



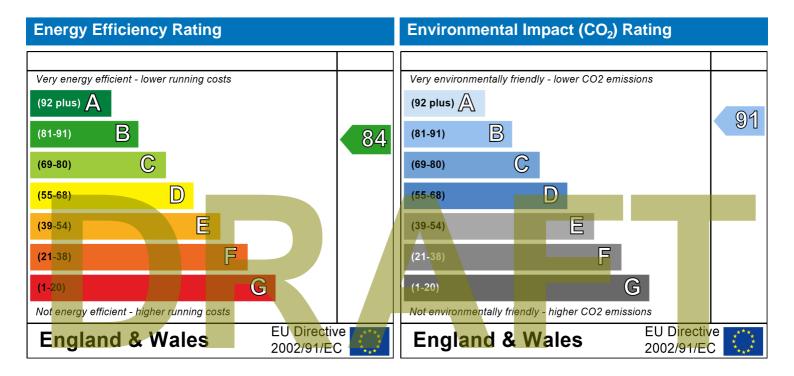
# **Greggs Bakery** / Twickenham

SAP 10 Calculation Report Apartment

January 2023 Revision 01

#### **Predicted Energy Assessment**




Twickenham London Square London

Dwelling type:
Date of assessment:
Produced by:
Total floor area:

Top floor Flat 05 December 2018 Stroma Certification

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

|                                                            |                                                                          | User D        | Details:        |               |               |            |           |               |              |
|------------------------------------------------------------|--------------------------------------------------------------------------|---------------|-----------------|---------------|---------------|------------|-----------|---------------|--------------|
| Assessor Name:<br>Software Name:                           | Stroma FSAP 2012                                                         |               | Strom<br>Softwa | are Ve        | rsion:        |            |           | on: 1.0.5.57  |              |
| A 11                                                       |                                                                          | Property      |                 | : Greg B      | akery F       | 05 top Fl  | loor      |               |              |
| Address: 1. Overall dwelling dimer                         | Twickenham London Squa                                                   | re, Lonac     | on              |               |               |            |           |               |              |
| 1. Overall awelling aimer                                  | Tolorio.                                                                 | Are           | a(m²)           |               | Av. He        | ight(m)    |           | Volume(m³)    | )            |
| Ground floor                                               |                                                                          |               | <u> </u>        | (1a) x        |               | 2.5        | (2a) =    | 177.5         | (3a)         |
| Total floor area TFA = (1a                                 | a)+(1b)+(1c)+(1d)+(1e)+(1                                                | n)            | 71              | (4)           |               |            | _         |               |              |
| Dwelling volume                                            |                                                                          |               |                 | (3a)+(3b      | )+(3c)+(3c    | d)+(3e)+   | .(3n) =   | 177.5         | (5)          |
| 2. Ventilation rate:                                       |                                                                          |               |                 |               |               |            |           |               |              |
|                                                            | main seconda<br>heating heating                                          |               | other           |               | total         |            |           | m³ per hou    | r            |
| Number of chimneys                                         |                                                                          | + [           | 0               | = [           | 0             | X 4        | 40 =      | 0             | (6a)         |
| Number of open flues                                       | 0 + 0                                                                    | +             | 0               | ] = [         | 0             | x 2        | 20 =      | 0             | (6b)         |
| Number of intermittent far                                 | ns                                                                       |               |                 | Γ             | 0             | <b>x</b>   | 10 =      | 0             | (7a)         |
| Number of passive vents                                    |                                                                          |               |                 | Ī             | 0             | <b>x</b> . | 10 =      | 0             | (7b)         |
| Number of flueless gas fir                                 | res                                                                      |               |                 | Ī             | 0             | X 4        | 40 =      | 0             | (7c)         |
|                                                            |                                                                          |               |                 | \ _           |               |            | Air ch    | nanges per ho | ur           |
|                                                            | s, flues and fans = (6a)+(6b)+                                           |               |                 | a antinu a fr | 0             |            | ÷ (5) =   | 0             | (8)          |
| Number of storeys in th                                    | een ca <mark>rried o</mark> ut or is intended, proce<br>ee dwelling (ns) | ea 10 (17), 1 | ourierwise (    | conunue ir    | OIII (9) 10 ( | (16)       |           | 0             | (9)          |
| Additional infiltration                                    |                                                                          |               |                 |               |               | [(9)       | -1]x0.1 = | 0             | (10)         |
|                                                            | 25 for steel or timber frame o                                           |               |                 | •             | ruction       |            |           | 0             | (11)         |
| if both types of wall are pro<br>deducting areas of openin | esent, use the value corresponding                                       | to the great  | ter wall are    | a (after      |               |            |           |               |              |
| ,                                                          | oor, enter 0.2 (unsealed) or (                                           | 0.1 (seale    | ed), else       | enter 0       |               |            |           | 0             | (12)         |
| If no draught lobby, ent                                   | er 0.05, else enter 0                                                    |               |                 |               |               |            |           | 0             | (13)         |
| Percentage of windows                                      | and doors draught stripped                                               |               |                 |               |               |            |           | 0             | (14)         |
| Window infiltration                                        |                                                                          |               | 0.25 - [0.2     | ! x (14) ÷ 1  | 00] =         |            |           | 0             | (15)         |
| Infiltration rate                                          |                                                                          |               | (8) + (10)      | + (11) + (1   | 12) + (13) -  | + (15) =   |           | 0             | (16)         |
| ,                                                          | q50, expressed in cubic metr                                             |               | •               | •             | etre of e     | envelope   | area      | 3             | (17)         |
| •                                                          | ty value, then $(18) = [(17) \div 20] +$                                 |               |                 |               |               |            |           | 0.15          | (18)         |
| Air permeability value applies  Number of sides sheltered  | s if a pressurisation test has been do                                   | one or a de   | gree air pe     | rmeability    | is being u    | sed        |           |               | 7(40)        |
| Shelter factor                                             | u                                                                        |               | (20) = 1 -      | [0.075 x (1   | 19)] =        |            |           | 0             | (19)<br>(20) |
| Infiltration rate incorporati                              | ng shelter factor                                                        |               | (21) = (18      | ) x (20) =    |               |            |           | 0.15          | (21)         |
| Infiltration rate modified for                             | _                                                                        |               |                 |               |               |            |           | 00            | ` ′          |
|                                                            | Mar Apr May Jun                                                          | Jul           | Aug             | Sep           | Oct           | Nov        | Dec       |               |              |
| Monthly average wind spe                                   | eed from Table 7                                                         |               |                 |               |               |            |           |               |              |
| (22)m= 5.1 5                                               | 4.9 4.4 4.3 3.8                                                          | 3.8           | 3.7             | 4             | 4.3           | 4.5        | 4.7       |               |              |
| Wind Factor (22a)m = (22                                   |                                                                          |               |                 |               |               |            |           |               |              |
|                                                            | 1.23 1.1 1.08 0.95                                                       | 0.95          | 0.92            | 1             | 1.08          | 1.12       | 1.18      |               |              |
|                                                            |                                                                          |               | -               | L             |               |            |           | I             |              |

| Adjusted infiltrat                                                                                                                                                                            | ion rate                               | allowi    | ing for sh  | nelter an  | nd wind s                                                                          | speed) =                                                                        | (21a) x                                                                                                      | (22a)m                                                                                                                                                                                                      |                                                                      |           |                   |               |                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|-------------|------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|-------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
| 0.19                                                                                                                                                                                          | 0.19                                   | 0.18      | 0.16        | 0.16       | 0.14                                                                               | 0.14                                                                            | 0.14                                                                                                         | 0.15                                                                                                                                                                                                        | 0.16                                                                 | 0.17      | 0.18              |               |                                                                                                                 |
| Calculate effecti                                                                                                                                                                             |                                        | -         | rate for t  | he appli   | cable ca                                                                           | ise                                                                             | •                                                                                                            | •                                                                                                                                                                                                           | •                                                                    | •         | •                 | •             | (oo )                                                                                                           |
| If exhaust air hea                                                                                                                                                                            |                                        |           | andiv N (2  | 3h) - (23s | a) v Emy (4                                                                        | aguation (                                                                      | N5N othe                                                                                                     | rwisa (23h                                                                                                                                                                                                  | ) – (23a)                                                            |           |                   | 0.5           | (23a)                                                                                                           |
| If balanced with h                                                                                                                                                                            |                                        | •         | •           | , ,        | ,                                                                                  | •                                                                               |                                                                                                              | ,                                                                                                                                                                                                           | ) = (20a)                                                            |           |                   | 0.5           | (23b)                                                                                                           |
| a) If balanced                                                                                                                                                                                |                                        | -         | -           | _          |                                                                                    |                                                                                 |                                                                                                              |                                                                                                                                                                                                             | 2h)m + (                                                             | 23h) 🗴 [1 | 1 <i>– (23c</i> ) | 77.35<br>1001 | (23c)                                                                                                           |
| (24a)m= 0.3                                                                                                                                                                                   | 0.3                                    | 0.3       | 0.28        | 0.27       | 0.26                                                                               | 0.26                                                                            | 0.25                                                                                                         | 0.26                                                                                                                                                                                                        | 0.27                                                                 | 0.28      | 0.29              | ]             | (24a)                                                                                                           |
| b) If balanced                                                                                                                                                                                | mecha                                  | nical ve  | entilation  | without    | heat red                                                                           | covery (I                                                                       | MV) (24b                                                                                                     | o)m = (22                                                                                                                                                                                                   | 2b)m + (                                                             | 23b)      |                   | <u>l</u>      |                                                                                                                 |
| (24b)m= 0                                                                                                                                                                                     | 0                                      | 0         | 0           | 0          | 0                                                                                  | 0                                                                               | 0                                                                                                            | 0                                                                                                                                                                                                           | 0                                                                    | 0         | 0                 |               | (24b)                                                                                                           |
| c) If whole hou                                                                                                                                                                               | use ext                                | ract ver  | ntilation o | or positiv | e input                                                                            | ventilatio                                                                      | on from o                                                                                                    | outside                                                                                                                                                                                                     | •                                                                    | •         | •                 | •             |                                                                                                                 |
| if (22b)m -                                                                                                                                                                                   | < 0.5 ×                                | (23b), t  | then (24d   | c) = (23b  | o); other                                                                          | wise (24                                                                        | c) = (22k                                                                                                    | o) m + 0.                                                                                                                                                                                                   | .5 × (23b                                                            | )<br>'    | ı                 | 1             |                                                                                                                 |
| (24c)m= 0                                                                                                                                                                                     | 0                                      | 0         | 0           | 0          | 0                                                                                  | 0                                                                               | 0                                                                                                            | 0                                                                                                                                                                                                           | 0                                                                    | 0         | 0                 |               | (24c)                                                                                                           |
| d) If natural ve<br>if (22b)m :                                                                                                                                                               |                                        |           |             |            |                                                                                    |                                                                                 |                                                                                                              |                                                                                                                                                                                                             | 0.5]                                                                 |           |                   |               |                                                                                                                 |
| (24d)m= 0                                                                                                                                                                                     | 0                                      | 0         | 0           | 0          | 0                                                                                  | 0                                                                               | 0                                                                                                            | 0                                                                                                                                                                                                           | 0                                                                    | 0         | 0                 |               | (24d)                                                                                                           |
| Effective air cl                                                                                                                                                                              | hange r                                | ate - er  | nter (24a   | ) or (24b  | o) or (24                                                                          | c) or (24                                                                       | d) in box                                                                                                    | x (25)                                                                                                                                                                                                      | -                                                                    | -         |                   |               |                                                                                                                 |
| (25)m= 0.3                                                                                                                                                                                    | 0.3                                    | 0.3       | 0.28        | 0.27       | 0.26                                                                               | 0.26                                                                            | 0.25                                                                                                         | 0.26                                                                                                                                                                                                        | 0.27                                                                 | 0.28      | 0.29              |               | (25)                                                                                                            |
| 3. Heat losses                                                                                                                                                                                | and hea                                | at loss i | paramete    | er:        |                                                                                    |                                                                                 |                                                                                                              |                                                                                                                                                                                                             |                                                                      |           |                   | _             |                                                                                                                 |
| ELEMENT                                                                                                                                                                                       | Gross<br>area (                        |           | Openin      |            | Net Ar<br>A ,r                                                                     |                                                                                 | U-valı<br>W/m2                                                                                               |                                                                                                                                                                                                             | A X U<br>(W/                                                         | K)        | k-value           |               | A X k<br>kJ/K                                                                                                   |
| Doo <mark>rs</mark>                                                                                                                                                                           |                                        |           |             |            |                                                                                    |                                                                                 |                                                                                                              |                                                                                                                                                                                                             |                                                                      | /         |                   |               |                                                                                                                 |
|                                                                                                                                                                                               |                                        |           |             |            | 2.1                                                                                | X                                                                               | 1.3                                                                                                          | =                                                                                                                                                                                                           | 2.73                                                                 |           |                   |               | (26)                                                                                                            |
| Windows Type 1                                                                                                                                                                                | 1                                      |           |             |            | 2.1                                                                                |                                                                                 | 1.3<br>/[1/( 1.3 )+                                                                                          |                                                                                                                                                                                                             | 2.73                                                                 | R         |                   |               | (26)<br>(27)                                                                                                    |
| Windows Type 1 Windows Type 2                                                                                                                                                                 |                                        |           |             |            |                                                                                    | x1                                                                              |                                                                                                              | 0.04] =                                                                                                                                                                                                     |                                                                      |           |                   |               |                                                                                                                 |
|                                                                                                                                                                                               | 2                                      |           |             |            | 2.36                                                                               | x1                                                                              | /[1/( 1.3 )+                                                                                                 | 0.04] =                                                                                                                                                                                                     | 2.92                                                                 |           |                   |               | (27)                                                                                                            |
| Windows Type 2                                                                                                                                                                                | 2                                      |           |             |            | 2.36                                                                               | x1<br>x1<br>x1                                                                  | /[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                 | 0.04] = [<br>0.04] = [<br>0.04] =                                                                                                                                                                           | 2.92                                                                 |           |                   |               | (27)<br>(27)                                                                                                    |
| Windows Type 2 Windows Type 3                                                                                                                                                                 | 2<br>3<br>4                            |           |             |            | 2.36<br>2.36<br>1.85                                                               | x1<br>x1<br>x1<br>x1                                                            | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                 | $0.04$ ] = $\begin{bmatrix} 0.04 \end{bmatrix}$ | 2.92<br>2.92<br>2.29                                                 |           |                   |               | (27)<br>(27)<br>(27)                                                                                            |
| Windows Type 2 Windows Type 3 Windows Type 4                                                                                                                                                  | 2<br>3<br>4<br>5                       |           |             |            | 2.36<br>2.36<br>1.85<br>2.36                                                       | x1<br>x1<br>x1<br>x1                                                            | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =                                                                                                                                                 | 2.92<br>2.92<br>2.29<br>2.92                                         |           |                   |               | (27)<br>(27)<br>(27)<br>(27)                                                                                    |
| Windows Type 2 Windows Type 2 Windows Type 2 Windows Type 5                                                                                                                                   | 2<br>3<br>4<br>5                       | 6         | 10.1        | 7          | 2.36<br>2.36<br>1.85<br>2.36<br>2.36                                               | x1<br>x1<br>x1<br>x1<br>x1<br>x1                                                | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =                                                                                                                                                 | 2.92<br>2.92<br>2.29<br>2.92<br>2.92                                 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)                                                                            |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6                                                                                                                                   | 2 3 4 5 5 6 6                          | _         | 10.1        | =          | 2.36<br>2.36<br>1.85<br>2.36<br>2.36<br>3.6                                        | x1 x1 x1 x1 x1 x1 x1 x1                                                         | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =                                                                                                                                    | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45                         |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)                                                                    |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Windows Type 6 Walls Type 1                                                                                                       | 2<br>3<br>4<br>5<br>5<br>27.36         |           |             | =          | 2.36<br>2.36<br>2.36<br>2.36<br>3.6                                                | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15         | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =                                                                                                                                    | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58                 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)                                                            |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Windows Type 6 Walls Type1 Walls Type2                                                                                            | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36<br>2.36<br>1.85<br>2.36<br>2.36<br>3.6<br>17.19                               | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15         | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                 | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58                 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)                                                    |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Windows Type 6 Walls Type1 Walls Type2 Roof                                                                                       | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 2.36 17.19 12.98                                     | x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15         | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                 | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58                 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)                                            |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele                                                                     | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 17.19 12.98 102 149.1                                | x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95         |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)                                    |
| Windows Type 2 Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele                                                                     | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 17.19 12.98 102 149.1 24.88                          | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)                            |
| Windows Type 2 Windows Type 3 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall                                                              | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 1.85 2.36 2.36 2.36 3.6 17.19 12.98 102 149.1 24.88                      | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32)                    |
| Windows Type 2 Windows Type 2 Windows Type 3 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall Party floor                                   | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36                                            | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32)<br>(32a)                   |
| Windows Type 2 Windows Type 2 Windows Type 2 Windows Type 6 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall Party floor Internal wall **                  | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 2.36 17.19 12.98 102 149.1 24.88 18 71 25.49         | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27) (27) (27) (27) (27) (27) (29) (29) (30) (31) (32) (32) (32a) (32c)                                         |
| Windows Type 2 Windows Type 3 Windows Type 3 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall Party floor Internal wall ** Internal wall ** | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 3.6 17.19 12.98 102 149.1 24.88 71 25.49 22.19            | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32)<br>(32a)<br>(32c)<br>(32c) |
| Windows Type 2 Windows Type 2 Windows Type 3 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall Party floor Internal wall ** Internal wall ** | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 3.6 17.19 12.98 102 149.1 24.88 71 25.49 22.19 23.75 | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27) (27) (27) (27) (27) (27) (29) (29) (30) (31) (32) (32) (32a) (32c) (32c) (32c)                             |

|                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  |                                                                                           | _                                                                                           |                            |          | _                            |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|----------|------------------------------|
| Interna                                                                                                                    |                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  |                                                                                           | L                                                                                           |                            |          | (32d)                        |
|                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | indow U-va<br>Is and part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  | e)+0.04] a                                                                                | is given in                                                                                 | paragraph                  | 3.2      |                              |
| Fabric                                                                                                                     | heat los                                                                                                                                                                                                      | s, W/K                                                                                                                                                                           | = S (A x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (26)(30)                                                                                   | ) + (32) =                                                       |                                                                                           |                                                                                             |                            | 40.96    | (33)                         |
| Heat c                                                                                                                     | apacity                                                                                                                                                                                                       | Cm = S(                                                                                                                                                                          | (Axk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | ((28)                                                            | .(30) + (32                                                                               | 2) + (32a).                                                                                 | (32e) =                    | 17525.78 | (34)                         |
| Therm                                                                                                                      | al mass                                                                                                                                                                                                       | parame                                                                                                                                                                           | ter (TMF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ⊃ = Cm -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : TFA) in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ı kJ/m²K                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | Indica                                                           | tive Value                                                                                | Medium                                                                                      |                            | 250      | (35)                         |
|                                                                                                                            | •                                                                                                                                                                                                             |                                                                                                                                                                                  | ere the de<br>tailed calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | constructi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ion are no                                                                                                                  | t known pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ecisely the                                                                                | indicative                                                       | values of                                                                                 | TMP in Ta                                                                                   | able 1f                    |          |                              |
|                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | using Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nendix k                                                                                                                    | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                                                  |                                                                                           |                                                                                             |                            | 3.69     | (36)                         |
|                                                                                                                            | ŭ                                                                                                                                                                                                             | `                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0.05 x (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                           | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |                                                                  |                                                                                           |                                                                                             |                            | 3.09     | (00)                         |
|                                                                                                                            | abric he                                                                                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | (33) +                                                           | (36) =                                                                                    |                                                                                             |                            | 44.64    | (37)                         |
| Ventila                                                                                                                    | tion hea                                                                                                                                                                                                      | at loss ca                                                                                                                                                                       | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d monthly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | (38)m                                                            | = 0.33 × (                                                                                | 25)m x (5)                                                                                  | •                          |          |                              |
|                                                                                                                            | Jan                                                                                                                                                                                                           | Feb                                                                                                                                                                              | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun                                                                                                                         | Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug                                                                                        | Sep                                                              | Oct                                                                                       | Nov                                                                                         | Dec                        |          |                              |
| (38)m=                                                                                                                     | 17.84                                                                                                                                                                                                         | 17.62                                                                                                                                                                            | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.98                                                                                                                       | 14.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.76                                                                                      | 15.42                                                            | 16.08                                                                                     | 16.52                                                                                       | 16.96                      |          | (38)                         |
| Heat tr                                                                                                                    | ansfer c                                                                                                                                                                                                      | coefficier                                                                                                                                                                       | nt, W/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | (39)m                                                            | = (37) + (3                                                                               | 38)m                                                                                        |                            |          |                              |
| (39)m=                                                                                                                     | 62.48                                                                                                                                                                                                         | 62.26                                                                                                                                                                            | 62.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59.62                                                                                                                       | 59.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.4                                                                                       | 60.06                                                            | 60.72                                                                                     | 61.16                                                                                       | 61.6                       |          |                              |
| Heat Ic                                                                                                                    | ss para                                                                                                                                                                                                       | meter (H                                                                                                                                                                         | HLP), W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  | Average =<br>= (39)m ÷                                                                    | Sum(39) <sub>1.</sub>                                                                       | 12 /12=                    | 60.89    | (39)                         |
| (40)m=                                                                                                                     | 0.88                                                                                                                                                                                                          | 0.88                                                                                                                                                                             | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.84                                                                                                                        | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.84                                                                                       | 0.85                                                             | 0.86                                                                                      | 0.86                                                                                        | 0.87                       |          |                              |
|                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            | ,                                                                | Average =                                                                                 | Sum(40) <sub>1.</sub>                                                                       | 12 /12=                    | 0.86     | (40)                         |
| Numbe                                                                                                                      | er of day                                                                                                                                                                                                     | s in moi                                                                                                                                                                         | nth (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | le 1a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  |                                                                                           |                                                                                             |                            |          |                              |
|                                                                                                                            | Jan                                                                                                                                                                                                           | Feb                                                                                                                                                                              | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jun                                                                                                                         | Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aug                                                                                        | Sep                                                              | Oct                                                                                       | Nov                                                                                         | Dec                        |          |                              |
| (41)m=                                                                                                                     | 31                                                                                                                                                                                                            | 28                                                                                                                                                                               | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                         | 30                                                               | 31                                                                                        | 30                                                                                          | 31                         |          | (41)                         |
|                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  |                                                                                           |                                                                                             |                            |          |                              |
|                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  |                                                                                           |                                                                                             |                            |          |                              |
| 4. Wa                                                                                                                      | iter heat                                                                                                                                                                                                     | ing ene                                                                                                                                                                          | rgy requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | irement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  |                                                                                           |                                                                                             | kWh/ye                     | ear:     |                              |
|                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | irement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                            |                                                                  | ۰                                                                                         | 2.                                                                                          | ·                          | ear:     | (42)                         |
| Assum<br>if TF                                                                                                             | ed occu<br>A > 13.9                                                                                                                                                                                           | ipancy, l<br>9, N = 1                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0(-0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 349 x (TF                                                                                                                   | FA -13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )2)] + 0.(                                                                                 | 0013 x (                                                         | ΓFA -13.                                                                                  |                                                                                             | kWh/ye                     | ear:     | (42)                         |
| Assum<br>if TF<br>if TF                                                                                                    | ed occu<br>A > 13.9<br>A £ 13.9                                                                                                                                                                               | ipancy, I<br>9, N = 1<br>9, N = 1                                                                                                                                                | N<br>+ 1.76 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ː [1 - exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (-0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , , -                                                                                      | •                                                                | ΓFA -13.                                                                                  | 9)                                                                                          | 27                         | ear:     |                              |
| Assum<br>if TF<br>if TF<br>Annua                                                                                           | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag                                                                                                                                                                   | pancy, l<br>9, N = 1<br>9, N = 1<br>e hot wa                                                                                                                                     | N<br>+ 1.76 x<br>ater usag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ː [1 - exp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y Vd,av                                                                                                                     | erage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (25 x N)                                                                                   | + 36                                                             |                                                                                           | 9) 88                                                                                       | ·                          | ear:     | (42)                         |
| Assum if TF if TF Annua Reduce                                                                                             | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua                                                                                                                                                      | ipancy, l<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average                                                                                                                      | N<br>+ 1.76 x<br>ater usag<br>hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [1 - exp<br>ge in litre<br>usage by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e(-0.0003<br>es per da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ay Vd,av<br>Iwelling is                                                                                                     | erage =<br>designed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (25 x N)                                                                                   | + 36                                                             |                                                                                           | 9) 88                                                                                       | 27                         | ear:     |                              |
| Assum if TF if TF Annua Reduce not more                                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua<br>e that 125                                                                                                                                        | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>la average<br>litres per l                                                                                                      | N<br>+ 1.76 x<br>ater usag<br>hot water<br>person per<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ge in litre usage by r day (all w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es per da<br>5% if the d<br>vater use, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ay Vd,av<br>welling is<br>not and co                                                                                        | erage =<br>designed i<br>ld)<br>Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (25 x N)<br>to achieve                                                                     | + 36                                                             |                                                                                           | 9) 88                                                                                       | 27                         | ear:     |                              |
| Assum if TF if TF Annua Reduce not more                                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua<br>e that 125                                                                                                                                        | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>la average<br>litres per l                                                                                                      | N<br>+ 1.76 x<br>ater usaç<br>hot water<br>person per<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ge in litre usage by r day (all w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es per da<br>5% if the d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ay Vd,av<br>welling is<br>not and co                                                                                        | erage =<br>designed i<br>ld)<br>Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (25 x N)<br>to achieve                                                                     | + 36<br>a water us                                               | se target o                                                                               | 9) 88                                                                                       | .12                        | ear:     |                              |
| Assum if TF if TF Annua Reduce not more                                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua<br>e that 125                                                                                                                                        | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>la average<br>litres per l                                                                                                      | N<br>+ 1.76 x<br>ater usaç<br>hot water<br>person per<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ge in litre usage by r day (all w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es per da<br>5% if the d<br>vater use, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ay Vd,av<br>welling is<br>not and co                                                                                        | erage =<br>designed i<br>ld)<br>Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (25 x N)<br>to achieve                                                                     | + 36<br>a water us                                               | se target o                                                                               | 9) 88                                                                                       | .12                        | ear:     | (43)                         |
| Assum if TF if TF Annua Reduce not more Hot wate (44)m=                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>that 125<br>Jan<br>er usage ii                                                                                                                   | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>n litres per                                                                               | N + 1.76 x ater usag hot water person per Mar day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge in litre usage by r day (all w Apr ach month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es per da<br>5% if the d<br>vater use, h<br>May<br>Vd,m = fac<br>82.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ay Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from 7                                                                  | erage = designed id)  Jul Table 1c x  79.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (25 x N)<br>to achieve<br>Aug<br>(43)<br>82.83                                             | + 36 a water us  Sep  86.35                                      | Oct  89.88  Fotal = Su                                                                    | 9)<br>88<br>Nov<br>93.4<br>m(44) <sub>112</sub> =                                           | .12<br>Dec                 | 1057.39  |                              |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=                                                                   | ed occu<br>A > 13.9<br>A £ 13.9<br>I average<br>the annual<br>that 125<br>Jan<br>er usage in<br>96.93                                                                                                         | pancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per I<br>Feb<br>n litres per<br>93.4                                                                        | N + 1.76 x ater usag hot water person per Mar day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge in litre usage by r day (all w Apr ach month 86.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es per da<br>5% if the day<br>water use, If  May $Vd,m = fac$ 82.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ay Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3                                                         | erage = designed and designed a | (25 x N) to achieve  Aug (43)  82.83                                                       | + 36 a water us  Sep  86.35                                      | Oct  89.88  Fotal = Su th (see Ta                                                         | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1                                       | 27 .12 .12 .12 .96.93      |          | (43)                         |
| Assum if TF if TF Annua Reduce not more Hot wate (44)m=                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>that 125<br>Jan<br>er usage ii                                                                                                                   | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>n litres per                                                                               | N + 1.76 x ater usag hot water person per Mar day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ge in litre usage by r day (all w Apr ach month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | es per da<br>5% if the d<br>vater use, h<br>May<br>Vd,m = fac<br>82.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ay Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from 7                                                                  | erage = designed id)  Jul Table 1c x  79.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (25 x N)<br>to achieve<br>Aug<br>(43)<br>82.83                                             | + 36 a water us  Sep  86.35  6 kWh/mon  100.77                   | Oct  89.88  Fotal = Su th (see Ta                                                         | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19                               | 27<br>.12<br>Dec<br>       | 1057.39  | (43)                         |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>e that 125<br>Jan<br>96.93                                                                                                                       | pancy, I<br>P, N = 1<br>P, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>n litres per<br>93.4<br>hot water                                                           | N + 1.76 x ater usage hot water person per Mar day for ear 89.88 used - cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ge in litre usage by r day (all wash month 86.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es per da<br>5% if the day<br>water use, If  May $Vd,m = fac$ 82.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r                                            | erage = designed and ld)  Jul Table 1c x  79.3  m x nm x E  86.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (25 x N) to achieve  Aug (43)  82.83  97m / 3600  99.58                                    | + 36 a water us  Sep  86.35  6 kWh/more                          | Oct  89.88  Fotal = Su th (see Ta                                                         | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1                                       | 27<br>.12<br>Dec<br>       |          | (43)                         |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m=                                 | led occu<br>A > 13.9<br>A £ 13.9<br>I average<br>the annual<br>ethat 125<br>Jan<br>96.93<br>content of<br>143.74                                                                                              | pancy, I<br>P, N = 1<br>P, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>1 litres per<br>93.4<br>hot water<br>125.72<br>vater heatii                                 | N + 1.76 x ater usag hot water person per Mar day for ea  89.88  used - cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ge in litre usage by r day (all wash month 86.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es per da 5% if the dayater use, H  May  Vd,m = fac  82.83  onthly = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r                                            | erage = designed and ld)  Jul Table 1c x  79.3  m x nm x E  86.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (25 x N) to achieve  Aug (43)  82.83  97m / 3600  99.58                                    | + 36 a water us  Sep  86.35  6 kWh/more                          | Oct  89.88  Fotal = Su th (see Ta                                                         | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19                               | 27<br>.12<br>Dec<br>       | 1057.39  | (43)                         |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m=  Water                          | led occu<br>A > 13.9<br>A £ 13.9<br>I average<br>the annual<br>that 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage                                                              | pancy, I<br>P, N = 1<br>P, N = 1<br>e hot wa<br>al average<br>litres per I<br>Feb<br>n litres per<br>93.4<br>hot water<br>125.72<br>vater heatin<br>18.86<br>loss:               | N + 1.76 x ater usag hot water person per Mar day for ea 89.88 used - cal 129.73 ng at point 19.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ge in litre usage by r day (all was Apr ach month 86.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es per da 5% if the da rater use, he May Vd,m = fact 82.83 conthly = 4. 108.52 co hot water 16.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65                                   | erage = designed in did)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (25 x N) to achieve  Aug (43)  82.83  07m / 3600  99.58  boxes (46)  14.94                 | + 36 a water us  Sep  86.35  0 kWh/mort  100.77  100.77  15.12   | See target of Oct  89.88  Fotal = Surth (see Tail 117.44  Fotal = Surth 117.62            | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> =       | 27  .12  Dec  96.93  20.88 | 1057.39  | (43)<br>(44)<br>(45)<br>(46) |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m= Water Storag                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I average<br>the annual<br>enthat 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage<br>e volum                                                  | pancy, I<br>P, N = 1<br>e hot wa<br>al average<br>litres per I<br>Feb<br>1 litres per<br>93.4<br>hot water<br>125.72<br>rater heatil<br>18.86<br>loss:<br>e (litres)             | N + 1.76 x ater usage hot water person per Mar day for ear 89.88  used - cal 129.73  ng at point 19.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ge in litre usage by r day (all wash month a6.35)    Coulated month a13.1     tof use (not 16.97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es per da 5% if the day ater use, H May Vd,m = fac 82.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65<br>storage),<br>14.05             | erage = designed and ld)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02  storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (25 x N) to achieve  Aug (43)  82.83  97.m / 3600  99.58  boxes (46)  14.94  within sa     | + 36 a water us  Sep  86.35  0 kWh/mort  100.77  100.77  15.12   | See target of Oct  89.88  Fotal = Surth (see Tail 117.44  Fotal = Surth 117.62            | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> =       | 27 .12 .12 .96.93          | 1057.39  | (43)                         |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy ( (45)m=  If instant (46)m=  Water Storag If comr         | led occu<br>A > 13.9<br>A £ 13.9<br>I average<br>the annual<br>that 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage<br>e volumer                                                 | pancy, I<br>P, N = 1<br>P, N = 1<br>e hot wa<br>al average<br>litres per I<br>Feb<br>n litres per<br>93.4<br>hot water<br>125.72<br>vater heatin<br>18.86<br>loss:<br>e (litres) | N + 1.76 x ater usage hot water person perso | ge in litre usage by r day (all was Apr ach month 86.35 culated me 113.1 tof use (no 16.97 ank in dw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es per da 5% if the da rater use, he May Vd,m = fact 82.83 conthly = 4. 108.52 co hot water 16.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ay Vd,av<br>Iwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65<br>r storage),<br>14.05<br>/WHRS | erage = designed in designed i | (25 x N) to achieve  Aug (43)  82.83  07m / 3600  99.58  boxes (46)  14.94  within sa (47) | + 36 a water us  Sep  86.35  0 kWh/mort  100.77  15.12  ame vess | See target of Oct  89.88  Fotal = Sunth (see Tail 117.44  Fotal = Sunth (see Tail 117.44) | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> =       | 27  .12  Dec  96.93  20.88 | 1057.39  | (43)<br>(44)<br>(45)<br>(46) |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m= Water Storag If commother Water | ed occu<br>A > 13.9<br>A £ 13.9<br>I average<br>the annual<br>that 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage<br>e volum<br>munity he<br>vise if no                         | pancy, I P, N = 1 P, N = 1 Pe hot wa al average litres per p Peb Politres per Pass Pass Pass Pass Pass Pass Pass Pas                                                             | N + 1.76 x ater usage hot water person per Mar reday for ear 89.88  used - cal 129.73  ng at point 19.46  includir and no tal hot water services and services are services as a services are services and no tal hot water services are service | ge in litre usage by r day (all was Apr ach month 86.35 deulated me 113.1 et of use (not ank in dwer (this in the ser (this i | es per da<br>5% if the day<br>5% if the day<br>70 May<br>70 Vd,m = factor<br>82.83<br>108.52<br>108.52<br>109 hot water<br>16.28<br>109 policies in the control of the control o | y Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65<br>14.05<br>/WHRS<br>nter 110     | erage = designed of ld)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02  storage 0 litres in neous co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (25 x N) to achieve  Aug (43)  82.83  07m / 3600  99.58  boxes (46)  14.94  within sa (47) | + 36 a water us  Sep  86.35  0 kWh/mort  100.77  15.12  ame vess | See target of Oct  89.88  Fotal = Sunth (see Tail 117.44  Fotal = Sunth (see Tail 117.44) | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> =       | 27  .12  Dec  96.93  20.88 | 1057.39  | (43)<br>(44)<br>(45)<br>(46) |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  Water Storag If commother Otherw Water a) If m    | led occu<br>A > 13.9<br>A £ 13.9<br>I average<br>the annual<br>that 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage<br>e volum<br>munity he<br>vise if no<br>storage<br>tanufact | pancy, I P, N = 1 P, N = 1 P hot wa al average litres per l P                                                                                                                    | N + 1.76 x ater usage hot water person per Mar reday for ear 89.88  used - cal 129.73  ng at point 19.46  includir and no tal hot water services and services are services as a services are services and no tal hot water services are service | ge in litre usage by r day (all was Apr ach month 86.35 deulated me 113.1 to of use (not ank in dwar (this in oss factors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es per da<br>5% if the day<br>tester use, if<br>May<br>Vd,m = fact<br>82.83<br>conthly = 4.<br>108.52<br>conthus to the control of the control     | y Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65<br>14.05<br>/WHRS<br>nter 110     | erage = designed of ld)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02  storage 0 litres in neous co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (25 x N) to achieve  Aug (43)  82.83  07m / 3600  99.58  boxes (46)  14.94  within sa (47) | + 36 a water us  Sep  86.35  0 kWh/mort  100.77  15.12  ame vess | See target of Oct  89.88  Fotal = Sunth (see Tail 117.44  Fotal = Sunth (see Tail 117.44) | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> = 19.23 | 27  .12  Dec  96.93  20.88 | 1057.39  | (43)<br>(44)<br>(45)<br>(46) |

| Energy lost from water storage, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (48) x (49) =                                                                                                      | 0.72                                                          | (50)          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------|
| b) If manufacturer's declared cylinder loss factor is not know                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( ) ( )                                                                                                            | 0.72                                                          | (00)          |
| Hot water storage loss factor from Table 2 (kWh/litre/day)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    | 0                                                             | (51)          |
| If community heating see section 4.3  Volume factor from Table 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                    |                                                               | (50)          |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | 0                                                             | (52)<br>(53)  |
| Energy lost from water storage, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (47) x (51) x (52) x (53) =                                                                                        |                                                               | ` '           |
| Enter (50) or (54) in (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (47) x (31) x (32) x (33) =                                                                                        | 0.72                                                          | (54)<br>(55)  |
| Water storage loss calculated for each month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $((56)m = (55) \times (41)m$                                                                                       | 0.72                                                          | (00)          |
| (56)m= 22.32 20.16 22.32 21.6 22.32 21.6 22.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.32 21.6 22.32                                                                                                   | 21.6 22.32                                                    | (56)          |
| If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) – (H11)] ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                    |                                                               | l<br>ix H     |
| (57)m= 22.32 20.16 22.32 21.6 22.32 21.6 22.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.32 21.6 22.32                                                                                                   | 21.6 22.32                                                    | (57)          |
| Primary circuit loss (annual) from Table 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                    | 0                                                             | (58)          |
| Primary circuit loss (alindar) from Table 3  Primary circuit loss calculated for each month $(59)$ m = $(58)$ ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 365 × (41)m                                                                                                        | Ü                                                             | (66)          |
| (modified by factor from Table H5 if there is solar water hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , ,                                                                                                                | stat)                                                         |               |
| (59)m= 23.26 21.01 23.26 22.51 23.26 22.51 23.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.26 22.51 23.26                                                                                                  | 22.51 23.26                                                   | (59)          |
| Combi loss calculated for each month (61)m = (60) ÷ 365 × (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1)m                                                                                                               |                                                               | •             |
| (61)m= 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    | 0 0                                                           | (61)          |
| Total heat required for water heating calculated for each mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | th (62)m = 0.85 × (45)m +                                                                                          | (46)m + (57)m +                                               | (59)m + (61)m |
| (62)m= 189.32 166.89 175.31 157.21 154.11 137.76 132.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i i                                                                                                                | 172.3 184.79                                                  | (62)          |
| Solar DHW input calculated using Appendix G or Appendix H (negative quar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    |                                                               |               |
| (add additional lines if FGHRS and/or WWHRS applies, see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | ,                                                             |               |
| (63)m= 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 0 0                                                                                                              | 0 0                                                           | (63)          |
| Output from water heater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                    | -                                                             |               |
| (64)m= 189.32 166.89 175.31 157.21 154.11 137.76 132.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 145.16 144.88 163.02                                                                                             | 172.3 184.79                                                  |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Output from water heate                                                                                            | r (annual) <sub>112</sub>                                     | 1923.11 (64)  |
| Heat gains from water heating, kWh/month 0.25 ´ [0.85 × (45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m + (61)m] + 0.8 x [(46)m                                                                                          | + (57)m + (59)m                                               | ]             |
| (65)m= 84.26 74.74 79.6 72.9 72.55 66.43 65.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 69.58 68.79 75.51                                                                                                  | 77.91 82.75                                                   | (65)          |
| include (57)m in calculation of (65)m only if cylinder is in th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e dwelling or hot water is fr                                                                                      | om community h                                                | eating        |
| 5. Internal gains (see Table 5 and 5a):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                    |                                                               |               |
| Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    |                                                               |               |
| Jan Feb Mar Apr May Jun Jul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aug Sep Oct                                                                                                        | Nov Dec                                                       |               |
| (66)m= 136.21 136.21 136.21 136.21 136.21 136.21 136.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 136.21 136.21 136.21                                                                                             | 136.21 136.21                                                 | (66)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                    |                                                               |               |
| Lighting gains (calculated in Appendix L, equation L9 or L9a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | also see Table 5                                                                                                   |                                                               |               |
| Lighting gains (calculated in Appendix L, equation L9 or L9a) (67)m=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>                                                                                                        | 42.89 45.73                                                   | (67)          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.56 28.94 36.75                                                                                                  |                                                               | (67)          |
| (67)m= 44.49 39.52 32.14 24.33 18.19 15.35 16.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.56 28.94 36.75<br>13a), also see Table 5                                                                        |                                                               | (67)          |
| (67)m= 44.49 39.52 32.14 24.33 18.19 15.35 16.59 Appliances gains (calculated in Appendix L, equation L13 or large)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.56 28.94 36.75<br>.13a), also see Table 5<br>9 219.8 227.59 244.18                                              | 42.89 45.73                                                   |               |
| (67)m=       44.49       39.52       32.14       24.33       18.19       15.35       16.59         Appliances gains (calculated in Appendix L, equation L13 or least control (68)m=       297.94       301.03       293.24       276.65       255.72       236.04       222.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.56 28.94 36.75<br>.13a), also see Table 5<br>.9 219.8 227.59 244.18<br>a), also see Table 5                     | 42.89 45.73                                                   |               |
| (67)m=       44.49       39.52       32.14       24.33       18.19       15.35       16.59         Appliances gains (calculated in Appendix L, equation L13 or least cooking gains (calculated in Appendix L, equation L15 or L15)             Cooking gains (calculated in Appendix L, equation L15 or L15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.56 28.94 36.75<br>.13a), also see Table 5<br>.9 219.8 227.59 244.18<br>a), also see Table 5                     | 42.89     45.73       265.12     284.79                       | (68)          |
| (67)m=       44.49       39.52       32.14       24.33       18.19       15.35       16.58         Appliances gains (calculated in Appendix L, equation L13 or least control (68)m=       297.94       301.03       293.24       276.65       255.72       236.04       222.8         Cooking gains (calculated in Appendix L, equation L15 or L15                                                                                          | 21.56 28.94 36.75<br>.13a), also see Table 5<br>.9 219.8 227.59 244.18<br>a), also see Table 5                     | 42.89     45.73       265.12     284.79                       | (68)          |
| (67)m= 44.49 39.52 32.14 24.33 18.19 15.35 16.59  Appliances gains (calculated in Appendix L, equation L13 or least to the cooking gains (calculated in Appendix L, equation L15 or L15 (69)m= 50.89 50.89 50.89 50.89 50.89 50.89 50.89 50.89 Fumps and fans gains (Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21.56 28.94 36.75<br>.13a), also see Table 5<br>9 219.8 227.59 244.18<br>a), also see Table 5<br>50.89 50.89 50.89 | 42.89     45.73       265.12     284.79       50.89     50.89 | (68)          |
| (67)m=       44.49       39.52       32.14       24.33       18.19       15.35       16.59         Appliances gains (calculated in Appendix L, equation L13 or least continuous gains (calculated in Appendix L, equation L15 or | 21.56 28.94 36.75  13a), also see Table 5  219.8 227.59 244.18  a), also see Table 5  50.89 50.89 50.89  0 0 0     | 42.89     45.73       265.12     284.79       50.89     50.89 | (68)          |

| Water   | heating   | g gains (T   | able 5)    |             |          |     |         |               |         |                   |          |               |        |       |      |
|---------|-----------|--------------|------------|-------------|----------|-----|---------|---------------|---------|-------------------|----------|---------------|--------|-------|------|
| (72)m=  | 113.25    | <u> </u>     | 106.99     | 101.24      | 97.51    | 9   | 92.26   | 87.79         | 93.     | 52 95.55          | 101.5    | 5 108.21      | 111.23 | ]     | (72) |
| Total i | nterna    | ıl gains =   |            |             |          |     | (66)    | m + (67)m     | ı + (68 | B)m + (69)m + (   | 70)m +   | (71)m + (72)  | )m     | _     |      |
| (73)m=  | 551.98    | <del>-</del> | 528.66     | 498.52      | 467.71   | 4   | 39.95   | 423.57        | 431     | .18 448.38        | 478.7    | 2 512.52      | 538.04 | ]     | (73) |
| 6. So   | lar gair  | ns:          |            |             |          |     |         |               |         |                   |          |               |        |       |      |
| Solar   | gains are | calculated   | using sola | r flux from | Table 6a | and | l assoc | iated equa    | tions   | to convert to the | e applic | able orientat | tion.  |       |      |
| Orienta | ation:    | Access F     |            | Area        |          |     | Flu     |               |         | _ g               |          | FF            |        | Gains |      |
|         |           | Table 6d     |            | m²          |          |     | Tal     | ble 6a        |         | Table 6b          |          | Table 6c      |        | (W)   |      |
| North   | 0.9x      | 1            | X          | 1.8         | 35       | X   | 1       | 0.63          | x       | 0.4               | x        | 0.8           | =      | 5.67  | (74) |
| North   | 0.9x      | 1            | Х          | 2.3         | 36       | X   | 1       | 0.63          | X       | 0.4               | x        | 0.8           | =      | 7.23  | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 1       | 0.63          | X       | 0.4               | x        | 0.8           | =      | 7.23  | (74) |
| North   | 0.9x      | 1            | Х          | 3.          | 6        | X   | 1       | 0.63          | x       | 0.4               | x        | 0.8           | =      | 11.02 | (74) |
| North   | 0.9x      | 1            | X          | 1.8         | 35       | X   | 2       | 20.32         | x       | 0.4               | X        | 0.8           | =      | 10.83 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 2       | 20.32         | X       | 0.4               | x        | 0.8           | =      | 13.81 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 2       | 20.32         | X       | 0.4               | x        | 0.8           | =      | 13.81 | (74) |
| North   | 0.9x      | 1            | X          | 3.          | 6        | X   | 2       | 20.32         | X       | 0.4               | X        | 0.8           | =      | 21.07 | (74) |
| North   | 0.9x      | 1            | X          | 1.8         | 35       | X   | 3       | 34.53         | X       | 0.4               | X        | 0.8           |        | 18.4  | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | Х   | 3       | 34.53         | х       | 0.4               | x        | 0.8           | =      | 23.47 | (74) |
| North   | 0.9x      | 1            | x          | 2.3         | 36       | Х   | 3       | 34.53         | x       | 0.4               | x        | 0.8           | =      | 23.47 | (74) |
| North   | 0.9x      | 1            | X          | 3.          | 6        | X   | 3       | 34.53         | x       | 0.4               | x        | 0.8           | =      | 35.8  | (74) |
| North   | 0.9x      | 1            | X          | 1.8         | 35       | X   | 5       | 55.46         | ×       | 0.4               | x        | 0.8           | =      | 29.55 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | x   | 5       | 55.46         | Х       | 0.4               | x        | 0.8           | =      | 37.7  | (74) |
| North   | 0.9x      | 1            | х          | 2.3         | 36       | Х   | 5       | 5.46          | X       | 0.4               | x        | 0.8           | =      | 37.7  | (74) |
| North   | 0.9x      | 1            | X          | 3.          | 6        | X   | 5       | 55.46         | X       | 0.4               | x        | 0.8           | =      | 57.51 | (74) |
| North   | 0.9x      | 1            | X          | 1.8         | 35       | X   | 7       | 4.72          | x       | 0.4               | x        | 0.8           | =      | 39.81 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 7       | 4.72          | X       | 0.4               | x        | 0.8           | =      | 50.78 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 7       | 4.72          | x       | 0.4               | x        | 0.8           | =      | 50.78 | (74) |
| North   | 0.9x      | 1            | X          | 3.          | 6        | X   | 7       | 4.72          | X       | 0.4               | X        | 0.8           | =      | 77.47 | (74) |
| North   | 0.9x      | 1            | X          | 1.8         | 35       | X   | 7       | 79.99         | X       | 0.4               | x        | 0.8           | =      | 42.62 | (74) |
| North   | 0.9x      | 1            | Х          | 2.3         | 36       | X   | 7       | 79.99         | x       | 0.4               | x        | 0.8           | =      | 54.36 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 7       | '9.99         | X       | 0.4               | x        | 0.8           | =      | 54.36 | (74) |
| North   | 0.9x      | 1            | X          | 3.          | 6        | X   | 7       | 79.99         | X       | 0.4               | x        | 0.8           | =      | 82.93 | (74) |
| North   | 0.9x      | 1            | X          | 1.8         | 35       | X   | 7       | <b>'</b> 4.68 | X       | 0.4               | x        | 0.8           | =      | 39.79 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 7       | 4.68          | X       | 0.4               | x        | 0.8           | =      | 50.76 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 7       | 4.68          | X       | 0.4               | x        | 0.8           | =      | 50.76 | (74) |
| North   | 0.9x      | 1            | X          | 3.          | 6        | X   | 7       | 4.68          | X       | 0.4               | X        | 0.8           | =      | 77.42 | (74) |
| North   | 0.9x      | 1            | X          | 1.8         | 35       | X   | 5       | 9.25          | x       | 0.4               | x        | 0.8           | =      | 31.57 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 5       | 9.25          | x       | 0.4               | x        | 0.8           | =      | 40.27 | (74) |
| North   | 0.9x      | 1            | X          | 2.3         | 36       | X   | 5       | 9.25          | x       | 0.4               | x        | 0.8           | =      | 40.27 | (74) |
| North   | 0.9x      | 1            | X          | 3.          | 6        | X   | 5       | 9.25          | x       | 0.4               | X        | 0.8           | =      | 61.43 | (74) |

| North |          |   | 1 |      | 1 |        | 1 |     | ı |     | 1   |       | ٦,   |
|-------|----------|---|---|------|---|--------|---|-----|---|-----|-----|-------|------|
| North | 0.9x     | 1 | X | 1.85 | X | 41.52  | X | 0.4 | X | 0.8 | =   | 22.12 | [74] |
| North | 0.9x     | 1 | X | 2.36 | X | 41.52  | X | 0.4 | X | 0.8 | =   | 28.22 | (74) |
| North | 0.9x     | 1 | X | 2.36 | X | 41.52  | X | 0.4 | X | 0.8 | =   | 28.22 | (74) |
| North | 0.9x     | 1 | X | 3.6  | X | 41.52  | Х | 0.4 | X | 0.8 | =   | 43.04 | (74) |
| North | 0.9x     | 1 | X | 1.85 | X | 24.19  | X | 0.4 | X | 0.8 | =   | 12.89 | (74) |
| North | 0.9x     | 1 | X | 2.36 | X | 24.19  | X | 0.4 | X | 0.8 | =   | 16.44 | (74) |
| North | 0.9x     | 1 | X | 2.36 | X | 24.19  | X | 0.4 | X | 0.8 | =   | 16.44 | (74) |
| North | 0.9x     | 1 | X | 3.6  | x | 24.19  | X | 0.4 | X | 0.8 | =   | 25.08 | (74) |
| North | 0.9x     | 1 | X | 1.85 | x | 13.12  | X | 0.4 | X | 0.8 | =   | 6.99  | (74) |
| North | 0.9x     | 1 | X | 2.36 | x | 13.12  | x | 0.4 | x | 0.8 | =   | 8.92  | (74) |
| North | 0.9x     | 1 | X | 2.36 | x | 13.12  | X | 0.4 | X | 0.8 | =   | 8.92  | (74) |
| North | 0.9x     | 1 | X | 3.6  | x | 13.12  | X | 0.4 | X | 0.8 | =   | 13.6  | (74) |
| North | 0.9x     | 1 | x | 1.85 | x | 8.86   | x | 0.4 | x | 0.8 | ] = | 4.72  | (74) |
| North | 0.9x     | 1 | x | 2.36 | x | 8.86   | x | 0.4 | x | 0.8 | ] = | 6.03  | (74) |
| North | 0.9x     | 1 | x | 2.36 | x | 8.86   | x | 0.4 | х | 0.8 | ] = | 6.03  | (74) |
| North | 0.9x     | 1 | x | 3.6  | x | 8.86   | x | 0.4 | x | 0.8 | ] = | 9.19  | (74) |
| East  | 0.9x     | 1 | x | 2.36 | x | 19.64  | x | 0.4 | x | 0.8 | ] = | 13.35 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | X | 19.64  | Х | 0.4 | Х | 0.8 | =   | 13.35 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | х | 38.42  | x | 0.4 | х | 0.8 | =   | 26.11 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | х | 38.42  | x | 0.4 | х | 0.8 | ] = | 26.11 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | x | 63.27  | x | 0.4 | х | 0.8 | ] = | 43.01 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | x | 63.27  | Х | 0.4 | х | 0.8 | ] = | 43.01 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | x | 92.28  | X | 0.4 | х | 0.8 | ] = | 62.72 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | х | 92.28  | x | 0.4 | х | 0.8 | ] = | 62.72 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | × | 113.09 | x | 0.4 | x | 0.8 | ] = | 76.87 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | x | 113.09 | х | 0.4 | x | 0.8 | =   | 76.87 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | x | 115.77 | x | 0.4 | x | 0.8 | ] = | 78.69 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | x | 115.77 | x | 0.4 | x | 0.8 | ] = | 78.69 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | x | 110.22 | x | 0.4 | x | 0.8 | ] = | 74.91 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | x | 110.22 | x | 0.4 | х | 0.8 | ] = | 74.91 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | x | 94.68  | x | 0.4 | x | 0.8 | =   | 64.35 | (76) |
| East  | 0.9x     | 1 | × | 2.36 | × | 94.68  | x | 0.4 | x | 0.8 | j = | 64.35 | (76) |
| East  | 0.9x     | 1 | x | 2.36 | x | 73.59  | x | 0.4 | x | 0.8 | ] = | 50.02 | (76) |
| East  | 0.9x     | 1 | × | 2.36 | x | 73.59  | x | 0.4 | x | 0.8 | ] = | 50.02 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | x | 45.59  | x | 0.4 | x | 0.8 | =   | 30.99 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | x | 45.59  | x | 0.4 | x | 0.8 | j = | 30.99 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | x | 24.49  | x | 0.4 | x | 0.8 | j = | 16.64 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | x | 24.49  | x | 0.4 | x | 0.8 | j = | 16.64 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | × | 16.15  | x | 0.4 | x | 0.8 | =   | 10.98 | (76) |
| East  | 0.9x     | 1 | X | 2.36 | x | 16.15  | X | 0.4 | x | 0.8 | =   | 10.98 | (76) |
|       | <u>L</u> |   | - |      | • |        |   |     | • |     | •   |       | _    |

Solar gains in watts, calculated for each month (83)m = Sum(74)m ...(82)m(83)(83)m =57.84 111.75 187.15 287.9 372.57 391.65 368.55 302.23 221.63 132.82 71.71 47.92

|                | gains – ii                   | nternal a                     | and solar                       | (84)m =        | = (73)m - | + (83)m        | , watts   |           |            |               |            |                        |         |      |
|----------------|------------------------------|-------------------------------|---------------------------------|----------------|-----------|----------------|-----------|-----------|------------|---------------|------------|------------------------|---------|------|
| (84)m=         | 609.82                       | 659.81                        | 715.81                          | 786.42         | 840.28    | 831.6          | 792.12    | 733.41    | 670.02     | 611.54        | 584.23     | 585.96                 |         | (84) |
| 7. Me          | ean inter                    | nal temr                      | perature                        | (heating       | season    | )              |           |           |            |               |            |                        |         |      |
|                |                              |                               | neating p                       |                |           |                | from Tab  | ole 9. Th | 1 (°C)     |               |            |                        | 21      | (85) |
|                |                              | _                             | ains for I                      |                |           | _              |           | ,         | ( - /      |               |            |                        |         | `` ´ |
| Otilio         | Jan                          | Feb                           | Mar                             | Apr            | May       | Jun            | Jul       | Aug       | Sep        | Oct           | Nov        | Dec                    | 1       |      |
| (86)m=         | 0.99                         | 0.97                          | 0.94                            | 0.84           | 0.65      | 0.46           | 0.33      | 0.37      | 0.61       | 0.88          | 0.97       | 0.99                   |         | (86) |
| . ,            |                              |                               |                                 | ļ              |           | <u> </u>       |           |           |            | 0.00          | 0.0.       | 0.00                   | ļ       | . ,  |
|                |                              | · ·                           | ature in                        |                | · `       | i              | i         |           |            | ı             |            | 1                      | 1       | (07) |
| (87)m=         | 20.38                        | 20.5                          | 20.68                           | 20.89          | 20.98     | 21             | 21        | 21        | 20.99      | 20.87         | 20.6       | 20.36                  | j       | (87) |
| Temp           | erature                      | during h                      | neating p                       | eriods ir      | rest of   | dwelling       | from Ta   | ble 9, T  | h2 (°C)    |               |            |                        | _       |      |
| 88)m=          | 20.18                        | 20.19                         | 20.19                           | 20.2           | 20.21     | 20.22          | 20.22     | 20.22     | 20.21      | 20.21         | 20.2       | 20.2                   |         | (88) |
| Utilisa        | ation fac                    | tor for a                     | ains for i                      | rest of d      | welling,  | h2,m (se       | e Table   | 9a)       |            |               |            |                        |         |      |
| (89)m=         | 0.98                         | 0.97                          | 0.92                            | 0.8            | 0.6       | 0.4            | 0.27      | 0.31      | 0.54       | 0.84          | 0.96       | 0.98                   |         | (89) |
| Moon           | intorna                      | l tompor                      | ature in                        | the rest       | of dwalli | na T2 (f       | ollow sto | nc 2 to - | 7 in Tabl  | 0.00)         |            |                        | ı       |      |
| 90)m=          | 19.38                        | 19.55                         | 19.81                           | 20.08          | 20.19     | 20.22          | 20.22     | 20.22     | 20.21      | 20.07         | 19.71      | 19.36                  | 1       | (90) |
| (30)111=       | 13.30                        | 10.00                         | 15.01                           | 20.00          | 20.13     | 20.22          | 20.22     | 20.22     |            | LA = Livin    |            | <u> </u>               | 0.48    | (91) |
|                |                              |                               |                                 |                |           |                |           |           |            | Er ( = Erviii | g aroa . ( | ., –                   | 0.40    | (91) |
| Mear           | _                            | temper                        | ature (fo                       | r the wh       | ole dwe   | lling) = fl    | LA × T1   | + (1 – fL | A) × T2    |               |            |                        |         |      |
| 92)m=          | 19.86                        | 20                            | 20.23                           | 20.47          | 20.57     | 20.59          | 20.59     | 20.59     | 20.58      | 20.45         | 20.14      | 19.84                  |         | (92) |
| Apply          | <mark>/ ad</mark> justn      | nent to t                     | he mean                         | internal       | temper    |                |           | 4e, whe   |            | opriate       |            |                        | ,       |      |
| 93)m=          | 19.86                        | 20                            | 20.23                           | 20.47          | 20.57     | 20.59          | 20.59     | 20.59     | 20.58      | 20.45         | 20.14      | 19.84                  |         | (93) |
|                |                              |                               | uirement                        |                |           |                |           |           |            | _             |            |                        |         |      |
|                |                              |                               | ternal ter                      |                |           | ed at ste      | ep 11 of  | Table 9   | o, so tha  | t Ti,m=(      | 76)m an    | d re-calc              | culate  |      |
| tne u          | _                            |                               | or gains                        |                |           | li in          | lad       | A         | 0.00       | 0-4           | Nierr      | Des                    | 1       | 1    |
| 1.14:1:0.      | Jan                          | Feb                           | Mar                             | Apr            | May       | Jun            | Jul       | Aug       | Sep        | Oct           | Nov        | Dec                    |         |      |
| 94)m=          | 0.98                         | 0.97                          | ains, hm                        | 0.81           | 0.63      | 0.43           | 0.3       | 0.34      | 0.57       | 0.86          | 0.96       | 0.98                   | 1       | (94) |
| ,              |                              |                               |                                 |                |           | 0.43           | 0.3       | 0.34      | 0.57       | 0.86          | 0.96       | 0.96                   | ļ       | (34) |
| 95)m=          |                              | 636.78                        | , W = (9 <sup>2</sup><br>662.63 | ŕ              | 526.81    | 356.4          | 238       | 249       | 384.37     | 523.09        | 560.31     | 575.87                 | 1       | (95) |
| ,              |                              |                               | ernal tem                       |                |           | <u> </u>       | 230       | 243       | 304.37     | 323.09        | 300.31     | 373.07                 | J       | (00) |
| 96)m=          | 4.3                          | 4.9                           | 6.5                             | 8.9            | 11.7      | 14.6           | 16.6      | 16.4      | 14.1       | 10.6          | 7.1        | 4.2                    | 1       | (96) |
|                |                              |                               | an intern                       |                |           |                |           |           |            |               | 7.1        | 7.2                    | J       | (00) |
| 97)m=          |                              | 940.32                        | 851.66                          | 704.99         | 538.37    | 357.24         | 238.07    | 249.15    | 389.31     | 598.18        | 797.38     | 963.51                 | 1       | (97) |
|                |                              |                               | ement fo                        |                |           | l              |           |           |            |               |            | 300.01                 | l       | (01) |
| 98)m=          | 279.1                        | 203.98                        | 140.64                          | 47.14          | 8.6       | 0              | 0.02      | 0         | 0          | 55.87         | 170.69     | 288.41                 | 1       |      |
| 00)111–        | 270.1                        | 200.00                        | 140.04                          | 77.17          | 0.0       |                | Ŭ         |           | l per year | <u> </u>      |            | <u> </u>               | 1194.42 | (98) |
|                |                              |                               |                                 |                |           |                |           | Tota      | i per year | (KWII/year    | ) = Sum(9  | O) <sub>15,912</sub> = | 1194.42 | (90) |
|                | _                            |                               |                                 |                |           |                |           |           |            |               |            | i                      |         |      |
| Spac           | e heatin                     | g require                     | ement in                        | kWh/m²         | ?/year    |                |           |           |            |               |            |                        | 16.82   | (99) |
| •              |                              | • .                           | ement in<br>quiremen            |                | /year     |                |           |           |            |               |            |                        | 16.82   | (99) |
| 8c. S          | pace co                      | oling red                     |                                 | nt             |           | ple 10b        |           |           |            |               |            |                        | 16.82   | (99) |
| 8c. S          | pace co                      | oling red                     | quiremen                        | nt             |           | ole 10b<br>Jun | Jul       | Aug       | Sep        | Oct           | Nov        | Dec                    | 16.82   | (99) |
| 8c. S<br>Calcu | pace cou<br>ulated fo<br>Jan | oling rec<br>r June, c<br>Feb | duiremen                        | August.<br>Apr | See Tal   | Jun            |           |           |            |               |            | L                      |         | (99) |

| Utilisation factor for loss hm                                  |                      |             |            |            |            |                     |             |              |           |              |
|-----------------------------------------------------------------|----------------------|-------------|------------|------------|------------|---------------------|-------------|--------------|-----------|--------------|
| (101)m = 0 0 0                                                  | 0 0                  | 0.97        | 0.99       | 0.98       | 0          | 0                   | 0           | 0            | ]         | (101)        |
| Useful loss, hmLm (Watts) =                                     | (100)m x (101)m      | 1 <u> </u>  |            | !          |            |                     |             |              | J         |              |
| (102)m = 0 0 0                                                  | 0 0                  | 545.71      | 436.83     | 443.98     | 0          | 0                   | 0           | 0            | ]         | (102)        |
| Gains (solar gains calculated                                   |                      | 1           |            |            | 10)        |                     |             |              | 1         |              |
| (103)m= 0 0 0                                                   | 0 0                  | 831.6       | 792.12     | 733.41     | 0          | 0                   | 0           | 0            | ]         | (103)        |
| Space cooling requirement for set (104)m to zero if (104)m      | •                    | dwelling,   | continuo   | ous ( kW   | (h) = 0.0  | 24 x [(1            | 03)m – (    | 102)m ] :    | x (41)m   |              |
| (104)m = 0 0 0                                                  | 0 0                  | 205.84      | 264.34     | 215.33     | 0          | 0                   | 0           | 0            | ]         |              |
|                                                                 |                      | •           |            |            | Total      | = Sum               | (104)       | =            | 685.5     | (104)        |
| Cooled fraction                                                 | - \                  |             |            |            | f C =      | cooled              | area ÷ (    | 4) =         | 0.68      | (105)        |
| Intermittency factor (Table 10b (106)m= 0 0 0                   | 0 0                  | 0.25        | 0.25       | 0.25       | 0          | 0                   | 0           | 0            | 1         |              |
| (100)                                                           |                      | ] 0.20      | 0.20       | 0.20       |            | = Sum               | <u> </u>    | =            | 0         | (106)        |
| Space cooling requirement for                                   | month = (104)m       | × (105) :   | × (106)r   | n          |            |                     |             |              |           | <b>」</b> ` ′ |
| (107)m= 0 0 0                                                   | 0 0                  | 35.01       | 44.96      | 36.62      | 0          | 0                   | 0           | 0            |           | _            |
|                                                                 |                      |             |            |            | Total      | = Sum               | (107)       | =            | 116.58    | (107)        |
| Space cooling requirement in                                    | kWh/m²/year          |             |            |            | (107)      | ÷ (4) =             |             |              | 1.64      | (108)        |
| 9b. Energy requirements – Co                                    |                      |             |            |            |            |                     |             |              |           |              |
| This part is used for space hear from se                        | 0. 1                 |             |            | <b>.</b>   | •          |                     | unity scl   | heme.        | 0         | (301)        |
| Fraction of space heat from co                                  | mmunity system       | 1 – (301    | ) =        |            |            |                     |             |              | 1         | (302)        |
| The c <mark>ommu</mark> nity scheme m <mark>ay obt</mark> ain h | eat from several sou | rces. The p | rocedure . | allows for | CHP and t  | up to four          | other heat  | t sources; t | he latter | _            |
| includes boilers, heat pumps, geother                           |                      | from power  | stations.  | See Apper  | ndix C.    |                     |             |              |           | 7(2020)      |
| Fraction of heat from Commun                                    |                      |             |            |            |            |                     | (0.00       |              | 1         | (303a)       |
| Fraction of total space heat from                               |                      |             |            |            |            |                     | 802) x (303 | 3a) =        | 1         | (304a)       |
| Factor for control and charging                                 | g method (Table      | 4c(3)) for  | r commu    | ınity hea  | ting sys   | tem                 |             |              | 1         | (305)        |
| Distribution loss factor (Table                                 | 12c) for commur      | nity heatin | ng syste   | m          |            |                     |             |              | 1.05      | (306)        |
| Space heating                                                   |                      |             |            |            |            |                     |             |              | kWh/year  | _            |
| Annual space heating requirer                                   | nent                 |             |            |            |            |                     |             |              | 1194.42   | ╛            |
| Space heat from Community h                                     | neat pump            |             |            |            | (98) x (30 | 04a) x (30          | 5) x (306)  | =            | 1254.14   | (307a)       |
| Efficiency of secondary/supple                                  | ementary heating     | system i    | in % (fro  | m Table    | 4a or A    | ppendix             | (E)         |              | 0         | (308         |
| Space heating requirement from                                  | m secondary/su       | pplement    | tary syst  | em         | (98) x (30 | 01) x 100           | ÷ (308) =   |              | 0         | (309)        |
| Water heating                                                   |                      |             |            |            |            |                     |             |              |           | _            |
| Annual water heating requiren                                   |                      |             |            |            |            |                     |             |              | 1923.11   |              |
| If DHW from community scher Water heat from Community h         |                      |             |            |            | (64) x (30 | 03a) x (30          | 5) x (306)  | =            | 2019.26   | (310a)       |
| Electricity used for heat distrib                               | ution                |             |            | 0.01       | × [(307a). | (307e) <del>-</del> | + (310a)    | (310e)] =    | 32.73     | (313)        |
| Cooling System Energy Efficie                                   | ency Ratio           |             |            |            |            |                     |             |              | 6.25      | (314)        |
| Space cooling (if there is a fixe                               | ed cooling syster    | n, if not e | enter 0)   |            | = (107) ÷  | (314) =             |             |              | 18.65     | (315)        |
| Electricity for pumps and fans                                  |                      |             |            |            |            |                     |             |              |           | -            |
| mechanical ventilation - balan                                  | ced, extract or po   | ositive inp | out from   | outside    |            |                     |             |              | 173.24    | (330a)       |
|                                                                 |                      |             |            |            |            |                     |             |              |           |              |

|                                                                          |                                            |                                         |                     | _      |
|--------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|---------------------|--------|
| warm air heating system fans                                             |                                            |                                         | 0                   | (330b) |
| pump for solar water heating                                             |                                            |                                         | 0                   | (330g) |
| Total electricity for the above, kWh/yea                                 | r                                          | =(330a) + (330b) + (330g) =             | 173.24              | (331)  |
| Energy for lighting (calculated in Apper                                 | ndix L)                                    |                                         | 314.29              | (332)  |
| Total delivered energy for all uses (307                                 | () + (309) + (310) + (312) + (315)         | + (331) + (332)(237b) =                 | 3779.58             | (338)  |
| 10b. Fuel costs – Community heating                                      | scheme                                     |                                         |                     |        |
|                                                                          | <b>Fuel</b><br>kWh/year                    | Fuel Price<br>(Table 12)                | Fuel Cost<br>£/year |        |
| Space heating from CHP                                                   | (307a) x                                   | 4.24 x 0.01 =                           | 53.18               | (340a) |
| Water heating from CHP                                                   | (310a) x                                   | 4.24 x 0.01 =                           | 85.62               | (342a) |
|                                                                          |                                            | Fuel Price                              |                     |        |
| Space cooling (community cooling syst                                    | ,                                          | 13.19 × 0.01 =                          | 2.10                | (348)  |
| Pumps and fans                                                           | (331)                                      | 13.19 × 0.01 =                          | 22.00               | (349)  |
| Energy for lighting                                                      | (332)                                      | 13.19 x 0.01 =                          | 41.45               | (350)  |
| Additional standing charges (Table 12)                                   |                                            |                                         | 120                 | (351)  |
| Total energy cost                                                        | = (340a)(342e) + (345)(354) =              |                                         | 325.56              | (355)  |
| 11b. SAP rating - Community heating                                      | scheme                                     |                                         |                     |        |
| Energy cost deflator (Table 12)                                          | (050) (050)                                |                                         | 0.42                | (356)  |
| Energy cost factor (ECF)                                                 | $[(355) \times (356)] \div [(4) + 45.0] =$ |                                         | 1.18                | (357)  |
| SAP rating (section12)                                                   | ting sohomo                                |                                         | 83.56               | (358)  |
| 12b. CO2 Emissions – Community hea                                       |                                            | ergy Emission factor                    | Emissions           |        |
|                                                                          |                                            | h/year kg CO2/kWh                       | kg CO2/year         |        |
| CO2 from other sources of space and v<br>Efficiency of heat source 1 (%) | <b>3</b> \ ,                               | repeat (363) to (366) for the second fu | iel 364             | (367a) |
| CO2 associated with heat source 1                                        | [(307b)+(310b)] x                          | 100 ÷ (367b) x 0.52                     | = 466.73            | (367)  |
| Electrical energy for heat distribution                                  | [(313) x                                   | 0.52                                    | = 16.99             | (372)  |
| Total CO2 associated with community s                                    | systems (363)(3                            | 66) + (368)(372)                        | = 483.72            | (373)  |
| CO2 associated with space heating (se                                    | econdary) (309) x                          | 0                                       | = 0                 | (374)  |
| CO2 associated with water from immer                                     | sion heater or instantaneous hea           | ater (312) x 0.52                       | = 0                 | (375)  |
| Total CO2 associated with space and v                                    | vater heating (373) + (3                   | 74) + (375) =                           | 483.72              | (376)  |
| CO2 associated with space cooling                                        | (315) x                                    | 0.52                                    | 9.68                | (377)  |
| CO2 associated with electricity for pum                                  | ps and fans within dwelling (331           | 0.52                                    | = 89.91             | (378)  |
| CO2 associated with electricity for light                                | ing (332))) x                              | 0.52                                    | = 163.12            | (379)  |
|                                                                          |                                            |                                         |                     |        |
| Total CO2, kg/year                                                       | sum of (376)(382) =                        | <u> </u>                                | 746.43              | (383)  |
| Total CO2, kg/year  Dwelling CO2 Emission Rate                           | sum of (376)(382) =<br>(383) ÷ (4) =       |                                         | 746.43<br>10.51     | (383)  |

| El rating (section 14)                                                                        |                                   |                      | 91.38                | (385)  |
|-----------------------------------------------------------------------------------------------|-----------------------------------|----------------------|----------------------|--------|
| 13b. Primary Energy – Community heating scheme                                                |                                   |                      |                      |        |
|                                                                                               | Energy<br>kWh/year                | Primary factor       | P.Energy<br>kWh/year |        |
| Energy from other sources of space and water heating (not CHI Efficiency of heat source 1 (%) | P)<br>g two fuels repeat (363) to | (366) for the second | fuel 364             | (367a) |
| Energy associated with heat source 1 [(307b)+                                                 | (310b)] x 100 ÷ (367b) x          | 3.07                 | = 2760.81            | (367)  |
| Electrical energy for heat distribution                                                       | [(313) x                          |                      | = 100.49             | (372)  |
| Total Energy associated with community systems                                                | (363)(366) + (368)(37             | 2)                   | = 2861.3             | (373)  |
| if it is negative set (373) to zero (unless specified otherwise, s                            | see C7 in Appendix C              | C)                   | 2861.3               | (373)  |
| Energy associated with space heating (secondary)                                              | (309) x                           | 0                    | = 0                  | (374)  |
| Energy associated with water from immersion heater or instanta                                | aneous heater(312) x              | 3.07                 | = 0                  | (375)  |
| Total Energy associated with space and water heating                                          | (373) + (374) + (375) =           |                      | 2861.3               | (376)  |
| Energy associated with space cooling                                                          | (315) x                           | 3.07                 | = 57.27              | (377)  |
| Energy associated with electricity for pumps and fans within dwe                              | elling (331)) x                   | 3.07                 | = 531.85             | (378)  |
| Energy associated with electricity for lighting                                               | (332))) x                         | 3.07                 | = 964.86             | (379)  |
| Total Primary Energy, kWh/year sum of (376).                                                  | .(382) =                          |                      | 4415.27              | (383)  |

|                                                           |                                                                | User D      | etails:      |             |                   |            |           |                       |       |
|-----------------------------------------------------------|----------------------------------------------------------------|-------------|--------------|-------------|-------------------|------------|-----------|-----------------------|-------|
| Assessor Name:                                            |                                                                |             | Stroma       |             |                   |            |           |                       |       |
| Software Name:                                            | Stroma FSAP 2012                                               |             | Softwa       |             |                   | 05 to 5    |           | n: 1.0.5.57           |       |
| Address :                                                 | Twickenham London Squar                                        |             | Address:     | Greg B      | акегу г           | оэ тор г   | loor .    |                       |       |
| 1. Overall dwelling dime                                  | ·                                                              | e, Londo    | ) i i        |             |                   |            |           |                       |       |
| 3                                                         |                                                                | Area        | a(m²)        |             | Av. He            | ight(m)    |           | Volume(m <sup>3</sup> | )     |
| Ground floor                                              |                                                                |             | 71           | (1a) x      | 2                 | 2.5        | (2a) =    | 177.5                 | (3a)  |
| Total floor area TFA = (1a                                | a)+(1b)+(1c)+(1d)+(1e)+(1                                      | n)          | 71           | (4)         |                   |            | -         |                       | _     |
| Dwelling volume                                           |                                                                |             |              | (3a)+(3b    | )+(3c)+(3c        | d)+(3e)+   | .(3n) =   | 177.5                 | (5)   |
| 2. Ventilation rate:                                      |                                                                |             |              |             |                   |            |           |                       |       |
|                                                           | main seconda<br>heating heating                                | ry          | other        |             | total             |            |           | m³ per hou            | r     |
| Number of chimneys                                        | 0 + 0                                                          | +           | 0            | = [         | 0                 | X 4        | 40 =      | 0                     | (6a)  |
| Number of open flues                                      | 0 + 0                                                          | +           | 0            | ] = [       | 0                 | x 2        | 20 =      | 0                     | (6b)  |
| Number of intermittent far                                | ns                                                             |             |              |             | 0                 | <b>x</b> . | 10 =      | 0                     | (7a)  |
| Number of passive vents                                   |                                                                |             |              | Ī           | 0                 | <b>x</b>   | 10 =      | 0                     | (7b)  |
| Number of flueless gas fin                                | res                                                            |             |              | Γ           | 0                 | X 4        | 40 =      | 0                     | (7c)  |
|                                                           |                                                                |             |              |             |                   |            | Δir ch    | nanges per ho         | r     |
| Infiltration due to chimne                                | /s, flues and fans = (6a)+(6b)+(                               | 7a)+(7b)+(  | 76) -        | _           |                   |            |           |                       | _     |
|                                                           | een carried out or is intended, procee                         |             |              | ontinue fr  | 0<br>rom (9) to i |            | ÷ (5) =   | 0                     | (8)   |
| Number of storeys in th                                   |                                                                |             |              |             |                   | -/         |           | 0                     | (9)   |
| Additional infiltration                                   |                                                                |             |              |             |                   | [(9)       | -1]x0.1 = | 0                     | (10)  |
|                                                           | 25 for steel or timber frame o                                 |             |              | •           | ruction           |            |           | 0                     | (11)  |
| if both types of wall are pr<br>deducting areas of openin | esent, use the value corresponding to                          | o the great | er wall area | a (after    |                   |            |           |                       |       |
| ,                                                         | loor, enter 0.2 (unsealed) or 0                                | .1 (seale   | ed), else    | enter 0     |                   |            |           | 0                     | (12)  |
| If no draught lobby, ent                                  | er 0.05, else enter 0                                          |             |              |             |                   |            |           | 0                     | (13)  |
| Percentage of windows                                     | and doors draught stripped                                     |             |              |             |                   |            |           | 0                     | (14)  |
| Window infiltration                                       |                                                                |             | 0.25 - [0.2  | x (14) ÷ 1  | 00] =             |            |           | 0                     | (15)  |
| Infiltration rate                                         |                                                                |             | (8) + (10)   | + (11) + (1 | 12) + (13)        | + (15) =   |           | 0                     | (16)  |
| •                                                         | q50, expressed in cubic metre                                  | •           | •            | •           | etre of e         | envelope   | area      | 3                     | (17)  |
| ·                                                         | ty value, then $(18) = [(17) \div 20] + (18) = [(17) \div 20]$ |             |              |             |                   |            |           | 0.15                  | (18)  |
| Air permeability value applies  Number of sides sheltere  | s if a pressurisation test has been do<br>d                    | ne or a deg | gree air pei | meability   | is being u        | sed        |           | _                     | 7(10) |
| Shelter factor                                            | u                                                              |             | (20) = 1 - [ | 0.075 x (1  | 19)] =            |            |           | 0                     | (19)  |
| Infiltration rate incorporat                              | ing shelter factor                                             |             | (21) = (18)  | x (20) =    |                   |            |           | 0.15                  | (21)  |
| Infiltration rate modified for                            |                                                                |             |              |             |                   |            |           | 0.10                  | ` ′   |
|                                                           | Mar Apr May Jun                                                | Jul         | Aug          | Sep         | Oct               | Nov        | Dec       |                       |       |
| Monthly average wind sp                                   | eed from Table 7                                               |             |              |             |                   |            |           |                       |       |
| (22)m= 5.1 5                                              | 4.9 4.4 4.3 3.8                                                | 3.8         | 3.7          | 4           | 4.3               | 4.5        | 4.7       |                       |       |
| Wind Factor (22a)m = (22                                  | 2\m ÷ 4                                                        |             |              |             |                   |            |           | -                     |       |
|                                                           | 2)m ÷ 4<br>1.23                                                | 0.95        | 0.92         | 1           | 1.08              | 1.12       | 1.18      |                       |       |
| ,                                                         | 1 1 3.00                                                       | L           |              |             |                   | L <u>-</u> |           | I                     |       |

| Adjusted infiltrat                                                                                                                                                                            | ion rate                               | allowi    | ing for sh  | nelter an  | nd wind s                                                                          | speed) =                                                                        | (21a) x                                                                                                      | (22a)m                                                                                                                                                                                                      |                                                                      |           |                   |               |                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|-------------|------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------|-------------------|---------------|-----------------------------------------------------------------------------------------------------------------|
| 0.19                                                                                                                                                                                          | 0.19                                   | 0.18      | 0.16        | 0.16       | 0.14                                                                               | 0.14                                                                            | 0.14                                                                                                         | 0.15                                                                                                                                                                                                        | 0.16                                                                 | 0.17      | 0.18              |               |                                                                                                                 |
| Calculate effecti                                                                                                                                                                             |                                        | -         | rate for t  | he appli   | cable ca                                                                           | ise                                                                             | •                                                                                                            | •                                                                                                                                                                                                           | •                                                                    | •         | •                 | •             | (oo )                                                                                                           |
| If exhaust air hea                                                                                                                                                                            |                                        |           | andiv N (2  | 3h) - (23s | a) v Emy (4                                                                        | aguation (                                                                      | N5N othe                                                                                                     | rwisa (23h                                                                                                                                                                                                  | ) – (23a)                                                            |           |                   | 0.5           | (23a)                                                                                                           |
| If balanced with h                                                                                                                                                                            |                                        | •         | •           | , ,        | ,                                                                                  | •                                                                               |                                                                                                              | ,                                                                                                                                                                                                           | ) = (20a)                                                            |           |                   | 0.5           | (23b)                                                                                                           |
| a) If balanced                                                                                                                                                                                |                                        | -         | -           | _          |                                                                                    |                                                                                 |                                                                                                              |                                                                                                                                                                                                             | 2h)m + (                                                             | 23h) 🗴 [1 | 1 <i>– (23c</i> ) | 77.35<br>1001 | (23c)                                                                                                           |
| (24a)m= 0.3                                                                                                                                                                                   | 0.3                                    | 0.3       | 0.28        | 0.27       | 0.26                                                                               | 0.26                                                                            | 0.25                                                                                                         | 0.26                                                                                                                                                                                                        | 0.27                                                                 | 0.28      | 0.29              | ]             | (24a)                                                                                                           |
| b) If balanced                                                                                                                                                                                | mecha                                  | nical ve  | entilation  | without    | heat red                                                                           | covery (I                                                                       | MV) (24b                                                                                                     | o)m = (22                                                                                                                                                                                                   | 2b)m + (                                                             | 23b)      |                   | <u>l</u>      |                                                                                                                 |
| (24b)m= 0                                                                                                                                                                                     | 0                                      | 0         | 0           | 0          | 0                                                                                  | 0                                                                               | 0                                                                                                            | 0                                                                                                                                                                                                           | 0                                                                    | 0         | 0                 |               | (24b)                                                                                                           |
| c) If whole hou                                                                                                                                                                               | use ext                                | ract ver  | ntilation o | or positiv | e input                                                                            | ventilatio                                                                      | on from o                                                                                                    | outside                                                                                                                                                                                                     | •                                                                    | •         | •                 | •             |                                                                                                                 |
| if (22b)m -                                                                                                                                                                                   | < 0.5 ×                                | (23b), t  | then (24d   | c) = (23b  | o); other                                                                          | wise (24                                                                        | c) = (22k                                                                                                    | o) m + 0.                                                                                                                                                                                                   | .5 × (23b                                                            | )<br>'    | ı                 | 1             |                                                                                                                 |
| (24c)m= 0                                                                                                                                                                                     | 0                                      | 0         | 0           | 0          | 0                                                                                  | 0                                                                               | 0                                                                                                            | 0                                                                                                                                                                                                           | 0                                                                    | 0         | 0                 |               | (24c)                                                                                                           |
| d) If natural ve<br>if (22b)m :                                                                                                                                                               |                                        |           |             |            |                                                                                    |                                                                                 |                                                                                                              |                                                                                                                                                                                                             | 0.5]                                                                 |           |                   |               |                                                                                                                 |
| (24d)m= 0                                                                                                                                                                                     | 0                                      | 0         | 0           | 0          | 0                                                                                  | 0                                                                               | 0                                                                                                            | 0                                                                                                                                                                                                           | 0                                                                    | 0         | 0                 |               | (24d)                                                                                                           |
| Effective air cl                                                                                                                                                                              | hange r                                | ate - er  | nter (24a   | ) or (24b  | o) or (24                                                                          | c) or (24                                                                       | d) in box                                                                                                    | x (25)                                                                                                                                                                                                      | -                                                                    | -         |                   |               |                                                                                                                 |
| (25)m= 0.3                                                                                                                                                                                    | 0.3                                    | 0.3       | 0.28        | 0.27       | 0.26                                                                               | 0.26                                                                            | 0.25                                                                                                         | 0.26                                                                                                                                                                                                        | 0.27                                                                 | 0.28      | 0.29              |               | (25)                                                                                                            |
| 3. Heat losses                                                                                                                                                                                | and hea                                | at loss i | paramete    | er:        |                                                                                    |                                                                                 |                                                                                                              |                                                                                                                                                                                                             |                                                                      |           |                   | _             |                                                                                                                 |
| ELEMENT                                                                                                                                                                                       | Gross<br>area (                        |           | Openin      |            | Net Ar<br>A ,r                                                                     |                                                                                 | U-valı<br>W/m2                                                                                               |                                                                                                                                                                                                             | A X U<br>(W/                                                         | K)        | k-value           |               | A X k<br>kJ/K                                                                                                   |
| Doo <mark>rs</mark>                                                                                                                                                                           |                                        |           |             |            |                                                                                    |                                                                                 |                                                                                                              |                                                                                                                                                                                                             |                                                                      | /         |                   |               |                                                                                                                 |
|                                                                                                                                                                                               |                                        |           |             |            | 2.1                                                                                | X                                                                               | 1.3                                                                                                          | =                                                                                                                                                                                                           | 2.73                                                                 |           |                   |               | (26)                                                                                                            |
| Windows Type 1                                                                                                                                                                                | 1                                      |           |             |            | 2.1                                                                                |                                                                                 | 1.3<br>/[1/( 1.3 )+                                                                                          |                                                                                                                                                                                                             | 2.73                                                                 | R         |                   |               | (26)<br>(27)                                                                                                    |
| Windows Type 1 Windows Type 2                                                                                                                                                                 |                                        |           |             |            |                                                                                    | x1                                                                              |                                                                                                              | 0.04] =                                                                                                                                                                                                     |                                                                      |           |                   |               |                                                                                                                 |
|                                                                                                                                                                                               | 2                                      |           |             |            | 2.36                                                                               | x1                                                                              | /[1/( 1.3 )+                                                                                                 | 0.04] =                                                                                                                                                                                                     | 2.92                                                                 |           |                   |               | (27)                                                                                                            |
| Windows Type 2                                                                                                                                                                                | 2                                      |           |             |            | 2.36                                                                               | x1<br>x1<br>x1                                                                  | /[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                                 | 0.04] = [<br>0.04] = [<br>0.04] =                                                                                                                                                                           | 2.92                                                                 |           |                   |               | (27)<br>(27)                                                                                                    |
| Windows Type 2 Windows Type 3                                                                                                                                                                 | 2<br>3<br>4                            |           |             |            | 2.36<br>2.36<br>1.85                                                               | x1<br>x1<br>x1<br>x1                                                            | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                                 | $0.04$ ] = $\begin{bmatrix} 0.04 \end{bmatrix}$ | 2.92<br>2.92<br>2.29                                                 |           |                   |               | (27)<br>(27)<br>(27)                                                                                            |
| Windows Type 2 Windows Type 3 Windows Type 4                                                                                                                                                  | 2<br>3<br>4<br>5                       |           |             |            | 2.36<br>2.36<br>1.85<br>2.36                                                       | x1<br>x1<br>x1<br>x1                                                            | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                                 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =                                                                                                                                                 | 2.92<br>2.92<br>2.29<br>2.92                                         |           |                   |               | (27)<br>(27)<br>(27)<br>(27)                                                                                    |
| Windows Type 2 Windows Type 2 Windows Type 2 Windows Type 5                                                                                                                                   | 2<br>3<br>4<br>5                       | 6         | 10.1        | 7          | 2.36<br>2.36<br>1.85<br>2.36<br>2.36                                               | x1<br>x1<br>x1<br>x1<br>x1<br>x1                                                | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                                 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =                                                                                                                                                 | 2.92<br>2.92<br>2.29<br>2.92<br>2.92                                 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)                                                                            |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6                                                                                                                                   | 2 3 4 5 5 6 6                          | _         | 10.1        | =          | 2.36<br>2.36<br>1.85<br>2.36<br>2.36<br>3.6                                        | x1 x1 x1 x1 x1 x1 x1 x1                                                         | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+                 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =                                                                                                                                    | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45                         |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)                                                                    |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Windows Type 6 Walls Type 1                                                                                                       | 2<br>3<br>4<br>5<br>5<br>27.36         |           |             | =          | 2.36<br>2.36<br>2.36<br>2.36<br>3.6                                                | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15         | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =                                                                                                                                    | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58                 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)                                                            |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Windows Type 6 Walls Type1 Walls Type2                                                                                            | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36<br>2.36<br>1.85<br>2.36<br>2.36<br>3.6<br>17.19                               | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15         | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                 | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58                 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)                                                    |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Windows Type 6 Walls Type1 Walls Type2 Roof                                                                                       | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 2.36 17.19 12.98                                     | x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15         | 0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>0.04] =<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=<br>=                                                                                                 | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58                 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)                                            |
| Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele                                                                     | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 17.19 12.98 102 149.1                                | x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x1<br>x | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95         |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)                                    |
| Windows Type 2 Windows Type 2 Windows Type 2 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele                                                                     | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 17.19 12.98 102 149.1 24.88                          | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)                            |
| Windows Type 2 Windows Type 3 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall                                                              | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 1.85 2.36 2.36 2.36 3.6 17.19 12.98 102 149.1 24.88                      | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32)                    |
| Windows Type 2 Windows Type 2 Windows Type 3 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall Party floor                                   | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36                                            | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32)<br>(32a)                   |
| Windows Type 2 Windows Type 2 Windows Type 2 Windows Type 6 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall Party floor Internal wall **                  | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 2.36 17.19 12.98 102 149.1 24.88 18 71 25.49         | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27) (27) (27) (27) (27) (27) (29) (29) (30) (31) (32) (32) (32a) (32c)                                         |
| Windows Type 2 Windows Type 3 Windows Type 3 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall Party floor Internal wall ** Internal wall ** | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 3.6 17.19 12.98 102 149.1 24.88 71 25.49 22.19            | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27)<br>(27)<br>(27)<br>(27)<br>(27)<br>(29)<br>(29)<br>(30)<br>(31)<br>(32)<br>(32)<br>(32a)<br>(32c)<br>(32c) |
| Windows Type 2 Windows Type 2 Windows Type 3 Windows Type 5 Windows Type 6 Walls Type1 Walls Type2 Roof Total area of ele Party wall Party wall Party floor Internal wall ** Internal wall ** | 2<br>3<br>4<br>5<br>6<br>27.36<br>19.8 |           | 6.82        | =          | 2.36 2.36 2.36 2.36 2.36 2.36 3.6 17.19 12.98 102 149.1 24.88 71 25.49 22.19 23.75 | x1 x                                        | /[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>/[1/( 1.3 )+<br>0.15<br>0.15 | 0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>0.04] =  <br>=  <br>=                                                                                                                      | 2.92<br>2.92<br>2.29<br>2.92<br>2.92<br>4.45<br>2.58<br>1.95<br>15.3 |           |                   |               | (27) (27) (27) (27) (27) (27) (29) (29) (30) (31) (32) (32) (32a) (32c) (32c) (32c)                             |

| Interna                                                                                                                    | ıl floor                                                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                               | 74                                                                                                                     | $\neg$                                                                                                            |                                                                                |                                                                |                                                        | г                                                                                           |                                                            |              | (32d)                        |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------|------------------------------|
|                                                                                                                            |                                                                                                                                                                                     | roof wind                                                                                                                                                            | ows, use e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | effective wi                                                                                                               | indow U-va                                                                                                                                                    | 71<br>alue calcul                                                                                                      | l<br>ated using                                                                                                   | ı formula 1                                                                    | /[(1/U-valu                                                    | ıe)+0.041 á                                            | L<br>as aiven in                                                                            | naragraph                                                  |              | (320)                        |
|                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | ls and part                                                                                                                                                   |                                                                                                                        | atou aonig                                                                                                        | ,                                                                              | , [(                                                           | ,                                                      | .c g                                                                                        | paragrapi                                                  | <b>3.2</b>   |                              |
| Fabric heat loss, W/K = S (A x U) $(26)(30) + (32) =$                                                                      |                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                |                                                        | 40.96                                                                                       | (33)                                                       |              |                              |
| Heat capacity $Cm = S(A \times k)$ ((28)(30) + (32) + (32a)(32e) =                                                         |                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                |                                                        | 17525.78                                                                                    | (34)                                                       |              |                              |
| Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K Indicative Value: Medium                                                 |                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                |                                                        | 250                                                                                         | (35)                                                       |              |                              |
|                                                                                                                            | -                                                                                                                                                                                   |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | constructi                                                                                                                                                    | ion are no                                                                                                             | t known pr                                                                                                        | ecisely the                                                                    | indicative                                                     | values of                                              | TMP in Ta                                                                                   | able 1f                                                    |              |                              |
|                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                      | tailed calc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            | uoina An                                                                                                                                                      | nondiy l                                                                                                               | /                                                                                                                 |                                                                                |                                                                |                                                        |                                                                                             |                                                            |              | (20)                         |
| Thermal bridges: S (L x Y) calculated using Appendix K  if details of thermal bridging are not known (36) = 0.05 x (31)    |                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                |                                                        | 3.69                                                                                        | (36)                                                       |              |                              |
|                                                                                                                            | abric he                                                                                                                                                                            |                                                                                                                                                                      | aro not nii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | omi (00) -                                                                                                                 | - 0.00 x (0                                                                                                                                                   | '/                                                                                                                     |                                                                                                                   |                                                                                | (33) +                                                         | (36) =                                                 |                                                                                             |                                                            | 44.64        | (37)                         |
| Ventila                                                                                                                    | tion hea                                                                                                                                                                            | at loss ca                                                                                                                                                           | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l monthly                                                                                                                  | у                                                                                                                                                             |                                                                                                                        |                                                                                                                   |                                                                                | (38)m                                                          | = 0.33 × (                                             | 25)m x (5)                                                                                  |                                                            | -            | `                            |
|                                                                                                                            | Jan                                                                                                                                                                                 | Feb                                                                                                                                                                  | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                                        | May                                                                                                                                                           | Jun                                                                                                                    | Jul                                                                                                               | Aug                                                                            | Sep                                                            | Oct                                                    | Nov                                                                                         | Dec                                                        |              |                              |
| (38)m=                                                                                                                     | 17.84                                                                                                                                                                               | 17.62                                                                                                                                                                | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.3                                                                                                                       | 16.08                                                                                                                                                         | 14.98                                                                                                                  | 14.98                                                                                                             | 14.76                                                                          | 15.42                                                          | 16.08                                                  | 16.52                                                                                       | 16.96                                                      |              | (38)                         |
| Heat tr                                                                                                                    | ansfer o                                                                                                                                                                            | coefficier                                                                                                                                                           | nt. W/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                            |                                                                                                                                                               |                                                                                                                        | ı                                                                                                                 |                                                                                | (39)m                                                          | = (37) + (                                             | 38)m                                                                                        |                                                            |              |                              |
| (39)m=                                                                                                                     | 62.48                                                                                                                                                                               | 62.26                                                                                                                                                                | 62.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.94                                                                                                                      | 60.72                                                                                                                                                         | 59.62                                                                                                                  | 59.62                                                                                                             | 59.4                                                                           | 60.06                                                          | 60.72                                                  | 61.16                                                                                       | 61.6                                                       |              |                              |
|                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            | l                                                                                                                                                             |                                                                                                                        | l                                                                                                                 | l                                                                              | ,                                                              | L<br>Average =                                         | Sum(39) <sub>1.</sub>                                                                       | 12 /12=                                                    | 60.89        | (39)                         |
| Heat Ic                                                                                                                    | ss para                                                                                                                                                                             | meter (H                                                                                                                                                             | HLP), W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m²K                                                                                                                        |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                | (40)m                                                          | = (39)m ÷                                              | (4)                                                                                         |                                                            |              |                              |
| (40)m=                                                                                                                     | 0.88                                                                                                                                                                                | 0.88                                                                                                                                                                 | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.86                                                                                                                       | 0.86                                                                                                                                                          | 0.84                                                                                                                   | 0.84                                                                                                              | 0.84                                                                           | 0.85                                                           | 0.86                                                   | 0.86                                                                                        | 0.87                                                       |              | _                            |
| Numbe                                                                                                                      | or of day                                                                                                                                                                           | e in moi                                                                                                                                                             | nth (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lo 1a)                                                                                                                     |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                | ,                                                              | Average =                                              | Sum(40) <sub>1</sub> .                                                                      | 12 /12=                                                    | 0.86         | (40)                         |
| INUITIDE                                                                                                                   | Jan                                                                                                                                                                                 | Feb                                                                                                                                                                  | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            | May                                                                                                                                                           | Jun                                                                                                                    | Jul                                                                                                               | Aug                                                                            | Sep                                                            | Oct                                                    | Nov                                                                                         | Dec                                                        |              |                              |
| (41)m=                                                                                                                     | 31                                                                                                                                                                                  | 28                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Apr<br>30                                                                                                                  | 31                                                                                                                                                            | 30                                                                                                                     | 31                                                                                                                | 31                                                                             | 30<br>30                                                       | 31                                                     | 30                                                                                          | 31                                                         |              | (41)                         |
| (+1)111=                                                                                                                   | 01                                                                                                                                                                                  | 20                                                                                                                                                                   | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            | 01                                                                                                                                                            |                                                                                                                        |                                                                                                                   | 01                                                                             | 00                                                             | 01                                                     |                                                                                             | 01                                                         |              | (,                           |
|                                                                                                                            |                                                                                                                                                                                     |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                |                                                        |                                                                                             |                                                            |              |                              |
| 4 10/-                                                                                                                     | to book                                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                |                                                        |                                                                                             | 1-10/1-/                                                   |              |                              |
| 4. Wa                                                                                                                      | iter heat                                                                                                                                                                           | ing ener                                                                                                                                                             | rgy requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | irement:                                                                                                                   |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                |                                                        |                                                                                             | kWh/ye                                                     | ear:         |                              |
| Assum                                                                                                                      | ed occu                                                                                                                                                                             | ipancy, I                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                |                                                        |                                                                                             | kWh/ye                                                     | ear:         | (42)                         |
| Assum<br>if TF                                                                                                             | ed occu<br>A > 13.9                                                                                                                                                                 | ipancy, l<br>9, N = 1                                                                                                                                                | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            | 0(-0.0003                                                                                                                                                     | 349 x (TF                                                                                                              | FA -13.9                                                                                                          | )2)] + 0.0                                                                     | 0013 x (                                                       | ΓFA -13.                                               |                                                                                             |                                                            | ear:         | (42)                         |
| Assum<br>if TF<br>if TF                                                                                                    | ed occu<br>A > 13.9<br>A £ 13.9                                                                                                                                                     | ipancy, l<br>9, N = 1<br>9, N = 1                                                                                                                                    | N<br>+ 1.76 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1 - exp                                                                                                                   |                                                                                                                                                               |                                                                                                                        |                                                                                                                   |                                                                                |                                                                | ГҒА -13                                                | .9)                                                                                         | 27                                                         | ear:         |                              |
| Assum if TF if TF Annua Reduce                                                                                             | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua                                                                                                                            | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average                                                                                                          | N<br>+ 1.76 x<br>ater usag<br>hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [1 - exp<br>ge in litre<br>usage by                                                                                        | es per da<br>5% if the d                                                                                                                                      | ay Vd,av<br>Iwelling is                                                                                                | erage =<br>designed t                                                                                             | (25 x N)                                                                       | + 36                                                           |                                                        | .9)                                                                                         |                                                            | ear:         | (42)                         |
| Assum if TF if TF Annua Reduce                                                                                             | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua<br>e that 125                                                                                                              | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per l                                                                                          | N<br>+ 1.76 x<br>ater usag<br>hot water<br>person per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [1 - exp<br>ge in litre<br>usage by                                                                                        | es per da<br>5% if the d                                                                                                                                      | ay Vd,av<br>welling is<br>not and co                                                                                   | erage =<br>designed (<br>ld)                                                                                      | (25 x N)                                                                       | + 36<br>a water us                                             | se target o                                            | 9)<br>88                                                                                    | .12                                                        | ear:         |                              |
| Assum if TF if TF Annua Reduce not more                                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua<br>e that 125                                                                                                              | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>litres per l<br>Feb                                                                                                 | N<br>+ 1.76 x<br>ater usaç<br>hot water<br>person per<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [1 - exp<br>ge in litre<br>usage by<br>day (all w<br>Apr                                                                   | es per da<br>5% if the d<br>vater use, h                                                                                                                      | ay Vd,av<br>welling is<br>not and co                                                                                   | erage =<br>designed t<br>ld)<br>Jul                                                                               | (25 x N)<br>to achieve                                                         | + 36                                                           |                                                        | .9)                                                                                         | 27                                                         | ear:         |                              |
| Assum if TF if TF Annua Reduce not more                                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua<br>e that 125<br>Jan<br>er usage in                                                                                        | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per l<br>Feb                                                                                   | N + 1.76 x ater usag hot water person per Mar day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1 - exp ge in litre usage by a day (all w Apr ach month                                                                   | es per da<br>5% if the d<br>vater use, h<br>May<br>Vd,m = fac                                                                                                 | ay Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from                                                               | erage = designed to ld)  Jul Table 1c x                                                                           | (25 x N)<br>to achieve<br>Aug                                                  | + 36<br>a water us<br>Sep                                      | se target o                                            | 9)<br>88<br>Nov                                                                             | .12<br>Dec                                                 | ear:         |                              |
| Assum if TF if TF Annua Reduce not more                                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annua<br>e that 125                                                                                                              | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>litres per l<br>Feb                                                                                                 | N<br>+ 1.76 x<br>ater usaç<br>hot water<br>person per<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [1 - exp<br>ge in litre<br>usage by<br>day (all w<br>Apr                                                                   | es per da<br>5% if the d<br>vater use, h                                                                                                                      | ay Vd,av<br>welling is<br>not and co                                                                                   | erage =<br>designed t<br>ld)<br>Jul                                                                               | (25 x N)<br>to achieve                                                         | + 36<br>a water us<br>Sep                                      | Oct                                                    | 9)<br>88<br>Nov<br>93.4                                                                     | .12<br>Dec                                                 |              | (43)                         |
| Assum if TF if TF Annua Reduce not more Hot wate (44)m=                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>of that 125<br>Jan<br>er usage in                                                                                      | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>n litres per                                                                   | N + 1.76 x ater usag hot water person per Mar day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1 - exp<br>ge in litre<br>usage by<br>day (all w<br>Apr<br>ach month<br>86.35                                             | es per da<br>5% if the d<br>vater use, h<br>May<br>Vd,m = fac                                                                                                 | ay Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from 7                                                             | erage = designed to ld)  Jul Table 1c x  79.3                                                                     | (25 x N) to achieve  Aug (43)  82.83                                           | + 36 a water us  Sep  86.35                                    | Oct  89.88  Total = Su                                 | 9)<br>88<br>Nov<br>93.4<br>m(44) <sub>112</sub> =                                           | .12<br>Dec<br>96.93                                        | ear: 1057.39 |                              |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=                                                                   | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>of that 125<br>Jan<br>er usage in                                                                                      | ipancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>n litres per                                                                   | N + 1.76 x ater usag hot water person per Mar day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1 - exp<br>ge in litre<br>usage by<br>day (all w<br>Apr<br>ach month<br>86.35                                             | es per da<br>5% if the d<br>vater use, h<br>May<br>Vd,m = fac<br>82.83                                                                                        | ay Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from 7                                                             | erage = designed to ld)  Jul Table 1c x  79.3                                                                     | (25 x N) to achieve  Aug (43)  82.83                                           | + 36 a water us  Sep  86.35                                    | Oct  89.88  Total = Su                                 | 9)<br>88<br>Nov<br>93.4<br>m(44) <sub>112</sub> =                                           | .12<br>Dec<br>96.93                                        |              | (43)                         |
| Assum if TF if TF Annua Reduce not more Hot wate (44)m=                                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>that 125<br>Jan<br>er usage in<br>96.93                                                                                | pancy, I<br>9, N = 1<br>9, N = 1<br>e hot wa<br>al average<br>litres per I<br>Feb<br>n litres per<br>93.4                                                            | N + 1.76 x ater usag hot water person per Mar day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1 - exp ge in litre usage by day (all w Apr ach month 86.35                                                               | es per da<br>5% if the d<br>vater use, h<br>May<br>Vd,m = fac<br>82.83                                                                                        | y Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from 7<br>79.3                                                      | erage = designed to ld)  Jul Table 1c x  79.3                                                                     | (25 x N) to achieve  Aug (43)  82.83                                           | + 36 a water us  Sep  86.35  0 kWh/mon  100.77                 | Oct  89.88  Total = Su  117.44                         | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1                                       | 27  .12  Dec  96.93                                        |              | (43)                         |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=                                                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>e that 125<br>Jan<br>gr usage in<br>96.93                                                                              | pancy, I<br>P, N = 1<br>P, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>n litres per<br>93.4<br>hot water                                               | N + 1.76 x ater usag hot water person per Mar day for ea  89.88  used - cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [1 - exp ge in litre usage by a day (all w Apr ach month 86.35                                                             | es per da<br>5% if the d<br>vater use, h<br>May<br>Vd,m = fac<br>82.83                                                                                        | y Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65                              | erage = designed to ld)  Jul Table 1c x  79.3  m x nm x E  86.78                                                  | (25 x N) to achieve Aug (43) 82.83  97m / 3600 99.58                           | + 36 a water us  Sep  86.35  6 kWh/more                        | Oct  89.88  Total = Su  117.44                         | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19                               | 27  .12  Dec  96.93                                        | 1057.39      | (43)                         |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m=                                 | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>e that 125<br>Jan<br>96.93<br>content of<br>143.74                                                                     | pancy, I<br>P, N = 1<br>P, N = 1<br>e hot wa<br>al average<br>litres per p<br>Feb<br>1 litres per<br>93.4<br>hot water<br>125.72<br>vater heatii                     | N + 1.76 x ater usag hot water person per Mar day for ea  89.88  used - cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [1 - exp ge in litre usage by a day (all w Apr ach month 86.35                                                             | es per da 5% if the dayater use, H  May  Vd,m = fac  82.83  onthly = 4.                                                                                       | y Vd,av<br>lwelling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65                              | erage = designed to ld)  Jul Table 1c x  79.3  m x nm x E  86.78                                                  | (25 x N) to achieve Aug (43) 82.83  97m / 3600 99.58                           | + 36 a water us  Sep  86.35  6 kWh/more                        | Oct  89.88  Total = Su  117.44                         | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19                               | 27  .12  Dec  96.93                                        | 1057.39      | (43)                         |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m= Water                           | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>that 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage                                      | pancy, I<br>P, N = 1<br>P, N = 1<br>e hot wa<br>al average<br>litres per I<br>Feb<br>n litres per<br>93.4<br>hot water<br>125.72<br>vater heatin<br>18.86<br>loss:   | N + 1.76 x ater usage hot water person per Mar reday for ear 129.73  ng at point 19.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [1 - exp ge in litre usage by day (all w Apr ach month 86.35  culated mo 113.1                                             | es per da 5% if the da rater use, he May Vd,m = fact 82.83 conthly = 4. 108.52 co hot water 16.28                                                             | y Vd,av<br>welling is<br>not and co<br>Jun<br>79.3<br>190 x Vd,r<br>93.65                                              | erage = designed to ld)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02                               | (25 x N) to achieve  Aug (43)  82.83  DTm / 3600  99.58  boxes (46)  14.94     | + 36 a water us  Sep  86.35 b kWh/more 100.77 c) to (61) 15.12 | Oct  89.88  Total = Su  117.44  Total = Su  17.62      | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> =       | 27 .12 .12 .96.93                                          | 1057.39      | (43)<br>(44)<br>(45)<br>(46) |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m= Water Storag                    | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>e that 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage<br>e volum                         | pancy, I<br>P, N = 1<br>e hot wa<br>al average<br>litres per I<br>Feb<br>1 125.72<br>pater heatil<br>18.86<br>loss:<br>e (litres)                                    | N + 1.76 x ater usage hot water person per Mar r day for ear 89.88 used - cal 129.73 ng at point 19.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ge in litre usage by day (all w Apr ach month 86.35  culated mo 113.1  for use (no                                         | es per da 5% if the day ater use, he May Vd,m = fact 82.83 conthly = 4. 108.52 co hot water 16.28 colar or W                                                  | y Vd,av<br>welling is<br>not and co<br>Jun<br>79.3<br>190 x Vd,r<br>93.65<br>storage),                                 | erage = designed to ld)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02  storage                      | (25 x N) to achieve  Aug (43)  82.83  99.58  boxes (46)  14.94  within sa      | + 36 a water us  Sep  86.35 b kWh/more 100.77 c) to (61) 15.12 | Oct  89.88  Total = Su  117.44  Total = Su  17.62      | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> =       | 27 .12 .12 .96.93                                          | 1057.39      | (43)                         |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m= Water Storag If comr            | led occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>that 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage<br>e volum                          | pancy, I<br>P, N = 1<br>e hot wa<br>al average<br>litres per I<br>Feb<br>n litres per<br>93.4<br>hot water<br>125.72<br>vater heatin<br>18.86<br>loss:<br>e (litres) | N + 1.76 x ater usage hot water person person person person person person person at 29.73  129.73  129.73  19.46  includirated no tallocated at point and no tallocated at person | ge in litre usage by day (all w Apr ach month 86.35  culated me 113.1  of use (no                                          | es per da<br>5% if the day<br>tester use, if<br>May<br>Vd,m = fact<br>82.83<br>conthly = 4.<br>108.52<br>control water<br>16.28<br>colar or Waterly elling, e | y Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65<br>storage),<br>14.05         | erage = designed to ld)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02  storage  litres in           | (25 x N) to achieve  Aug (43)  82.83  99.58  boxes (46)  14.94  within sa (47) | + 36 a water us  Sep  86.35 b kWh/mor  100.77  15.12 ame vess  | Oct  89.88  Total = Su  117.44  Total = Su  17.62  sel | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> = 19.23 | 27 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 | 1057.39      | (43)<br>(44)<br>(45)<br>(46) |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m= Water Storag If comr Otherw     | ed occu A > 13.9 A £ 13.9 I averag the annua e that 125  Jan 96.93  content of 143.74  taneous w 21.56 storage e volum munity h vise if no                                          | pancy, I P, N = 1 P, N = 1 Pe hot wa al average litres per l Peb n litres per 93.4 hot water 125.72 rater heatin 18.86 loss: e (litres) eating a p stored            | N + 1.76 x ater usage hot water person person person person person person person at 29.73  129.73  129.73  19.46  includirated no tallocated at point and no tallocated at person | ge in litre usage by day (all w Apr ach month 86.35  culated me 113.1  of use (no                                          | es per da 5% if the day ater use, he May Vd,m = fact 82.83 conthly = 4. 108.52 co hot water 16.28 colar or W                                                  | y Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65<br>storage),<br>14.05         | erage = designed to ld)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02  storage  litres in           | (25 x N) to achieve  Aug (43)  82.83  99.58  boxes (46)  14.94  within sa (47) | + 36 a water us  Sep  86.35 b kWh/mor  100.77  15.12  ame vess | Oct  89.88  Total = Su  117.44  Total = Su  17.62  sel | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> = 19.23 | 27 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 | 1057.39      | (43)<br>(44)<br>(45)<br>(46) |
| Assum if TF if TF Annua Reduce not more  Hot wate (44)m=  Energy (45)m=  If instant (46)m= Water Storag If commother Water | ed occu<br>A > 13.9<br>A £ 13.9<br>I averag<br>the annual<br>that 125<br>Jan<br>96.93<br>content of<br>143.74<br>taneous w<br>21.56<br>storage<br>e volum<br>munity h<br>vise if no | pancy, I P, N = 1 P, N = 1 Pe hot wa al average litres per I Peb palitres per P3.4  hot water  125.72  rater heatil  18.86  loss: e (litres) eating a p stored loss: | N + 1.76 x ater usage hot water person per Mar reday for ear 89.88  used - cal 129.73  ng at point 19.46  includir and no tal hot water services and services are services as a services are services as a services are services and services are services a | ge in litre usage by day (all w Apr ach month 86.35  culated mo 113.1  for use (no 16.97  and any so ank in dw er (this in | es per da<br>5% if the day<br>tester use, if<br>May<br>Vd,m = fact<br>82.83<br>conthly = 4.<br>108.52<br>control water<br>16.28<br>colar or Waterly elling, e | y Vd,av<br>welling is<br>not and co<br>Jun<br>ctor from 7<br>79.3<br>190 x Vd,r<br>93.65<br>14.05<br>/WHRS<br>nter 110 | erage = designed to ld)  Jul Table 1c x  79.3  m x nm x E  86.78  enter 0 in  13.02  storage 0 litres in neous co | (25 x N) to achieve  Aug (43)  82.83  99.58  boxes (46)  14.94  within sa (47) | + 36 a water us  Sep  86.35 b kWh/mor  100.77  15.12  ame vess | Oct  89.88  Total = Su  117.44  Total = Su  17.62  sel | 9)  88  Nov  93.4  m(44) <sub>112</sub> = ables 1b, 1  128.19  m(45) <sub>112</sub> = 19.23 | 27 .12 .12 .12 .12 .13 .13 .13 .13 .13 .13 .13 .13 .13 .13 | 1057.39      | (43)<br>(44)<br>(45)<br>(46) |

|                                                                                                                                 |                                                     |                  |               |             |             |          |               | (50)         |  |
|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------|---------------|-------------|-------------|----------|---------------|--------------|--|
| Energy lost from water storage, kWh/year (48) x (49) = 0.72<br>b) If manufacturer's declared cylinder loss factor is not known: |                                                     |                  |               |             |             |          |               |              |  |
| Hot water storage loss factor from Table 2 (kWh/litre/day)                                                                      |                                                     |                  |               |             |             |          |               |              |  |
| If community heating see section 4.3                                                                                            |                                                     |                  |               |             |             |          |               |              |  |
| Volume factor from Table 2a                                                                                                     | . 01-                                               |                  |               |             |             | 0        |               | (52)         |  |
| Temperature factor from Table                                                                                                   |                                                     | (                | (= () (==)    | (=o)        |             | 0        |               | (53)         |  |
| Energy lost from water storage                                                                                                  | , kwh/year                                          | (47)             | (51) x (52) x | (53) =      | -           | 70       |               | (54)<br>(55) |  |
| Enter (50) or (54) in (55) $0.72$ Water storage loss calculated for each month $((56)m = (55) \times (41)m)$                    |                                                     |                  |               |             |             |          |               |              |  |
| (56)m= 22.32 20.16 22.32                                                                                                        | 21.6 22.32 21.6                                     |                  | -             | 22.32       | 21.6        | 22.32    |               | (56)         |  |
| If cylinder contains dedicated solar sto                                                                                        |                                                     |                  |               |             |             |          | ix H          | (00)         |  |
| (57)m= 22.32 20.16 22.32                                                                                                        | 21.6 22.32 21.6                                     |                  |               | 22.32       | 21.6        | 22.32    |               | (57)         |  |
| ` ' <u>L                                  </u>                                                                                  |                                                     | 22.32 22         | 21.0          | 22.52       | <u> </u>    | <u> </u> |               |              |  |
| Primary circuit loss (annual) from<br>Primary circuit loss calculated                                                           |                                                     | _ (E0) + 26E v   | (11)m         |             |             | 0        |               | (58)         |  |
| (modified by factor from Tab                                                                                                    | ` '                                                 | ` '              |               | er thermo   | stat)       |          |               |              |  |
| (59)m= 23.26 21.01 23.26                                                                                                        | 22.51 23.26 22.5                                    | <del> </del>     | <del></del>   | 23.26       | 22.51       | 23.26    |               | (59)         |  |
| Combi loss calculated for each                                                                                                  | month (61)m - (60) ÷                                | 365 × (41)m      |               |             | <u>I</u>    | <u>I</u> | l             |              |  |
| (61)m= 0 0 0                                                                                                                    |                                                     | 0 0              | 0             | 0           | 0           | 0        |               | (61)         |  |
| Total heat required for water h                                                                                                 | eating calculated for e                             |                  |               |             | (46)m +     |          | (59)m + (61)m |              |  |
| (62)m= 189.32 166.89 175.31                                                                                                     | 157.21 154.11 137.7                                 |                  |               | 163.02      | 172.3       | 184.79   |               | (62)         |  |
| Solar DHW input calculated using App                                                                                            |                                                     |                  |               |             |             |          |               |              |  |
| (add additional lines if FGHRS                                                                                                  |                                                     |                  |               |             |             |          |               |              |  |
| (63)m= 0 0 0                                                                                                                    | 0 0 0                                               | 0 (              | 0             | 0           | 0           | 0        |               | (63)         |  |
| Output from water heater                                                                                                        |                                                     |                  |               |             |             | •        |               |              |  |
| (64)m= 189.32 166.89 175.31                                                                                                     | 157.21 154.11 137.7                                 | 6 132.36 145     | 16 144.88     | 163.02      | 172.3       | 184.79   |               |              |  |
|                                                                                                                                 |                                                     |                  | Output from v | ater heater | r (annual)₁ | 12       | 1923.11       | (64)         |  |
| Heat gains from water heating                                                                                                   | , kWh/month 0.25 ´ [0.8                             | 85 × (45)m + (6  | 1)m] + 0.8    | x [(46)m    | + (57)m     | + (59)m  | ]             |              |  |
| (65)m= 84.26 74.74 79.6                                                                                                         | 72.9 72.55 66.43                                    | 65.32 69         | 68.79         | 75.51       | 77.91       | 82.75    |               | (65)         |  |
| include (57)m in calculation                                                                                                    | of (65)m only if cylinde                            | r is in the dwel | ing or hot v  | vater is fr | om com      | munity h | eating        |              |  |
| 5. Internal gains (see Table 5                                                                                                  | 5 and 5a):                                          |                  |               |             |             |          |               |              |  |
| Metabolic gains (Table 5), Wat                                                                                                  | tts                                                 |                  |               |             |             |          | ı             |              |  |
| Jan Feb Mar                                                                                                                     | Apr May Jur                                         |                  | ug Sep        | Oct         | Nov         | Dec      |               |              |  |
| (66)m= 113.51 113.51 113.51                                                                                                     | 113.51 113.51 113.5                                 | !!               | ļ             | 113.51      | 113.51      | 113.51   |               | (66)         |  |
| Lighting gains (calculated in A                                                                                                 | <del>'                                    </del>    | <del></del>      |               | ,           | ·           |          | I             |              |  |
| (67)m= 17.8 15.81 12.85                                                                                                         | 9.73 7.27 6.14                                      | 6.64 8.0         | 3 11.58       | 14.7        | 17.16       | 18.29    |               | (67)         |  |
| Appliances gains (calculated in                                                                                                 |                                                     | <del></del>      | -             |             |             |          | ı             |              |  |
| (68)m= 199.62 201.69 196.47                                                                                                     | 185.36 171.33 158.1                                 | 5   149.34   147 | 27 152.49     | 163.6       | 177.63      | 190.81   |               | (68)         |  |
| Cooking gains (calculated in A                                                                                                  |                                                     |                  |               |             |             |          |               |              |  |
| (69)m= 34.35 34.35 34.35                                                                                                        | 34.35 34.35 34.35                                   | 5 34.35 34       | 34.35         | 34.35       | 34.35       | 34.35    |               | (69)         |  |
| Pumps and fans gains (Table s                                                                                                   | <del>, , , , , , , , , , , , , , , , , , , </del>   |                  |               | 1           |             |          | ı             |              |  |
| (70)m= 0 0 0                                                                                                                    | 0 0 0                                               | 0 (              | 0             | 0           | 0           | 0        |               | (70)         |  |
|                                                                                                                                 | Losses e.g. evaporation (negative values) (Table 5) |                  |               |             |             |          |               |              |  |
| (71)m=   -90.81   -90.81   -90.81                                                                                               | -90.81 -90.81 -90.8                                 | 1 -90.81 -90     | 81 -90.81     | -90.81      | -90.81      | -90.81   |               | (71)         |  |

| Water heating gains (Table 5)                                                                                                |           |          |        |        |        |   |       |           |          |               |         |              |        |       |      |
|------------------------------------------------------------------------------------------------------------------------------|-----------|----------|--------|--------|--------|---|-------|-----------|----------|---------------|---------|--------------|--------|-------|------|
| (72)m=                                                                                                                       | 113.25    | 111.22   | 106.99 | 101.24 | 97.51  | 9 | 2.26  | 87.79     | 93.      | 52 95.55      | 101.5   | 5 108.21     | 111.23 |       | (72) |
| Total i                                                                                                                      | nternal   | gains =  |        |        |        | • | (66)  | m + (67)m | + (68    | 3)m + (69)m + | (70)m + | (71)m + (72) | m      |       |      |
| (73)m=                                                                                                                       | 387.72    | 385.77   | 373.37 | 353.39 | 333.17 | 3 | 313.6 | 300.82    | 306      | .46 316.67    | 336.8   | 5 360.05     | 377.38 |       | (73) |
| 6. So                                                                                                                        | lar gains | S:       |        |        |        |   |       |           |          |               |         |              |        |       |      |
| Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation. |           |          |        |        |        |   |       |           |          |               |         |              |        |       |      |
| Orient                                                                                                                       |           | Access F | actor  | Area   |        |   | Flu   |           |          | g_<br>-       |         | FF           |        | Gains |      |
|                                                                                                                              |           | Table 6d |        | m²     |        |   | ı a   | ble 6a    | _        | Table 6b      |         | Table 6c     |        | (W)   |      |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 1.8    | 35     | X | 1     | 0.63      | X        | 0.4           | X       | 0.8          | =      | 4.36  | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 1     | 0.63      | X        | 0.4           | X       | 0.8          | =      | 5.57  | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 1     | 0.63      | X        | 0.4           | X       | 0.8          | =      | 5.57  | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 3.     | 6      | X | 1     | 0.63      | X        | 0.4           | X       | 0.8          | =      | 8.49  | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 1.8    | 35     | X | 2     | 20.32     | X        | 0.4           | X       | 0.8          | =      | 8.34  | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 2     | 20.32     | X        | 0.4           | X       | 0.8          | =      | 10.64 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 2     | 20.32     | X        | 0.4           | X       | 0.8          | =      | 10.64 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 3.     | 6      | X | 2     | 20.32     | X        | 0.4           | X       | 0.8          |        | 16.22 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 1.8    | 35     | X | 3     | 34.53     | _ X      | 0.4           | X       | 0.8          | =      | 14.17 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | x      | 2.3    | 36     | X | 3     | 34.53     | x        | 0.4           | X       | 0.8          |        | 18.07 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | Х | 3     | 34.53     | <b>x</b> | 0.4           | X       | 0.8          | =      | 18.07 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 3.     | 6      | X | 3     | 34.53     | X        | 0.4           | X       | 0.8          | =      | 27.57 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 1.8    | 35     | X | 5     | 55.46     | ×        | 0.4           | X       | 0.8          | =      | 22.75 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | x | 5     | 55.46     | Х        | 0.4           | X       | 0.8          | =      | 29.03 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | Х |       | 5.46      | X        | 0.4           | X       | 0.8          | =      | 29.03 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 3.     | 6      | Х | 5     | 55.46     | X        | 0.4           | X       | 0.8          | =      | 44.28 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 1.8    | 35     | X | 7     | 4.72      | X        | 0.4           | X       | 0.8          | =      | 30.65 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 7     | 4.72      | X        | 0.4           | X       | 0.8          | =      | 39.1  | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 7     | 4.72      | X        | 0.4           | X       | 0.8          | =      | 39.1  | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 3.     | 6      | X | 7     | 4.72      | X        | 0.4           | X       | 0.8          | =      | 59.65 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 1.8    | 35     | X | 7     | 79.99     | X        | 0.4           | X       | 0.8          | =      | 32.81 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 7     | 79.99     | X        | 0.4           | X       | 0.8          | =      | 41.86 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 7     | 79.99     | X        | 0.4           | X       | 0.8          | =      | 41.86 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 3.     | 6      | X | 7     | 79.99     | X        | 0.4           | X       | 0.8          | =      | 63.86 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 1.8    | 35     | X | 7     | 74.68     | X        | 0.4           | X       | 0.8          | =      | 30.64 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 7     | 74.68     | X        | 0.4           | X       | 0.8          | =      | 39.08 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 7     | 74.68     | X        | 0.4           | X       | 0.8          | =      | 39.08 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 3.     | 6      | X | 7     | 74.68     | X        | 0.4           | X       | 0.8          | =      | 59.62 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 1.8    | 35     | X |       | 9.25      | x        | 0.4           | X       | 0.8          | =      | 24.31 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 5     | 9.25      | X        | 0.4           | X       | 0.8          | =      | 31.01 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 2.3    | 36     | X | 5     | 9.25      | X        | 0.4           | X       | 0.8          | =      | 31.01 | (74) |
| North                                                                                                                        | 0.9x      | 0.77     | X      | 3.     | 6      | X |       | 59.25     | x        | 0.4           | X       | 0.8          | =      | 47.3  | (74) |

| North | F    |      | 1 |      | 1 |        | 1          | _   | 1 |     | 1          | Γ     | ٦,-,،       |
|-------|------|------|---|------|---|--------|------------|-----|---|-----|------------|-------|-------------|
| North | 0.9x | 0.77 | X | 1.85 | X | 41.52  | X          | 0.4 | X | 0.8 | =          | 17.03 | (74)        |
| North | 0.9x | 0.77 | X | 2.36 | X | 41.52  | X          | 0.4 | X | 0.8 | ] =<br>1   | 21.73 | (74)        |
| North | 0.9x | 0.77 | X | 2.36 | X | 41.52  | X<br>1     | 0.4 | X | 0.8 | ] =<br>1   | 21.73 | (74)        |
| North | 0.9x | 0.77 | X | 3.6  | X | 41.52  | X          | 0.4 | X | 0.8 | ] =        | 33.14 | <b>(74)</b> |
| North | 0.9x | 0.77 | X | 1.85 | X | 24.19  | X          | 0.4 | X | 0.8 | =          | 9.92  | (74)        |
| North | 0.9x | 0.77 | X | 2.36 | X | 24.19  | X          | 0.4 | X | 0.8 | =          | 12.66 | (74)        |
| North | 0.9x | 0.77 | X | 2.36 | Х | 24.19  | X          | 0.4 | X | 0.8 | =          | 12.66 | <b>(74)</b> |
| North | 0.9x | 0.77 | X | 3.6  | X | 24.19  | X          | 0.4 | X | 0.8 | =          | 19.31 | (74)        |
| North | 0.9x | 0.77 | X | 1.85 | X | 13.12  | X          | 0.4 | X | 0.8 | ] =        | 5.38  | (74)        |
| North | 0.9x | 0.77 | X | 2.36 | X | 13.12  | X          | 0.4 | X | 0.8 | =          | 6.87  | (74)        |
| North | 0.9x | 0.77 | X | 2.36 | X | 13.12  | X          | 0.4 | X | 0.8 | =          | 6.87  | (74)        |
| North | 0.9x | 0.77 | X | 3.6  | X | 13.12  | X          | 0.4 | X | 0.8 | =          | 10.47 | (74)        |
| North | 0.9x | 0.77 | X | 1.85 | X | 8.86   | X          | 0.4 | X | 0.8 | =          | 3.64  | (74)        |
| North | 0.9x | 0.77 | X | 2.36 | X | 8.86   | X          | 0.4 | X | 0.8 | =          | 4.64  | (74)        |
| North | 0.9x | 0.77 | x | 2.36 | x | 8.86   | X          | 0.4 | X | 0.8 | =          | 4.64  | (74)        |
| North | 0.9x | 0.77 | X | 3.6  | X | 8.86   | X          | 0.4 | X | 0.8 | =          | 7.08  | (74)        |
| East  | 0.9x | 0.77 | X | 2.36 | X | 19.64  | X          | 0.4 | X | 0.8 | =          | 10.28 | (76)        |
| East  | 0.9x | 0.77 | X | 2.36 | X | 19.64  | Х          | 0.4 | X | 0.8 | =          | 10.28 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | х | 38.42  | ] x        | 0.4 | x | 0.8 | =          | 20.11 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | х | 38.42  | x          | 0.4 | x | 0.8 | =          | 20.11 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | X | 63.27  | <b>x</b>   | 0.4 | x | 0.8 | =          | 33.11 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 63.27  | Х          | 0.4 | x | 0.8 | =          | 33.11 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | х | 92.28  | X          | 0.4 | x | 0.8 | =          | 48.3  | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | х | 92.28  | X          | 0.4 | x | 0.8 | =          | 48.3  | (76)        |
| East  | 0.9x | 0.77 | X | 2.36 | X | 113.09 | X          | 0.4 | x | 0.8 | =          | 59.19 | (76)        |
| East  | 0.9x | 0.77 | X | 2.36 | X | 113.09 | x          | 0.4 | x | 0.8 | =          | 59.19 | (76)        |
| East  | 0.9x | 0.77 | X | 2.36 | x | 115.77 | X          | 0.4 | x | 0.8 | ] =        | 60.59 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 115.77 | x          | 0.4 | x | 0.8 | =          | 60.59 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 110.22 | x          | 0.4 | x | 0.8 | =          | 57.68 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 110.22 | x          | 0.4 | x | 0.8 | =          | 57.68 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 94.68  | X          | 0.4 | x | 0.8 | =          | 49.55 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 94.68  | x          | 0.4 | x | 0.8 | =          | 49.55 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 73.59  | x          | 0.4 | x | 0.8 | =          | 38.51 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 73.59  | x          | 0.4 | x | 0.8 | =          | 38.51 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | х | 45.59  | x          | 0.4 | x | 0.8 | ] <u>=</u> | 23.86 | (76)        |
| East  | 0.9x | 0.77 | × | 2.36 | x | 45.59  | x          | 0.4 | x | 0.8 | ] =        | 23.86 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 24.49  | x          | 0.4 | x | 0.8 | ] =        | 12.82 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 24.49  | x          | 0.4 | x | 0.8 | j<br>=     | 12.82 | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 16.15  | x          | 0.4 | x | 0.8 | j =        | 8.45  | (76)        |
| East  | 0.9x | 0.77 | x | 2.36 | x | 16.15  | x          | 0.4 | x | 0.8 | ] =        | 8.45  | (76)        |
|       | _    |      | • |      | • |        | <b>.</b> ' |     | 1 |     | •          |       | _           |

(83)m = Sum(74)m ...(82)m

170.66

102.27

55.22

36.9

232.72

283.78

221.68

286.88

301.57

Solar gains in watts, calculated for each month

144.1

86.04

(83)m =

44.54

(83)

| Total g                                                                                                                                         | jains – i        | nternal a    | and solai | r (84)m =   | = (73)m · | + (83)m    | , watts   |           |            |                       |             |            |         |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|-----------|-------------|-----------|------------|-----------|-----------|------------|-----------------------|-------------|------------|---------|-------|
| (84)m=                                                                                                                                          | 432.26           | 471.81       | 517.47    | 575.07      | 620.05    | 615.17     | 584.61    | 539.18    | 487.32     | 439.12                | 415.27      | 414.28     |         | (84)  |
| 7. Me                                                                                                                                           | an inter         | nal tem      | perature  | (heating    | season    | )          |           |           |            |                       |             |            |         |       |
|                                                                                                                                                 |                  | •            |           | `           |           | ,          | from Tab  | ole 9. Th | 1 (°C)     |                       |             |            | 21      | (85)  |
| Temperature during heating periods in the living area from Table 9, Th1 (°C)  Utilisation factor for gains for living area, h1,m (see Table 9a) |                  |              |           |             |           |            |           |           |            |                       | `` ′        |            |         |       |
| O timo                                                                                                                                          | Jan              | Feb          | Mar       | Apr         | May       | Jun        | Jul       | Aug       | Sep        | Oct                   | Nov         | Dec        |         |       |
| (86)m=                                                                                                                                          | 1                | 1            | 0.99      | 0.95        | 0.82      | 0.61       | 0.45      | 0.5       | 0.79       | 0.97                  | 0.99        | 1          |         | (86)  |
| . ,                                                                                                                                             |                  | 1 4          |           | L           | T4 //:    | . !!       | 2 +       |           | - 0-)      |                       |             |            | l       |       |
| (87)m=                                                                                                                                          | 20.15            | 20.26        | 20.46     | 20.73       | 20.92     | 20.99      | ps 3 to 7 | 21        | 20.96      | 20.71                 | 20.39       | 20.13      | 1       | (87)  |
|                                                                                                                                                 |                  | <u> </u>     |           | <u> </u>    | ļ         | <u> </u>   | ļ         | ļ         |            | 20.71                 | 20.59       | 20.13      | l       | (01)  |
|                                                                                                                                                 |                  |              |           | i           | i e       |            | from Ta   | ì         | <u>`</u>   |                       | Ι           | ı          | I       | (22)  |
| (88)m=                                                                                                                                          | 20.18            | 20.19        | 20.19     | 20.2        | 20.21     | 20.22      | 20.22     | 20.22     | 20.21      | 20.21                 | 20.2        | 20.2       |         | (88)  |
| Utilisa                                                                                                                                         | ation fac        | tor for g    | ains for  | rest of d   | welling,  | h2,m (se   | e Table   | 9a)       | _          |                       | _           | _          | _       |       |
| (89)m=                                                                                                                                          | 1                | 0.99         | 0.98      | 0.93        | 0.77      | 0.54       | 0.37      | 0.42      | 0.72       | 0.95                  | 0.99        | 1          |         | (89)  |
| Mean                                                                                                                                            | interna          | l temper     | ature in  | the rest    | of dwelli | ng T2 (f   | ollow ste | eps 3 to  | 7 in Tabl  | e 9c)                 |             |            |         |       |
| (90)m=                                                                                                                                          | 19.04            | 19.2         | 19.49     | 19.89       | 20.13     | 20.21      | 20.22     | 20.22     | 20.18      | 19.87                 | 19.4        | 19.03      |         | (90)  |
|                                                                                                                                                 |                  |              |           | !           |           |            | !         |           | f          | LA = Livin            | g area ÷ (4 | 4) =       | 0.48    | (91)  |
| Moan                                                                                                                                            | intorna          | I tompor     | aturo (fo | or the wh   | ole dwe   | lling) – f | LA × T1   | ⊥ (1 _ fl | ۸) ی T2    |                       |             |            |         |       |
| (92)m=                                                                                                                                          | 19.57            | 19.71        | 19.96     | 20.29       | 20.51     | 20.59      | 20.59     | 20.59     | 20.55      | 20.27                 | 19.88       | 19.56      |         | (92)  |
|                                                                                                                                                 |                  |              |           |             |           |            | m Table   |           |            |                       | 10.00       | 10.00      | l       | (/    |
| (93)m=                                                                                                                                          | 19.57            | 19.71        | 19.96     | 20.29       | 20.51     | 20.59      | 20.59     | 20.59     | 20.55      | 20.27                 | 19.88       | 19.56      |         | (93)  |
|                                                                                                                                                 |                  |              | uirement  |             |           |            |           |           |            |                       |             |            |         |       |
| Set T                                                                                                                                           | i to the i       | mean in      |           | mperatu     |           | ed at st   | ep 11 of  | Table 9l  | o, so tha  | t Ti,m=(              | 76)m an     | d re-calc  | culate  |       |
| ti io di                                                                                                                                        | Jan              | Feb          | Mar       | Apr         | May       | Jun        | Jul       | Aug       | Sep        | Oct                   | Nov         | Dec        |         |       |
| Utilisa                                                                                                                                         |                  |              | ains, hm  |             | I way     | <u> </u>   | <u> </u>  | l rug     | СОР        | 001                   | 1101        |            |         |       |
| (94)m=                                                                                                                                          | 1                | 0.99         | 0.98      | 0.93        | 0.79      | 0.57       | 0.41      | 0.46      | 0.75       | 0.96                  | 0.99        | 1          |         | (94)  |
| Usefu                                                                                                                                           | ∟——<br>ıl gains, | hmGm         | , W = (9  | 4)m x (8    | 4)m       | ļ          | <u> </u>  | <u> </u>  | ļ          |                       | <u> </u>    | ļ          | l       |       |
| (95)m=                                                                                                                                          |                  | 468.35       | 507.49    | 535.65      | 492.16    | 352.48     | 237.63    | 248.2     | 365.55     | 419.71                | 411.78      | 413.03     |         | (95)  |
| Montl                                                                                                                                           | nly aver         | age exte     | ernal tem | perature    | from Ta   | able 8     |           |           |            |                       |             |            | J       |       |
| (96)m=                                                                                                                                          | 4.3              | 4.9          | 6.5       | 8.9         | 11.7      | 14.6       | 16.6      | 16.4      | 14.1       | 10.6                  | 7.1         | 4.2        |         | (96)  |
| Heat                                                                                                                                            | loss rate        | for me       | an intern | al tempe    | erature,  | Lm , W =   | =[(39)m : | x [(93)m  | – (96)m    | ]                     |             |            | _       |       |
| (97)m=                                                                                                                                          | 954.11           | 921.95       | 834.79    | 694.18      | 534.99    | 356.87     | 238.03    | 249.07    | 387.52     | 587.35                | 781.42      | 945.98     |         | (97)  |
| Space                                                                                                                                           | e heatin         | g requir     | ement fo  | r each n    | nonth, k  | /Vh/mon    | th = 0.02 | 24 x [(97 | )m – (95   | )m] x (4 <sup>-</sup> | 1)m         |            | •       |       |
| (98)m=                                                                                                                                          | 389.5            | 304.82       | 243.51    | 114.14      | 31.87     | 0          | 0         | 0         | 0          | 124.72                | 266.15      | 396.51     |         |       |
|                                                                                                                                                 |                  |              |           |             |           |            |           | Tota      | l per year | (kWh/year             | r) = Sum(9  | 8)15,912 = | 1871.21 | (98)  |
| Space                                                                                                                                           | e heatin         | g requir     | ement in  | kWh/m²      | ²/year    |            |           |           |            |                       |             |            | 26.36   | (99)  |
| 8c. S                                                                                                                                           | pace co          | oling red    | quiremer  | nt          |           |            |           |           |            |                       |             |            |         |       |
| Calcu                                                                                                                                           | lated fo         | r June, .    | July and  | August.     | See Tal   | ole 10b    |           |           |            |                       |             |            | Ī       |       |
|                                                                                                                                                 | Jan              | Feb          | Mar       | Apr         | May       | Jun        | Jul       | Aug       | Sep        | Oct                   | Nov         | Dec        |         |       |
|                                                                                                                                                 |                  | <del>`</del> | 1         | <del></del> | i e       |            | perature  |           |            |                       | ·           | <u> </u>   | I       |       |
| (100)m=                                                                                                                                         | 0                | 0            | 0         | 0           | 0         | 560.46     | 441.21    | 451.47    | 0          | 0                     | 0           | 0          |         | (100) |

| Utilisation factor for loss hm                                                                                                                                                       |                      |             |             |           |            |             |            |       |          |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|-------------|-----------|------------|-------------|------------|-------|----------|--------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                | 0 0                  | 0.97        | 0.99        | 0.98      | 0          | 0           | 0          | 0     |          | (101)  |
| Useful loss, hmLm (Watts)                                                                                                                                                            | = (100)m x (101)r    | <br>n       |             | 1         | l          |             |            |       |          |        |
| (102)m = 0 0 0                                                                                                                                                                       | 0 0                  | 541.89      | 435.58      | 442.2     | 0          | 0           | 0          | 0     |          | (102)  |
| Gains (solar gains calculated for applicable weather region, see Table 10)                                                                                                           |                      |             |             |           |            |             |            |       |          |        |
| (103)m= 0 0 0                                                                                                                                                                        | 0 0                  | 792.43      | 755.27      | 703.18    | 0          | 0           | 0          | 0     | (44)     | (103)  |
| Space cooling requirement for month, whole dwelling, continuous ( $kWh$ ) = 0.024 $x$ [(103) $m$ – (102) $m$ ] $x$ (41) $m$ set (104) $m$ to zero if (104) $m$ < 3 $\times$ (98) $m$ |                      |             |             |           |            |             |            |       |          |        |
| (104)m = 0 0 0                                                                                                                                                                       | 0 0                  | 180.39      | 237.85      | 194.17    | 0          | 0           | 0          | 0     |          |        |
|                                                                                                                                                                                      | 612.41               | (104)       |             |           |            |             |            |       |          |        |
| Cooled fraction                                                                                                                                                                      | )L)                  |             |             |           | f C =      | cooled      | area ÷ (4  | 4) =  | 0.68     | (105)  |
| Intermittency factor (Table 10 (106)m= 0 0 0                                                                                                                                         | 0 0                  | 0.25        | 0.25        | 0.25      | 0          | 0           | 0          | 0     |          |        |
| (100)111-                                                                                                                                                                            |                      | 0.20        | 0.20        | 0.20      |            | l = Sum(    |            | = +   | 0        | (106)  |
| Space cooling requirement for                                                                                                                                                        | or month = $(104)$ r | n × (105)   | × (106)r    | m         |            |             |            |       |          | `` ′   |
| (107)m = 0 0 0                                                                                                                                                                       | 0 0                  | 30.68       | 40.45       | 33.02     | 0          | 0           | 0          | 0     |          | _      |
|                                                                                                                                                                                      |                      |             |             |           | Tota       | = Sum(      | (1,0,7)    | = [   | 104.15   | (107)  |
| Space cooling requirement in                                                                                                                                                         | n kWh/m²/year        |             |             |           | (107)      | ) ÷ (4) =   |            |       | 1.47     | (108)  |
| 9b. Energy requirements – C                                                                                                                                                          |                      |             |             |           |            |             |            |       |          |        |
| This part is used for space h<br>Fraction of space heat from s                                                                                                                       |                      |             |             |           |            |             | unity scl  | neme. | 0        | (301)  |
| Fraction of space heat from                                                                                                                                                          | community syster     | n 1 – (301  | 1) =        |           |            |             |            |       | 1        | (302)  |
| The community scheme may obtain heat from several sources. The procedure allows for CHP and up to four other heat sources; the latter                                                |                      |             |             |           |            |             |            |       |          | _      |
| includes boilers, heat pumps, geother Fraction of heat from Commo                                                                                                                    |                      | from power  | r stations. | See Appe  | ndix C.    |             |            | Г     | 4        | (303a) |
|                                                                                                                                                                                      |                      |             |             |           |            | (0          | 20) (200   | L<br> | 1        | ╡      |
| Fraction of total space heat f                                                                                                                                                       |                      |             |             |           |            |             | 02) x (303 | ia) = | 1        | (304a) |
| Factor for control and chargi                                                                                                                                                        | ng method (Table     | 4c(3)) fo   | r commu     | unity hea | ating sys  | tem         |            |       | 1        | (305)  |
| Distribution loss factor (Table                                                                                                                                                      | e 12c) for commu     | nity heatir | ng syste    | m         |            |             |            |       | 1.05     | (306)  |
| Space heating                                                                                                                                                                        |                      |             |             |           |            |             |            | _     | kWh/year |        |
| Annual space heating require                                                                                                                                                         | ement                |             |             |           |            |             |            |       | 1871.21  |        |
| Space heat from Community                                                                                                                                                            | heat pump            |             |             |           | (98) x (30 | 04a) x (30  | 5) x (306) | =     | 1964.77  | (307a) |
| Efficiency of secondary/supp                                                                                                                                                         | lementary heating    | g system    | in % (fro   | om Table  | 4a or A    | ppendix     | E)         |       | 0        | (308   |
| Space heating requirement f                                                                                                                                                          | om secondary/su      | ıpplemen    | tary syst   | tem       | (98) x (30 | 01) x 100 · | ÷ (308) =  |       | 0        | (309)  |
| Water heating                                                                                                                                                                        |                      |             |             |           |            |             |            | Г     |          | _      |
| Annual water heating require                                                                                                                                                         |                      |             |             |           |            |             |            |       | 1923.11  |        |
| If DHW from community sche<br>Water heat from Community                                                                                                                              |                      |             |             |           | (64) x (30 | 03a) x (30  | 5) x (306) | =     | 2019.26  | (310a) |
| Electricity used for heat distr                                                                                                                                                      | bution               |             |             | 0.01      | × [(307a)  | (307e) +    | (310e)] =  | 39.84 | (313)    |        |
| Cooling System Energy Effic                                                                                                                                                          | iency Ratio          |             |             |           |            |             |            | Ī     | 6.25     | (314)  |
| Space cooling (if there is a fi                                                                                                                                                      | ked cooling syste    | m, if not e | enter 0)    |           | = (107) ÷  | (314) =     |            | Ī     | 16.66    | (315)  |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                           |                      |             |             |           |            |             |            |       |          | _      |
| mechanical ventilation - bala                                                                                                                                                        | nced, extract or p   | ositive in  | put from    | outside   |            |             |            |       | 173.24   | (330a) |
|                                                                                                                                                                                      |                      |             |             |           |            |             |            |       |          |        |

| warm air heating system fans                                                                              | 0           | (330b) |
|-----------------------------------------------------------------------------------------------------------|-------------|--------|
| pump for solar water heating                                                                              | 0           | (330g) |
| Total electricity for the above, kWh/year =(330a) + (330b) + (330g) =                                     | 173.24      | (331)  |
| Energy for lighting (calculated in Appendix L)                                                            | 314.29      | (332)  |
| Total delivered energy for all uses (307) + (309) + (310) + (312) + (315) + (331) + (332)(237b) =         | 4488.23     | (338)  |
| 12b. CO2 Emissions – Community heating scheme                                                             |             |        |
| Energy Emission facto                                                                                     |             |        |
| kWh/year kg CO2/kWh                                                                                       | kg CO2/year |        |
| CO2 from other sources of space and water heating (not CHP)                                               |             |        |
| Efficiency of heat source 1 (%)  If there is CHP using two fuels repeat (363) to (366) for the second for | uel 364     | (367a) |
| CO2 associated with heat source 1 [(307b)+(310b)] x 100 ÷ (367b) x 0.52                                   | = 568.05    | (367)  |
| Electrical energy for heat distribution [(313) x 0.52                                                     | = 20.68     | (372)  |
| Total CO2 associated with community systems (363)(366) + (368)(372)                                       | = 588.73    | (373)  |
| CO2 associated with space heating (secondary) (309) x 0                                                   | = 0         | (374)  |
| CO2 associated with water from immersion heater or instantaneous heater (312) x 0.52                      | = 0         | (375)  |
| Total CO2 associated with space and water heating (373) + (374) + (375) =                                 | 588.73      | (376)  |
| CO2 associated with space cooling (315) x                                                                 | = 8.65      | (377)  |
| CO2 associated with electricity for pumps and fans within dwelling (331) x 0.52                           | = 89.91     | (378)  |
| CO2 associated with electricity for lighting (332))) x 0.52                                               | = 163.12    | (379)  |
| Total CO2, kg/year sum of (376)(382) =                                                                    | 850.41      | (383)  |
| Dwelling CO2 Emission Rate (383) ÷ (4) =                                                                  | 11.98       | (384)  |
| El rating (section 14)                                                                                    | 90.18       | (385)  |