min Winter 1.294 min Winter 0.960 min Winter 0.776 min Winter 0.575 min Winter 0.575 min Winter 0.395 min Winter 0.345	Event (mm/hr) Volume (m³) min Winter 12.800 0.0 min Winter 7.899 0.0 min Winter 5.927 0.0 min Winter 4.828 0.0 min Winter 2.909 0.0 min Winter 2.468 0.0 min Winter 1.744 0.0 min Winter 1.294 0.0 min Winter 0.960 0.0 min Winter 0.575 0.0 min Winter 0.465 0.0 min Winter 0.395 0.0 min Winter 0.345 0.0	Event (mm/hr) Volume (m³) Volume (m³) min Winter 12.800 0.0 2.6 min Winter 7.899 0.0 3.6 min Winter 5.927 0.0 4.2 min Winter 4.828 0.0 4.7 min Winter 2.909 0.0 6.0 min Winter 2.468 0.0 6.4 min Winter 1.744 0.0 7.3 min Winter 1.294 0.0 8.0 min Winter 0.960 0.0 11.6 min Winter 0.575 0.0 12.4 min Winter 0.465 0.0 16.9 min Winter 0.395 0.0 17.8 min Winter 0.345 0.0 18.4

Lanmor Consulting Ltd					
Thorogood House					
34 Tolworth Close		4			
Surbition Surrey KT6 7EW		Micco			
Date 05/01/2023 14:21	Designed by Kunal	Desinado			
File H Roof.srcx	Checked by	Drainage			
XP Solutions	Source Control 2015.1	•			

Return Period (years) 1 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.411 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.050

 Time
 (mins)
 Area

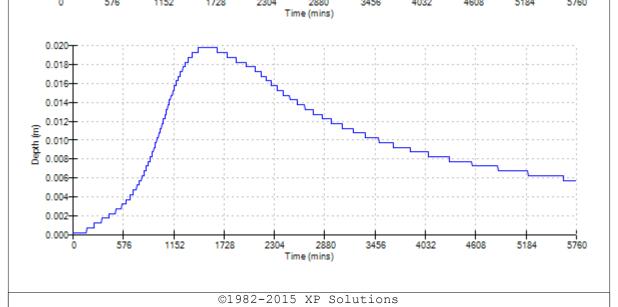
 From:
 To:
 (ha)

 0
 4
 0.050

Lanmor Consulting Ltd					
Thorogood House					
34 Tolworth Close		ا ا			
Surbition Surrey KT6 7EW		Micco			
Date 05/01/2023 14:21	Designed by Kunal	Desipago			
File H Roof.srcx	Checked by	Drainage			
XP Solutions	Source Control 2015.1	•			

Storage is Online Cover Level (m) 100.000

Tank or Pond Structure


Invert Level (m) 99.800

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 500.0 0.200 500.0

Orifice Outflow Control

4 Tolworth Close urbition Surrey KT6 7EW ate 05/01/2023 14:21 ile H Roof.srcx Designed by Kunal Checked by	Lanmor Consulting Ltd		Page 5
urbition Surrey KT6 7EW ate 05/01/2023 14:21 Designed by Kunal Checked by P Solutions Source Control 2015.1 Event: 2160 min Winter	Thorogood House		
ate 05/01/2023 14:21 ile H Roof.srcx Checked by P Solutions Event: 2160 min Winter	4 Tolworth Close		
ile H Roof.srcx Checked by Drainac P Solutions Source Control 2015.1 Event: 2160 min Winter 0.3 O.2 O.3 O.	urbition Surrey KT6 7EW		Micco
Event: 2160 min Winter O.3 O.2 O.2 O.3 O.2 O.3 O.4 O.4 O.4 O.5 O.5 O.5 O.6 O.7 O.7 O.7 O.7 O.7 O.7 O.7	ate 05/01/2023 14:21	Designed by Kunal	
Event: 2160 min Winter 0.3 0.2 0.1 0.0	ile H Roof.srcx		וופווו
0.2 0.2 0.1	P Solutions	Source Control 2015.1	
0.2 (gg) 0.1	<u>Even</u> i	t: 2160 min Winter	
Time (mins)	0.2 (sg) 0.1		4608 5184 5760
	10 9 8 7 7 6 E.E. State of the		
9 8 7 7 6 5 5 4 4 3 2 2			

Lanmor Consulting Ltd					
Thorogood House					
34 Tolworth Close		4			
Surbition Surrey KT6 7EW		Micco			
Date 05/01/2023 14:04	Designed by Kunal	Desipago			
File Paving.srcx	Checked by	Drainage			
XP Solutions	Source Control 2015.1				

Half Drain Time : 235 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	$\boldsymbol{\Sigma}$ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
			99.524		0.0	0.5	0.5	5.7	O K
30	min S	ummer	99.538	0.088	0.0	0.5	0.5	8.1	O K
60	min S	ummer	99.550	0.100	0.0	0.5	0.5	10.3	O K
120	min S	ummer	99.559	0.109	0.0	0.6	0.6	12.0	O K
180	min S	ummer	99.562	0.112	0.0	0.6	0.6	12.5	O K
240	min S	ummer	99.562	0.112	0.0	0.6	0.6	12.6	O K
360	min S	ummer	99.563	0.113	0.0	0.6	0.6	12.7	O K
480	min S	ummer	99.562	0.112	0.0	0.6	0.6	12.6	ОК
600	min S	ummer	99.561	0.111	0.0	0.6	0.6	12.4	O K
720	min S	ummer	99.559	0.109	0.0	0.6	0.6	12.1	ОК
960	min S	ummer	99.555	0.105	0.0	0.6	0.6	11.4	ОК
1440	min S	ummer	99.547	0.097	0.0	0.5	0.5	9.8	ОК
2160	min S	ummer	99.536	0.086	0.0	0.5	0.5	7.8	O K
2880	min S	ummer	99.527	0.077	0.0	0.5	0.5	6.2	O K
4320	min S	ummer	99.513	0.063	0.0	0.4	0.4	4.1	ОК
5760	min S	ummer	99.502	0.052	0.0	0.4	0.4	2.9	ОК
7200	min S	ummer	99.495	0.045	0.0	0.3	0.3	2.1	ОК
8640	min S	ummer	99.491	0.041	0.0	0.3	0.3	1.7	ОК
10080	min S	ummer	99.488	0.038	0.0	0.3	0.3	1.5	O K
			99.530		0.0	0.5	0.5	6.8	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	76.734	0.0	6.0	18
30	min	Summer	49.733	0.0	8.6	33
60	min	Summer	30.811	0.0	11.4	62
120	min	Summer	18.530	0.0	14.3	120
180	min	Summer	13.620	0.0	16.0	176
240	min	Summer	10.901	0.0	17.2	202
360	min	Summer	7.944	0.0	19.0	262
480	min	Summer	6.344	0.0	20.3	330
600	min	Summer	5.326	0.0	21.3	398
720	min	Summer	4.615	0.0	22.2	468
960	min	Summer	3.679	0.0	23.5	604
1440	min	Summer	2.670	0.0	25.4	866
2160	min	Summer	1.936	0.0	27.1	1252
2880	min	Summer	1.540	0.0	28.1	1612
4320	min	Summer	1.114	0.0	29.3	2332
5760	min	Summer	0.885	0.0	29.7	3008
7200	min	Summer	0.740	0.0	29.7	3680
8640	min	Summer	0.640	0.0	29.4	4408
10080	min	Summer	0.565	0.0	28.9	5144
15	min	Winter	76.734	0.0	7.0	18

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:04	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Storr Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min	Winter	99.545	0.095	0.0	0.5	0.5	9.5	ОК
			99.559		0.0	0.6	0.6		0 K
			99.570		0.0	0.6	0.6		0 K
			99.573		0.0	0.6	0.6	14.6	0 K
240	min	Winter	99.574	0.124	0.0	0.6	0.6		ОК
360	min	Winter	99.573	0.123	0.0	0.6	0.6	14.6	ОК
			99.571		0.0	0.6	0.6	14.3	ОК
600	min	Winter	99.569	0.119	0.0	0.6	0.6	13.9	ОК
			99.566		0.0	0.6	0.6	13.3	ОК
960	min	Winter	99.560	0.110	0.0	0.6	0.6	12.2	ОК
1440	min	Winter	99.548	0.098	0.0	0.5	0.5	9.9	O K
2160	min	Winter	99.532	0.082	0.0	0.5	0.5	7.1	O K
2880	min	Winter	99.520	0.070	0.0	0.4	0.4	5.1	O K
4320	min	Winter	99.502	0.052	0.0	0.4	0.4	2.8	O K
5760	min	Winter	99.492	0.042	0.0	0.3	0.3	1.8	O K
7200	min	Winter	99.487	0.037	0.0	0.3	0.3	1.4	O K
8640	min	Winter	99.483	0.033	0.0	0.2	0.2	1.1	O K
.0080	min	Winter	99.480	0.030	0.0	0.2	0.2	1.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak
Even	t	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
		40 500	0 0	10.0	2.2
					33
min	Winter	30.811	0.0	13.1	62
min	Winter	18.530	0.0	16.4	118
min	Winter	13.620	0.0	18.3	174
min	Winter	10.901	0.0	19.7	226
min	Winter	7.944	0.0	21.7	280
min	Winter	6.344	0.0	23.2	356
min	Winter	5.326	0.0	24.3	432
min	Winter	4.615	0.0	25.3	506
min	Winter	3.679	0.0	26.8	652
min	Winter	2.670	0.0	29.0	924
min	Winter	1.936	0.0	31.1	1300
min	Winter	1.540	0.0	32.4	1672
min	Winter	1.114	0.0	33.9	2336
min	Winter	0.885	0.0	34.7	2992
min	Winter	0.740	0.0	34.9	3672
min	Winter	0.640	0.0	34.9	4392
min	Winter	0.565	0.0	34.6	5144
	min	Event	min Winter 49.733 min Winter 30.811 min Winter 18.530 min Winter 13.620 min Winter 10.901 min Winter 7.944 min Winter 6.344 min Winter 5.326 min Winter 4.615 min Winter 3.679 min Winter 3.679 min Winter 1.936 min Winter 1.936 min Winter 1.540 min Winter 1.540 min Winter 0.885 min Winter 0.740 min Winter 0.640	Event (mm/hr) Volume (m³) min Winter 49.733 0.0 min Winter 30.811 0.0 min Winter 18.530 0.0 min Winter 13.620 0.0 min Winter 7.944 0.0 min Winter 6.344 0.0 min Winter 4.615 0.0 min Winter 3.679 0.0 min Winter 2.670 0.0 min Winter 1.936 0.0 min Winter 1.540 0.0 min Winter 0.885 0.0 min Winter 0.740 0.0 min Winter 0.640 0.0	Event (mm/hr) Volume (m³) Volume (m³) min Winter 49.733 0.0 10.0 min Winter 30.811 0.0 13.1 min Winter 18.530 0.0 16.4 min Winter 13.620 0.0 18.3 min Winter 10.901 0.0 19.7 min Winter 7.944 0.0 21.7 min Winter 6.344 0.0 23.2 min Winter 4.615 0.0 24.3 min Winter 3.679 0.0 25.3 min Winter 2.670 0.0 29.0 min Winter 1.936 0.0 31.1 min Winter 1.540 0.0 32.4 min Winter 0.885 0.0 34.7 min Winter 0.740 0.0 34.9 min Winter 0.640 0.0 34.9

Lanmor Consulting Ltd	Page 3	
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:04	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.411 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

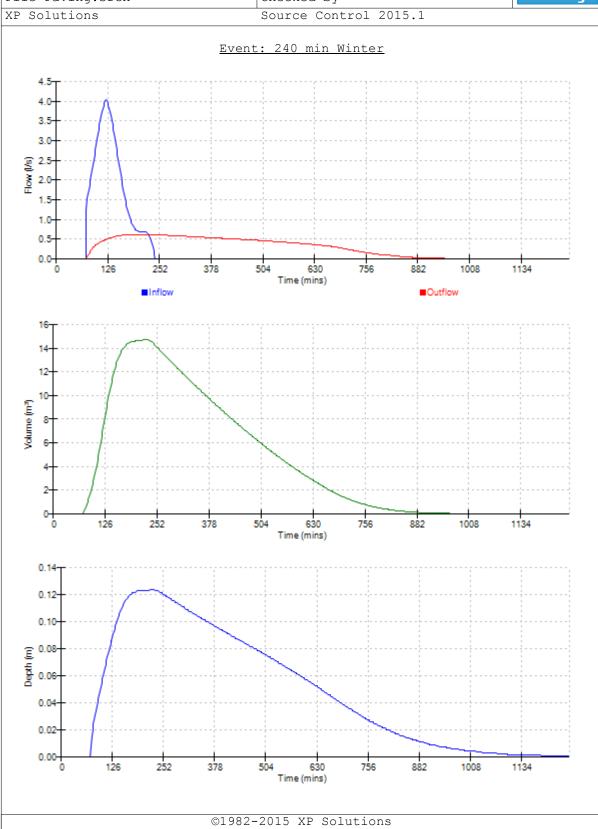
Total Area (ha) 0.063

 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.063

Lanmor Consulting Ltd		Page 4
Thorogood House		
34 Tolworth Close		L
Surbition Surrey KT6 7EW		Micro
Date 05/01/2023 14:04	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	


Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	14.0
Membrane Percolation (mm/hr)	1000	Length (m)	44.0
Max Percolation (1/s)	171.1	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	99.450	Cap Volume Depth (m)	0.300

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:04	Designed by Kunal	Desinado
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:16	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	99.814	0.014	0.1	7.6	Flood Risk
30	min	Summer	99.818	0.018	0.1	9.8	Flood Risk
60	min	Summer	99.823	0.023	0.1	12.1	Flood Risk
120	min	Summer	99.827	0.027	0.2	14.2	Flood Risk
180	min	Summer	99.829	0.029	0.2	15.4	Flood Risk
240	min	Summer	99.830	0.030	0.2	16.1	Flood Risk
360	min	Summer	99.832	0.032	0.2	16.9	Flood Risk
480	min	Summer	99.833	0.033	0.2	17.3	Flood Risk
600	min	Summer	99.833	0.033	0.2	17.5	Flood Risk
720	min	Summer	99.833	0.033	0.2	17.6	Flood Risk
960	min	Summer	99.834	0.034	0.2	17.8	Flood Risk
1440	min	Summer	99.834	0.034	0.2	18.0	Flood Risk
2160	min	Summer	99.834	0.034	0.2	18.0	Flood Risk
2880	min	Summer	99.833	0.033	0.2	17.7	Flood Risk
4320	min	Summer	99.832	0.032	0.2	16.9	Flood Risk
5760	min	Summer	99.830	0.030	0.2	16.1	Flood Risk
7200	min	Summer	99.829	0.029	0.2	15.4	Flood Risk
8640	min	Summer	99.828	0.028	0.2	14.7	Flood Risk
10080	min	Summer	99.827	0.027	0.2	14.2	Flood Risk
15	min	Winter	99.816	0.016	0.1	8.5	Flood Risk
30	min	Winter	99.821	0.021	0.1	11.0	Flood Risk

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	76.734	0.0	2.8	19
30	min	Summer	49.733	0.0	4.3	34
60	min	Summer	30.811	0.0	8.0	64
120	min	Summer	18.530	0.0	10.1	124
180	min	Summer	13.620	0.0	11.4	182
240	min	Summer	10.901	0.0	12.4	242
360	min	Summer	7.944	0.0	13.7	362
480	min	Summer	6.344	0.0	14.7	480
600	min	Summer	5.326	0.0	15.5	550
720	min	Summer	4.615	0.0	16.1	600
960	min	Summer	3.679	0.0	17.0	714
1440	min	Summer	2.670	0.0	18.1	980
2160	min	Summer	1.936	0.0	23.9	1384
2880	min	Summer	1.540	0.0	25.2	1788
4320	min	Summer	1.114	0.0	26.3	2592
5760	min	Summer	0.885	0.0	31.5	3352
7200	min	Summer	0.740	0.0	32.7	4112
8640	min	Summer	0.640	0.0	33.5	4848
10080	min	Summer	0.565	0.0	33.8	5648
15	min	Winter	76.734	0.0	3.4	19
30	min	Winter	49.733	0.0	5.1	34

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:16	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Stat	tus
60	min	Winter	99.825	0.025	0.1	13.5	Flood	Risk
120	min	Winter	99.830	0.030	0.2	15.9	Flood	Risk
180	min	Winter	99.832	0.032	0.2	17.2	Flood	Risk
240	min	Winter	99.834	0.034	0.2	18.0	Flood	Risk
360	min	Winter	99.836	0.036	0.2	18.9	Flood	Risk
480	min	Winter	99.836	0.036	0.2	19.4	Flood	Risk
600	min	Winter	99.837	0.037	0.3	19.6	Flood	Risk
720	min	Winter	99.837	0.037	0.3	19.6	Flood	Risk
960	min	Winter	99.837	0.037	0.3	19.8	Flood	Risk
1440	min	Winter	99.837	0.037	0.3	19.8	Flood	Risk
2160	min	Winter	99.836	0.036	0.2	19.2	Flood	Risk
2880	min	Winter	99.835	0.035	0.2	18.6	Flood	Risk
4320	min	Winter	99.833	0.033	0.2	17.3	Flood	Risk
5760	min	Winter	99.830	0.030	0.2	16.1	Flood	Risk
7200	min	Winter	99.829	0.029	0.2	15.1	Flood	Risk
8640	min	Winter	99.827	0.027	0.2	14.3	Flood	Risk
10080	min	Winter	99.826	0.026	0.1	13.6	Flood	Risk

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
6.0			20 011	0 0	0 0	60
		Winter	30.811	0.0	9.3	62
120		Winter	18.530	0.0	11.7	122
180	min	Winter	13.620	0.0	13.2	180
240	min	Winter	10.901	0.0	14.2	238
360	min	Winter	7.944	0.0	15.7	350
480	min	Winter	6.344	0.0	16.9	462
600	min	Winter	5.326	0.0	17.7	566
720	min	Winter	4.615	0.0	18.4	650
960	min	Winter	3.679	0.0	19.5	738
1440	min	Winter	2.670	0.0	20.8	1040
2160	min	Winter	1.936	0.0	27.2	1476
2880	min	Winter	1.540	0.0	28.5	1904
4320	min	Winter	1.114	0.0	29.9	2724
5760	min	Winter	0.885	0.0	35.6	3520
7200	min	Winter	0.740	0.0	36.9	4312
8640	min	Winter	0.640	0.0	37.8	5096
10080	min	Winter	0.565	0.0	38.2	5848

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:16	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.411 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.053

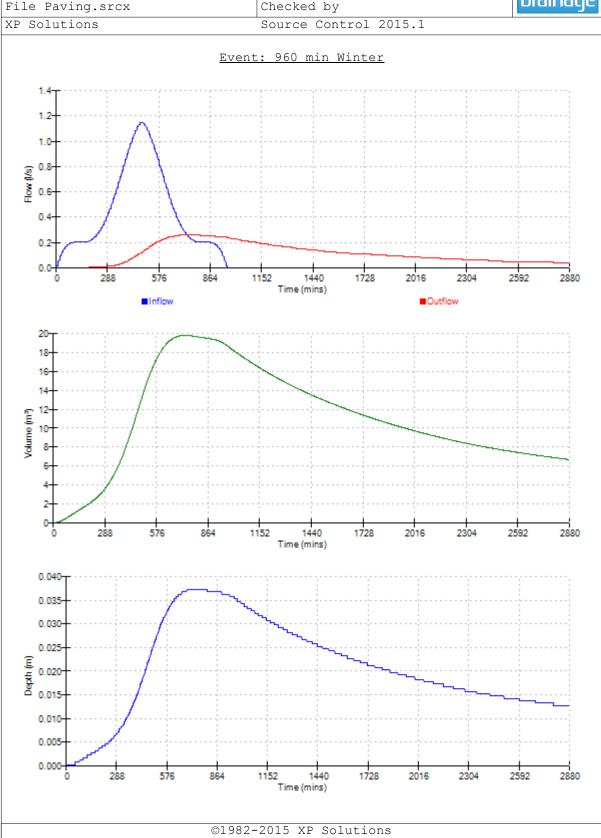
 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.053

Lanmor Consulting Ltd		Page 4
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:16	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storage is Online Cover Level (m) 100.000


Tank or Pond Structure

Invert Level (m) 99.800

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 531.0 0.200 531.0

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:16	Designed by Kunal	Desinado
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micro
Date 05/01/2023 14:20	Designed by Kunal	
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)		Status
15	min	Summer	99.814	0.014	0.1	7.2	Flood Risk
30	min	Summer	99.819	0.019	0.1	9.3	Flood Risk
60	min	Summer	99.823	0.023	0.1	11.4	Flood Risk
120	min	Summer	99.827	0.027	0.2	13.4	Flood Risk
180	min	Summer	99.829	0.029	0.2	14.5	Flood Risk
240	min	Summer	99.830	0.030	0.2	15.1	Flood Risk
360	min	Summer	99.832	0.032	0.2	15.9	Flood Risk
480	min	Summer	99.832	0.032	0.2	16.2	Flood Risk
600	min	Summer	99.833	0.033	0.2	16.3	Flood Risk
720	min	Summer	99.833	0.033	0.2	16.5	Flood Risk
960	min	Summer	99.833	0.033	0.2	16.7	Flood Risk
1440	min	Summer	99.834	0.034	0.2	16.8	Flood Risk
2160	min	Summer	99.833	0.033	0.2	16.7	Flood Risk
2880	min	Summer	99.833	0.033	0.2	16.4	Flood Risk
4320	min	Summer	99.831	0.031	0.2	15.6	Flood Risk
5760	min	Summer	99.830	0.030	0.2	14.9	Flood Risk
7200	min	Summer	99.828	0.028	0.2	14.2	Flood Risk
8640	min	Summer	99.827	0.027	0.2	13.6	Flood Risk
10080	min	Summer	99.826	0.026	0.1	13.0	Flood Risk
15	min	Winter	99.816	0.016	0.1	8.0	Flood Risk
30	min	Winter	99.821	0.021	0.1	10.4	Flood Risk

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	76.734	0.0	2.8	19
30	min	Summer	49.733	0.0	4.2	34
60	min	Summer	30.811	0.0	7.7	64
120	min	Summer	18.530	0.0	9.7	124
180	min	Summer	13.620	0.0	11.0	182
240	min	Summer	10.901	0.0	11.9	242
360	min	Summer	7.944	0.0	13.2	360
480	min	Summer	6.344	0.0	14.1	480
600	min	Summer	5.326	0.0	14.8	526
720	min	Summer	4.615	0.0	15.4	588
960	min	Summer	3.679	0.0	16.4	704
1440	min	Summer	2.670	0.0	17.4	968
2160	min	Summer	1.936	0.0	22.8	1384
2880	min	Summer	1.540	0.0	23.9	1784
4320	min	Summer	1.114	0.0	25.1	2592
5760	min	Summer	0.885	0.0	29.9	3344
7200	min	Summer	0.740	0.0	31.0	4112
8640	min	Summer	0.640	0.0	31.7	4840
10080	min	Summer	0.565	0.0	32.0	5552
15	min	Winter	76.734	0.0	3.3	19
30	min	Winter	49.733	0.0	5.0	33

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		ا ا
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:20	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	•

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Stat	tus
60	min	Winter	99.825	0.025	0.1	12.7	Flood	Risk
120	min	Winter	99.830	0.030	0.2	15.0	Flood	Risk
180	min	Winter	99.832	0.032	0.2	16.2	Flood	Risk
240	min	Winter	99.834	0.034	0.2	16.9	Flood	Risk
360	min	Winter	99.835	0.035	0.2	17.7	Flood	Risk
480	min	Winter	99.836	0.036	0.2	18.1	Flood	Risk
600	min	Winter	99.837	0.037	0.3	18.3	Flood	Risk
720	min	Winter	99.837	0.037	0.3	18.3	Flood	Risk
960	min	Winter	99.837	0.037	0.3	18.5	Flood	Risk
1440	min	Winter	99.837	0.037	0.3	18.4	Flood	Risk
2160	min	Winter	99.836	0.036	0.2	17.9	Flood	Risk
2880	min	Winter	99.834	0.034	0.2	17.2	Flood	Risk
4320	min	Winter	99.832	0.032	0.2	15.9	Flood	Risk
5760	min	Winter	99.830	0.030	0.2	14.8	Flood	Risk
7200	min	Winter	99.828	0.028	0.2	13.9	Flood	Risk
8640	min	Winter	99.826	0.026	0.1	13.1	Flood	Risk
10080	min	Winter	99.825	0.025	0.1	12.4	Flood	Risk

	Stor	m	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	!	7.7.5 4	20 011	0 0	0 0	62
		Winter		0.0	8.9	
		Winter	18.530	0.0	11.2	122
180	min	Winter	13.620	0.0	12.6	180
240	min	Winter	10.901	0.0	13.6	236
360	min	Winter	7.944	0.0	15.1	350
480	min	Winter	6.344	0.0	16.2	458
600	min	Winter	5.326	0.0	17.0	560
720	min	Winter	4.615	0.0	17.7	584
960	min	Winter	3.679	0.0	18.7	732
1440	min	Winter	2.670	0.0	20.0	1036
2160	min	Winter	1.936	0.0	25.8	1472
2880	min	Winter	1.540	0.0	27.2	1900
4320	min	Winter	1.114	0.0	28.5	2720
5760	min	Winter	0.885	0.0	33.7	3512
7200	min	Winter	0.740	0.0	34.9	4256
8640	min	Winter	0.640	0.0	35.8	5024
10080	min	Winter	0.565	0.0	36.2	5848

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micro
Date 05/01/2023 14:20	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.411 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +0

Time Area Diagram

Total Area (ha) 0.050

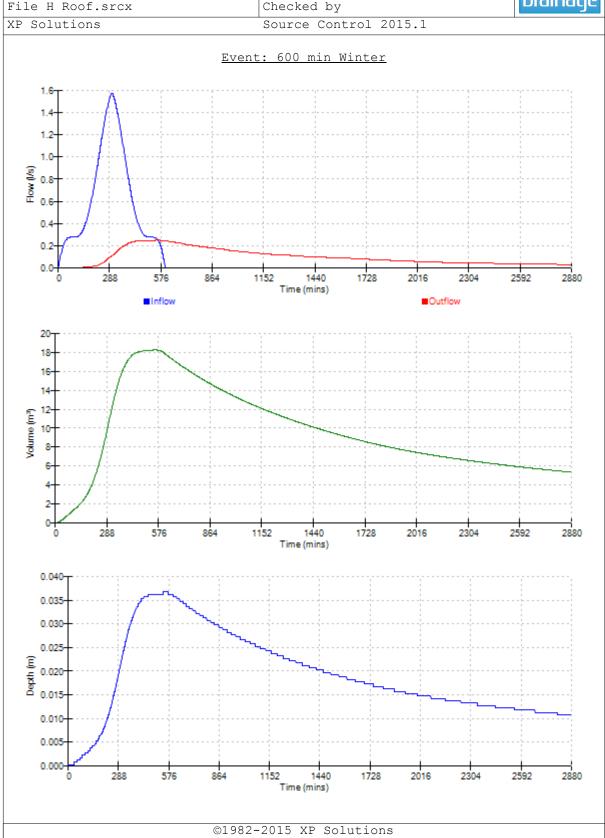
 Time
 (mins)
 Area

 From:
 To:
 (ha)

 0
 4
 0.050

Lanmor Consulting Ltd		Page 4
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:20	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storage is Online Cover Level (m) 100.000


Tank or Pond Structure

Invert Level (m) 99.800

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 500.0 0.200 500.0

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:20	Designed by Kunal	Desinado
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd					
Thorogood House					
34 Tolworth Close		4			
Surbition Surrey KT6 7EW		Micco			
Date 05/01/2023 14:03	Designed by Kunal	Desipago			
File Paving.srcx	Checked by	Drainage			
XP Solutions	Source Control 2015.1				

Half Drain Time : 289 minutes.

	Stor	m	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Control	$\boldsymbol{\Sigma}$ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1 5		C	99.539	0 000	0.0	0.5	0.5	8.4	ОК
			99.557		0.0	0.6	0.6	11.7	0 K
60			99.574		0.0	0.6	0.6	14.7	O K
120	min	Summer	99.586	0.136	0.0	0.7	0.7	17.1	O K
180	min	Summer	99.591	0.141	0.0	0.7	0.7	17.8	O K
240	min	Summer	99.591	0.141	0.0	0.7	0.7	17.9	O K
360	min	Summer	99.591	0.141	0.0	0.7	0.7	17.9	O K
480	min	Summer	99.590	0.140	0.0	0.7	0.7	17.7	O K
600	min	Summer	99.588	0.138	0.0	0.7	0.7	17.4	O K
720	min	Summer	99.586	0.136	0.0	0.7	0.7	17.0	O K
960	min	Summer	99.581	0.131	0.0	0.6	0.6	16.0	O K
1440	min	Summer	99.570	0.120	0.0	0.6	0.6	14.1	O K
2160	min	Summer	99.556	0.106	0.0	0.6	0.6	11.5	O K
2880	min	Summer	99.545	0.095	0.0	0.5	0.5	9.4	O K
4320	min	Summer	99.528	0.078	0.0	0.5	0.5	6.4	O K
5760	min	Summer	99.515	0.065	0.0	0.4	0.4	4.5	O K
7200	min	Summer	99.506	0.056	0.0	0.4	0.4	3.3	O K
8640	min	Summer	99.499	0.049	0.0	0.3	0.3	2.5	O K
L0080	min	Summer	99.494	0.044	0.0	0.3	0.3	2.0	O K
15	min	Winter	99.547	0.097	0.0	0.5	0.5	9.8	O K

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	99.621	0.0	8.7	19
30	min	Summer	65.104	0.0	12.3	33
60	min	Summer	40.510	0.0	16.0	62
120	min	Summer	24.352	0.0	19.8	122
180	min	Summer	17.844	0.0	22.0	180
240	min	Summer	14.229	0.0	23.5	218
360	min	Summer	10.307	0.0	25.7	278
480	min	Summer	8.201	0.0	27.3	340
600	min	Summer	6.863	0.0	28.6	410
720	min	Summer	5.931	0.0	29.6	478
960	min	Summer	4.707	0.0	31.3	616
1440	min	Summer	3.394	0.0	33.6	880
2160	min	Summer	2.444	0.0	35.7	1276
2880	min	Summer	1.934	0.0	37.1	1644
4320	min	Summer	1.388	0.0	38.6	2376
5760	min	Summer	1.096	0.0	39.3	3064
7200	min	Summer	0.913	0.0	39.4	3752
8640	min	Summer	0.785	0.0	39.3	4488
10080	min	Summer	0.691	0.0	38.9	5144
15	min	Winter	99.621	0.0	10.1	18

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:03	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Storm Event	į	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
30	min Win	nter 9	99.567	0.117	0.0	0.6		0.6	13.5	O K
60	min Win	nter 9	99.586	0.136	0.0	0.7		0.7	16.9	O K
120	min Win	nter 9	99.601	0.151	0.0	0.7		0.7	19.7	O K
180	min Win	nter 9	99.606	0.156	0.0	0.7		0.7	20.6	O K
240	min Win	nter 9	99.607	0.157	0.0	0.7		0.7	20.8	O K
360	min Win	nter 9	99.605	0.155	0.0	0.7		0.7	20.5	O K
480	min Win	nter 9	99.603	0.153	0.0	0.7		0.7	20.2	O K
600	min Win	nter 9	99.600	0.150	0.0	0.7		0.7	19.6	O K
720	min Win	nter 9	99.597	0.147	0.0	0.7		0.7	19.0	O K
960	min Win	nter 9	99.589	0.139	0.0	0.7		0.7	17.6	O K
1440	min Win	nter 9	99.574	0.124	0.0	0.6		0.6	14.7	O K
2160	min Win	nter 9	99.554	0.104	0.0	0.6		0.6	11.1	O K
2880	min Win	nter 9	99.539	0.089	0.0	0.5		0.5	8.3	O K
4320	min Win	nter 9	99.517	0.067	0.0	0.4		0.4	4.7	O K
5760	min Win	nter 9	99.502	0.052	0.0	0.4		0.4	2.8	O K
7200	min Win	nter 9	99.493	0.043	0.0	0.3		0.3	1.9	O K
8640	min Win	nter 9	99.488	0.038	0.0	0.3		0.3	1.5	O K
10080	min Win	nter 9	99.485	0.035	0.0	0.2		0.2	1.3	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0		7.7.5 4	CF 104	0 0	1 4 1	2.2
			65.104	0.0	14.1	33
		Winter	40.510	0.0	18.3	62
120	min	Winter	24.352	0.0	22.5	118
180	min	Winter	17.844	0.0	25.0	176
240	min	Winter	14.229	0.0	26.7	230
360	min	Winter	10.307	0.0	29.2	290
480	min	Winter	8.201	0.0	31.0	366
600	min	Winter	6.863	0.0	32.5	442
720	min	Winter	5.931	0.0	33.7	518
960	min	Winter	4.707	0.0	35.5	664
1440	min	Winter	3.394	0.0	38.2	950
2160	min	Winter	2.444	0.0	40.7	1344
2880	min	Winter	1.934	0.0	42.4	1728
4320	min	Winter	1.388	0.0	44.4	2420
5760	min	Winter	1.096	0.0	45.4	3104
7200	min	Winter	0.913	0.0	45.8	3744
8640	min	Winter	0.785	0.0	45.9	4416
10080	min	Winter	0.691	0.0	45.8	5144

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:03	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

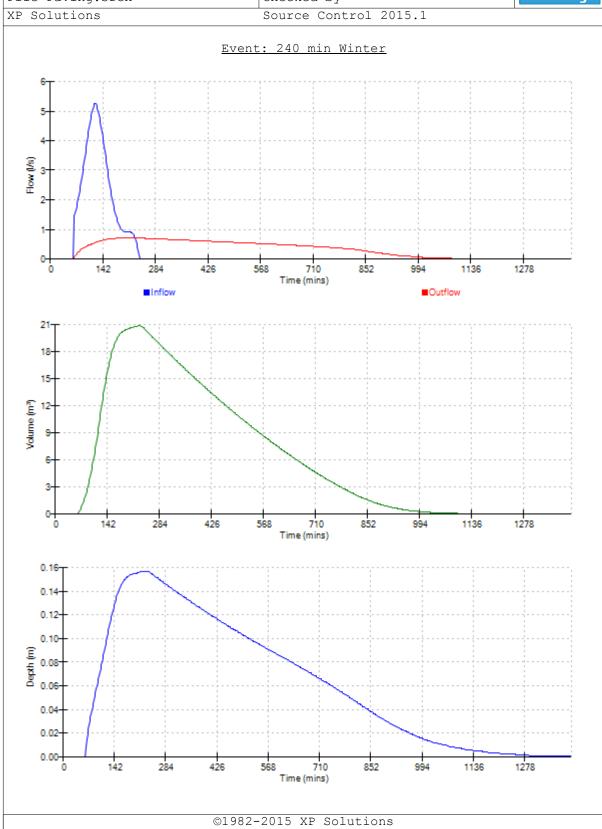
 Ratio R
 0.411
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.063

Lanmor Consulting Ltd	Page 4	
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:03	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	


Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

14.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
44.0	Length (m)	1000	Membrane Percolation (mm/hr)
500.0	Slope (1:X)	171.1	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0.300	Cap Volume Depth (m)	99.450	Invert Level (m)

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micro
Date 05/01/2023 14:03	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:14	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	99.819	0.019	0.1	9.9	Flood Risk
30	min	Summer	99.824	0.024	0.1	12.8	Flood Risk
60	min	Summer	99.830	0.030	0.2	15.8	Flood Risk
120	min	Summer	99.835	0.035	0.2	18.6	Flood Risk
180	min	Summer	99.838	0.038	0.3	20.0	Flood Risk
240	min	Summer	99.839	0.039	0.3	20.8	Flood Risk
360	min	Summer	99.841	0.041	0.3	21.6	Flood Risk
480	min	Summer	99.841	0.041	0.3	21.9	Flood Risk
600	min	Summer	99.842	0.042	0.3	22.1	Flood Risk
720	min	Summer	99.842	0.042	0.3	22.2	Flood Risk
960	min	Summer	99.842	0.042	0.3	22.3	Flood Risk
1440	min	Summer	99.842	0.042	0.3	22.4	Flood Risk
2160	min	Summer	99.841	0.041	0.3	22.0	Flood Risk
2880	min	Summer	99.840	0.040	0.3	21.4	Flood Risk
4320	min	Summer	99.838	0.038	0.3	20.2	Flood Risk
5760	min	Summer	99.836	0.036	0.2	19.1	Flood Risk
7200	min	Summer	99.834	0.034	0.2	18.0	Flood Risk
8640	min	Summer	99.832	0.032	0.2	17.2	Flood Risk
10080	min	Summer	99.831	0.031	0.2	16.4	Flood Risk
15	min	Winter	99.821	0.021	0.1	11.0	Flood Risk
30	min	Winter	99.827	0.027	0.2	14.4	Flood Risk

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	99.621	0.0	4.3	19
30	min	Summer	65.104	0.0	6.4	34
60	min	Summer	40.510	0.0	11.4	64
120	min	Summer	24.352	0.0	14.3	122
180	min	Summer	17.844	0.0	16.0	182
240	min	Summer	14.229	0.0	17.1	242
360	min	Summer	10.307	0.0	18.8	360
480	min	Summer	8.201	0.0	20.0	476
600	min	Summer	6.863	0.0	21.0	516
720	min	Summer	5.931	0.0	21.7	574
960	min	Summer	4.707	0.0	22.9	694
1440	min	Summer	3.394	0.0	24.2	966
2160	min	Summer	2.444	0.0	31.0	1368
2880	min	Summer	1.934	0.0	32.4	1784
4320	min	Summer	1.388	0.0	33.8	2552
5760	min	Summer	1.096	0.0	39.5	3344
7200	min	Summer	0.913	0.0	40.8	4104
8640	min	Summer	0.785	0.0	41.6	4840
10080	min	Summer	0.691	0.0	42.0	5552
15	min	Winter	99.621	0.0	5.1	19
30	min	Winter	65.104	0.0	7.5	33

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:14	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Stat	tus	
60	min	Winter	99.833	0.033	0.2	17.7	Flood	Risk
120	min	Winter	99.839	0.039	0.3	20.8	Flood	Risk
180	min	Winter	99.842	0.042	0.3	22.4	Flood	Risk
240	min	Winter	99.844	0.044	0.3	23.3	Flood	Risk
360	min	Winter	99.846	0.046	0.3	24.2	Flood	Risk
480	min	Winter	99.846	0.046	0.3	24.7	Flood	Risk
600	min	Winter	99.847	0.047	0.3	24.8	Flood	Risk
720	min	Winter	99.847	0.047	0.3	24.8	Flood	Risk
960	min	Winter	99.847	0.047	0.3	24.9	Flood	Risk
1440	min	Winter	99.846	0.046	0.3	24.5	Flood	Risk
2160	min	Winter	99.844	0.044	0.3	23.5	Flood	Risk
2880	min	Winter	99.842	0.042	0.3	22.4	Flood	Risk
4320	min	Winter	99.839	0.039	0.3	20.5	Flood	Risk
5760	min	Winter	99.836	0.036	0.2	18.9	Flood	Risk
7200	min	Winter	99.833	0.033	0.2	17.6	Flood	Risk
8640	min	Winter	99.831	0.031	0.2	16.5	Flood	Risk
10080	min	Winter	99.829	0.029	0.2	15.6	Flood	Risk

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60			40 510	0 0	10.1	60
		Winter		0.0	13.1	62
120	min	Winter	24.352	0.0	16.4	120
180	min	Winter	17.844	0.0	18.3	178
240	min	Winter	14.229	0.0	19.6	236
360	min	Winter	10.307	0.0	21.5	350
480	min	Winter	8.201	0.0	22.9	460
600	min	Winter	6.863	0.0	24.0	562
720	min	Winter	5.931	0.0	24.8	592
960	min	Winter	4.707	0.0	26.1	732
1440	min	Winter	3.394	0.0	27.6	1038
2160	min	Winter	2.444	0.0	35.1	1472
2880	min	Winter	1.934	0.0	36.7	1900
4320	min	Winter	1.388	0.0	38.3	2684
5760	min	Winter	1.096	0.0	44.5	3464
7200	min	Winter	0.913	0.0	46.0	4256
8640	min	Winter	0.785	0.0	47.0	5016
10080	min	Winter	0.691	0.0	47.4	5760

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:14	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.411
 Longest Storm (mins)
 10080

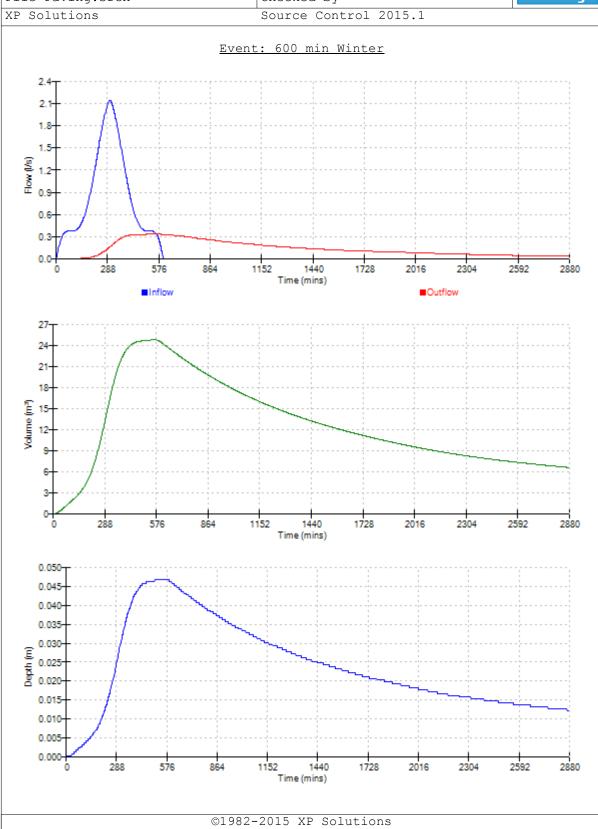
 Summer Storms
 Yes
 Climate Change %
 +0

Time Area Diagram

Total Area (ha) 0.053

Lanmor Consulting Ltd					
Thorogood House					
34 Tolworth Close		4			
Surbition Surrey KT6 7EW		Micco			
Date 05/01/2023 14:14	Designed by Kunal	Desipago			
File Paving.srcx	Checked by	Drainage			
XP Solutions	Source Control 2015.1	1			

Storage is Online Cover Level (m) 100.000


Tank or Pond Structure

Invert Level (m) 99.800

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 531.0 0.200 531.0

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:14	Designed by Kunal	Desinado
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micro
Date 05/01/2023 14:19	Designed by Kunal	
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	·

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	99.819	0.019	0.1	9.3	Flood Risk
30	min	Summer	99.824	0.024	0.1	12.1	Flood Risk
60	min	Summer	99.830	0.030	0.2	14.9	Flood Risk
120	min	Summer	99.835	0.035	0.2	17.5	Flood Risk
180	min	Summer	99.838	0.038	0.3	18.8	Flood Risk
240	min	Summer	99.839	0.039	0.3	19.5	Flood Risk
360	min	Summer	99.840	0.040	0.3	20.2	Flood Risk
480	min	Summer	99.841	0.041	0.3	20.5	Flood Risk
600	min	Summer	99.841	0.041	0.3	20.6	Flood Risk
720	min	Summer	99.841	0.041	0.3	20.7	Flood Risk
960	min	Summer	99.842	0.042	0.3	20.9	Flood Risk
1440	min	Summer	99.842	0.042	0.3	20.9	Flood Risk
2160	min	Summer	99.841	0.041	0.3	20.5	Flood Risk
2880	min	Summer	99.840	0.040	0.3	19.9	Flood Risk
4320	min	Summer	99.837	0.037	0.3	18.7	Flood Risk
5760	min	Summer	99.835	0.035	0.2	17.6	Flood Risk
7200	min	Summer	99.833	0.033	0.2	16.6	Flood Risk
8640	min	Summer	99.832	0.032	0.2	15.8	Flood Risk
10080	min	Summer	99.830	0.030	0.2	15.1	Flood Risk
15	min	Winter	99.821	0.021	0.1	10.4	Flood Risk
30	min	Winter	99.827	0.027	0.2	13.5	Flood Risk

Storm			Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	99.621	0.0	4.2	19
30	min	Summer	65.104	0.0	6.2	34
60	min	Summer	40.510	0.0	10.9	64
120	min	Summer	24.352	0.0	13.7	122
180	min	Summer	17.844	0.0	15.3	182
240	min	Summer	14.229	0.0	16.4	242
360	min	Summer	10.307	0.0	18.0	360
480	min	Summer	8.201	0.0	19.2	460
600	min	Summer	6.863	0.0	20.1	506
720	min	Summer	5.931	0.0	20.8	566
960	min	Summer	4.707	0.0	22.0	684
1440	min	Summer	3.394	0.0	23.3	954
2160	min	Summer	2.444	0.0	29.5	1364
2880	min	Summer	1.934	0.0	30.8	1760
4320	min	Summer	1.388	0.0	32.2	2552
5760	min	Summer	1.096	0.0	37.4	3336
7200	min	Summer	0.913	0.0	38.7	4040
8640	min	Summer	0.785	0.0	39.5	4840
10080	min	Summer	0.691	0.0	39.8	5552
15	min	Winter	99.621	0.0	5.0	19
30	min	Winter	65.104	0.0	7.3	33

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:19	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Stat	tus
60	min	Winter	99.833	0.033	0.2	16.7	Flood	Risk
120	min	Winter	99.839	0.039	0.3	19.6	Flood	Risk
180	min	Winter	99.842	0.042	0.3	21.0	Flood	Risk
240	min	Winter	99.844	0.044	0.3	21.8	Flood	Risk
360	min	Winter	99.845	0.045	0.3	22.7	Flood	Risk
480	min	Winter	99.846	0.046	0.3	23.1	Flood	Risk
600	min	Winter	99.846	0.046	0.3	23.1	Flood	Risk
720	min	Winter	99.846	0.046	0.3	23.2	Flood	Risk
960	min	Winter	99.846	0.046	0.3	23.2	Flood	Risk
1440	min	Winter	99.846	0.046	0.3	22.8	Flood	Risk
2160	min	Winter	99.844	0.044	0.3	21.8	Flood	Risk
2880	min	Winter	99.841	0.041	0.3	20.7	Flood	Risk
4320	min	Winter	99.838	0.038	0.3	18.9	Flood	Risk
5760	min	Winter	99.835	0.035	0.2	17.3	Flood	Risk
7200	min	Winter	99.832	0.032	0.2	16.1	Flood	Risk
8640	min	Winter	99.830	0.030	0.2	15.1	Flood	Risk
10080	min	Winter	99.828	0.028	0.2	14.2	Flood	Risk

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		Winter	40.510	0.0	12.6	62
		Winter	24.352	0.0	15.7	120
180	min	Winter	17.844	0.0	17.5	178
240	min	Winter	14.229	0.0	18.8	236
360	min	Winter	10.307	0.0	20.6	350
480	min	Winter	8.201	0.0	21.9	458
600	min	Winter	6.863	0.0	22.9	556
720	min	Winter	5.931	0.0	23.8	578
960	min	Winter	4.707	0.0	25.0	728
1440	min	Winter	3.394	0.0	26.5	1026
2160	min	Winter	2.444	0.0	33.3	1452
2880	min	Winter	1.934	0.0	34.9	1876
4320	min	Winter	1.388	0.0	36.4	2680
5760	min	Winter	1.096	0.0	42.1	3464
7200	min	Winter	0.913	0.0	43.5	4248
8640	min	Winter	0.785	0.0	44.5	5008
10080	min	Winter	0.691	0.0	44.9	5752

Lanmor Consulting Ltd	Page 3	
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:19	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.411
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +0

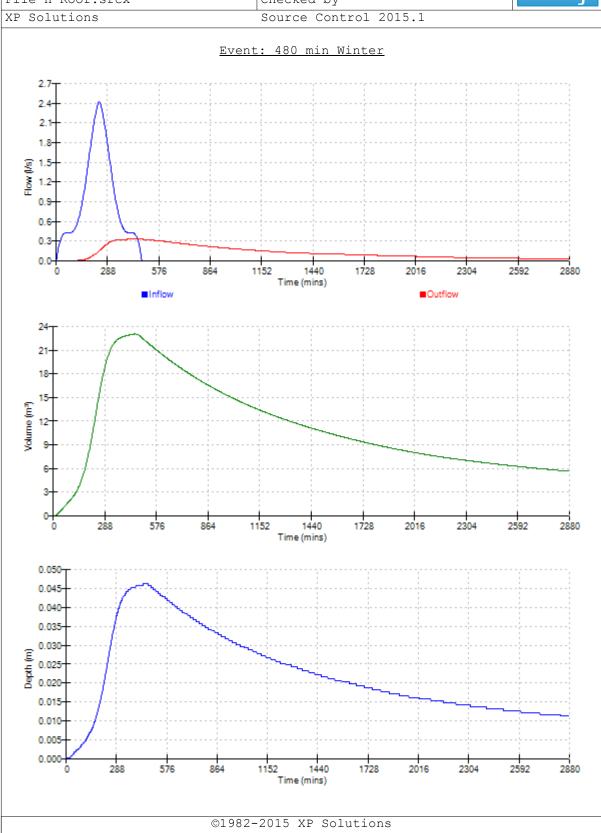
Time Area Diagram

Total Area (ha) 0.050

Lanmor Consulting Ltd		Page 4
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:19	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storage is Online Cover Level (m) 100.000

Tank or Pond Structure


Invert Level (m) 99.800

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 500.0 0.200 500.0

Orifice Outflow Control

Lanmor Consulting Ltd	Page 5	
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:19	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:02	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Half Drain Time : 368 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
	min Summe			0.0	0.6	0.6		O K
30	min Summe	er 99.590	0.140	0.0	0.7	0.7	17.7	O K
60	min Summe	r 99.613	0.163	0.0	0.7	0.7	22.1	O K
120	min Summe	r 99.633	0.183	0.0	0.8	0.8	25.7	O K
180	min Summe	er 99.640	0.190	0.0	0.8	0.8	27.0	O K
240	min Summe	er 99.642	0.192	0.0	0.8	0.8	27.4	O K
360	min Summe	er 99.642	0.192	0.0	0.8	0.8	27.3	O K
480	min Summe	er 99.640	0.190	0.0	0.8	0.8	27.0	O K
600	min Summe	er 99.638	0.188	0.0	0.8	0.8	26.7	O K
720	min Summe	er 99.636	0.186	0.0	0.8	0.8	26.2	O K
960	min Summe	er 99.630	0.180	0.0	0.8	0.8	25.1	O K
1440	min Summe	r 99.616	0.166	0.0	0.7	0.7	22.6	O K
2160	min Summe	r 99.598	0.148	0.0	0.7	0.7	19.3	O K
2880	min Summe	er 99.583	0.133	0.0	0.6	0.6	16.4	O K
4320	min Summe	er 99.560	0.110	0.0	0.6	0.6	12.1	O K
5760	min Summe	er 99.543	0.093	0.0	0.5	0.5	9.0	O K
7200	min Summe	er 99.531	0.081	0.0	0.5	0.5	6.8	O K
8640	min Summe	er 99.521	0.071	0.0	0.4	0.4	5.3	O K
10080	min Summe	er 99.513	0.063	0.0	0.4	0.4	4.2	O K
15	min Winte	r 99.575	0.125	0.0	0.6	0.6	15.0	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
15	min	Summer	139.469	0.0	13.4	19
30	min	Summer	91.145	0.0	18.4	33
60	min	Summer	56.713	0.0	23.6	62
120	min	Summer	34.093	0.0	29.0	122
180	min	Summer	24.982	0.0	32.1	180
240	min	Summer	19.920	0.0	34.3	240
360	min	Summer	14.430	0.0	37.4	300
480	min	Summer	11.481	0.0	39.7	360
600	min	Summer	9.608	0.0	41.5	426
720	min	Summer	8.303	0.0	43.1	494
960	min	Summer	6.590	0.0	45.5	634
1440	min	Summer	4.752	0.0	49.0	908
2160	min	Summer	3.421	0.0	52.3	1300
2880	min	Summer	2.707	0.0	54.6	1696
4320	min	Summer	1.944	0.0	57.5	2424
5760	min	Summer	1.535	0.0	59.2	3168
7200	min	Summer	1.278	0.0	60.1	3824
8640	min	Summer	1.099	0.0	60.6	4576
10080	min	Summer	0.968	0.0	60.8	5248
15	min	Winter	139.469	0.0	15.3	18

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:02	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storm Event			Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min I	Winter	99.603	0 153	0.0	0.7	0.7	20.2	ОК
			99.630		0.0	0.8	0.8	25.2	O K
			99.653		0.0	0.8	0.8	29.4	O K
			99.662		0.0	0.8	0.8	31.0	O K
			99.665		0.0	0.8	0.8	31.6	O K
360	min V	Winter	99.664	0.214	0.0	0.8	0.8	31.4	O K
480	min V	Winter	99.661	0.211	0.0	0.8	0.8	30.9	O K
600	min V	Winter	99.658	0.208	0.0	0.8	0.8	30.4	O K
720	min V	Winter	99.655	0.205	0.0	0.8	0.8	29.7	ОК
960	min V	Winter	99.646	0.196	0.0	0.8	0.8	28.0	ОК
1440	min V	Winter	99.626	0.176	0.0	0.8	0.8	24.5	ОК
2160	min V	Winter	99.600	0.150	0.0	0.7	0.7	19.7	O K
2880	min V	Winter	99.579	0.129	0.0	0.6	0.6	15.8	ОК
4320	min V	Winter	99.549	0.099	0.0	0.5	0.5	10.2	ОК
5760	min V	Winter	99.529	0.079	0.0	0.5	0.5	6.6	ОК
7200	min V	Winter	99.515	0.065	0.0	0.4	0.4	4.4	ОК
8640	min V	Winter	99.504	0.054	0.0	0.4	0.4	3.0	O K
0800	min V	Winter	99.496	0.046	0.0	0.3	0.3	2.2	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0		Winter	01 145	0 0	21 0	33
			91.145	0.0	21.0	
		Winter	56.713	0.0	26.9	62
120	min	Winter	34.093	0.0	32.8	120
180	min	Winter	24.982	0.0	36.3	176
240	min	Winter	19.920	0.0	38.8	232
360	min	Winter	14.430	0.0	42.3	336
480	min	Winter	11.481	0.0	44.9	380
600	min	Winter	9.608	0.0	47.0	456
720	min	Winter	8.303	0.0	48.7	534
960	min	Winter	6.590	0.0	51.5	684
1440	min	Winter	4.752	0.0	55.4	978
2160	min	Winter	3.421	0.0	59.3	1384
2880	min	Winter	2.707	0.0	62.0	1788
4320	min	Winter	1.944	0.0	65.5	2512
5760	min	Winter	1.535	0.0	67.6	3232
7200	min	Winter	1.278	0.0	69.0	3896
8640	min	Winter	1.099	0.0	69.8	4584
10080	min	Winter	0.968	0.0	70.3	5240

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:02	Designed by Kunal	Desinado
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	•

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

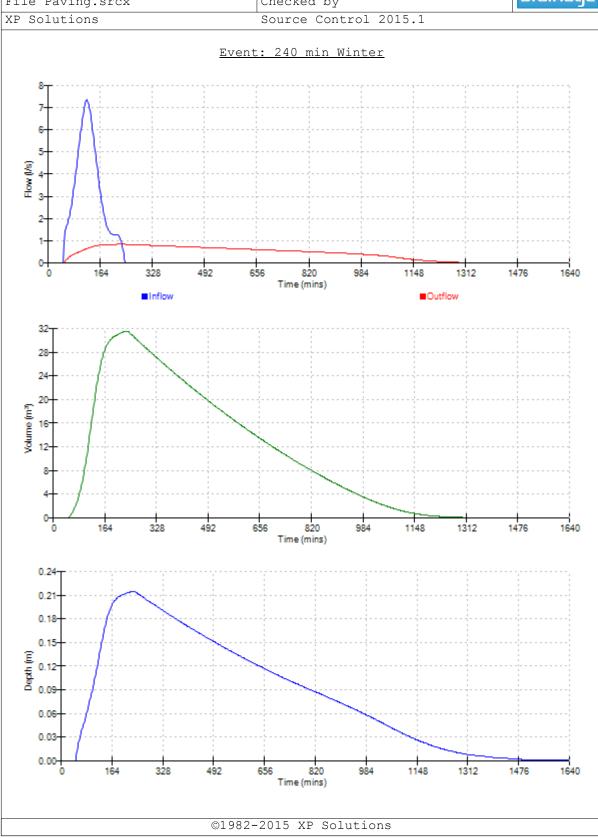
 Ratio R
 0.411
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.063

Lanmor Consulting Ltd		Page 4
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:02	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	


Storage is Online Cover Level (m) 100.000

Porous Car Park Structure

14.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
44.0	Length (m)	1000	Membrane Percolation (mm/hr)
500.0	Slope (1:X)	171.1	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0.300	Cap Volume Depth (m)	99.450	Invert Level (m)

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:02	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:09	Designed by Kunal	Desinado
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	99.826	0.026	0.1	13.8	Flood Risk	
30	min	Summer	99.834	0.034	0.2	17.9	Flood Risk	
60	min	Summer	99.841	0.041	0.3	22.0	Flood Risk	
120	min	Summer	99.849	0.049	0.3	25.9	Flood Risk	
180	min	Summer	99.852	0.052	0.4	27.9	Flood Risk	
240	min	Summer	99.855	0.055	0.4	29.0	Flood Risk	
360	min	Summer	99.857	0.057	0.4	30.2	Flood Risk	
480	min	Summer	99.858	0.058	0.4	30.7	Flood Risk	
600	min	Summer	99.858	0.058	0.4	30.9	Flood Risk	
720	min	Summer	99.858	0.058	0.4	31.0	Flood Risk	
960	min	Summer	99.859	0.059	0.4	31.2	Flood Risk	
1440	min	Summer	99.859	0.059	0.4	31.1	Flood Risk	
2160	min	Summer	99.857	0.057	0.4	30.4	Flood Risk	
2880	min	Summer	99.855	0.055	0.4	29.4	Flood Risk	
4320	min	Summer	99.851	0.051	0.4	27.2	Flood Risk	
5760	min	Summer	99.847	0.047	0.3	25.2	Flood Risk	
7200	min	Summer	99.844	0.044	0.3	23.5	Flood Risk	
8640	min	Summer	99.842	0.042	0.3	22.1	Flood Risk	
0800	min	Summer	99.840	0.040	0.3	21.0	Flood Risk	
15	min	Winter	99.829	0.029	0.2	15.4	Flood Risk	
30	min	Winter	99.838	0.038	0.3	20.1	Flood Risk	

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	139.469	0.0	7.1	19
30	min	Summer	91.145	0.0	10.2	34
60	min	Summer	56.713	0.0	17.2	64
120	min	Summer	34.093	0.0	21.3	122
180	min	Summer	24.982	0.0	23.7	182
240	min	Summer	19.920	0.0	25.4	242
360	min	Summer	14.430	0.0	27.8	360
480	min	Summer	11.481	0.0	29.5	480
600	min	Summer	9.608	0.0	30.8	546
720	min	Summer	8.303	0.0	31.9	600
960	min	Summer	6.590	0.0	33.5	720
1440	min	Summer	4.752	0.0	35.2	982
2160	min	Summer	3.421	0.0	44.6	1388
2880	min	Summer	2.707	0.0	46.7	1788
4320	min	Summer	1.944	0.0	48.9	2592
5760	min	Summer	1.535	0.0	56.2	3344
7200	min	Summer	1.278	0.0	58.1	4104
8640	min	Summer	1.099	0.0	59.4	4832
10080	min	Summer	0.968	0.0	60.0	5544
15	min	Winter	139.469	0.0	8.3	19
30	min	Winter	91.145	0.0	11.8	33

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:09	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	99.846	0.046	0.3	24.7	Flood Risk
120	min	Winter	99.855	0.055	0.4	29.0	Flood Risk
180	min	Winter	99.859	0.059	0.4	31.3	Flood Risk
240	min	Winter	99.861	0.061	0.4	32.6	Flood Risk
360	min	Winter	99.864	0.064	0.4	34.0	Flood Risk
480	min	Winter	99.865	0.065	0.4	34.7	Flood Risk
600	min	Winter	99.866	0.066	0.4	35.0	Flood Risk
720	min	Winter	99.866	0.066	0.4	35.0	Flood Risk
960	min	Winter	99.866	0.066	0.4	34.9	Flood Risk
1440	min	Winter	99.865	0.065	0.4	34.4	Flood Risk
2160	min	Winter	99.862	0.062	0.4	32.8	Flood Risk
2880	min	Winter	99.858	0.058	0.4	31.0	Flood Risk
4320	min	Winter	99.852	0.052	0.4	27.6	Flood Risk
5760	min	Winter	99.847	0.047	0.3	24.7	Flood Risk
7200	min	Winter	99.842	0.042	0.3	22.6	Flood Risk
8640	min	Winter	99.840	0.040	0.3	21.0	Flood Risk
10080	min	Winter	99.837	0.037	0.3	19.7	Flood Risk

	Stor	m	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60			F 6 710	0 0	10 7	60
			56.713	0.0	19.7	62
120	min	Winter	34.093	0.0	24.3	120
180	min	Winter	24.982	0.0	27.0	180
240	min	Winter	19.920	0.0	28.9	238
360	min	Winter	14.430	0.0	31.5	352
480	min	Winter	11.481	0.0	33.4	462
600	min	Winter	9.608	0.0	34.9	570
720	min	Winter	8.303	0.0	36.1	670
960	min	Winter	6.590	0.0	37.9	752
1440	min	Winter	4.752	0.0	39.7	1054
2160	min	Winter	3.421	0.0	50.3	1496
2880	min	Winter	2.707	0.0	52.7	1932
4320	min	Winter	1.944	0.0	55.3	2728
5760	min	Winter	1.535	0.0	63.1	3512
7200	min	Winter	1.278	0.0	65.3	4248
8640	min	Winter	1.099	0.0	66.9	4984
10080	min	Winter	0.968	0.0	67.7	5744

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:09	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.411
 Longest Storm (mins)
 10080

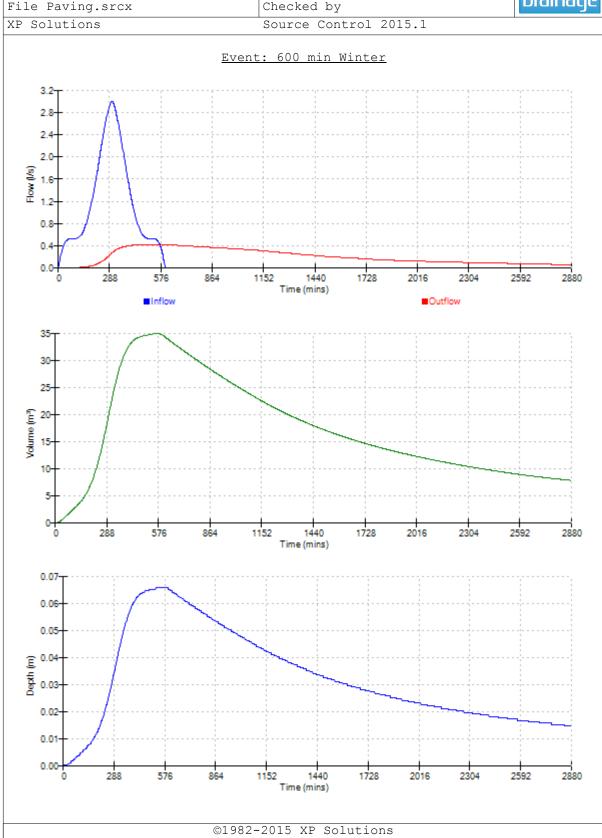
 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.053

Lanmor Consulting Ltd		Page 4
Thorogood House		
34 Tolworth Close		ا ا
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:09	Designed by Kunal	Desipago
File Paving.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storage is Online Cover Level (m) 100.000


Tank or Pond Structure

Invert Level (m) 99.800

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 531.0 0.200 531.0

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		٧
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:09	Designed by Kunal	Desipago
File Paving.srcx	Checked by	niailiada
XP Solutions	Source Control 2015.1	

Lanmor Consulting Ltd		Page 1
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:18	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	99.826	0.026	0.1	13.0	Flood Risk
30	min	Summer	99.834	0.034	0.2	16.9	Flood Risk
60	min	Summer	99.842	0.042	0.3	20.8	Flood Risk
120	min	Summer	99.849	0.049	0.3	24.4	Flood Risk
180	min	Summer	99.852	0.052	0.4	26.2	Flood Risk
240	min	Summer	99.854	0.054	0.4	27.2	Flood Risk
360	min	Summer	99.857	0.057	0.4	28.3	Flood Risk
480	min	Summer	99.857	0.057	0.4	28.7	Flood Risk
600	min	Summer	99.858	0.058	0.4	28.8	Flood Risk
720	min	Summer	99.858	0.058	0.4	29.0	Flood Risk
960	min	Summer	99.858	0.058	0.4	29.1	Flood Risk
1440	min	Summer	99.858	0.058	0.4	29.0	Flood Risk
2160	min	Summer	99.856	0.056	0.4	28.2	Flood Risk
2880	min	Summer	99.854	0.054	0.4	27.2	Flood Risk
4320	min	Summer	99.850	0.050	0.4	25.0	Flood Risk
5760	min	Summer	99.846	0.046	0.3	23.1	Flood Risk
7200	min	Summer	99.843	0.043	0.3	21.5	Flood Risk
8640	min	Summer	99.841	0.041	0.3	20.3	Flood Risk
10080	min	Summer	99.839	0.039	0.3	19.3	Flood Risk
15	min	Winter	99.829	0.029	0.2	14.6	Flood Risk
30	min	Winter	99.838	0.038	0.3	18.9	Flood Risk

	Stor	m	Rain	${\tt Flooded}$	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	139.469	0.0	6.9	19
30	min	Summer	91.145	0.0	9.9	34
60	min	Summer	56.713	0.0	16.5	64
120	min	Summer	34.093	0.0	20.4	122
180	min	Summer	24.982	0.0	22.7	182
240	min	Summer	19.920	0.0	24.3	242
360	min	Summer	14.430	0.0	26.5	360
480	min	Summer	11.481	0.0	28.2	478
600	min	Summer	9.608	0.0	29.5	522
720	min	Summer	8.303	0.0	30.5	582
960	min	Summer	6.590	0.0	32.1	702
1440	min	Summer	4.752	0.0	33.9	970
2160	min	Summer	3.421	0.0	42.3	1384
2880	min	Summer	2.707	0.0	44.4	1788
4320	min	Summer	1.944	0.0	46.5	2552
5760	min	Summer	1.535	0.0	53.1	3336
7200	min	Summer	1.278	0.0	55.0	4040
8640	min	Summer	1.099	0.0	56.2	4760
10080	min	Summer	0.968	0.0	56.8	5544
15	min	Winter	139.469	0.0	8.0	19
30	min	Winter	91.145	0.0	11.5	33

Lanmor Consulting Ltd		Page 2
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:18	Designed by Kunal	Desipage
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
60	min	Winter	99.846	0.046	0.3	23.2	Flood Risk
120	min	Winter	99.855	0.055	0.4	27.3	Flood Risk
180	min	Winter	99.859	0.059	0.4	29.4	Flood Risk
240	min	Winter	99.861	0.061	0.4	30.6	Flood Risk
360	min	Winter	99.864	0.064	0.4	31.9	Flood Risk
480	min	Winter	99.865	0.065	0.4	32.5	Flood Risk
600	min	Winter	99.865	0.065	0.4	32.6	Flood Risk
720	min	Winter	99.865	0.065	0.4	32.6	Flood Risk
960	min	Winter	99.865	0.065	0.4	32.5	Flood Risk
1440	min	Winter	99.864	0.064	0.4	31.9	Flood Risk
2160	min	Winter	99.861	0.061	0.4	30.3	Flood Risk
2880	min	Winter	99.857	0.057	0.4	28.5	Flood Risk
4320	min	Winter	99.850	0.050	0.4	25.2	Flood Risk
5760	min	Winter	99.845	0.045	0.3	22.5	Flood Risk
7200	min	Winter	99.841	0.041	0.3	20.6	Flood Risk
8640	min	Winter	99.838	0.038	0.3	19.1	Flood Risk
10080	min	Winter	99.836	0.036	0.2	18.0	Flood Risk

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60		T.T	FC 710	0 0	10.0	60
		Winter		0.0	18.9	62
120	min	Winter	34.093	0.0	23.3	120
180	min	Winter	24.982	0.0	25.8	180
240	min	Winter	19.920	0.0	27.6	236
360	min	Winter	14.430	0.0	30.1	350
480	min	Winter	11.481	0.0	32.0	462
600	min	Winter	9.608	0.0	33.4	566
720	min	Winter	8.303	0.0	34.6	656
960	min	Winter	6.590	0.0	36.3	742
1440	min	Winter	4.752	0.0	38.2	1050
2160	min	Winter	3.421	0.0	47.7	1492
2880	min	Winter	2.707	0.0	50.1	1904
4320	min	Winter	1.944	0.0	52.6	2720
5760	min	Winter	1.535	0.0	59.7	3464
7200	min	Winter	1.278	0.0	61.8	4184
8640	min	Winter	1.099	0.0	63.3	4936
10080	min	Winter	0.968	0.0	64.1	5744

Lanmor Consulting Ltd		Page 3
Thorogood House		
34 Tolworth Close		
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:18	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

 Return
 Reinfall Model
 FSR
 Winter Storms
 Yes

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.411
 Longest Storm (mins)
 10080

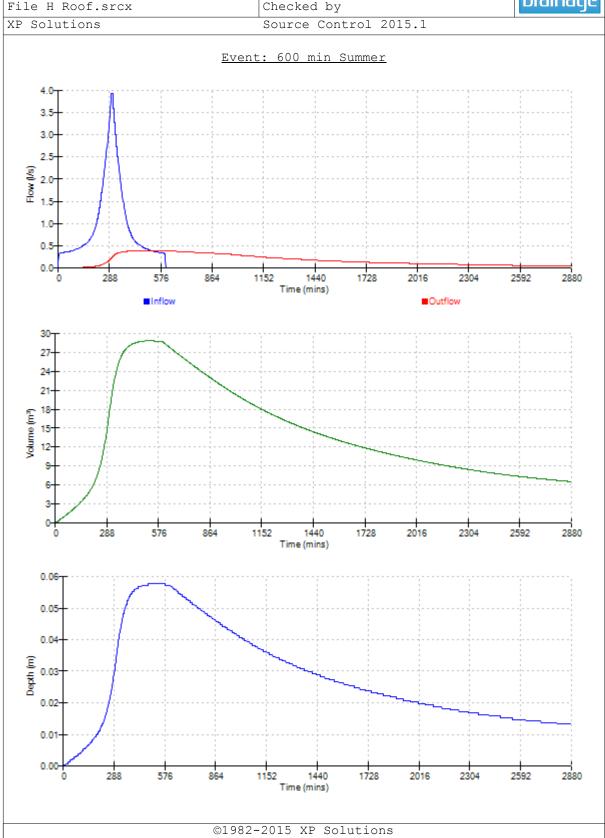
 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.050

Lanmor Consulting Ltd		Page 4
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:18	Designed by Kunal	Desipago
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	

Storage is Online Cover Level (m) 100.000


Tank or Pond Structure

Invert Level (m) 99.800

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 500.0 0.200 500.0

Orifice Outflow Control

Lanmor Consulting Ltd		Page 5
Thorogood House		
34 Tolworth Close		4
Surbition Surrey KT6 7EW		Micco
Date 05/01/2023 14:18	Designed by Kunal	Desinado
File H Roof.srcx	Checked by	Drainage
XP Solutions	Source Control 2015.1	1

GREATER LONDON AUTHORITY

	Project / Site Name (including sub- catchment / stage / phase where appropriate)	Kingston Bridge House		
	Address & post code	at Kingston Bridge house, Church Road, Hampton Wick, KT1 4AG		
	OS Grid ref. (Easting, Northing)	E 517487		
<u>s</u>		N 169400		
etail	LPA reference (if applicable)			
1. Project & Site Details	Brief description of proposed work	Conversion of exisitng building from student accomodation to residential apartments		
,	Total site Area	2,780 m²		
	Total existing impervious area	2,550 m ²		
	Total proposed impervious area	0 m^2		
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	no		
	Existing drainage connection type and location	Sewer		
	Designer Name			
	Designer Position			
	Designer Company			

	2a. Infiltration Feasibility				
	Superficial geology classification	npton Park Gravels			
	Bedrock geology classification		London Clay		
	Site infiltration rate	-	m/s		
	Depth to groundwater level	-	in beio level	w ground	
	Is infiltration feasible?		No		
	2b. Drainage Hierarchy				
2. Proposed Discharge Arrangements			Feasible (Y/N)	Proposed (Y/N)	
ang	1 store rainwater for later use	Υ	Υ		
ırge Arr	2 use infiltration techniques, such surfaces in non-clay areas	N	N		
d Discha	3 attenuate rainwater in ponds or features for gradual release	open water	N	N	
ropose	4 attenuate rainwater by storing in sealed water features for gradual r		N	N	
2. P	5 discharge rainwater direct to a v	discharge rainwater direct to a watercourse			
	6 discharge rainwater to a surface sewer/drain	water	Υ	Υ	
	7 discharge rainwater to the comb	ined sewer.	N	N	
	2c. Proposed Discharge Details				
	Proposed discharge location	Existir	ng conection to sewer		
	Has the owner/regulator of the discharge location been consulted?	No			

GREATER LONDON AUTHORITY

	3a. Discharge Rates & Required Storage								
		Greenfield (GF)	Existing	Required	Proposed				
		runoff rate (l/s)	discharge	storage for	discharge				
		ranojj rate (1/3)	rate (l/s)	GF rate (m³)	rate (I/s)				
	Qbar	0.4			><				
	1 in 1	0.4	26.1	24	0.6				
	1 in 30	1	51.1	52	1.2				
	1 in 100	1.3	51.2	68	1.3				
	1 in 100 + CC			99	1.6				
	Climate change a	llowance used	40%						
3. Drainage Strategy	3b. Principal Met Control	hod of Flow	orifice						
ge Str	3c. Proposed SuDS Measures								
nag			Catchment	Plan area	Storage				
Orai			area (m²)	(m²)	vol. (m³)				
3. [Rainwater harves	sting	0	>	0				
	Infiltration syster	ns	0		0				
	Green roofs		1031	1031	206				
	Blue roofs		0	0	0				
	Filter strips		0	0	0				
	Filter drains		0	0	0				
	Bioretention / tre	ee pits	0	0	0				
	Pervious paveme	nts	620	620	57				
	Swales		0	0	0				
	Basins/ponds		0	0	0				
	Attenuation tank	s	0	\geq	0				
	Total		1651	1651	263				

	4a. Discharge & Drainage Strategy	Page/section of drainage report
4. Supporting Information	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	
	Drainage hierarchy (2b)	section 4.2
	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	Appendix B
	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	section 4
	Proposed SuDS measures & specifications (3b)	section 4.2
	4b. Other Supporting Details	Page/section of drainage report
	Detailed Development Layout	Appendix C
	Detailed drainage design drawings, including exceedance flow routes	n/a
	Detailed landscaping plans	Appendix C
	Maintenance strategy	section 5
	Demonstration of how the proposed SuDS measures improve:	n/a
	a) water quality of the runoff?	Greenroof / permable paving
	b) biodiversity?	Greenroof
	c) amenity?	