

SHELDON HOUSE, CROMWELL ROAD, TEDDINGTON, TW11 9EJ

RHP DEVELOP LIMITED

FLOOD RISK STATEMENT AND DRAINAGE STRATEGY

REPORT REF. 2200650-01

PROJECT NO. 2200650

JANUARY 2023

HEAD OFFICE: 3rd Floor, The Hallmark Building, 52-56 Leadenhall Street, London, EC3M 5JE T | 020 7680 4088 ESSEX: 1 - 2 Crescent Court, Billericay, Essex, CM12 9AQ T | 01277 657 677 KENT: Suite 10, Building 40, Churchill Business Centre, Kings Hill, Kent, ME19 4YU T | 01732 752 155 MIDLANDS: Office 3, The Garage Studios, 41-43 St Mary's Gate, Nottingham, NG1 1PU T | 0115 697 0940 SOUTH WEST: City Point, Temple Gate, Bristol, BS1 6PL T | 0117 456 4994 SUFFOLK: Suite 110, Suffolk Enterprise Centre, 44 Felaw Street, Ipswich, IP2 8SJ T | 01473 407 321

Email: enquiries@ardent-ce.co.uk

SHELDON HOUSE	2200650-01
FLOOD RISK AND DRAINAGE STRATEGY STATEMENT	JANUARY 2023
CONTENTS	
	Page
1.0 INTRODUCTION	1
Preface	1
2.0 BASELINE PARAMETERS	2
Existing Site	2
Topography	4
Hydrology	4
Ground Conditions	4
Existing Sewer Infrastructure	7
3.0 POLICY CONTEXT	8
National Planning Policy Framework (July 2021)	8
Flood and Water Management Act (2010)	8
Sustainable Drainage Systems - Non-statutory technical s sustainable drainage systems March 2015	tandards for 9
Sequential Test	9
Exception Test	9
Regional & Local Planning Policy	10
The London Borough of Richmond Local Plan (Draft Issue 2021)	– December 11
4.0 SOURCES OF FLOODING	12
Fluvial/ Tidal Flood Risk	12
Pluvial Flood Risk	13
Groundwater Flood Risk	15
Sewer Flood Risk	16
Flood Risk from Artificial Sources	17
5.0 FOUL AND SURFACE WATER DRAINAGE STRATE	GY 18
Proposed Sustainable Drainage Systems (SuDS)	18
Proposed surface water runoff rates	22
Surface Water Quality	23
Long Term Storage	23
Exceedance Flows	23

SHELDON HOUSE	2200650-01
FLOOD RISK AND DRAINAGE STRATEGY STATEMENT	JANUARY 2023
Finished floor levels	24
Future Maintenance	24
Proposed Foul Water Drainage Strategy	24
6.0 SUMMARY AND CONCLUSIONS	26

APPENDICES

Appendix A	Topographic Survey
Appendix B	Borehole Records
Appendix C	Phase II Site Investigation Report
Appendix D	Thames Water Asset Plans and Sewer Flooding History
Appendix E	Foul and Surface Water Drainage Strategy and
	Surface Water Catchment Plan
Appendix F	Greenfield Runoff Calculations
Appendix G	Preliminary Drainage Calculations
Appendix H	Microdrainage Calculations
Appendix I	Maintenance Management Plan and C753 Simple Index
	Treatment Method
Appendix J	Pre-development Enquiries
Appendix K	Foul Loading Calculations

SHELDON HOUSE

JANUARY 2023

FLOOD RISK AND DRAINAGE STRATEGY STATEMENT

DOCUMENT CONTROL SHEET

REV	ISSUE PURPOSE	AUTHOR	CHECKED	APPROVED	DATE
-	DRAFT	TR	CC	-	NOV 2022
Α	FINAL	TR	СС	BC	DEC 2022
В	FINAL	TR	CC	BC	JAN 2023
			æ	The ally	

DISTRIBUTION

This report has been prepared for the exclusive use **RHP Develop Limited.** It should not be reproduced in whole or in part, or relied upon by third parties, without the express written authority of Ardent Consulting Engineers.

1.0 INTRODUCTION

Preface

- 1.1 Ardent Consulting Engineers (hereafter referred to as Ardent) has been commissioned by RHP Develop Limited to prepare a Flood Risk Statement and Drainage Strategy for a proposed development at the site of the former Sheldon House off Cromwell Road, Teddington (hereafter referred to as the "Site").
- 1.2 The statement has been prepared to accompany a planning application to the London Borough of Richmond upon Thames as both local planning authority and lead local flood authority.
- 1.3 This statement has been written with specific reference to the requirements of the National Planning Framework (NPPF July 2021) and the Planning Practice Guidance (March 2014 updated August 2022).

FLOOD RISK STATEMENT AND DRAINAGE STRATEGY

JANUARY 2023

2.0 BASELINE PARAMETERS

Existing Site

Figure 2-1: Site Location Plan

- 2.1. The Site currently consists of the former Sheldon House and associated hardstand parking. It is located south of Cromwell Road and west of Fairfax Road and is surrounded by residential properties. The Site is at OS grid reference 516264, 170626 and the nearest post code is TW11 9EJ. Refer to Figure 2-1 above.
- 2.2. The Site is currently approximately 68% impermeable.

Development Proposals

- The scheme proposals comprise the demolition of the building to allow the construction of a new 5-storey residential development providing 27 residential units.
- 2.4. Amenity space will also be provided consisting of balconies, private garden areas and communal space.
- 2.5. An extract of the proposed site layout ground floor plan as of December 2022 is shown in **Figure 2-2** below.

2.6. The development is classified as having an overall 'More Vulnerable' land use within the NPPF.

Topography

- 2.7. A topographical survey of the former Sheldon House area of the site was carried out by Magnolia Square in March 2021. The surveys is included in **Appendix A**.
- 2.8. The survey shows external areas of the Site to be relatively flat, in the order of 9.06 to 9.26m AOD.

Hydrology

- 2.9. The nearest main River is the River Thames located approximately 950m to the north-east of the site. There are no other main rivers in the vicinity of the site.
- 2.10. The Longford River is located approximately 1.5km to the west of the site and there is also a watercourse through Hampton Wick 950m to the south of the site. There are no other surface water bodies within the vicinity of the site. The site hydrology is shown in **Figure 2-3**.

Figure 2-3: Rivers and Watercourses

Ground Conditions

2.11. Using data from the British Geological Survey (BGS) as displayed in Figures 2-4 and 2-5 below, the Site is shown to be underlain by superficial deposits of sands and gravels of the Kempton Park Gravel Member which are in turn underlain by the London Clay formation.

2.12. Borehole records from approximately 240m east of site (ref TQ17SE115) indicate the ground conditions to comprise "made ground" to a depth of 0.75m bgl (metres below ground level) underlain by "sandy clay and stones" to a depth of 3mbgl, which is in turn underlain by "gravel" to a depth of 5.3mbgl, which is underlain by a series of varying clays until the base of the borehole at 42.7mbgl. No groundwater was encountered within this borehole. However, from a borehole record approximately 200m north-west of the site (ref TQ17SE10) with a similar soil stratum, groundwater was found at 3.81mbgl. Refer to **Appendix B** for the borehole logs.

Figure 2-4: BGS Geology Maps (Bedrock Geology)

Figure 2-5: BGS Geology Maps (Superficial Geology)

- 2.13. An environmental 'Phase II Site Investigation Report' was undertaken by AGB Environmental in August 2022 in preparation for the works. The ground conditions identified were similar to above with made ground to a depth of 0.6mbgl, underlain by superficial geology of the Kempton Park Gravel Member with varying density with some slightly gravelly sand from 1.2 to 3.7mbgl, succeeded by either sandy silt or gravelly sand. Underlying the superficial geology was the London Clay Formation, encountered as a firm to stiff grey clay to 9.50mbgl, followed by claystone to 10.40mbgl, and stiff grey clay with occasional claystone patches to 25.00mbgl. Groundwater seepage was encountered at 2.2mbgl during the formation of a borehole. During monitoring groundwater was observed in between 4.13mbgl and 4.19mbgl.
- 2.14. Chemical laboratory testing was undertaken by AGB Environmental in August 2022 and detailed as part of the 'Phase II Site Investigation Report'. Elevated concentrations of lead and four congeners of polycyclic aromatic hydrocarbons were identified in soil samples from four locations at depths between 0.20mbgl and 1.00mbgl. Elevated concentrations of cadmium, nickel and zinc were also identified in groundwater sampling which exceeds water quality standards for surface water.
- 2.15. The report concluded the following:
- 2.16. "The exceedances in relation to surface water quality standards are not considered to be significant given the industrial history of the surrounding area and the lack of exceedances during a subsequent round of monitoring and sampling. The closest surface water receptor is a lake in Bushy Park, located approximately 850m south of site. Given the distance to the identified receptor, an unacceptable risk is not considered to be present."
- 2.17. The 'Phase II Site Investigation Report' can be found in Appendix C.
- 2.18. The Department for the Environment, Food and Rural Affairs (Defra) mapping indicates the Site is not located within a Source Protection Zone. However, it is located within a Drinking Water Safeguard Zone (Surface Water).

Existing Sewer Infrastructure

- An extract of Thames Water sewer records is provided in Figure 2-6 below. A full copy of the plan is included in Appendix D.
- 2.20. The plan shows public surface water sewers run along Cromwell Road and Fairfax Road surrounding the site. A number of gullies are present within the site boundary therefore it is assumed that a private drainage network exists that connects to the surface water sewer.
- 2.21. A number of foul sewers also exist around the site. Foul sewers are present on Cromwell Road and Fairfax Road.

Figure 2-6: Extract of Thames Water Sewer Records

3.0 POLICY CONTEXT

National Planning Policy Framework (July 2021)

- 3.1 The National Planning Policy Framework (NPPF) was introduced on 27 March 2012 and revised in July 2018 and again in February 2019 and July 2021; paragraphs 159 to 169 inclusive, establish the Planning Policy relating to flood risk management. The Technical Guide to the NPPF was superseded by the Planning Practice Guidance (PPG) in March 2014.
- 3.2 The main focus of the policy is to direct development towards areas of the lowest practicable flood risk and to ensure that all development is safe, without increasing flood risk elsewhere. The main considerations are:
 - a) applying the sequential test and then, if necessary, the exception test as set out below;
 - b) safeguarding land from development that is required, or is likely to be required, for current of future flood management;
 - c) using opportunities provided by new development to reduce the causes and impacts of flooding (where appropriate through the use of natural flood management techniques); and
 - d) where climate change is expected to increase flood risk so that some existing development may not be sustainable in the longterm, seeking opportunities to relocate development including housing, to more sustainable locations.

Flood and Water Management Act (2010)

3.3 The Flood and Water Management Act places a duty on all flood risk management authorities to co-operate with each other. The act also provides lead local flood authorities and the Environment Agency with a power to request information required in connection with their flood risk management functions.

Sustainable Drainage Systems - Non-statutory technical standards for sustainable drainage systems March 2015

- 3.4 The Non-statutory technical standards for sustainable drainage systems were published in March 2015. This document sets out non-statutory technical standards for sustainable drainage systems. They should be used in conjunction with the Planning Practice Guidance. In addition, the Best Practice Guidance for the Non statutory technical standards was published in July 2015 by LASOO (Local Authority SuDS Officer Organisation).
- 3.5 The Local Planning Authority (LPA) may set local requirements for planning permission that have the effect of more stringent requirements than these non-statutory technical standards.
- 3.6 In addition, SuDS should be designed in accordance with CIRIA 753 "The SuDS Manual", which represents current best practice.

Sequential Test

- 3.7 The aim of the sequential test is to steer new development to areas with the lowest risk of flooding from any source. Development should not be allocated or permitted if there are reasonably available sites appropriate for the proposed development in areas with a lower risk of flooding. The strategic flood risk assessment will provide the basis for applying this test. The sequential approach should be used in areas known to be at risk now or in the future from any form of flooding.
- 3.8 As the Site is shown to be located within Flood Zone 1 of the Environment Agency flood mapping, it is not necessary for the Site to undergo the Sequential Test.

Exception Test

3.9 Table 3 of the PPG replicated below in Table 3-1, confirms that the Exception Test is not required for "More Vulnerable" uses in Flood Zone 1.

Flo vuli clas (se	od risk nerability ssification e table 2)	Essential infrastructure	Water compatible	Highly vulnerable	More vulnerable	Less vulnerable
-	Zone 1	×	~	~	~	~
ble 1)	Zone 2	×	~	Exception Test required	~	~
ne (see table	Zone 3a	Exception Test required	~	×	Exception Test required	~
Flood zon	Zone 3b functional floodplain	Exception Test required	~	×	×	×

Key: ✓ Development is appropriate. × Development should not be permitted.

Regional & Local Planning Policy

- 3.10 In the preparation of this report, reference is made to the following regional and local planning documents:
 - London Borough of Richmond upon Thames Strategic (Richmond) Flood Risk Assessment (SFRA) – Level 1, March 2021;
 - London Borough of Richmond upon Thames Surface Wateer Management Plan (SWMP), December 2021;
 - London Borough of Richmond upon Thames Preliminary Flood Risk Assessment (Drain London), May 2011;
 - London Borough of Richmond upon Thames Further Groundwater Investigations, March 2021;
 - London Borough of Richmond upon Thames Local Flood Risk Management Strategy (August 2015);
 - The London Borough of Richmond Local Plan (Draft Issue December 2021).

3.11 London Borough of Richmond upon Thames as Lead Local Flood Authority is responsible for managing local flood risk originating from surface runoff, groundwater and ordinary watercourses.

The London Borough of Richmond Local Plan (Draft Issue – December 2021)

- 3.12 The Richmond Local Plan, issued as a 'Pre-Publication' draft, is the key strategic planning document for Richmond, setting out the Council's proposed vision, objectives and spatial strategy.
- 3.13 The document includes place-based strategies, site allocations and policies which will support the delivery of the Plan's vision and objectives and spatial strategy. It identifies where development will take place and how places within the borough will change.
- 3.14 The following policies are related to *Water and Flooding*:
 - Policy 3: Tackling the climate emergency
 - Policy 8: Flood risk and sustainable drainage
 - Policy 9: Water resources and infrastructure
 - Policy 34: Green and Blue Infrastructure

4.0 SOURCES OF FLOODING

- 4.1. Environment Agency (EA) Flood Map indicates that the site is located entirely within Flood Zone 1 (low risk of fluvial/tidal flooding) and is almost entirely at very low risk of pluvial flooding. The Site is not located within a Critical Drainage Area and is less than 1 ha. Consequently, a formal Flood Risk Assessment is not required and there is no requirement for the Sequential and Exception Tests to be undertaken.
- 4.2. However, the following sections outline the low risk of flooding from the sources above and also assess flood risk from all other sources.
- 4.3. The NPPF requires flood risk from the following sources to be assessed, each of which are assessed separately below:
 - Fluvial sources (river flooding);
 - Tidal sources (flooding from the sea);
 - Groundwater sources;
 - Pluvial sources (flooding resulting from overland flows);
 - Sewer Flooding;
 - Artificial sources, canals, reservoirs etc.; and,
 - It also requires the risk from increases in surface water discharge to be assessed (surface water management).

Fluvial/ Tidal Flood Risk

- 4.4. According to the Environment Agency's indicative flood map for planning, as illustrated in **Figure 4-1** below, the Site is located within Flood Zone 1, defined as having a low risk of flooding and being suitable for any type of development.
- 4.5. It is therefore concluded that the risk of fluvial/tidal flooding to the Site, or from the development to offsite areas, is low.

FLOOD RISK STATEMENT AND DRAINAGE STRATEGY

JANUARY 2023

Figure 4-1: Environment Agency Flood Map for Planning

Pluvial Flood Risk

- 4.6. The Environment Agency's surface water flood map shows that the Site is almost entirely situated at 'Very Low' risk of surface water flooding (Figure 4-2).
- 4.7. A small area of low risk flooding exists at the south of the site. As the surface water originated on the Site, it is believed it will be managed as part of the surface water management plan.

FLOOD RISK STATEMENT AND DRAINAGE STRATEGY

JANUARY 2023

Figure 4-2: Environment Agency Flood Map for Surface Water (Extents)

- 4.8. The landscaping proposals are anticipated to decrease the impermeable area of the Site and changes to surface water flow paths as a result of the development will be minimal.
- 4.9. The risk of pluvial flooding to the Site is therefore assessed low. The development of the Site will bring improvements to the surrounding area through the implementation of a surface water drainage strategy, as described in **Section 5** of this report.

Groundwater Flood Risk

4.10. The EA Susceptibility to Groundwater Flooding Mapping included in the SFRA shows that the site is located in an area with greater than or equal to 75% susceptibility to groundwater flooding. Refer to Figure 4-3 below.

Figure 4-3: BGS Susceptibility to Groundwater Flooding

- 4.11. During investigations undertaken by AGB Environmental in August 2022. Groundwater seepage was encountered at 2.2mbgl during the formation of a borehole. During monitoring groundwater was observed in between 4.13mbgl and 4.19mbgl. The 'Phase II Site Investigation Report' can be found in **Appendix C**.
- 4.12. **Figure 4-4** below shows the Increased Potential for Elevated Groundwater Map from the Richmond SFRA outlined by GLA Drain London. The map shows that the Site is underlain by permeable superficial deposits, suggesting an increased potential for groundwater flooding.

2200650-01

FLOOD RISK STATEMENT AND DRAINAGE STRATEGY

JANUARY 2023

Figure 4-4: BGS Susceptibility to Groundwater Flooding

- 4.13. The development does not involve any below ground construction such as basements therefore risk of groundwater flood risk to the proposed development is likely to be low.
- 4.14. The groundwater flood risk to the site is considered to be medium.

Sewer Flood Risk

- 4.15. The flooding records held by Thames Water indicate that there have been no incidents of flooding in the site area as a result of surcharging public sewers.
- 4.16. The Thames flooding records held within the Richmond SFRA indicates that there has been 1 indoor and 1 outdoor flooding incident within the 181-ha study area.
- 4.17. The proposed drainage strategy as described in **Section 5** of this report, has been designed to accommodate rainfall volumes up to the

1 in 100 year plus 40% climate change and will therefore provide an improvement upon the current scenario.

4.18. The risk of flooding from sewers is therefore considered to be very low.

Flood Risk from Artificial Sources

- 4.19. The Environment Agency's flood maps from reservoirs indicate that the Site is not within an area at risk of flooding from reservoirs, canals, or other artificial water bodies.
- 4.20. The risk to the Site from reservoir flooding is therefore considered to be very low.

5.0 FOUL AND SURFACE WATER DRAINAGE STRATEGY

- 5.1. DEFRA's Non-statutory technical guidance for Sustainable Drainage Systems and CIRIA Guidance C753 "The SuDS Manual" have been used to determine the appropriate SuDS Strategy, which considers the spatial and environmental constraints of the Site.
- 5.2. Under the NPPF an allowance of 40% for the effects of climate change will achieve the policy requirements for the proposed development.

Proposed Sustainable Drainage Systems (SuDS)

- 5.3. In accordance with the London Plan Policy SI 13 (B), surface water runoff should be disposed of according to the following hierarchy:
 - 1. Store rainwater for later use;
 - Use infiltration techniques, such as porous surfaces in nonclay areas;
 - 3. Attenuate rainwater in ponds or open water features for gradual release;
 - 4. Attenuate rainwater by storing in tanks or sealed water features for gradual release;
 - 5. Discharge rainwater direct to a watercourse;
 - 6. Discharge rainwater to a surface water sewer/drain; and
 - 7. Discharge rainwater to the combined sewer.
- 5.4. As discussed in **Section 2**, the Site is underlain by superficial deposits of sands and gravels which are in turn underlain by the London Clay formation. There is also an identified presence of high groundwater as well as an increased risk of groundwater flooding. Therefore, infiltration is unlikely to be feasible.
- 5.5. Made Ground is present on site therefore infiltration would pose the risk of mobilising pollutants (present in the Made Ground) into the underlying aquifer. This risk is increased by the presence of elevated concentrations of lead and four congeners of polycyclic aromatic hydrocarbons as identified in **Section 2**.
- 5.6. There are no watercourses in the vicinity of the Site. It is therefore proposed to discharge surface water runoff into the Thames Water surface water sewer along Cromwell Road. As the site is currently assumed to drain via an existing private drainage network connected

JANUARY 2023

to this sewer, the proposals will have a minimal impact on surface water flood risk in the area and on the drainage network.

5.7. The constraints and opportunities for the use of SuDS techniques are appraised using the Management Train approach outlined in CIRIA C753 'The SuDS Manual' in Table 5-1 below.

Type:	Infiltration Devices (Source Control)
Constraints:	Ground Conditions do not allow for infiltration. Presence of made ground may lead to contamination. Limited space for infiltration systems (and provision of 5m buffer from buildings) due to narrow site surrounded by buildings. The Site is also a brownfield site (commercial/industrial use) and therefore the use of infiltration techniques would carry the risk of mobilising pollutants into the soil.
Opportunities:	Limited due to ground conditions and site layout
Type:	Lined Permeable Paving (Source Control)
Constraints:	It is not possible to provide infiltrating permeable paving/permavoid due to site characteristics (as per infiltration devices above).
Opportunities:	Permeable paving wrapped in geo-membrane could be used to provide surface water attenuation and a stage of treatment before discharging into the drainage system.
Туре:	Rainwater Harvesting (Source Control)
Constraints:	The benefits of rainwater harvesting on a specific design storm event cannot be quantified, due to the seasonal availability of storage within the structure.
Opportunities:	Opportunities in amenity areas to provide harvesting features such as rain gardens, raised planters and water butts exist. However, it is difficult to quantify contribution, and therefore not included within calculations as part of this surface water management strategy
Type:	Swales, etc. (Permeable Conveyance)
Constraints:	In order to provide practicable attenuation benefits 1:3 side- slope swales tend to require a significant land requirement.
Opportunities:	None due to spatial constraints.
Туре:	Tree Pits/Rain gardens
Constraints:	Subject to Landscape Architect's design.
Opportunities:	There may be opportunities to use landscaped space to
	incorporate tree pits.
Туре:	Green Roofs
Constraints:	Subject to Architect's design.
Opportunities:	Green roofs could be provided on all flat roofs.
Type:	Attenuation Tanks (end of pipe treatment)
Constraints:	None
Opportunities:	Should additional attenuation be required this could be achieved by use of oversized sewers or geo-cellular storage attenuation.

Table 5-1: Existing and Proposed Areas

5.8. After consideration of the CIRIA C753 SuDS Management Train approach, the most viable SuDS options for this site is a solution combining green roofs, permeable paving and geocellular storage. Additionally, rainwater butts would be provided on downpipes adjacent to the communal garden and terraces. The exact location of these would be confirmed as part of the detailed design. Refer to Drawing **No. 2200650-001A** in **Appendix E** for the proposed surface water drainage strategy.

Existing and Proposed Surface Water Discharge Rates

Existing development

- 5.9. The planning red line boundary area equates to 0.165 ha and comprises of 0.111 ha impermeable surfaces and 0.054 ha of green landscaping.
- 5.10. The topographical survey shows a number of gullies and inspection chambers serving the northern portion of the Site; the outfall location of this system is currently unknown and should be investigated on site, but it is assumed that the network outfalls to Thames Water's surface water system.
- 5.11. Existing runoff rates from the developed site (0.111ha) were determined using the Wallingford Procedure Rational Method for an assumed critical 5-minute storm. Equivalent peak Greenfield Runoff rates for the developed site (0.111ha) were also calculated and are presented in Table 5-2 below. Full calculations can be found in Appendix F and Appendix G.

Return Period Event	Brownfield (l/s)	Greenfield (I/s)
Q 1	15.68	0.14
Q 30	34.88	0.39
Q 100	44.40	0.54
Q _{bar}	-	0.17

Table 5-2: Existing and Greenfield Discharge rates

5.12. In line with the Richmond Strategic Flood Risk Assessment Level 1 (2021) and the London Plan, discharge rates from new developments should aim to achieve Greenfield run-off rates or as close as practically possible. However, greenfield runoff rates for the Site (shown in **Table 5-2** above) are 0.17 l/s which is too low to be practically achieved and would introduce a risk of flooding due to potential for blockages in the flow control device. It is therefore proposed to limit discharge to 2.0 l/s to mitigate the risk of blockages.

5.13. A pre-planning enquiry has been submitted to Thames Water and they have confirmed that they have sufficient capacity within the surface water network to accommodate the flows from the development. Refer to **Appendix H** for the Thames Water correspondence.

Proposed development

- 5.14. The planning redline boundary equates to approximately 0.165 ha of which 0.069 ha is hardstanding areas. The redevelopment will reduce the impermeable areas across the site through the introduction of communal landscapes areas, and private gardens. Development proposals indicate that the post development layout will include approximately 960m² of open landscaping.
- 5.15. The proposed layout additionally includes 345m² of green roof areas and 230m² permeable paving. Green roofs have been assumed as 80% impermeable areas as part of the drainage calculations. Surface water runoff from the roof would be reduced by a maximum of 20% as a result of the green roofs. This is in accord with the GRO Green Roof Code (GRO, 2011) and the Guidance for the Planning, Execution and Upkeep of Green Roof Site (FFL, 2002). Comparisons between the existing and proposed hardstanding areas excluding green roofs are shown in **Table 5-3** below.
- 5.16. The proposals therefore result in a minimum of 25% reduction in impermeable area.

Site	Area (ha)	Impermeable Area (ha)	Permeable Area (ha)	% Impermeable
Pre- Development	0.165	0.111	0.054	67%
Post- Development (excluding green roofs)	0.165	0.069	0.096	42%
Post- Development (including green roofs)	0.165	0.062	0.103	38%

Table 5-3: Existing and proposed hardstanding areas

Proposed surface water runoff rates

- 5.17. The London Plan states that "development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible."
- 5.18. As such, consideration has been given to **Table 5-2** where the Greenfield rates are reported. It is considered that the Greenfield rates are impracticably low and would cause issues with blockages and maintenance challenges. As such, the lowest reasonably practicable rate of 2.0 l/s is proposed as the discharge rate for all storm events up to the 1 in 100-year plus a 40% allowance for climate change.
- 5.19. Table 5-4 below highlights the Existing and Proposed surface water runoff discharge rates for the site under various storm scenarios. A full calculation record is provided in Appendix G.

		Return	Period	
	1 in 1 year Discharge Rate	1 in 30 Year Discharge Rate	1 in 100 year Discharge Rate	1 in 100 year + 40% Discharge Rate
Pre Development (l/s)	15.68	34.88	44.40	-
Calculated Greenfield runoff (l/s)	0.14	0.39	0.54	-
Proposed post Development (l/s)	2.00	2.00	2.00	2.00
% Reduction from pre development	87%	94%	95%	-

Table 5-4: Existing and Proposed Surface Water Runoff Rates

- 5.20. In order to achieve the proposed discharge rate of 2.0 l/s, it is proposed that a total storage volume of approximately 9.1m³ will be provided within the proposed geocellular storage.
- 5.21. An additional 20.7m³ storage will also be available within the 0.3m layer of permeable paving.

- 5.22. MicroDrainage Network module modelling results show there is no flooding on the Site for the 1 in 100 year including 40% climate change rainfall event. MicroDrainage modelling results are included in **Appendix H**.
- 5.23. Invert and cover levels should be confirmed on-site and the location of an outfall for the existing system should be explored with a CCTV drainage survey at the detailed design stage. A new connection to the existing system is proposed while no information is available on the existing connection. The proposed rate of discharge and proposed connections are subject to approval by Thames Water and the Lead Local Flood Authority

Surface Water Quality

- 5.24. The recommended stage of treatment in terms of water quality would be provided through the aforementioned permeable paving. In line with the SuDS Manual C753, Tables 26.2 and 26.3, the pollution hazard and mitigation indices associated with residential roofs are mitigated by the provision of SuDS features.
- 5.25. Please refer to **Appendix I** for copies of Tables 26.2 and 26.3, the pollution hazard and mitigation indices.

Long Term Storage

- 5.26. There will be a reduction of impermeable area as a result providing green amenity spaces and green roofs within the development, and as such the runoff volume generated by the developed area will be reduced. Therefore, there is no requirement for Long Term Storage.
- 5.27. As the development proposals are for apartments, the likelihood of urban creep, without planning, is low and therefore this has not been allowed for.

Exceedance Flows

5.28. As a result of heavy or extreme storm events it is sometimes unavoidable for the capacities of sewers and other drainage systems to be exceeded. Drainage exceedance will occur when the rate of surface water runoff exceeds the inlet capacity of the drainage system, when the receiving water or piped system becomes overloaded, blocked or when the outfall becomes restricted due to flood levels in the receiving water.

5.29. The proposed attenuation features are located towards the lowest lying areas of the site and internal pavement flows away from residential units. The routes will ultimately mimic the current flow routes associated with the existing site as a result of the topography.

Finished floor levels

5.30. It is recommended that finished floor levels be set to 150mm above the existing ground levels to mitigate against possible flooding should the capacity of the drainage system be exceeded.

Future Maintenance

- 5.31. A management company will be appointed to maintain communal areas, landscaping, and shared SuDS throughout the development.
- 5.32. All maintenance will be in accord with the best practices and the CIRIA Manual C753. Please refer to **Appendix I** for an overview of the maintenance tasks required.

Proposed Foul Water Drainage Strategy

- 5.33. The Site currently consists of the Sheldon House, which has 24 residential units. Based on Thames Water's foul flow loadings, the existing peak foul flow rate for the site is calculated to be 1.1 l/s. The development proposes to provide 27 new residential units. Based on Thames Water's foul flow loadings, the proposed peak foul flow rate for the site is calculated to be 1.238 l/s. Refer to **Appendix K** for foul loading calculations.
- 5.34. It is proposed that foul flows from the development will discharge into the existing Thames Water foul sewer. Refer to the preliminary drainage strategy drawing no. 2106060-001 provided in Appendix E.

- 5.35. The cumulative peak flow rate for the overall post-developed site (combined foul and surface water flows) is therefore 3.238 l/s (2.00 l/s + 1.238 l/s). Considering the existing site peak combined runoff rate is 45.6 l/s (44.40 + 1.1 l/s), the proposals will result in a reduction of combined flows of 92% from the pre-development scenario for the 1 in 100-year event.
- 5.36. A pre-planning enquiry has been submitted to Thames Water and they have confirmed that they have sufficient capacity within the foul water network accommodate the flows from the development. Refer to **Appendix J** for the Thames Water correspondence.

6.0 SUMMARY AND CONCLUSIONS

- 6.1. Ardent Consulting Engineers has been commissioned by RHP Develop Limited to prepare a Flood Risk Statement and Drainage Strategy for a proposed development at the site of the former Sheldon House off Cromwell Road, Teddington.
- 6.2. This FRA considers the current policy relating to flood risk, including the National Planning Policy Framework, and local policy related to the London Borough of Richmond upon Thames.
- 6.3. The entire Site is shown to be within Flood Zone 1 therefore at low risk of fluvial/tidal flooding. Therefore, the site does not have to undergo the Sequential and Exception Tests.
- 6.4. The site is found to be a very low risk of pluvial flooding however the surface water drainage strategy will reduce flood risk by restricting surface water flows in accordance with the London Plan. A sustainable urban drainage system has been designed to incorporate permeable paving and a geocellular attenuation tank. Storm water attenuation is provided for all storms up to and including the 1 in 100-year critical event (including a 40% allowance for climate change). The proposed significant results in betterment development over the predevelopment scenario in terms of a reduction of surface water runoff of 95%.
- 6.5. It is concluded that the development is at low risk of flooding from other sources including fluvial, tidal, a breach of any nearby reservoir, or sewer flooding. The site is considered to be at medium risk of groundwater flooding.
- 6.6. It is recommended that finished floor levels be set to 150mm above the existing ground levels to mitigate against possible flooding should the capacity of the drainage system be exceeded, or from groundwater flooding.
- 6.7. A management company will be appointed to maintain communal spaces and SuDS throughout the life of development. All maintenance will be in accordance with the best practices and the CIRIA Manual C753.

6.8. In conclusion, this document demonstrates that the proposals are consistent with the aims of the NPPF and the Planning Practice Guidance to the NPPF along with the aims of the London Borough of Richmond Local Plan. The Site will not be at significant risk of flooding or increase the flood risk to others.

Appendix A

KEY

DRAWING 1 - SITE PLAN AS EXISTING

PRINT AT A1 PAPER SIZE

SCALE BAR AT 1:200

	Notes: All works to be carried out in accordance with current building regulations.	Scale:	1:200@A1	Drawn:	MZ	
_	All dimensions / levels to be checked and verified on site before commencing any work and any discrepancies to be reported to the office immediately.	Date:	March 2021	Job No:	21100	
	This drawing to be read in conjunction with contract documents, project working drawings, specification, all consultants / specialists drawings, details and specification.	Drawing No:	1			Rev:

Appendix B

1		BODELIOI E CERTIN		NSR 1	1040 1040	TO217/
	LE GR	AND SUTCHEE	& GELL	1217	5 10	- Anesona
	CONTRACT NAME	Concentration of the concentra	u GELL	RDFR Va		
Ho	rid for :	76* 1 AIN.		27	56.	
.44	dress : DET(IOXOLITAN 1.	ATER HOARD.		6177	1-1303	
1	dress of Sile	CORPUT ANTINE, R.C	•	6 6 .	1 . 1	
Di	trid or form: OPINLITE LT	.TATY 5 9. ". C., CI	CITIT' BOAD	. 4 - 7 -	9 J. K.	
520	white Water Level TEUDIFOST	Max. Helow Surface P.	umping W.L.	LEGEX. Ins.	Below Surface	
100	a. of Bosebole ; PIL Juckes	Field of Water :	G.P.H.	0.D. of Si	e: 19.79	1
14	etionlass of Tubing Triserted :				0D+7+08-	1
11.	W Struck (1) Fr. D.S.	191 Bit In an ann				
Iles	ing Commenced N11	Restor Constitut	Ft. 8.	5. (1)	FL. B.S.	
N/	vist Remarks : 20.3.52	·	26.3.52	Ref. 1.5.8.	5.8.	
			(T)			
	DESC	RIPTION OF STRATA		THEAMERS	DEPTH BELOW	
0				FLET INCHES	PHIT INCHES	1
Gesograf Herey	Those are repeated to exam-	ove the complex of the strat	he submitted, as			
1	the descriptions coupleyed belo	w are general terms and	responsibility is			
	not accepted for their	application to commercial p	wrposes.			
1	Nº. 52 6 164	inc				1
	l'ade Un Greu	nd.		2 .		
1	Condy Clay at	nd Stones.		7 6	10 -	
	S Grovel.			7 6	17 6	
1	Of Graval & Bros	m Clay.		1 -	18 6	
1	Ornvel.			3 6	. 22 -	10.52
1	Brown Clay.			3.	26 -	12.13
1	Blue Clay.			53 -	. 77 -	-
0	e Clay stone.			1 -	78 -	
1	Blue Clay.			62 -	140 -	
statute mail	200 I I I I I I	and employ how		HURLOUP	dan mut	
	a" Unligturbed	Core Unn 100 taken	at 110',			
1	Teo. 104 140. 01				- C	
	LIRGE, AND	. GUTCLIP? & OUL	LT:).		5 S I.	2
					- C -	
1						
1					1. N. 1.	
	A. M	. I / " actually a	Pullan	G.A	1.00	
9	rate manageorgia co 13040	and 6 as neje 1	HOULDAUK .	8000 11.		
1	une nanspersed to 12(10)	and 6 as nege 1	from Surface ;	140	140 -	

ġ
Appendix C

Phase II Site Investigation Report

Sheldon House, Cromwell Road, Teddington, TW11 9EJ

Client Name:	Richmond Housing Partnership
Project Number:	P4301.3.0
Date:	3 August 2022

ENABLING DEVELOPMENT

Client:	Richmond Housing Partnership				
Site:	Sheldon House, Cromwell Road, Teddington, TW11 9EJ				
Report ref.:	P4301.3.0				
Prepared:	H. Gildersleeves MSci FGS J. Gooch BSc FGS				
Reviewed: S. Pike MSc MIEnvSc G. Dowlen MSc CGeol FGS RoGEP EurGeol					
Approved:	S. Pike MSc MIEnvSc				
Date:	03 August 2022				
Version:	Final				

agb Environmental Ltd has prepared this document in accordance with the instructions of the client, Richmond Housing Partnership, for their sole and specific use. Any other persons who use any information contained herein do so at their own risk.

© agb Environmental Ltd 2022 1, The Mill, Copley Hill Business Park, Babraham Road, Cambridge, CB22 3GN Tel: 01223 776 117 www.agbenvironmental.co.uk

Revision	Description	Date
.0	Final	03 August 2022

agb Environmental Ltd

Executive Summary

Client and Site Location

The client, Richmond Housing Partnership, commissioned agb Environmental to complete a Phase II ground investigation at Sheldon House, Cromwell Road, Teddington, TW11 9EJ.

Development Proposals

Development proposals are understood to include the demolition of the existing 7-storey residential block and replacement with a 31-unit, 5-storey residential block with car parking provisions and a communal garden area.

Summary of Encountered Ground Conditions

Made Ground was encountered from surface level in all exploratory hole positions to a maximum depth of 0.60mbgl.

Beneath the Made Ground superficial geology of the Kempton Park Gravel Member was initially encountered as medium dense, becoming dense and then very dense with depth, variably silty, sometimes slightly gravelly sand, to 1.20-3.70mbgl, succeeded by either dense sandy silt (to 1.20-1.40mbgl) or medium dense to very dense, variably silty, sometimes cobbly, gravelly to very gravelly sand (to 1.30-3.10mbgl). In CP01 the Kempton Park Gravel Member continued as dense orange sand with chert gravel and cobbles from 3.70mbgl to a maximum depth of 7.30mbgl.

Underlying the superficial geology was the London Clay Formation, encountered as a firm to stiff grey clay to 9.50mbgl, followed by claystone to 10.40mbgl, and stiff grey clay with occasional claystone patches to 25.00mbgl.

A groundwater seepage was encountered at 2.2mbgl during the formation of borehole CP01. During monitoring groundwater was observed in CP01 between 4.13mbgl and 4.19mbgl.

Summary of Analysis, Screening and Monitoring Results

Elevated concentrations of lead and four congeners of polycyclic aromatic hydrocarbons have been identified in soil samples from four locations at depths between 0.20mbgl and 1.00mbgl. These concentrations exceed the screening values for residential developments, both with and without homegrown produce. Two of the exceedances are from an area within the proposed future soft landscaping.

Elevated concentrations of cadmium, nickel and zinc have been identified in groundwater sampling which exceed water quality standards for surface water. These exceedances were found in the first round of monitoring only.

The exceedances in relation to surface water quality standards are not considered to be significant given the industrial history of the surrounding area and the lack of exceedances during a subsequent round of monitoring and sampling. The closest surface water receptor is a lake in Bushy Park, located approximately 850m south of site. Given the distance to the identified receptor, an unacceptable risk is not considered to be present.

Ground gas monitoring results and subsequent classification indicate CIRIA 665 Characteristic Situation CS-1 is appropriate for the site based on monitoring undertaken. Based on the conceptual site model and risk assessment there is a considered to be moderate geoenvironmental risk to end users.

It is recommended that delineation through further sampling and testing could be considered in the proposed soft landscaping area to the south of the new building. This may remove the need for soil remediation to be completed, or reduce the area requiring remediation.

In the absence of a delineation exercise remedial works will be required in the proposed new landscaping area to the south of the proposed building to address the risks identified. A remedial strategy must be undertaken and submitted to the Local Planning Authority prior to any of the aforementioned works being undertaken. Any remediation undertaken would then require validation to show that the identified risks have been adequately addressed.

Excavations within the root protection zones of trees on site should have consideration for the NHBC trees standards and root protection areas associated with the existing trees on site and adjacent to site. The Local Planning Authority Tree Officer should be contacted to discuss options.

Based on the soil testing results, waste soils to be removed from site should be classified as **Non-Hazardous**, categorised as 17 05 04 in the List of Waste from WM3. WAC testing was undertaken for completeness and samples failed the Inert Waste WAC limits. Therefore, as per EA guidance '*Dispose of Waste to Landfill*' (published January 2020), excavated soils to be removed off-site meet the requirements for disposal at a landfill for non-hazardous waste.

We would recommend that this report be forwarded to the relevant statutory consultees including the Environment Agency and Local Authority to seek their comments and subsequent approval prior to site works commencing.

Geotechnical Comments

It is anticipated that finished ground levels will be at, or close to, existing ground levels. Should this not be the case then this assessment may need to be reviewed.

Based on the site investigation data and testing currently available, for a 1.0m wide strip/trench fill foundation, bearing on the underlying natural coarse Kempton Park Gravel Member soils at a depth of 1.0m, a design bearing resistance of 300kN/m² is considered appropriate. For a 1.0m wide strip/trench fill foundation at a depth of 2.0m, a design bearing resistance of 350kN/m² should be available.

Alternatively for a 2.0m square pad foundation also bearing on the underlying natural coarse Kempton Park Gravel Member soils at a depth of 1.0m, a design bearing resistance of 285kN/m² should be available. For a 2.0m square pad foundation at 2.0m, a design bearing resistance of 325kN/m² should be available.

The above values should result in total settlements of not more than 25mm, keeping differential settlements within acceptable limits.

If structural loads cannot be accommodated on shallow strip/pad foundations, then it would be necessary to consider a piled design.

Shallow ground conditions on site comprise approximately 600mm of made ground overlying natural coarse soils. Grubbing out of existing foundations and services may disturb the ground

to a deeper and greater extent. At this stage consideration should be given to adopting a suspended floor slab. Whilst the natural coarse soils could be considered a suitable formation for ground bearing slabs following proof rolling any Made Ground/disturbed ground would need to be removed and replaced with selected compacted granular materials. During preparation, the formation should be inspected and any soft or unsuitable materials should be removed and replaced with a suitable compacted granular fill.

A CBR value of 2% is considered suitable for underlying made ground following treatment. It is recommended that once the site has been graded to the appropriate pavement formation level, it is inspected and, if necessary, in situ CBR testing be conducted on the subgrade to confirm the appropriate pavement design.

Analysis indicates an ACEC Class of DS-1 / AC-1 for the Made Ground, underlying Kempton Park Gravel Member and groundwater. An ACEC Class of DS-4/AC-4 is recommended for the London Clay Formation. The London Clay Formation has been designated a design sulphate class of DS-4/AC-4 based on the Total Potential Sulphate values calculated. However, it is recognised that given the depth of the London Clay on site oxidation is unlikely and concrete placed within this strata is therefore also unlikely to be exposed to ground that has been disturbed. A lower design sulphate class could therefore be considered if for example piled foundations were to be placed into the London Clay.

Contents

1	Intro	oduc	tion	. 8
	1.1	Dev	velopment Proposals	. 8
	1.2	Pre	vious Reports	. 8
	1.3	Pur	pose of Investigation	. 8
2	Site	Det	ails	. 9
	2.1	Loc	cation and Topography	. 9
	2.2	Site	e Description	. 9
3	Sun	nma	ry of Desk Study Information	10
	3.1	Ant	Icipated Ground Conditions and Permeability	10
	3.2	Geo	biogical and Engineering Hazards	10
	3.3	Кас	Jon	10
	3.5	Sur	mmary of Site History	10
4	Pre	limin	ary Conceptual Site Model and Risk Assessment	11
	4.1	Pot	ential Contaminant Sources	11
	4.2	Pat	hways	12
	4.3	Red	ceptors	12
	4.4	Pre	liminary Conceptual Site Model	13
5	Fiel	dwo	rk and Analysis	15
	5.1	Site	e Investigation	15
	5.1.	1	Cable Percussive Boreholes	15
	5.1.	2	Trial Pits	15
	5.1.	3	Dynamic Sampling Boreholes	15
	5.1.	4	Plate Bearing Tests	15
	5.1.	5	Standpipe Installations and Monitoring	16
	5.2	Lab	poratory Analysis	16
6	Gro	und	Conditions	18
	6.1	End	countered Ground Conditions	18
	6.1.	1	Made Ground	18
	6.1.	2	Kempton Park Gravel Member	18
	6.1.	3	London Clay Formation	19
	6.1.	4	Groundwater	19
	6.1.	5	Visual and Olfactory Evidence	19

7 (Chei	mical Laboratory Test Results and Monitoring					
7.1	I	Soil Analysis					
7.2	2	Groundwater Analysis					
7.3	3	Aggressive Ground					
7.4	1	Ground Gas Monitoring	20				
7.5	5	Soil Analysis and Screening Results	22				
7.6	6	Groundwater Analysis and Screening Results					
7.7	7	Aggressive Ground Analysis					
7.8	3	Ground Gas Monitoring Results	30				
8	Upda	ated Risk Assessment	31				
8.1	1	Discussion of Results, Screening and Monitoring Results	31				
9	Was	ste Classification	33				
9.1		Soil Waste Classification	33				
9.2	2	Soil Waste Disposal	33				
10	Upda	ated Conceptual Site Model and Qualitative Risk Assessment					
11 (Cont	tamination Conclusion and Recommendations					
11	ו. ס	Decommendations					
	.Z 11 0						
	11.2						
	11.2	2.2 Protection of Ground Workers	37				
	11.2	2.3 Watching Brief	37				
	11.2	2.4 Buried Services	37				
	11.2	2.5 Importing and Re-Use of Soil and Materials Management Plan	37				
	11.2	2.6 Soil Disposal	37				
	11.2	2.7 Statutory Authority Consultation	38				
12 (Geot	technical Assessment					
12	.1	Summary of Proposals and Ground Conditions	39				
	12.1	1.1 Development Proposals	39				
	12.1	.2 Summary of Ground Conditions and Test Results	39				
12	.2	Foundations					
12	12.3 Stability of Excavations and Dewatering Considerations						
12	12.4 Floor Slabs						
12	.5	Hardstanding					
12	12.6 Chemical Attack on Buried Concrete						
13 I	Limit	itations	45				

Appendices

- Appendix 1 Plans
- Appendix 2 Fieldwork Records
- Appendix 3 Monitoring Results
- Appendix 4 Laboratory Results
- Appendix 5 CSM Risk Evaluation Methodology

1 Introduction

The client commissioned agb Environmental to complete a Phase II Ground Investigation at Sheldon House, Cromwell Road, Teddington, TW11 9EJ.

1.1 Development Proposals

Development proposals are understood to include the demolition of the existing 7 storey residential block and replacement with a 31-unit, 5 storey residential block with car parking and communal garden areas. Proposal plans are provided in **Appendix 1**.

Prior to demolition the current 7-storey structure should be inspected for presence of asbestos containing materials (ACM). Should such materials be present these will need to be removed by specialist licensed contractors prior to demolition. The current 7-storey structure is likely to be constructed on a piled foundation. Grubbing out of substructures will need to establish the location of any such piles if present to establish if the pile positions conflict with potential pile locations for the proposed 5-storey structure.

1.2 Previous Reports

A Phase I geoenvironmental desk study for the site and the surrounding area was completed by agb Environmental Ltd, report reference P4301.2.0, dated 15th June 2022, and should be read in conjunction with this report.

1.3 Purpose of Investigation

The principal technical objectives of the report were as follows:

- Review of desk study information,
- Establish the ground conditions,
- Undertake analysis of selected soil samples and groundwater samples,
- Provide a Conceptual Site Model (CSM) and risk assessment,
- Provide geoenvironmental recommendations, and
- Provide geotechnical recommendations for foundation design, floor slabs, pavements, excavations, groundwater control and chemical attack.

The report has been formulated in general accordance with BS10175:2011+A2:2017 Investigation into Potentially Contaminated Sites – Code of Practice, Environment Agency LCRM guidance, BS5930:2015 Code of Practice for Site Investigations, and guidance from the National Planning Policy Framework.

2 Site Details

Details regarding the site and anticipated ground conditions extracted from the desk study are provided below.

2.1 Location and Topography

The irregularly shaped site is located in an urban area approximately 275m south-east of Teddington railway station in the suburb of Teddington, within the London Borough of Richmond upon Thames. The site covers an area of approximately 0.16ha and is centred at National Grid Reference 516263 170626. The site is at an elevation of approximately 10mOD, and the surrounding land is generally level. A location plan is presented in **Appendix 1**.

2.2 Site Description

The site fronted and was accessed via Cromwell Road to the north. The hardstanding areas in the north of site were noted to be relatively level. Towards the south west of site the areas of soft landscaping slope gently downwards to the south. The western soft landscaped planted area was raised 0.20m from surface level.

Vegetation comprised the entire southern half of site and consisted of mowed grass, with mature bushes and trees lining the southern boundaries. At the west and north of site is a small soft landscaped, planted area. In the north, and central area of site are large >6m trees. There is a singular large building within the centre of site. It is a red brick apartment block, which is seven storeys, and consists of several garages on the ground floor. The building is relatively square in shape. There are no other structures on site.

Towards the north and west of site are a selection of parking spaces bordering the northern boundary and surrounding the access. It is estimated that 50% of the site consists of permeable soft landscaping and 50% comprising concreted, hard landscaping.

3 Summary of Desk Study Information

Salient information extracted from the desk study report is provided below.

3.1 Anticipated Ground Conditions and Permeability

Based on the BGS mapping the site is underlain by superficial geology of the Kempton Park Gravel Formation, which is in turn underlain by bedrock geology of the London Clay Formation. There are no records of artificial or made ground deposits within 250m of site.

3.2 Geological and Engineering Hazards

According to BGS data, the highest risk on site is very low from running sands, collapsible deposits, and landslides. There is a negligible risk from shrink-swell clays, compressible deposits and the ground dissolution of soluble rocks.

3.3 Radon

The study site is not located within a Radon Affected Area, as less than 1% of properties are above the Action Level. Therefore, no radon protective measures are necessary for new properties or extensions to existing ones as described in Building Research Establishment (BRE) publication BR211.

3.4 Hydrogeology and Hydrology

The superficial geology on site is classed as a Principal aquifer and the bedrock is designated unproductive. There are no abstraction licences noted within 500m of site and no surface water features within 250m of site.

3.5 Summary of Site History

Historical development of site began in 1896 with small structures, which underwent several smaller redevelopments up to the year of 1971, where the site structures were replaced by the apartment block seen during the walkover. Significant residential development and redevelopment of the surrounding site began in 1913 and continued till 1994. The railway 2m south of site has been present since 1840.

4 Preliminary Conceptual Site Model and Risk Assessment

An initial CSM and preliminary assessment of plausible contaminant source-pathway-receptor linkages is presented in this section. It is aimed at identifying possible risks, if any, arising from substances used or deposited on-site, or from other sources of land contamination. Both past and current potentially contaminative land uses have been considered.

4.1 Potential Contaminant Sources

Based on the site walkover and desk study research, the identified potentially contaminative land uses on or within the vicinity of the site are summarised in **Table 4.1**.

Identified Potentially Contaminative Land Uses / Sources	Distance From Site (approx.)	Potential Contaminants Associated with Identified Sources	Plausible S-P-R Contaminant Linkage?
Made Ground (from previous development on site), On site potential asbestos containing materials.		Metals, Polycyclic Aromatic Hydrocarbons (PAH), Total Organic Hydrocarbons (TPH), Asbestos Containing Materials (ACMs). Soil gas generation (including CH4 and CO ₂).	Yes – given the historical development of the site, a potential contaminant source may be present with the potential to impact site.
Railway Sidings	2m south- west to 19m south-west (1840- present day)	Metals, TPH, PAHs, ACMs, polychlorinated biphenyls (PCBs), acids, alkalis, sulphates.	Yes – potential contaminant source is present with the potential to impact site.
Unspecified Pit	41m north (1938)	Metals, TPH, PAHs, ground gasses, vapour.	No - Given and the significant time passed, and how relatively small the pit is, it is considered unlikely that there would be any impact to site.
Three historical tanks	137m south (1896) 236m north (1994) 248m north (1934).	TPH, Semi Volatile Organic Compounds (SVOCs), Volatile Organic Compounds (VOCs).	No - Given the distance from site and significant time since, it is considered unlikely that there would be any impact to site.
Historical ponds	103-111m south and south-east (1938 and 1945)	Metals, TPH, PAHs, ground gasses, vapour.	Yes – Although given the distance from site and significant time since, it is considered that because of its large size it is likely to be a potential contaminant source to site.
Historical and current electricity substation	Historical (53m west 153m east) Current (57m west)	PCBs, Metals, TPH, PAHs.	No – given the distance from site combined with the low mobility, hydrophobic nature and high viscosity of PCB oils, it is considered unlikely that there would be any impact to site from historical or recent potential contaminant leaks.

 Table 4.1
 Potential Contaminant Sources

4.2 Pathways

For this assessment, the principal potential pathways for contaminant migration are provided in **Table 4.2**.

|--|

Source	Pathway		
Soil / dust / fibres	Dermal contact, ingestion and inhalation.		
Liquid (including surface water / groundwater)	Dermal contact, ingestion. Leaching, infiltration and migration through groundwater. Preferential pathways such as service trenches.		
Harmful ground gases / vapour	Migration through permeable geological strata and preferential pathways. Inhalation, accumulation within confined spaces with subsequent asphyxiation or explosion.		

4.3 Receptors

Based on the proposals and the findings of the desk study the identified receptors are described in **Table 4.3**.

 Table 4.3
 Receptors

Receptor	Detail
Site workers	Site workers are anticipated to include those involved with the construction works and long-term maintenance on site.
End users	Residents and visitors.
Neighbouring sites	Residents, visitors and workers.
Controlled Waters	The underlying superficial deposits is designated a principal aquifer underlain by bedrock geology designated as unproductive. The site is not within a Source Protection Zone and there are no abstractions or water features within 250m of site.
Flora and fauna	Plants and animals that may be affected by proposed development. Soft landscaping is anticipated as part of proposals.
Buildings	The completed building and neighbouring residential structures.
Buried services	Potable water pipes are anticipated as part of proposals.

4.4 **Preliminary Conceptual Site Model**

The preliminary conceptual site model presented in **Table 4.4** has been derived using the findings of the desk study. The risk evaluation methodology is presented in **Appendix 5**.

Source	Pathway	Receptor	Consequence	Probability	Potential Risk	Detail
		End users	Medium	Likely	Moderate	Contact is likely between future site users/visitors in shallow soils in the proposed soft landscaping areas of the site, soil/dust
	Dermal contact, ingestion and inhalation of	Site workers	Medium	Likely	Moderate	tracked back into premises, and potentially from ingestion of produce grown on site. The historical age of various structures and outbuildings is such that the presence of asbestos cannot be
On site Made Ground (from previous site development). Potential asbestos containing materials (within on site buildings). (Metals, TPHs, PAHs, AMCs, PCBs and ground gases/vapour.).	contaminated soil, dust and/or fibres	Adjacent users	Medium	Likely	Moderate	discounted. Future site workers are likely to come into direct contact with soils during groundworks. Safe working practices should be implemented, and appropriate personal protective equipment (PPE) should be used to mitigate any potential risk.
	Leaching / infiltration through soils and migration via groundwater or soil pore moisture.	Controlled waters	Medium	Likely	Moderate	There is no current evidence to suggest that groundwater quality beneath the site is affected by contaminant leaching. The superficial geology is a principal aquifer, and the bedrock geology is designated as unproductive. The site is not located within a SPZ. Any potential contamination could have a significant impact on receptors and cannot be presently ruled out.
	Permeation of water pipes.	Construction materials, future end users	Medium	Likely	Moderate	Hydrocarbons, especially aromatics and chlorinated solvents, are known to permeate plastic pipes. Provision of water supply pipes and connectors formed from proprietary "barrier pipe" materials (e.g., polyethylene aluminium-polyethylene) may be required by the water supply company.
	Gas Migration and build up within buildings.	Future end users and building structures	Severe	Low likelihood	Moderate	A moderate risk is considered given the potential for Made Ground to be present and from the historical redevelopment which has occurred on site. The high permeability of the underlying superficial geology, potential contaminant migration could impact the site.
	Plant Uptake	Flora and Fauna	Medium	Likely	Moderate	Phytotoxic contamination as a consequence of historical and current land uses is likely due to the made ground from redevelopment at the site.

Table 4.4	Preliminary Concentual Site Model	
Table 4.4	Freinninary Conceptual Site Moder	

Source	Pathway	Receptor	Consequence	Probability	Potential Risk	Detail
	Dermal contact, ingestion and inhalation of	End users	Medium	Low likelihood	Moderate / low	Contact is likely between future residential occupiers/visitors in shallow soils in the proposed garden area of the site, soil/dust tracked back into premises, and from ingestion of home grown produce. Future site workers are likely to come into direct contact
	soil, dust and/or fibres	Site workers	Medium	Low likelihood	Moderate / low	with soils during groundworks. Safe working practices should be implemented, and appropriate personal protective equipment (PPE) should be used to mitigate any potential risk.
Off site Railway sidings (1840 – present day)	Leaching / infiltration through soils and migration via groundwater or soil pore moisture.	Controlled waters	Medium	Unlikely	Moderate	There is no current evidence to suggest that groundwater quality beneath the site is affected by contaminant leaching. The superficial geology is a principal aquifer, and the bedrock geology is designated as unproductive. The site is not located within a SPZ. Any potential contamination could have a significant impact on receptors and cannot be presently ruled out.
(Metais, TPHs, PAHs, PCBs and ground gases/vapour.).	Permeation of water pipes.	Construction materials, future end users	Medium	Likely	Moderate	Hydrocarbons, especially aromatics and chlorinated solvents, are known to permeate plastic pipes. Provision of water supply pipes and connectors formed from proprietary "barrier pipe" materials (e.g., polyethylene aluminium-polyethylene) may be required by the water supply company.
	Gas Migration and build up within buildings.	Future end users and building structures	Severe	Low likelihood	Moderate	A moderate risk is considered given the significant development surrounding the site and unspecified and infilled pits. The high permeability of the underlying superficial geology, potential contaminant migration could impact the site.
	Plant Uptake	Flora and Fauna	Mild	Low likelihood	Low	Phytotoxic contamination as a consequence of historic and current land uses is unlikely.

5 Fieldwork and Analysis

The works undertaken as part of the site investigation and subsequent analysis of selected samples is summarised below.

5.1 Site Investigation

The locations of the exploratory holes were selected based on available access, the objectives of the investigation and proposed development plans.

Statutory services plans were obtained by agb Environmental. Prior to breaking ground, a cable avoidance tool and signal generator were used to confirm each location was clear of detectable services.

The exploratory hole location plan and fieldwork records are presented in **Appendix 2**. The exploratory holes completed as part of the investigation are detailed below.

5.1.1 Cable Percussive Boreholes

One cable percussive borehole referenced CP01 was drilled between 30th June 2022 and 5th July 2022 to a depth of 25m bgl. Prior to boring CP01, a service inspection pit was excavated to a depth of 1.20mbgl using hand tools to confirm the absence of services. This borehole was advanced in 200mm diameter casing to a depth of 8mbgl, followed by 150mm diameter to a depth of 25mbgl.

Small or bulk disturbed, and undisturbed samples were taken at regular intervals. Standard Penetration Tests (SPTs) were undertaken at intervals to provide an indication of the strength or density of the soil, the results are presented as 'N' values on the borehole logs. Excess spoil was transferred to a skip for off-site disposal by a licensed waste carrier.

5.1.2 <u>Trial Pits</u>

A total of three trial pits, referenced TP01 to TP03, were excavated on 29th June 2022. The trial pits were advanced using a JCB 3CX and completed to depths between 3.00mbgl and 3.10mbgl. Small, and bulk disturbed samples were taken at regular intervals.

5.1.3 Dynamic Sampling Boreholes

A total of 4 dynamic sampling (windowless) boreholes, referenced WS01 to WS04, were formed on 28th June 2022. The boreholes were completed to depths between 1.30mbgl and 2.00mbgl, the density of the deposits preventing deeper penetration. The sampling equipment comprised of a track-mounted rig used to drive successive 1.00m long, lined 90mm to 50mm diameter core sample barrels into the ground. The recovered plastic core barrel 'liners' were split, logged and sub-sampled on-site by an engineer, and the samples, taken at regular intervals throughout the length of the boreholes, were placed in laboratory supplied sealed glass jars or plastic containers prior to being stored in cool boxes during transit to the laboratory. Soil penetration tests (SPTs) were undertaken at regular intervals in the boreholes to provide data regarding the strength or density of the soil, the result of each test is presented as the 'N' value on the borehole logs.

5.1.4 Plate Bearing Tests

Plate bearing tests were completed at six locations, referenced CBR01 to CBR06. The tests were completed either at ground level or at a depth of up to 0.2mbgl, using an 8.5t excavator as a reaction load and a 452mm diameter plate. The results are provided in **Appendix 2**.

5.1.5 Standpipe Installations and Monitoring

Single standpipe installations were placed into boreholes WS02 and WS04; these comprised of 50mm diameter PTFE piping, plain from surface level to 0.50mbgl, slotted between 0.50mbgl and 1.90-2.00mbgl, and installed to a depth of 1.90-2.00mbgl. Once introduced into the ground the slotted section was surrounded by suitable gravel pack, above which a sealing material (bentonite) was used. A rubber bung with a gas tap was placed at the top of the pipework and a flush cover concreted at surface to protect the installation from damage.

A single standpipe installation was placed in CP01, comprised of 50mm diameter PTFE piping, plain from surface level to 1.00mbgl, slotted between 1.00mbgl and 10.00mbgl, and installed to a depth of 10.00mbgl. Arisings were placed into the borehole between 25.00mbgl and 12.00mbgl, above which a bentonite seal was placed between 12.00mbgl and 10.00mbgl prior to the introduction of the standpipe. Once introduced into the ground the slotted section was surrounded by suitable gravel pack, above which a sealing material (bentonite) was used. A rubber bung with a gas tap was placed at the top of the pipework and a flush cover concreted at surface to protect the installation from damage.

The standpipes were monitored on two occasions between 11th July and 21st July 2022. The ground gas flow was monitored for a period of up to two minutes, the concentration of volatile organic compounds (VOCs) was monitored for a period of up to three minutes and the concentrations of ground gases including methane, carbon dioxide, hydrogen sulphide and carbon monoxide were monitored for up to five minutes.

The groundwater was sampled and monitored from the deep install of CP01. The monitoring results are presented in **Appendix 3**.

5.2 Laboratory Analysis

The scheduled chemical analysis and number of samples tested is summarised **Table 5.1**; the scheduled geotechnical laboratory testing is summarised in **Table 5.2**. The results are presented in **Appendix 4**.

Analusia	No. of Samp	les Tested
	Soil	Groundwater
Metals	6	2
Speciated polycyclic aromatic hydrocarbons (PAHs) (USEPA 16 – PAHs)	6	2
Total petroleum hydrocarbons (CWG Aromatic/Aliphatic Split)	6	2
ВТЕХМТВЕ	6	2
Asbestos screening	6	-
рН	16	2
Soil organic matter (SOM)	6	-
Polychlorinated Biphenyls	1	-
Total Sulphate (as SO4)	10	-
Total Sulphur	10	-
Water Soluble Sulphate (SO4)	10	2
Waste Acceptance Criteria Testing (BS EN 12457/3)	2	-

 Table 5.1
 Summary of Scheduled Contamination Testing

Table 5.2	Summary of Scheduled Geotechnical Testing	
Test		No. of Soil Samples Tested
Plasticity ind	ex	10
Natural Wate	er Content	10
Particle Size	Distribution	3
Triaxial Test		4

6 Ground Conditions

The encountered ground conditions are summarised below.

6.1 Encountered Ground Conditions

The ground conditions encountered are summarised in **Table 6.1** and discussed below.

Stratum	Location	Surface Depth (mbgl)	Base Depth (mbgl)	Thickness (m)			
Made Ground	All positions	0.00	0.30 to 0.60	0.30 to 0.60			
Kempton Park Gravel Member	All positions	All positions 0.30-0.60 ≥1.		≥0.70 to 6.90			
London Clay Formation	CP01	7.30	≥25.00*	≥17.70			
Groundwater	Groundwater seepage was noted in CP01 at 2.2mbgl during the intrusive s investigation works. No groundwater was encountered in the dynamic sample boreholes or trial pits. During monitoring, groundwater was observed between 4.12mbgl and 4.19m in borehole CP01: the dynamic sampling boreholes were dry						

 Table 6.1
 Summary of Encountered Ground Conditions

* base of stratum not proven at all borehole locations

6.1.1 Made Ground

Made Ground was encountered from surface level in all exploratory hole positions.

This was encountered from surface level as concrete with 7-8mm diameter rebar in positions CP01, WS01 and WS04 to a maximum depth of 0.20mbgl. Underlying the concrete in these positions was brown or dark grey gravelly sand, sand and gravel, or brick and concrete rubble to depths between 0.30 and 0.60mbgl. Gravel comprised brick, chert, limestone and concrete with rare clinker.

In position TP02, the Made Ground was encountered from surface level to a maximum depth of 0.30mbgl as dark brown silty sand. Sand was fine.

In positions TP01, TP03, WS02 and WS03, the Made Ground was encountered from surface level as dark brown, sometimes slightly gravelly, slightly silty to silty sand or slightly gravelly to gravelly sandy silt. Gravel was brick, chert and concrete with occasional brick, glass, clinker and porcelain. Occasional concrete and chert cobbles. Glass, metal and porcelain were notably abundant in the Made Ground at WS03 and concrete was abundant in TP03.

The base of the Made Ground was proven to depths between 0.30mbgl and 0.40mbgl in positions CP01, TP01-TP03 and WS04, and to a maximum depth of 0.60mbgl in positions WS01, WS02 and WS03.

6.1.2 Kempton Park Gravel Member

Beneath the Made Ground in all positions the natural geology was initially encountered as medium dense to very dense, brown, yellowish brown or dark grey, sometimes slightly silty to very silty, sometimes slightly gravelly sand to depths between 1.20mbgl and 3.70mbgl. Gravel was chert, generally rounded or recovered fractured. The sand or slightly gravelly sand was succeeded by stiff yellowish brown, sometimes gravelly, sandy silty clay in positions TP03, WS02 and WS03 to depths between 1.20mbgl and 1.40mbgl. The sand became medium dense to very dense brown or yellowish brown, sometimes slightly silty to silty, sometimes cobbly, gravelly to very gravelly, sand from 1.20-1.60mbgl to the base of most positions at

 \geq 1.30mbgl to \geq 3.10mbgl. In CP01 the brown cobbly gravelly fine sand was succeeded by orange sand with some chert gravel and cobbles from 3.70mbgl to a maximum depth of 7.30mbgl.

These strata are initially fine sand-dominated, generally becoming gravelly to very gravelly at 1.20-1.60mbgl, and are considered representative of the Kempton Park Gravel Member, which is shown on the BGS mapping to underlie the site. All positions except CP01 were completed in the Kempton Park Gravel Member between 1.30mbgl and 3.10mbgl.

6.1.3 London Clay Formation

The London Clay Formation was encountered beneath the Kempton Park Gravel Member in CP01 only, at a depth of 7.30mbgl. This stratum was encountered as a firm to stiff grey clay between 7.30mbgl and 9.50mbgl, followed by a claystone from 9.50mbgl to 10.40mbgl, overlying a stiff to very stiff grey clay with occasional patches of claystone between 10.40mbgl and 25.00mbgl.

CP01 was completed in the London Clay Formation at 25.00mbgl; the base of the stratum was not proven.

6.1.4 Groundwater

Groundwater was not observed during the formation of the dynamic sampling boreholes or the trial pits. A groundwater seepage was noted in cable percussive borehole CP01 at 2.2mbgl.

During monitoring, groundwater was observed in CP01 between 4.12mbgl and 4.19mbgl.

6.1.5 Visual and Olfactory Evidence

During the site investigation works and subsequent monitoring there were no visual or olfactory indications of gross contamination in soils or groundwater. The presence of Made Ground across the site could be a potential indicator of the presence of contaminants in soil.

7 Chemical Laboratory Test Results and Monitoring

The results of chemical laboratory testing and ground gas monitoring are detailed in the following section.

7.1 Soil Analysis

Based on the proposed end use as a residential development, with the incorporation of soft landscaping, the variability of Made Ground encountered and the results of soil organic matter content testing results, the results of chemical laboratory testing of soil samples for inorganic and organic compounds have been compared against screening criteria for residential with homegrown produce end use with 1.0% soil organic matter content as this is the most appropriate generic assessment criteria (GAC) applicable. The screening criteria hierarchy used is as follows:

- Chartered Institute of Environmental Health (CIEH) and Land Quality Management Ltd (LQM) Suitable for Use Levels (S4ULs).
- Department for Environment Food and Rural Affairs (Defra) Category 4 Screening Levels (C4SLs).
- Contaminated Land: Applications in Real Environments (CL:AIRE) soil generic assessment criteria (GACs).
- Environment Agency: Soil Guideline Values (SGVs)

Screening levels for certain organic contaminants have been selected based on laboratory testing for soil organic matter (SOM) content. A conservative SOM of 1% has been considered appropriate for this risk assessment based on the range recorded by laboratory testing in Made Ground samples.

7.2 Groundwater Analysis

The superficial geology on site is classed as a Principal aquifer and the bedrock is designated unproductive. There are no abstraction licences noted within 500m of site and no surface water features within 250m of site.

In order to assess the risk to surface water from potential contaminants, the results of groundwater analysis have been compared to water quality standards provided in:

- The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015 (WFD, 2015).
- The Water Supply (Water Quality) Regulations 2016 (WSR).
- WHO Guidelines for Drinking-Water Quality, Fourth Edition Incorporating the First Addendum (WHO, 2017).

7.3 Aggressive Ground

The results of testing for aggressive ground conditions have been classified using values provided in BRE Special Digest 1:2005: Concrete in aggressive ground.

7.4 Ground Gas Monitoring

Where applicable the results of ground gas and volatile organic compound (VOC) monitoring have been compared to:

• CIRIA 665: Assessing risks posed by hazardous ground gases to buildings.

- BS 8485:2015: Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.
- HSE EH40/2005 Workplace exposure limits.

7.5 Soil Analysis and Screening Results

Determinand Metals	Determinand / Concentration Range (mg/kg)		Screening Values for Resid Produce Land	dential with Homegrown Use (mg/kg)	No. of Samples with Elevated Concentrations	Samples with Elevated Concentrations
	Minimum	Maximum	S4ULs	C4SLs	oblicentrations	
Arsenic	9	26	37	-	0	None elevated
Cadmium	< 0.2	0.5	11	-	0	None elevated
Chromium (III)	13	19	910	910 -		None elevated
Chromium (VI)	< 2	< 2	6	-	0	None elevated
Copper	7	63	2400	-	0	None elevated
Lead	16	635	-	210	3	CP01– 0.30m TP01 – 0.20m WS03 – 0.30m
Mercury	< 1	< 1	40	-	0	None elevated
Nickel	11	16	130	-	0	None elevated
Selenium	< 3	< 3	250	-	0	None elevated
Zinc	40	589	3,700	-	0	None elevated

 Table 7.1
 Results of Laboratory Analysis for Metals

Determinand	Concentration Range (mg/kg)		Screening Values for Resider Produce Land Us	ntial with Homegrown e (mg/kg)	No. of Samples with	Samples with Flevated
PAHs	Minimum	Maximum	S4ULs	C181 a	Elevated Concentrations	Concentrations
	wimmum	Maximum	1% som	C43L8		Samples with Elevated Concentrations
Naphthalene	< 0.1	0.12	2.3	-	0	None elevated
Acenaphthylene	< 0.1	1.15	170	-	0	None elevated
Acenaphthene	< 0.1	0.35	210	-	0	None elevated
Fluorene	< 0.1	1.65	170	-	0	None elevated
Phenanthrene	< 0.1	18	95	-	0	None elevated
Anthracene	< 0.1	4.44	2,400	-	0	None elevated
Fluoranthene	< 0.1	28.7	280	-	0	None elevated
Pyrene	< 0.1	25.1	620	-	0	None elevated
Benzo[a]anthracene	< 0.1	13.3	7.2	-	1	WS02 – 1.00m
Chrysene	< 0.1	11	15	-	0	None elevated
Benzo[b]fluoranthene	< 0.1	11.5	2.6	-	1	WS02 – 1.00m
Benzo[k]fluoranthene	< 0.1	4.24	77	-	0	None elevated
Benzo[a]pyrene	< 0.1	12.6	2.2	10	1	WS02 – 1.00m
Indeno[123-cd]pyrene	< 0.1	7.38	27	-	0	None elevated
Dibenzo[ah]anthracene	< 0.1	2.07	0.24	-	3	TP01 – 0.20m WS02 – 1.00m WS03 – 0.30m
Benzo[ghi]perylene	< 0.1	6.37	320	-	0	None elevated
Total PAH	< 1.6	148	-	-	-	-

 Table 7.2
 Results of Laboratory Analysis for Polycyclic Aromatic Hydrocarbons

Determinand	Determinand Concentration Range		Screening Values for Residential with Homegrown Produce Land Use (mg/kg)	No. of Samples with	Samples with Elevated
Petroleum Hydrocarbons	(mg	/kg)	S4ULs	Elevated Concentrations	Concentrations
Speciated - Aliphatic	Minimum	Maximum	1% som		
>C5-C6	< 0.01	< 0.01	42	0	None elevated
>C6-C8	< 0.05	< 0.05	100	0	None elevated
>C8-C10	< 2	< 2	27	0	None elevated
>C10-C12	< 2	< 2	130	0	None elevated
>C12-C16	< 3	< 3	1100	0	None elevated
>C16-C34	< 13	< 13	65000	0	None elevated
Aliphatic C5-C34	< 21	< 21	-	-	-
Speciated - Aromatic	Minimum	Maximum	1% som		
>C5-7	< 0.01	< 0.01	70	0	None elevated
>C7-8	< 0.05	< 0.05	130	0	None elevated
>C8-10	< 2	< 2	34	0	None elevated
>C10-12	< 2	< 2	74	0	None elevated
>C12-16	< 2	5	140	0	None elevated
>C16-21	< 3	52	260	0	None elevated
>C21-35	< 10	114	1,100	0	None elevated
Aromatic C5-35	< 21	171	-	-	-

 Table 7.3
 Results of Laboratory Analysis for Speciated Total Petroleum Hydrocarbons

Determinand	Concentration Range (mg/kg)		Screening Values for Residential with Homegrown Produce Land Use (mg/kg)	No. of Samples with	Samples with Flevated
BTEX	Minimum	Maxima	S4ULs	Elevated Concentration	Concentrations
	Minimum	Maximum	1% som		
Benzene	< 0.002	< 0.002	0.087	0	None elevated
Toluene	< 0.005	< 0.005	130	0	None elevated
Ethylbenzene	< 0.002 < 0.002		47	0	None elevated
o-xylene	< 0.002	< 0.002	60	0	None elevated
m-xylene	< 0.002	< 0.002	59	0	None elevated
p-xylene	< 0.002	< 0.002	56	0	None elevated
Determinand	Minimum	Maximum	GACs	No. of Samples with	Samples with Elevated
MTBE	Minimum	Waximum	1% som	Elevated Concentration	Concentrations
МТВЕ	< 0.005	< 0.005	49	0	None elevated

Table 7.4 Results of Laboratory Analysis for BTEX and MTBE

Table 7.5PCB Analysis

Determinand	Concentra (mg	tion Range J/kg)	Screening Values for Residential with Homegrown Produce Land Use (mg/kg)	No. of Samples with	Samples with Elevated
	Minimum Maximum		EA SGVs	Elevated Concentration	Concentrations
Total PCB (12 congeners)	< 0.1	< 0.1	8	0	-

Table 7.6 Asbestos Screening

Determinand	Screening Result	Asbestos Matrix	Asbestos Type	Quantification (%)	Samples with Detected Asbestos
Asbestos	Not Detected	-	-	-	-

7.6 Groundwater Analysis and Screening Results

Determinand	Detern Concentra	ninand ation (ug/l)	TI	Threshold Value (ug/l)			Location of Samples with Elevated
Determinand	Minimum	Maximum	Surface Water	Drinking Water	Odour or Taste Threshold	Concentrations	Concentrations
Inorganic							
Arsenic	< 5	< 5	50 ª	10 ^g	-	0	None elevated
Cadmium	< 0.4	0.4	0.08 to 0.25 ^{a,b}	5 ^g	-	1	CP01 – 4.15m
Chromium (III)	< 5	< 5	4.7 ª	50 ^g	-	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.
Chromium (VI)	< 20	< 20	3.4 ª	-	-	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.
Copper	< 5	< 5	1 ^{a, i}	2,000 ^g	5,000	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.
Lead	< 5	< 5	1.2 ^{a,i}	10 ^g	-	0	Threshold value is less than limit of detection, but no indication of significant contaminant impact of either soils or groundwaters.
Mercury	< 0.05	< 0.05	0.07 ^b	1 g	-	0	None elevated
Nickel	< 5	18	4 a, ⁱ	20 ^g	-	1	CP01 – 4.15m
Selenium	< 5	< 5		10 ^g	-	0	None elevated
Zinc	< 2	105	10.9 ^{a, i, j}		-	1	CP01 – 4.15m
Polycyclic Aromatic Hydro	carbons						
Naphthalene	< 0.01	< 0.01	2 ª	0.075 ^d	-	0	None elevated
Acenaphthylene	< 0.01	< 0.01			-	0	None elevated
Acenaphthene	< 0.01	< 0.01			-	0	None elevated

 Table 7.7
 Summary of Groundwater Analysis Results

Determinend	Deterr Concentra	ninand ation (ug/l)	Threshold Value (ug/l)			No. of Samples	Location of Samples with Elevated
Determinand	Minimum	Maximum	Surface Water	Drinking Water	Odour or Taste Threshold	Concentrations	Concentrations
Fluorene	< 0.01	< 0.01			-	0	None elevated
Phenanthrene	< 0.01	< 0.01			-	0	None elevated
Anthracene	< 0.01	< 0.01	0.1 a		-	0	None elevated
Fluoranthene	< 0.01	< 0.01	0.0063 ª	0.075 ^d	-	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.
Pyrene	< 0.01	< 0.01			-	0	None elevated
Benzo[a]anthracene	< 0.01	< 0.01			-	0	None elevated
Chrysene	< 0.01	< 0.01			-	0	None elevated
Benzo[b]fluoranthene	< 0.01	< 0.01	0.017 ^b	0.075 ^d	-	0	None elevated
Benzo[k]fluoranthene	< 0.01	< 0.01	0.017 ^b		-	0	None elevated
Benzo[a]pyrene	< 0.01	< 0.01	0.00017 ª	0.01 ^g	-	0	Threshold value is less than limit of detection, but no indication of significant contaminant impact of either soils or groundwaters.
Indeno[123-cd]pyrene	< 0.01	< 0.01			-	0	None elevated
Dibenzo[ah]anthracene	< 0.01	< 0.01			-	0	None elevated
Benzo[ghi]perylene	< 0.008	< 0.008	0.0082 ^b		-	0	None elevated
Total PAH	< 0.16	< 0.16		0.1 ^g	-	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.
BTEX		•	•	•	•	•	
Benzene	< 1	< 1	10 ª	1 ^g	-	0	None elevated
Toluene	< 5	< 5	74 ª	700 ^h	401	0	None elevated
Ethylbenzene	< 5	< 5	-	300 ^h	72 '	0	None elevated
Xylenes	< 15	< 15	30 ^f	500 ^h	300 '	0	None elevated

Determinand	Deterr Concentra	ninand ation (ug/l)	Threshold Value (ug/l)			No. of Samples	Location of Samples with Elevated				
	Minimum	Maximum	Surface Water	Drinking Water	Odour or Taste Threshold	Concentrations	Concentrations				
MTBE	< 10	< 10	-	-	15 ^m	0	None elevated				
Petroleum Hydrocarbons											
Aliphatic >EC5-6	< 10	< 10	-	15000 ⁿ	-	0	None elevated				
Aliphatic>EC6-8	< 10	< 10	-	15000 ⁿ	-	0	None elevated				
Aliphatic>EC8-10	< 10	< 10	-	300 ⁿ	-	0	None elevated				
Aliphatic>EC10-12	< 10	< 10	-	300 ⁿ	-	0	None elevated				
Aliphatic>EC12-16	< 10	< 10	-	300 ⁿ	-	0	None elevated				
Aliphatic>EC16-35	< 10	< 10	-	-	-	0	None elevated				
Aromatic >EC5-7	< 10	< 10	-	10 ⁿ	-	0	None elevated				
Aromatic >EC7-8	< 10	< 10	-	700 ⁿ	-	0	None elevated				
Aromatic >EC8-10	< 10	< 10	-	300 ⁿ	-	0	None elevated				
Aromatic >EC10-12	< 10	< 10	-	90 ⁿ	-	0	None elevated				
Aromatic >EC12-16	< 10	< 10	-	90 ⁿ	-	0	None elevated				
Aromatic >EC16-21	< 10	< 10	-	90 ⁿ	-	0	None elevated				
Aromatic >EC21-35	< 10	< 10	-	90 ⁿ	-	0	None elevated				
ТРН	< 140	< 140	-	-	10 ^{I, m}	0	None elevated				

a - Water Framework Directive (Standards and Classification), 2015 - EQS Value for Rivers based on long term mean or an annual average.

b - Water Framework Directive - Maximum Allowable Concentration for Rivers

c - Water Framework Directive - Groundwater value where end receptor is surface water

d - Water Framework Directive - Groundwater value where end receptor is drinking water supply

e - Water Framework Directive - General quality of groundwater value

f - Environment Agency "operational" target

g - Water Supply Regulations

h - WHO, 2017 - Drinking Water Standards

i - bioavailable component

j - plus Ambient Background Concentration (dissolved)

k - hardness dependant

I - WHO, 2017 - lower bound taste threshold

m - WHO, 2017 - lower bound odour threshold

n - WHO, 2008 Drinking Water Standards (adopted by CL:AIRE)

7.7 Aggressive Ground Analysis

	Determinand							
Stratum	Total sulphate (%)	W/S sulphate SO4 (mg/l) Total sulphur (%)		рН	Total Potential Sulphate	DS / ACEC Class		
Made Ground	0.03	< 10	< 0.02	7	-	DS-1 / AC-1		
Kempton Park Gravel Member	0.03–0.06	13–227	< 0.02 - 0.02	7.7 - 8.5	-	DS-1 / AC-1		
London Clay Formation	0.05 -0.06	108-150	0.28 - 0.65	6.8 - 8.9	0.84-1.95	DS-4 / AC-4		
Groundwater	-	103-105	-	7.3	-	DS-1 / AC-1		

7.8 Ground Gas Monitoring Results

Date Location	Location	CO ₂ (%)		CH4 (%)		O ₂ (%)		Flow	Atmos. Pres.
	Min	Max	Min	Max	Min	Max	(Max. l/hr.)	(mb)	
11.07.2022	CP01	2.9	3.4	0.0	0.0	13.2	16.3	0.0	1022 (falling)
11.07.2022	WS02	1.3	2.2	0.0	0.0	18.9	19.6	0.0	1023 (falling)
11.07.2022	WS04	2.2	3.3	0.0	0.0	17.7	19.3	0.0	1023 (falling)
21.07.2022	CP01	5.0	5.1	0.0	0.0	13.2	14.2	0.0	1022 (falling)
21.07.2022	WS02	1.5	2.1	0.0	0.0	19.2	19.6	0.0	1021 (falling)
21.07.2022	WS04	0.1	3.6	0.0	0.0	17.9	20.6	0.0	1021 (falling)

 Table 7.9
 Summary of Ground Gas Monitoring Results

 Table 7.10
 Gas Screening Values for Carbon Dioxide and Methane

Peak Flow Rate (I/hr)	Worst Case CO ₂ (%)	CO ₂ GSV	Worst Case CH ₄ (%)	CH₄ GSV	CIRIA 665 Characteristic Situation
<0.1	5.1	0.00511/hr CO ₂	<0.1	0.0001I/hr CH₄	GSV = CS-1 Max recorded values = CS-1*

Table 7.11 Workplace Exposure Limits

	Recorded Concentration (ppm)								
Location	Carbon monoxide		Hydroger	n sulphide	Liquefied Petroleum Gas (VOCs)				
	Min	Мах	Min	Max	Min	Мах			
All Boreholes	1 4		1	4	<0.1	<0.1			
HSE Workplace	Long Term Short Term		Long Term	Short Term	Long Term	Short Term			
Exposure Limits (ppm)	30 200		5 10		1000	1250			
Locations with Elevated Concentrations	None elevated.		None e	levated.	None e	levated.			

8 Updated Risk Assessment

Discussion of analysis, screening and monitoring results, and an updated qualitative risk assessment are provided below.

8.1 Discussion of Results, Screening and Monitoring Results

The soil and groundwater screening and the results of the ground gas monitoring visits are summarised below in **Table 8.1**, **Table 8.2** and **Table 8.3**.

<u>Soil</u>

Elevated concentrations of lead and four congeners of polycyclic aromatic hydrocarbons (PAH), namely benzo[a]anthracene, benzo[b]fluoranthene, benzo[a]pyrene and dibenzo[ah]anthracene, have been identified within soils across four exploratory hole positions, which exceed the screening criteria for residential developments with homegrown produce. Additional comparison has been undertaken below against screening criteria for residential developments without homegrown produce end use. The results are presented below in **Table 8.1**.

	Samples with Exceedance and Location for Screening Values (1% SOM)					
Determinand	Residential with homegrown produce	Residential without homegrown produce				
Lead	CP01 – 0.30m TP01 – 0.20m WS03 – 0.30m	CP01 – 0.30m TP01 – 0.20m WS03 – 0.30m				
Benzo[a]anthracene	WS02 – 1.00m	WS02 – 1.00m				
Benzo[b]fluoranthene	WS02 – 1.00m WS03 – 0.30m	WS02 – 1.00m WS03 – 0.30m				
Benzo[a]pyrene	WS02 – 1.00m WS03 – 0.30m	WS02 – 1.00m WS03 – 0.30m				
Dibenzo[ah]anthracene	TP01 – 0.20m WS02 – 1.00m WS03 – 0.30m	WS02 – 1.00m WS03 – 0.30m				

	for	samples	with	screening	threshold
exceedances.					

Positions CP01 and WS02 are below the footprint of the proposed building on site; position TP01 is beneath proposed parking and WS03 beneath proposed soft landscaping on site. These results indicate that the Made Ground is not suitable for soft landscaped areas on site which may be accessed by residents. The sample from WS02 at 1.00m is from the natural soil underlying the Made Ground. It is noted that this has the potential to be reworked soil and that the PAH exceedances are in similar congeners to the shallow Made Ground soil from WS03.

Groundwater

Table 8.2 Groundwater Screen	ing Summary
Determinand	Samples with Exceedance
Cadmium	CP01 – 4.15m. Exceeding surface water criteria.
Nickel	
Zinc	

Elevated concentrations of cadmium, nickel and zinc have been identified in the first round of groundwater sampling underlying the site which exceed water quality standards for surface water. No source has been identified within shallow Made Ground soils on site.

The exceedances in relation to surface water quality standards concentrations are not considered to be significant given the industrial history of the surrounding area and the lack of exceedances during a subsequent round of monitoring and sampling. The closest surface water receptor is a lake in Bushy Park, located approximately 850m south of site. Given the distance to this receptor an unacceptable risk is not considered to be present..

Ground Gas

Table 8.3 Summary of Ground	Gas Monitoring
Item	Result
Characteristic Situation	CS-1 (CIRIA C665)
Workplace Exposure Limits	None elevated.

Ground gas monitoring was undertaken during two visits between 11th July and 21st July 2022. Based upon the gas screening values, Characteristic Situation 1 is considered appropriate for the site. The maximum recorded carbon dioxide gas concentration is slightly above the 5% threshold between CS-1 and CS-2. However, given that no positive flow rates have been encountered from any of the boreholes monitored on site and the very marginal exceedance of the 5% threshold, CS-1 is still considered appropriate.

Based on the information discussed above, Characteristic Situation (CS) 1 is identified as the appropriate ground gas regime for the site.

9 Waste Classification

Excavated soil from the construction works intended for disposal is required to be assessed for hazardous properties prior to disposal. The soil would be classified as either:

- Hazardous
- Non hazardous
- Inert

9.1 Soil Waste Classification

An assessment of the chemical data has been undertaken with respect to the Environment Agency's (EA) Technical Guidance Document WM3 (2021) '*Waste Classification- Guidance on the classification and assessment of waste*' (1st Ed. V1.2.GB) to determine whether arisings from the site, if intended for disposal to landfill, possess hazardous properties and therefore would require disposal to a hazardous landfill or an alternative facility that deals with designated Hazardous Waste. It is assumed the chemical data obtained is representative of conditions of the soils at the site.

A waste classification assessment was undertaken on 6no. soil samples using HazWasteOnline[™] software. The Waste Classification Report is presented in **Appendix 4**. All six of the samples classify as non-hazardous.

Based on the soil testing results, waste soils to be removed from site should be classified as **Non-Hazardous**, categorised as 17 05 04 in the List of Waste from WM3.

9.2 Soil Waste Disposal

The Landfill Directive, introduced to the UK via the Landfill Regulations (England and Wales) 2002 aims to reduce reliance on landfill as a disposal option. The Regulations include updated waste assessment criteria (WAC) as limit values for waste destined to various classes of landfill.

WAC testing was undertaken on two soil samples, from WS02 (1.00m) and WS03 (0.30m). The sample from WS02 passed the Inert Waste WAC limits, but the sample from WS03 failed the Inert Waste WAC limit from antimony. Therefore, as per EA guidance '*Dispose of Waste to Landfill*' (published January 2020), excavated soils to be removed off-site meet the requirements for disposal at a landfill for non-hazardous waste. The WAC testing results are presented in **Appendix 4**.

The developer has a statutory responsibility under the Duty of Care Regulations of the Environmental Protection Act 1990 to ensure that contaminated soil and water is disposed of off-site to a suitably licensed waste management facility in a safe and approved manner.

To comply with the Duty of Care all wastes taken off site, in solid or liquid form, must be handled by a registered waste carrier and be accompanied by a consignment note that describes the waste.

10 Updated Conceptual Site Model and Qualitative Risk Assessment

The updated assessment of plausible contaminant linkages based on the results of the investigation and a summary of the potential geoenvironmental risks associated with the site and in the context of the proposed development is provided in **Table 10.1**. The CSM risk evaluation methodology is presented in **Appendix 5**.

Source	Pathway	Receptor	Consequence	Probability	Potential Risk	Detail
	Dermal contact	End users	Medium	Likely	Moderate	Contact is likely between future site users/visitors in shallow soils in the proposed soft landscaping areas of the site, soil/dust
	ingestion and inhalation of contaminated soil, dust and/or fibres	Site workers	Medium	Likely	Moderate	tracked back into premises, and potentially from ingestion of produce grown on site. Future site workers are likely to come into direct contact with soils during groundworks. Safe working
On site		Adjacent users	Medium	Unlikely	Low	practices should be implemented, and appropriate personal protective equipment (PPE) should be used to mitigate any potential risk.
On site Made Ground (from previous site development). Potential asbestos containing materials (within on site buildings). (Metals, TPHs, PAHs, AMCs, PCBs and ground gases/vapour.).	Leaching / infiltration through soils and migration via groundwater or soil pore moisture.	Controlled waters	Medium	Unlikely	Low	Groundwater screening indicates exceedances for heavy metals beneath the site in the first water sample tested. No on-site contamination source has been identified in the Made Ground, and subsequent monitoring did not identify chemical exceedances in groundwater. Given the distance to the nearest identified surface water feature and no abstraction licenses within 500m, an unacceptable risk is not considered to be present.
	Permeation of water pipes.	Construction materials, future end users	Medium	Low likelihood	Moderate / low	A moderate to low likelihood of potential hydrocarbon permeation of pipes is considered to site based upon the results of soil and groundwater screening. The results should be supplied to the water supply company to determine the appropriate pipework for use on site.
	Gas Migration and build up within buildings.	Future end users and building structures	Severe	Unlikely	Moderate / low	Based upon the results of ground gas monitoring, a moderate to low risk is considered to site from ground gasses. Characteristic Situation CS-1 has been considered appropriate for the site based on the ground gas monitoring results.
	Plant Uptake	Flora and Fauna	Mild	Low likelihood	Low	Phytotoxic contamination as a consequence of historic and current land uses is unlikely.

 Table 10.1
 Updated Qualitative Risk Assessment
agb Environmental Ltd

Source	Pathway	Receptor	Consequence	Probability	Potential Risk	Detail
	Dermal contact, ingestion and inhalation of contaminated	End users	Medium	Low likelihood	Moderate / low	Contact is likely between future residential occupiers/visitors in shallow soils in the proposed garden area of the site, soil/dust tracked back into premises, and from ingestion of home grown produce. Future site workers are likely to come into direct contact
	soil, dust and/or fibres	Site workers	Medium	Low likelihood	Moderate / low	with soils during groundworks. Safe working practices should be implemented, and appropriate personal protective equipment (PPE) should be used to mitigate any potential risk.
Off site Railway sidings (1840 – present day) (<i>Metals, TPHs, PAHs, PCBs and</i>	Leaching / infiltration through soils and migration via groundwater or soil pore moisture.	Controlled waters	Medium	Unlikely	Low	Groundwater screening indicates exceedances for heavy metals beneath the site in the first water sample tested. These may have come from an off-site source. No on-site contamination source has been identified in the Made Ground, and subsequent monitoring did not identify chemical exceedances in groundwater. Given the distance to the nearest identified surface water feature and no abstraction licenses within 500m, an unacceptable risk is not considered to be present.
ground gases/vapour.).	Permeation of water pipes.	Construction materials, future end users	Medium	Low likelihood	Moderate / low	A moderate to low likelihood of potential hydrocarbon permeation of pipes is considered to site based upon the results of soil and groundwater screening. The results should be supplied to the water supply company to determine the appropriate pipework for use on site.
	Gas Migration and build up within buildings.	Future end users and building structures	Severe	Unlikely	Moderate / low	Based upon the results of ground gas monitoring, a moderate to low risk is considered to site from ground gasses. Characteristic Situation CS-1 has been considered appropriate for the site based on the ground gas monitoring results.
	Plant Uptake	Flora and Fauna	Mild	Low likelihood	Low	Phytotoxic contamination as a consequence of historic and current land uses is unlikely.

11 Contamination Conclusion and Recommendations

The following recommendations are based on the results of the conceptual site model and risk assessment.

11.1 Conclusion

Based on the conceptual site model and risk assessment there is a considered moderate risk to end users, site workers and other environmental receptors.

Elevated concentrations of lead and four congeners of polycyclic aromatic hydrocarbons have been identified within soils up to 1.00mbgl in soils beneath proposed soft landscaping, parking and building footprints, which exceed the screening values for residential developments both with and without homegrown produce. Future site users and workers have the potential to come into contact with these soils.

Elevated concentrations of cadmium, nickel and zinc were identified in the first round of groundwater sampling which exceed water quality standards for surface water. No source has been identified within shallow Made Ground soils on site and the exceedances were not repeated during the second round of sampling.

The exceedances in relation to surface water quality standards concentrations are not considered to be significant given the industrial history of the surrounding area and the lack of exceedances during a subsequent round of monitoring and sampling. The closest surface water receptor is a lake in Bushy Park, located approximately 850m south of site, and given the distance to this receptor and unacceptable risk is not considered to be present

Based on the gas monitoring results and in line with classification, as detailed within C665 documentation, the CS level has been calculated as CS-1. Consequently, gas protection measures are not considered to be required to be installed within the proposed development.

11.2 Recommendations

11.2.1 Delineation / Remediation

It is considered that a pathway break will be introduced between soils and human receptors in the proposed parking and building footprint areas.

It is recommended that delineation through further sampling and testing could be considered in the proposed soft landscaping area in the south. This may reduce the area requiring remediation.

In the absence of a delineation exercise remedial works will be required in the proposed soft landscaping area in the south of site to address the risks identified. If soils are removed in this part of the site, then this could remediate the area by removing the contamination source. The recommended minimum thickness for clean capping soils is 600mm.

Excavations within the root protection zones of trees on site should have consideration for the NHBC trees standards and root protection areas associated with the existing trees on site and adjacent to site. The Local Planning Authority Tree Officer should be contacted to discuss options.

A remedial strategy must be undertaken and submitted to the Local Planning Authority prior to any of the aforementioned works being undertaken. Any remediation undertaken would then require validation to show that the identified risks have been adequately addressed.

11.2.2 Protection of Ground Workers

Suitable health and safety measures will be required for groundworkers. Appropriate precautions should be put in place following risk assessment. This should include, but not limited to, the adoption of suitable safe systems of work, provision of personal protective equipment, dust suppression, the provision and use of welfare facilities and suitable protective measures for the current site users.

11.2.3 Watching Brief

It is recommended that a watching brief be maintained on site, particularly during the groundwork stage. During any ground works a competent person should make an appraisal of the exposed soils. If any material is noted to show visual and/or olfactory signs of contamination it should be stockpiled separately and tested prior to its appropriate removal off-site or re-use. If soils suspected of being contaminated are encountered, it is recommended that a contaminated land specialist be consulted.

11.2.4 Buried Services

Potable water pipework shall comply with the Water Supply Regulations. The agreement of the water provider and Local Authority should be sought regarding the potable water pipework and fittings selected prior to commencement.

11.2.5 Importing and Re-Use of Soil and Materials Management Plan

It is not anticipated that excavated materials will be re-used on site. A material would not be considered a waste if it is uncontaminated soil and other naturally occurring material excavated in the course of construction activities, where it is certain that the material will be used for the purposes of construction in its natural state on the site from which it was excavated.

Where the reuse of excavated material is intended, in accordance with the 'CL:AIRE Definition of Waste: Development Industry Code of Practice', a MMP should be prepared. The Environment Agency should be consulted at an early stage in this process, and this should be overseen by a 'competent person' as defined by LCRM.

11.2.6 Soil Disposal

The client and contractors are advised to follow the process outlined in the Environment Agency's Technical Guidance Document WM3 '*Waste Classification – Guidance on the Classification and Assessment of Waste*', 1st edition 2021, v1.2 GB.

Based on the soil testing results, waste soils to be removed from site should be classified as **Non-Hazardous**, categorised as 17 05 04 in the List of Waste from WM3. WAC testing was undertaken for completeness and samples failed the Inert Waste WAC limits. Therefore, as per EA guidance '*Dispose of Waste to Landfill*' (published January 2020), excavated soils to be removed off-site meet the requirements for disposal at a landfill for non-hazardous waste.

The developer has a statutory responsibility under the Duty of Care Regulations of the Environmental Protection Act 1990 to ensure that contaminated soil and water is disposed of off-site to a suitably licensed waste management facility in a safe and approved manner.

To comply with the Duty of Care all wastes taken off site, in solid or liquid form, must be handled by a registered waste carrier and be accompanied by a consignment note that describes the waste.

11.2.7 Statutory Authority Consultation

It is recommended that this report be sent to the statutory authorities including the Local Authority Environmental Health and Planning Departments prior to site works commencing to seek their comments. Where necessary, they will consult the Environment Agency or other relevant statutory authorities. If applicable to this project, this report should also be provided to the relevant building warranty provider.

12 Geotechnical Assessment

Comments regarding foundation design and construction are provided below.

12.1 Summary of Proposals and Ground Conditions

The development proposals and encountered ground conditions are summarised below.

12.1.1 Development Proposals

Development proposals are understood to include the demolition of the existing 7-storey residential block and replacement with a 31-unit, 5-storey residential block with car parking provisions and a communal garden.

12.1.2 <u>Summary of Ground Conditions and Test Results</u>

The encountered ground conditions and in-situ and geotechnical laboratory test results are summarised in **Table 12.1** to **Table 12.3**.

Stratum	Location	Surface Depth (mbgl)	Base Depth (mbgl)	Thickness (m)	
Made Ground	All positions	0.00	0.30 to 0.60	0.30 to 0.60	
Kempton Park Gravel Member	All positions	0.30-0.60	≥1.30* to 7.30	≥0.70 to 6.90	
London Clay Formation	CP01	7.30	≥25.00*	≥17.60	
Groundwater	Groundwater seepa investigation works. boreholes or trial pit During monitoring, g in borehole CP01; t	age was noted in CP . No groundwater wa ts. groundwater was obs he dynamic sampling	01 at 2.2mbgl during s encountered in the erved between 4.12r boreholes were dry.	g the intrusive site dynamic sampling nbgl and 4.19mbgl	

 Table 12.1
 Summary of Encountered Ground Conditions

*base of stratum not proven at all borehole locations

Table 12.2 Summary of Test Results

	Corrected SPT	Angle of	Moisture	Plasticity	c _u (kPa)			
Stratum	'N60' Value	Shearing Resistance	Content (%)	Index (%)	SPT N60 x 4.2	Triaxial Test		
Kempton Park Gravel Member	25 - 79	35 - 46	8 - 10	14 - 15	-	-		
London Clay Formation	26 - 50	-	24 - 34	38 - 48	107 - 210	121 - 237		

Table 12.3 Summary of PSD Results

Stratum	Fines (%)	Sand (%)	Gravel (%)	Cobbles (%)
Kempton Park Gravel Member	2 – 3	36 - 63	35 – 61	0

The SPT N60 values have been calculated using an energy ratio of 73% from the cable percussive drilling rig and 79% from the dynamic sampling drilling rig. The corrected results are compared to depth in **Figure 12.1** below.

Figure 12.1 SPT N60 Values vs Depth (mbgl)

The undrained shear strengths calculated from N60 values for the cohesive London Clay Formation soils and determined by laboratory and in-situ testing have been plotted against depth and are presented as **Figure 12.2**.

Figure 12.2 Cu (kPa) vs Depth (mbgl)

12.2 Foundations

The following assessment is based on the ground conditions encountered and parameters determined from the intrusive site investigation, including the results of laboratory analysis. At the time of writing detailed design information and structural loads of the proposed buildings were not available, however it is assumed that the proposed structure will form a new multi storey residential block.

It is assumed that finished ground levels will be at or close to current ground levels, if this is not the case then this assessment will need to be reviewed.

Based on the geotechnical data obtained to date, the ground conditions encountered on site are considered appropriate for traditional trench fill/pad foundations bearing on the underlying natural coarse Kempton Park Gravel Member soils. The soils encountered on site have been interpreted to represent superficial deposits of the Kempton Park Gravel Member overlying bedrock of the London Clay Formation.

Testing undertaken on the coarse soils of the Kempton Park Gravel Member indicated soils of a medium dense to very dense relative density. Testing undertaken on the fine cohesive London Clay Formation soils encountered underlying the superficial coarse soils indicated stiff to very stiff clay with a medium to high volume change potential.

A number of trees are present on site. Thin bands of low volume change potential superficial gravelly clay soils have been encountered to depths of up to 1.70m bgl at locations TP03 and WS02. Whilst the medium to high shrinkable London Clay Formation cohesive clay soils have not been encountered until 7.30mbgl at location CP01, foundations constructed within the influencing distance of trees (whether on or off site and whether to remain, be removed or planted), should have the foundations locally deepened. Rare roots were only identified to some 2m depth, Localised clay units within the Kempton Park Gravel Member were only encountered within the shallowest 2m depth with granular deposits extending to some 7m depth. On this basis it is considered that minimum foundation depths based on appropriate industry guidance, such as NHBC Standards Chapter 4.2, may be excessively conservative and foundation depths may be limited to 2m to take such foundations below any shallow clay units and below observed rare root growth. Such foundations may still require heave protection.

Any made ground or reworked soils encountered within the proposed building footprint are considered unsuitable as a founding stratum and all foundations will need to fully penetrate any made ground, low strength or otherwise unsuitable soils and below any ground affected by grubbing out of the existing foundations and services and be founded a minimum of 150mm into the natural undisturbed founding stratum. It is recommended that shallow foundations are placed within the natural coarse soils and if any areas of superficial fine cohesive soils are encountered, such as at locations TP03 and WS02, these soils are fully penetrated.

A competent person should inspect foundation excavations to ensure they comply with design assumptions. Made Ground has been encountered to a maximum depth of 0.60mbgl at locations WS01, WS02 and WS03, but could be deeper in other areas of the site; grubbing out of existing foundations and services is likely to result in deeper disturbed ground.

Based on the site investigation data and testing available, for a 1.0m wide strip/trench fill foundation, bearing on the underlying natural coarse Kempton Park Gravel Member soils at a

depth of 1.0m, a design bearing resistance of 300kN/m²-is considered appropriate. However it is recommended that foundations are taken to 2m due to presence of clay lenses and rare rootlets.

For a 1.0m wide strip/trench fill foundation bearing on the Kempton Park Gravel Member at 2.0m depth, a design bearing resistance of 350kN/m² should be available.

Alternatively for a 2.0m square pad foundation bearing on the underlying natural coarse Kempton Park Gravel Member soils at a depth of 1.0m, a design bearing resistance of 285kN/m² should be available. However it is recommended that foundations are taken to 2m due to presence of clay lenses and rare rootlets.

For a 2.0m square pad foundation bearing on the coarse Kempton Park Gravel Member soils at a depth of 2.0m, a design bearing resistance of 325kN/m² should be available.

The above is only applicable for foundations with loads that are applied vertically and centrally and should result in total settlements of not more than 25mm, keeping differential settlements within acceptable limits.

In the absence of design loads the bearing capacity assessment has been undertaken for Design Approach 1, Combination 2 only, and a further assessment taking account of anticipated loadings will be required during detailed design in order to confirm the limit states are satisfied.

If the design bearing capacities noted above are considered inadequate, then consideration should be given to the use of a piled foundation solution. The choice of piling system and detailed design of piles are beyond the scope of this report and should be undertaken by a specialist piling contractor.

12.3 Stability of Excavations and Dewatering Considerations

The sides of excavations through Made Ground or granular soils would not be expected to remain stable and may require temporary support with appropriate shoring to prevent excavation collapse during construction.

Instability is more likely where excavations are left open for longer periods and during inclement weather and may require temporary support with appropriate shoring to prevent excavation collapse during construction.

Where support systems are required, this must be designed by a suitably qualified engineer. Precautionary measures should be adopted should excavations be expected to remain open for an extended period and must be installed if personnel are to enter.

Groundwater seepage was noted in CP01 at 2.2mbgl during fieldwork. It is considered that should groundwater be encountered at shallow excavation depths, it will likely be suitably controlled using sump pumps.

12.4 Floor Slabs

Shallow ground conditions on site comprise approximately 600mm of made ground overlying natural coarse soils. Grubbing out of existing foundations and services may disturb the ground to a deeper and greater extent. At this stage consideration should be given to adopting a suspended floor slab. Whilst the natural coarse soils could be considered a suitable formation for ground bearing slabs following proof rolling any Made Ground/disturbed ground would

need to be removed and replaced with selected compacted granular materials. During preparation, the formation should be inspected and any soft or unsuitable materials should be removed and replaced with a suitable compacted granular fill.

12.5 Hardstanding

Following site preparation and regrading it is considered that the subgrade will comprise made ground or natural coarse soils.

The made ground on site is likely to be variable and for preliminary design purposes is considered to have a CBR of 2%. It is recommended that once the site has been graded to the appropriate pavement formation level, it is inspected and, if necessary, in situ CBR testing be conducted on the subgrade to confirm the appropriate pavement design (i.e. to determine the subbase and capping thickness). In addition, the formation should be proof-rolled and any soft/loose pockets encountered should be excavated and replaced with well-compacted granular fill prior to pavement construction. Additional guidance is provided in BS7533-10:2010.

Plate bearing tests on the hardstanding recorded an equivalent CBR value of >26%, with a result of 10% on the block paving and results between 1% and 4% on the shallow Made Ground at a depth of 0.20mbgl.

12.6 Chemical Attack on Buried Concrete

The results of testing for aggressive ground conditions have been summarised below in **Table 12.4**, the design sulphate class (DS) and aggressive chemical environment for concrete (ACEC) has also been provided.

			Determinand			
Stratum	Total sulphate (%)	W/S sulphate SO₄ (mg/l)	Total sulphur (%)	рН	Total Potential Sulphate	ACEC Class
Made Ground	0.03	< 10	< 0.02	7	-	DS-1 / AC- 1
Kempton Park Gravel Member	0.03–0.06	0.03–0.06 13–227		7.7 - 8.5	-	DS-1 / AC- 1
London Clay Formation	0.05 -0.06	108-150	0.28 – 0.65	6.8 - 8.9	0.84-1.95	DS-4 / AC- 4
Groundwater	Groundwater -		-	7.3	-	DS-1 / AC- 1

 Table 12.4
 Summary of Test Results

The London Clay Formation has been designated a design sulphate class of DS-4/AC-4 based on the Total Potential Sulphate values calculated. However, it is recognised that given the depth of the London Clay on site oxidation is unlikely and concrete placed within this strata is therefore also unlikely to be exposed to ground that has been disturbed. A lower design sulphate class could therefore be considered if for example piled foundations were to be placed into the London Clay.

13 Limitations

The conclusions and recommendations made in this report are limited to those that can be made on the basis of the research carried out. The results of the research should be viewed in the context of the work that has been carried out and no liability can be accepted for matters outside the stated scope of the research. Any comments made on the basis of information obtained from third parties are given in good faith on the assumption that the information is accurate. No independent validation of third party information has been made by agb Environmental Ltd.

Should any changes to the development be proposed, including changes to the proposed landscaping, then the risks will need to be reassessed. This may require additional site investigation work and may result in the need for alteration of the remedial works.

Advice provided within this report is based on current guidelines available at the time of writing. This report is subject to amendment in light of additional information becoming available or statutory consultee review, including the Environment Agency and Local Authority and the NHBC.

It is possible the conditions observed during the site investigation may change. This may result in changes to sources, pathways or receptors that were unforeseen and unexpected. Statements relating to ground gas or groundwater conditions are based on observations made at the time of the site investigation (unless otherwise stated). Ground gas or groundwater conditions may vary as a result of seasonal fluctuations or other effects.

Ground contamination can exist as small discrete areas of contamination and there can be no certainty that any or all such areas have been sampled or identified. This is particularly significant for an investigation by exploratory holes (as used in this site investigation) as a relatively small sample of soil is extracted, which may not be entirely representative of the surrounding ground conditions.

The geotechnical advice given in this report seeks to provide foundation design guidelines for the proposed building(s). The recommendations/advice given is based on the available information obtained during the investigation. Should any unusual ground conditions be encountered that differ from those proved in the exploratory holes further advice should be sought from agb Environmental Ltd.

This report is written in the context of an agreed scope of work between agb Environmental Ltd and the Client and should only be used in this specific context. Re-interpretation of the Site Investigation and/or this report in whole or part may become necessary if additional information becomes available or practices or legislation changes. agb Environmental Ltd does not provide legal advice; the advice of the Client's legal advisors may also be required. agb Environmental Ltd Terms and Conditions apply.

Appendix 1 Plans

n.2/4/6 Cromwell Road Front Elevation

2

	Magnolia Square Limited 57 Rathbone Place	Client:	Clive Chapman Architects	Job Title:	Existing Information	Notes: All works to be carried out in accordance with current building regulations.	Scale:	1:200@A1	Drawn: MZ	
	A Magnolia Square	Soho London W1T 1JU	Drawing Title:		Site Address:	Sheldon House	All dimensions / levels to be checked and verified on site before commencing any work and any discrepancies to be reported to the office immediately.	Date:	March 2021	^{Job No:} 21100
	We Know London. We Draw	020 7479 4855	Drawing The	Elevations	Sile Address.	Cromwell Road, Teddington TW11 9EJ	This drawing to be read in conjunction with contract documents, project working drawings, specification, all consultants / specialists drawings, details and specification.	Drawing No	[:] 2	Rev:

DRAWING 2 - ELEVATIONS AS EXISTING

PRINT AT A1 PAPER SIZE

SCALE BAR AT 1:200

KEY

DRAWING 1 - SITE PLAN AS EXISTING

PRINT AT A1 PAPER SIZE

SCALE BAR AT 1:200

	Notes: All works to be carried out in accordance with current building regulations.	Scale:	1:200@A1	Drawn:	MZ	
_	All dimensions / levels to be checked and verified on site before commencing any work and any discrepancies to be reported to the office immediately.	Date:	March 2021	Job No:	21100	
	This drawing to be read in conjunction with contract documents, project working drawings, specification, all consultants / specialists drawings, details and specification.	Drawing No:	1			Rev:

Appendix 2 Fieldwork Records

	Legend							
÷	WS borehole location							
•	WS borehole location with monitoring well installation							
÷	CP borehole location with monitoring well installation							
	Trial Pit Locations							
	Plate Load Testing Locations							
Project								
Sheldon House	e, Cromwell Rd, Teddington,							
Title								
Client								
RHP								
agb Envir 1, The Mill, Co Babraham Ro Tel: 01223 77 Email: Info@a Web: www.ac	INDEXTICAL COLUMN COLUM							
Date	30 th June 2022							
Scale	NTS							
Project numbe	er . Drawing number							
P4301.3.002								
© copyright a	agb Environmental							

Project	ject											BOREHOLE No				
Sh Job No	eldon Ho	ouse, C Da	rom te	well Road,	lec	dington, Ground L	IW [·]	11 9E	J Co-O	rdinates ()			- CP01			
P4	4301		~3 0	0-06-22 5-07-22			0101(,		()						
Contracto	r												Sheet			
Ag	b Enviro	nmenta	l Ltc	1									1	of 5		
SAMPL	ES&T	ESTS	er	r		1 - 1			STRA	TA				_ <u>></u>	nent/	
Depth	Type No	Test Result	Wat	ReducedLeg Level	end	Depth (Thick- ness)				DESC	RIPTION			Geolog	Instrum	Dackin
-				A A A	4 4	0.20	Con	crete w	/ith 7mm o	diameter re	ebar at 0.10)m.				\$ \\ \\
0.30	D				\bigotimes	0.40	MAE cond	DE GRO crete ar	OUND: Br nd chert g	rown grave ravel.	lly SAND.	Gravel is br	ick,			2
. 0.30 _ 0.50	ES D					- (0.40)	Darl (KF		ine SAND) <u>.</u> GRAVEL M	EMBER)					
0.50	ES				· · ·	0.80	(
-						-	Med (KEI	ium de	nse brow	n fine SAN BRAVEL M	D. EMBER)					
1.00		N25			•	- (0.80)										
1.20 1.20	D ES				• •											
					· · ·	1.60										
				0	.0	-	Med Cob	ium de bles ar	ense to de nd gravel a	nse brown are rounde	cobbly gra d chert.	velly fine S	AND.			
_ 1.80 _ 1.80	D ES				Ö	-	(KEI	NPTON	N PARK G	RAVEL M	EMBER)					
2.00 2.00	B	N28			°O	-										· .
-				0	. 0	-										
				i di												
					°. • • • •	(2.10)										
	50			0	Ö	- -										
3.00	ES	N38			Õ	-										
					0	_ _										
				· · · · · · · · · · · · · · · · · · ·	.0	3 70										
					<u>.</u> 	- 3.70	Den	se orar	nge mediu	Im SAND v	vith gravel	and cobble	s of			
- 4 00					 	.= .=	subi (KEl		a to round N PARK G	ed chert. BRAVEL M	EMBER)					
4.00		N34			•O	 										
-					Ö	 										
-					°Ç	-										
-					0	-										
-	ES			(O)	· () · ()	-										
5.00		N42		Ó.	0	-										
-					-										
Borir	ng Progr	ess an	d W	ater Obser	vat	ions		C	Chiselling	g	Water	Added	GEN	ERAL		_
Date	Time	Depth	С	Casing Depth Dia. r	nm	Water Dpt	F	rom	То	Hours	From	То	REM	ARK	6	
													Groundwate 2.2m. No sig *No recovery at 9.5m.	r seepa nifican / in U s	ige at t roots ample	
All dimen Scal	sions in m e 1:34.375	etres C	lient	Richmon Partners	ıd ⊦ hip	lousing		Metho Plant	od/ Used C	able per	cussive ri	g	Logged By	lG		

Project												BOREH	OLE	No
She	eldon Ho	ouse, Cr	om	well Roa	ad, Teo	dington,	TW11 9E	J				CE	101	
Job No		Dat	e 30	0-06-22	2	Ground L	evel (m)	Co-O	rdinates ()				UT	
P4	301		0	5-07-22	2									
Contractor												Sheet		
Agt	o Enviro	nmental	Ltd									2 0	of 5	
SAMPL	ES & TI	ESTS	Ŀ					STRA	ATA				У	ient/
Depth	Type No	Test Result	Wate	Reduced Level	Legend	Depth (Thick- ness)			DESCI	RIPTION			Geolog	Instrum Backfill
		NAG			<i>ଦ</i> ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦ ୦	(3.60) - - - - - - - - - - - - - -	Dense orai subrounde (KEMPTO)	nge mediu d to round N PARK G	Im SAND v led chert. BRAVEL MI	vith gravel EMBER) (d	and cobble: continued)	s of		
_ 6.50 _ _ _ 7.00 _ 7.00 _ 7.00	B ES	N45				- - - - - - - - - - - - - - - - - - -								
7.30	B						Firm to stiff (LONDON	f grey CLA CLAY FO	AY. RMATION)				
8.00 8.00 - - - -	D	N21				- - (2.20) - -								
- - 9.00 -	D					- - - - - - - - - - - - - - - - - - -								
9.50	U*					(0.90)	CLAYSTOI (LONDON	NE. CLAY FO	RMATION)				
10.50	U					- - - - - -	Stiff to very of clayston	/ stiff grey e.(LONDC	CLAY with	occasiona ORMATIC	al patches N)			
Borin	g Progr	ess and	W	ater Ot	oservat	ions	C	Chiselling	g	Water	Added	GENE	RAL	
Date	Time	Depth	D	Casir epth [ng Dia. mm	Water Dpt	From	То	Hours	From	То	REMA Groundwater s 2.2m. No signi *No recovery i at 9.5m.	RKS eepag ficant i n U sa	ge at roots. mple
All dimens	ions in m 1:34.375	etres C	lient	Rich Partr	mond H nership	lousing	Meth Plant	od/ Used C	able perc	cussive ri] g	Logged By HC	}	

	Project														BORE	HOLE	No
	Sh	eldon Ho	ouse	, Cro	omv	vell Ro	ad, Teo	ddington,	TW1	1 9E	J					•••	
Job No Date 94301 30-06-22 05-07-22 Ground Level (m) Co-Ordinates () Contractor Sheet													-01				
	P4	4301			05	5-07-22	2										
	Contracto	r													Sheet		
	Ag	b Enviro	nme	ntal	Ltd										3	of 5	
	SAMPL	ES & T	EST	S	<u>ب</u>						STRA	TA				<u> </u>	ent/
	Depth	Type No	Te Res	st sult	Wate	Reduce Level	dLegend	Depth (Thick- ness)				DESC	RIPTION			Geolog	Instrum Backfill
F	11.00	D						-	Stiff	to ver	y stiff grey			al patches			
F								- -	(con	tinuea	<i>i)</i>	ON OLAT I	ORMATIC)			
ţ							[+									
E							EE	-									
ł								-									
F	12.00							-									
ţ	12.00	E9	N2	25				- -									
ł								-									
F								- -									
Ę								-									
ţ								-									
F	13.00	D															
F								-									
Ę																	
ţ								-									
F								-									
F								-									
F	14.00	U															
t								-									
ł								-									
F	14.50	D						-									
Ę								- -									
Ł								-									
ł	15.00 15.00	D ES						+									
F								-									
ţ	4 0						<u> </u>	+ -									
E	15.50		N2	26				-									
ł																	
1.52								-									
25/1								-									
199							E										
							<u></u>	1	11		<u></u>						
<u>-</u>	Date Time Depth Casing V									(g	Water	Added	GEN	ERAL	
- 27 	Date	Time	Dep	otn	D	epth	Dia. mm	Dpt	+r	om	10	Hours	From	10			
SNOF															2.2m. No sigr	seepag	je at roots.
NO															*No recovery at 9.5m.	in U sa	mple
301 S																	
H P4																	
n N N N N N N N N N N N N N N N N N N N	All dimon	sions in m	otroc	Cli	ient	 Pich	mond L			Meth	l				Logged Ry		
AGS3	Scale	dimensions in metres Scale 1:34.375								Plan	t Used C	able perc	cussive ri	ig	Н	G	

ſ	Project													BOREH	OLE	No
	She	ldon Ho	ouse,	Crom	well Ro	ad, Teo	dington,	TW1	1 9E	J				0	04	
	Job No		0	Date 3	0-06-22		Ground L	evel (r	n)	Co-Or	dinates ()				01	
	P4	301		Ō	5-07-22											
	Contractor													Sheet		
	Agt	Enviro	nmen	tal Ltd										4 c	of 5	
ſ	SAMPL	ES & TI	ESTS	3						STRA	TA					ent/
	Depth	Type No	Test Resu	t Mater	Reduced	Legend	Depth (Thick- ness)				DESC	RIPTION			Geology	nstrume Backfill
	. 17.00	U					- (14.60)	Stiff of cla (cont	to ver aystor <i>tinuea</i>	y stiff grey ie.(LONDC /)	CLAY with N CLAY F	occasiona ORMATIC	al patches N)		0	Ш
	18.00 18.00	D ES														
	19.50	9.50 N31														
3B1.GDT 25/7/22	21.00 21.00 21.00	21.00 D 21.00 ES 21.00 U														
PI A	Borin	g Progr	ess a	nd W	ater Ob	oservat	ions		(Chiselling	9	Water	Added	GENE	RAL	
72.G	Date	Time	Dept	h D	Casir epth [ng Dia. mm	Water Dpt	Fr	om	То	Hours	From	То	REMA	RKS	
BH P4301 SHELDON HOUSE.														Groundwater s 2.2m. No signi *No recovery i at 9.5m.	seepag ficant n U sa	je at roots. mple
AGS3 UK	All dimens Scale	ions in m 1:34.375	etres	Client	Rich Partr	mond H nership	lousing		Meth Plan	nod/ t Used C	able perc	cussive ri		Logged By HC	3	

Project													BOREH	OLE	No
She	eldon Ho	buse, C	rom	well Roa	ad, Teo	ddington,	TW1	119E	J	dinataa ()			CF	P 01	
	301	Da	e 3(0.06-22		GIUUIIU L	evei (i	.11)	0-01	unales ()					
Contractor				5-01-22	•								Sheet		
Agl	o Enviro	nmenta	al Ltd										5 0	of 5	
SAMPL	ES & TI	ESTS							STRA	ТА					nt/
Depth	Туре	Test	Water	Reduced		Depth (Thick-				DESC	RIPTION			sology	strume
		result		Level		ness) 	Stiff of cla <i>(con</i>	to very aystone <i>tinued</i>)	stiff grey e.(LONDC	CLAY with ON CLAY F	occasiona ORMATIC	al patches N)		Ŭ	Ë
22.50		N35													
24.00 24.00 24.00 24.00	D ES U														
- 25.00 - - - - - - - - - - - - - - - - - -	.00 ES U N41														
Borin	Boring Progress and Water Observatio							C	hiselling	g	Water	Added	GENE	RAL	
Date	Date Time Depth Depth Dia. mm							om	То	Hours	From	To	Groundwater s 2.2m. No signi *No recovery i at 9.5m.	RKS seepag ficant n U sa	ge at roots. mple
All dimens	nensions in metres Scale 1:34.375							Metho	od/ Used C	able perc	cussive ri	g	Logged By HC	3	

Project													BOREH	OLE	No
She	Idon Ho	use, C	rom	vell Ro	ad, Teo	dington,	TW1	1 9EJ	J	.			— тр	01	
Job No		Da	te			Ground L	evel (r	n)	Co-Oi	dinates ()				• •	
P43	301		29	9-06-22									Shoot		
Agh	Enviro	amonto	d I ta										1 6	.f 1	
									0704				10		
SAMPLE	S&IE	-515	ter			Dopth			STRA	IA				β	nent
Depth	Type No	Test Result	Wa	Reduced Level	Legend	(Thick- ness)				DESC	RIPTION			Geolo	Instrui Backfi
0.20 0.20 0.20	DS ES					 (0.40) 0.40 	MAD brick Brow)E GRC ., chert vn sligh	and conc	AND. Sand	sional cond	are subroun	ded to		-
0.80 _0.80	DS ES					[(0.90)	(KEN	IPTON	I PARK G	RAVEL M	EMBER)	or sit.			
					0	1.30	Brow	vn sliah	itly silty ar	avelly SAN	ND. Sand is	s fine. Grav	el is		-
1.40 1.40	DS ES				0.00	1.50	subr \(KEN		I chert.		EMBER)	and in Care	/		-
1.70	DS				0.00	(0.40) 1.90	Brow Grav KEN	/n slign /el is m/ /IPTON	edium to PARK G	AND and C coarse sub RAVEL M	BRAVEL. S Dangular to EMBER)	subrounde	to medium. d chert.		_
2.00	DS DS ES 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						Yello to m conc (KEN	wish bi edium. entrate VPTON	rown to b Gravel is ed into len I PARK G	rown slight subangula ses. RAVEL M	tly silty grav ar to subrou EMBER)	velly SAND unded chert	. Sand is fine Silt is		
2.60	DS ES DS ES DS ES						Brow	vn very t. Sand	gravelly s	SAND. Gra medium. (ivel is suba Occasional	ingular to ro chert cobb	ounded les.		-
2.00	DS ES DS ES DS ES DS ES DS ES								I PARK G		EMBER)				-
2.30 - - - - - - - - - - - - - - - - - - -	Progra	ess an	d Wa	ater Ot	Deservat	- - - - - - - - - - - - - - - - - - -		C	hiselling	9	Water	Added	GENE	RAL	
Date	Time	Depth	D	Casir epth [ng Dia. mm	Water Dpt	Fr	om	То	Hours	From	То	REMA	RKS	
													Groundwater r encountered. I to 1.5m. Dry s	not Rare re pil note	oots ed.
All dimensi	ons in me	etres C	Client	Rich	mond H	lousing	11	Methc Plant	od/ Used	Fxca	vator		Logged By	 }	

Project													BOREH	OLE	No
She	ldon Ho	ouse, C	Crom	well Roa	ad, Tec	ldington,	TW1	1 9EJ						02	
Job No		Da	ate			Ground L	.evel (n	n)	Co-Or	dinates ()				~	
P4:	301		29	9-06-22									Chaot		
Contractor													Sneet	£ 4	
Agb	Enviro	nmenta											1 (
SAMPLE	ES & TI	ESTS	er –	[Denth			STRA	TA				9V	nent
Depth	Type No	Test Result	t N	Reducec Level	Legend	(Thick- ness)				DESC	RIPTION			Geolo	Instrur Backfi
0.20	DS					(0.30) 0.30	MAD	E GRC	OUND: da	rk brown s	ilty SAND.				-
0.20	ES					(0.30) 0.60	Brow grave	n sligh el.(KEN	tly silty S/ 1PTON P	AND. Sand	VEL MEM	BER)			
0.80 0.80	DS ES					- - (0.60)	round (KEN	ded che IPTON	ert. PARK G	RAVEL M	EMBER)	Graveriss	ubangular to		
1.20						1.20	Drow) Condia	fine Crow		ular ta		
1.20	ES				0	- - (0.60)	subro (KEN	unded IPTON	chert. PARK G	RAVEL M	EMBER)	ans subang			
					0	1.80	Yello	wish br	own gray	/ellv SANF) Sand is r	nedium Gr	avel is		-
2.00	DS					2.00	suba	ngular 1PTON	to rounde PARK G	ed chert. O RAVEL M	ccasional (EMBER)	chert cobble	es/		
2.00					· · · · · · · · · · · · · · · · · · ·	 (0.70)	Yello coars (KEM	wish bi se. Gra 1PTON	own sligl vel is sub PARK G	ntly clayey bangular to RAVEL M	gravelly Sa rounded c EMBER)	AND. Sand hert.	is medium to		
2.60 2.60	DS ES				o 	2.70	Yello	wish br	own clay	ey gravelly	/ SAND. Sa	and is medi	um to coarse.		-
_2.90 _2.90	DS ES					- (0.40) 	Grav (KEN	el is su IPTON	bangular PARK G	to rounde RAVEL M	d chert. EMBER)				-
Boring	g Progr	ress ar	nd W	ater Ob	pservat	- - - - - - - - - - - - - - - - - - -		C	hiselling	3	Water	Added	GENE	RAL	
Date	ate Time Depth Casing Depth Dia. m						Fre	om	То	Hours	From	То	REMA	RKS	
Groundwater ne encountered. R to 2.0m. Dry so								not Rare ro pil note	oots ed.						
All dimensi Scale	ions in m 1:34.375	etres	Client	Richr Partn	nond H Iership	lousing		Metho Plant I	d/ Jsed	Exca	vator	·	Logged By H(3	

Project													BOREH	OLE	No
She	ldon Ho	ouse, C	rom	vell Ro	ad, Teo	ddington,	TW1	11 9E.	J				_ тр	03	
Job No		Da	ite			Ground L	evel (I	m)	Co-Or	dinates ()				00	
P43	301		29	9-06-22	2								Ohaat		
Contractor	_ ·												Sheet		
Agb	Enviror	nmenta	al Lto										10	DT 1	
SAMPLE	ES & TE	ESTS	er	·					STRA	TA				2	l nent
Depth	Type No	Test Result	Wat	Reduce Level	dLegend	Depth (Thick- ness)				DESC	RIPTION			Geoloç	Instrun Backfill
0.20	DS					(0.30) 0.30	MAE Occa cher	DE GRO asional t with o	OUND: da concrete ccasional	rk brown s cobbles. S I glass and	lightly grav Sand is fine brick.	velly sandy s e. Gravel is o	SILT. concrete and		-
	LS					(0.70)	Brov (KEI	VN SAN VIPTON	ID with mi I PARK G	inor silt len RAVEL M	ses. Sand EMBER)	is fine.			
0.80 _0.80	DS ES					1.00									-
1 30	DS					(0.40)	very grav cher	el is me t.	ellowish bi edium to c	rown sandy coarse sub	y slity CLA angular to	Y. Sand is f subrounded	ine. Rare		
_ 1.30 	ËS					- (0.60)	Brov Grav (KEN	vn grav vel is m vPTON	elly to ver edium to I PARK G	y gravelly coarse che RAVEL M	SAND. Sa ert. EMBER)	nd is fine to	medium.		
1.90 1.90	DS ES					2.00	Yello	owish b se chei	rown grav	velly SAND). Sand is f	ine. Gravel	is medium to		-
2.30	DS ES DS DS DS						(KEI	MPTON	I PARK G	RAVEL M	EMBER)				-
2.60	DS DS ES						med brow is ch	ium to o n mottl ert.(KE	coarse ch led slightl MPTON	ert. Occas y sandy gra PARK GR/	avelly CLA	es of firm gro Y; sand is fi BER)	ey and ne; gravel		
- - - -	30 DS 30 So 30														
-						-									
- -						-									
- - -						-									
- - -						-									
						-									
Boring	g Progre	d Wa	ater Ol	bservat	tions		С	hisellin	g	Water	Added	GENE	RAL	<u> </u>	
Date	Time	Depth	D		Dia. mm	Dpt	Fi	rom	То	Hours	From	То	Groundwater r encountered. I	not Rare re	oots
													to 2.0m. Dry so	oil note	ed.
All dimensi Scale	ons in me 1:34.375	etres	Client	Rich Parti	mond H nership	lousing		Metho Plant	od/ Used	Exca	vator		Logged By HC	3	

Project														BOREH	OLE	No
She	ldon Ho	ouse,	Crom	well Ro	oad, Teo	dding	ton,	TW1	11 9E	J				14/6	204	
Job No		[Date			Grou	nd L	evel (ı	m)	Co-C	Ordinates ()				501	
P43	301		2	28-06-2	2											
Contractor														Sheet		
Agb	Enviro	nmer	ntal Lt	d										1 0	of 1	
SAMPLE	ES & TI	ESTS	r (STRA	ATA				y	ent/
Depth	Type No	Tes Resi	st Mate	Reduce Level	edLegend	De (Thic ness	epth k-)				DESC	RIPTION			Geolog	Instrum Backfill
-					P L A P	a (0.10	Con	crete v	with 7mm	diameter re	ebar at 0.10)m.			-
-						∦ <u>'</u> ∛- ().20).35		Crete v	Nith plasti	c sheet at 0 rick and cor).20m. hcrete rubb	le	/		
0.30	ES1						0.50	MAC	E GR	OUND: d	ense dark g	grey gravell	y SAND. G	ravel is brick		
0.50	DS2 FS2				(XXXX) 	× (0.60	∖and \MAΓ	Chert V		ets of rewor	ked brown	sandy silt.	el is brick		-
- 0.00					× × ×	-		cher	t and r	rare clinke	er. Sand is f	fine.				
-					×	(0.6	0)	Brov	vn silty el (KF	/ SAND. S	Sand is fine PARK GRA	. Rare cher	t 3FR)			
_ 1.00 _ 1.00	ES3				××	÷ .	1.20	grav					521()			
1.20 N26 X (0.30) Dense brown silty SAND. Sand is tine. Occasional chert gravel.(KEMPTON PARK GRAVEL MEMBER) 1.60 DS4 0 <td>ert</td> <td></td> <td></td>								ert								
1.60 DS4 1.60 ES4 1.80 N53								nd is fine.		-						
1.60 DS4 1.60 ES4 1.80 N53 N53 Image: Constraint of the set of																
_ 1.80	DS4 ES4 N53 DS4 ES4 N53 DS5 N53 DS5 N53 DS5 N53 DS5 N53 DS5 N53 DS5 DS5 DS5 DS5 DS5 DS5 DS5 DS5 DS5 DS5															
-	DS4 ES4 N53 N53 DS4 ES4 N53 DS4 N53 DS4 ES4 N53 DS4 N53 DS4 N53 DS4 DS4 Carvel is Carvel is Carv															
-	1.60 DS4 ES4 N53 0															
_	30 DS4 ES4 N53 0															
-	60 ES4 N53 N53 N53 N53 N53 N53 N53 N53															
-	N53 (KEMPTON PARK GRAVEL MEMBER)															
-																
-																
F						F										
-						Ę										
_						Ł										
-						-										
-						-										
-						L										
-						-										
-						F										
-						È										
						Ł										
-						F										
-						Ę										
Ļ						F										
	Baring Dragrads and Water Observ											100 -	A 1 1 - 1	[
Boring	g Progr	ess a	and W	ater C	bserva	tions	iter	╢		Jhisellir	ig	Water	Added	GENE	RAL	
Date	lime	Dept	th I		Dia. mm		ot	Fr	om	То	Hours	From	То	KEMA	KKS	
														Groundwater	not Rare re	oots
														to 1.8m. Refus	sal at 1	.8m.
						<u> </u>										
All dimensi	All dimensions in metres Scale 1:34.375 Client Richmond Housing Partnership Method/ Plant Used Dynamic sampling rig HG															
	-		1						L		•	. 0	-	1		

Project													BOREH	IOLE	No
She	ldon Ho	ouse, C	rom	well Ro	ad, Teo	ddington,	TW1	1 9E	J				14/6	202	
Job No		Da	te			Ground L	evel (I	n)	Co-Oi	dinates ()			VV.	502	
P43	301		2	8-06-22	2										
Contractor													Sheet		
Agb	Enviror	nmenta	I Lto										1 0	of 1	
SAMPLE	ES & TE	ESTS							STRA	TA				_ _	ent/
Depth	Type No	Test Result	Wate	Reduced Level	Legend	Depth (Thick- ness)				DESC	RIPTION			Geolog	Instrum Backfill
Depth 0.20 0.20 0.50 0.50 1.00 1.20 1.40 1.40 1.80 2.00 Boring	No DS1 ES2 DS2 ES2 DS3 ES3 DS4 ES4 DS5 ES5	Result N19 N52 ess an Depth	d W	ater Ot	Deservation	(0.30) (0.30) (0.30) (0.30) (0.30) (0.50) (0.50) (0.40)	MAE Sanwith cherr MAE is fin clinkk (KET Yelld (KET Brov is cher (KET Very reco (KET	DE GR d is fin occas t cobb DE GR e. Gra er. yellow MPTOI vor angi ly silty t. Occa MPTOI vor grav ert. MPTOI dense vered MPTOI	OUND: da e. Gravel i ional fine o les. OUND: bro avel is cher N PARK G ish brown CLAY. Gr velly slight N PARK G e brown sa fractured. N PARK G	DESC rk brown s s medium clinker and ownish gret t and conc n fine SAN RAVEL M RAVEL M rkavel is fine RAVEL M is silty SAI RAVEL M indy GRAN Sand is fir RAVEL M O Sand is fir RAVEL M	RIPTION slightly grav subangula medium w ey slightly screte with c D. EMBER) AND. Sand EMBER) ND. Sand is EMBER) VD. Sand is EMBER) VEL. Grave ie to mediu EMBER) VEL. Grave ie to mediu EMBER)	Added	silty SAND. nded chert ain. Rare SAND. Sand vrick and // // // // // // // // // /	RAL RAL RAC Rare r sal at 2	oots 2.0m.
		etres		Rich	mond F	lousing		Meth	od/				Logged By		
Scale	Boring Progress and Water Observations Chiselling Water Added Date Time Depth Casing Depth Water Depth From To Hours From To Image: Scale 1:34.375 Client Richmond Housing Partnership Method/ Plant Used Method/ Plant Used Dynamic sampling rig Logged By HG														

Project													BOREH	OLE	No
She	eldon Ho	use, C	rom	well Roa	ad, Teo	dington,	TW1	11 9EJ		dinataa ()			– ws	SO 3	
	201	Da	່າ	8 06 22		Ground L	evei (i	.11)	0-01	unates ()					
Contractor	001		20	5-00-22									Sheet		
Agb	Enviror	nmenta	l Ltd										1 c	of 1	
SAMPLI	ES & TE	STS							STRA	TA					int/
Depth	Type No	Test Result	Water	Reduced	Legend	Depth (Thick-				DESC	RIPTION			Seology	nstrume 3ackfill
0.30 0.30	DS1 ES1 DS2					(0.60)	MAE Grav meta conc Med (KEN)E GRC /el is gla al wire a :rete co ium dei VPTON	DUND: da ass fragm and lumps bbles. nse yellov I PARK G	rk brown s lents, glass s, red brick vish brown RAVEL M	lightly grav s bottles, p k and red c sandy SIL EMBER, P	velly slightly orcelain fra chert. Occai .T. Sand is OSSIBLY F	sandy SILT. gments, sonal fine. REWORKED)		<u> </u>
_0.80	ES2				×××										
1.20	DS3				x x	1.20 1.30	Verv	dense	vellowish	brown SA	ND and G	RAVEL. Sa	nd is fine.		
1.20 1.30		N33 N60				-			I PARK G	RAVEL M	EMBER)		/		
							11				Watan				
Date	Time	Depth				Water	Fi	rom	To	J Hours	From	To	GENE	RKS	
	Date Time Depth Depth Dia. mm E							<u> </u>					Groundwater r encountered. I significant root at 1.3m.	not No is. Refi	usal
All dimens	ions in me	etres C	Client	Richn	nond H	lousing		Metho	od/	(D. 0. 100	o monolita er ur		Logged By	<u> </u>	
Scale	Soring Progress and Water Observation a Time Depth Depth Dia. mm b Image: Client Scale 1:34.375 Client Richmond Hou Partnership							Plant	used Dy	namic sa	ampling r	ıg	е но	j	

Project													BOREH	OLE	No
She	ldon Ho	ouse, (Crom	well Roa	ad, Teo	ddington,	TW	11 9E	J					201	
Job No		D	ate			Ground L	evel (m)	Co-Or	dinates ()			•••	004	
P43	301		2	8-06-22											
Contractor	_ .												Sheet		
Agb	Enviro	nment		2									1 C	ot 1	
SAMPLE	ES & TI	ESTS	<u> </u>		1	Denth			STRA	TA				уę	nent
Depth	Type No	Test Resul	Xat N	Reduced Level	Legend	Deptn (Thick- ness)				DESC	RIPTION			Geolo	Instrur
Ľ					P L V P P L V P	0.06	Con	crete p	aving slab).			/		Ň
0.25	DS1				×	0.30	MAE	E GR	DUND: ha	rdcore SA	ND and GI	RAVEL. Gra	ivel is		
0.25	DS2				×	-	\cher Brov	t and 1	ype 1 lime siltv SAN	estone. D. Sand is	fine.		/		
0.50	ES2				× × .	(0.75)	(KEI	NPTON	PÁRK G	RAVEL M	EMBER)				
-					×	,t ,F									
1.00	DS3					<u>- 1.05</u>	Med	ium de	nse off-wł	nite and cr	eam slightl	v gravelly to	gravelly		目
_ 1.00 _ 1.10	ES3	N21			000	1.30	SAN	D. San	I PARK G	Gravel is c	hert, recov	ered fractu	red.		
_ 1.20 _ 1.20	DS4 ES4						Very	dense	yellowish	brown gra	avelly SAN	D, becomin	g very		
-					0.	- (0.60)	grav fract	elly at ured.(k	1.5m. San (EMPTON	id is fine. C I PARK GI	Gravel is ch RAVEL ME	ert, recove MBER)	red		
1 80	DS5				· · · · ·	1.90						,			目目
1.80	ES5	N55				_									
- 1.00						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-						-									
-											1		ſ		
Boring	Boring Progress and Water Observation								hiselling	j	Water	Added	GENE	RAL	
Date	Time	Depth		Depth [bia. mm	Dpt	- Fi	om	То	Hours	From	То	REMA	KNS	
													encountered.	not No	
													significant root at 1.9m.	s. Ref	usal
All dimensi	ons in m	etres	Client	Rich	mond H	lousing		Metho	od/	-			Logged By		
Scale	1:34.375	5		Partr	nership	5		Plant	Used Dy	namic s	ampling r	ig	. HO	÷	

Certificate for the Determination of the Vertical Deformation and Strength Characteristics of Soil by the Incremental Plate Loading Test to BS 1377 Part 9: 1990

Report No: 8152-1 Client: AGB Environment Ltd Address: Copley Hill Business Park Babraham Road Cambridge CB22 3GN Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

Test Location: CBR 01Date of Test: 29/06/2022Description: ConcreteReaction Load: 8 Tonne JCBMaterial Class: Pile MatWeather: WetLayer: Ground LevelPlate Diameter (mm): 452Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results

Deviation: Settlement of ≥1.25mm was not achieved so reported CBR is calculated at the maximum plate stress

Time, s	Settlement, mm	Plate Stress, kPa	Maximum Applied Stress (kPa):	189
0	0.00	22	Maximum Settlement (mm):	0.19
180	0.00	40	Equivalent CBR Value (%):	>26
360	0.00	77	Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	95
540	0.07	115		
720	0.12	152	Note: Supplemental test method, calculation of Nominal CBF	
900	0.19	189	(withdrawn)	, TID 23/34

Settlement/Stress

Kevin Shorthouse

For and on behalf of Hixtra Ltd

Authorised signatory

Certificate for the Determination of the Vertical Deformation and Strength Characteristics of Soil by the Incremental Plate Loading Test to BS 1377 Part 9: 1990

Report No: 8152-2 Client: AGB Environment Ltd Address: Copley Hill Business Park Babraham Road Cambridge CB22 3GN Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

Test Location: CBR 02Date of Test: 29/06/2022Description: ConcreteReaction Load: 8 Tonne JCBMaterial Class: Pile MatWeather: WetLayer: Ground LevelPlate Diameter (mm): 452Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results

Deviation: Settlement of ≥1.25mm was not achieved so reported CBR is calculated at the maximum plate stress

Time, s	Settlement, mm	Plate Stress, kPa	Maximum Applied Stress (kPa):	189
0	0.00	22	Maximum Settlement (mm):	0.20
180	0.06	40	Equivalent CBR Value (%):	>26
360	0.12	77	Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	95
540	0.16	115		
720	0.17	152	Note: Supplemental test method, calculation of Nominal CBF	R Value and
900	0.20	189	(withdrawn)	, TID 23/34

Settlement/Stress

a Shorthis

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Report Date: 29/06/2022

Certificate for the Determination of the Vertical Deformation and Strength Characteristics of Soil by the Incremental Plate Loading Test to BS 1377 Part 9: 1990

Report No: 8152-3 Client: AGB Environment Ltd Address: Copley Hill Business Park Babraham Road Cambridge CB22 3GN Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

Test Location: CBR 03 Date of Test: 29/06/2022 Description: Block Paving Reaction Load: 8 Tonne JCB Material Class: Pile Mat Weather: Wet Laver: Ground Level Plate Diameter (mm): 452 Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results

Time, s	Settlement, mm	Plate Stress, kPa	Maximum Applied Stress (kPa):	189			
0	0.00	22	Maximum Settlement (mm):	2.08			
180	0.21	40	Equivalent CBR Value (%):	10			
360	0.73	77	Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	56			
540	1.30	115					
720	1.86	152	Note: Supplemental test method, calculation of Nominal CBR Value a				
900	2.08	189	(withdrawn)				

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Issued subject to Hixtra Terms and Conditions available at www.hixtra.com HU-SOI-01E Issue 3

Settlement/Stress

Certificate for the Determination of the Vertical Deformation and Strength Characteristics of Soil by the Incremental Plate Loading Test to BS 1377 Part 9: 1990

Report No: 8152-4 Report Date: 29/06/2022 Client: AGB Environment Ltd Address: Copley Hill Business Park Babraham Road Cambridge CB22 3GN Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

Test Location: CBR 04 Date of Test: 29/06/2022 Description: Top Soil Reaction Load: 8 Tonne JCB Material Class: Pile Mat Weather: Wet Laver: 0.2m BGL Plate Diameter (mm): 452 Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results

Time, s	Settlement, mm	Plate Stress, kPa	Maximum Applied Stress (kPa):	189		
0	0.00	12	Maximum Settlement (mm):	2.82		
180	0.78	40	Equivalent CBR Value (%):	4		
360	1.40	77	Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	34		
540	1.90	115				
720	2.36	152	Note: Supplemental test method, calculation of Nominal CBR Value a Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/9 (withdrawn)			
900	2.82	189				

Settlement/Stress

Kevin Shorthouse

For and on behalf of Hixtra Ltd

Authorised signatory

Certificate for the Determination of the Vertical Deformation and Strength Characteristics of Soil by the Incremental Plate Loading Test to BS 1377 Part 9: 1990

Report No: 8152-5 Client: AGB Environment Ltd Address: Copley Hill Business Park Babraham Road Cambridge CB22 3GN Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

Test Location: CBR 05Date of Test: 29/06/2022Description: Top SoilReaction Load: 8 Tonne JCBMaterial Class: Pile MatWeather: WetLayer: 0.2m BGLPlate Diameter (mm): 452Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results

Max	Plate Stress, kPa	Settlement, mm	Time, s
	12	0.00	0
	26	0.82	180
Modulus of Subg	40	1.40	360
	77	2.37	540
Note: Supplemental te	115	3.21	720
	152	4.01	900
	189	4.57	1080

Maximum Applied Stress (kPa):	189
Maximum Settlement (mm):	4.57
Equivalent CBR Value (%):	1
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	18

Report Date: 29/06/2022

te: Supplemental test method, calculation of Nominal CBR Value and odulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Certificate for the Determination of the Vertical Deformation and Strength Characteristics of Soil by the Incremental Plate Loading Test to BS 1377 Part 9: 1990

Report No: 8152-5 Client: AGB Environment Ltd Address: Copley Hill Business Park Babraham Road Cambridge CB22 3GN Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

 Test Location: CBR 06
 Date of Test: 29/06/2022

 Description: Concrete
 Reaction Load: 8 Tonne JCB

 Material Class: Pile Mat
 Weather: Wet

 Layer: 0.2m BGL
 Plate Diameter (mm): 452

 Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results

Deviation: Settlement of ≥1.25mm was not achieved so reported CBR is calculated at the maximum plate stress

Time, s	Settlement, mm	Plate Stress, kPa	Maximum Applied Stress (kPa):	189			
0	0.00	12	Maximum Settlement (mm):	0.11			
180	0.00	40	Equivalent CBR Value (%):	>26			
360	0.01	77	Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	95			
540	0.04	115					
720	0.08	152	Note: Supplemental test method, calculation of Nominal CBR Value an Modulus of Subgrade Reaction: JAN 72/06 revision 1 (2000), HD 25/0				
900	0.11	189	(withdrawn)				

Settlement/Stress

Kevin Shorthouse

For and on behalf of Hixtra Ltd

Authorised signatory

Appendix 3 Monitoring Results

Monitorin	g Record	1					
Site name / lo	cation:	Sheldon House	e, Cromwell Ro	oad, Teddingto	on, TW11 9EJ		
Installation ref.:		CP01					
Date:		11/07/2022					
Engineer:		HG					
Weather / tem	p:	Air pressure hi	gh and falling.	28 C, sunny.			
<u>PID Monitorin</u>	<u>a</u>			1	Flow Rate		т
	Reading		Reading			Reading	-
	ppm		ppm			l/hr	-
Ambient	0.0	+3m	0.0				-
+10s	0.0	+4m	-		+10s	0.0	-
+30s	0.0	+5m	-		+30s	0.0	+
+1m	0.0	+6m	-		+1m	0.0	+
+1m 30s	0.0	+7m	-		+1m 30s	0.0	+
+2m	0.0	+8m	-		+2m	0.0	+
		Max	0.0		Max	0.0	1
<u>Gas Monitorir</u>	ng			1			
	CO2	CH4	02	со	H2S	Pressure	Comments
	%	%	%	ppm	ppm	mb	
+10s	2.9	0.0	16.3	4	3	1022	
+30s	2.9	0.0	13.3	4	3	1022	
+1m	2.9	0.0	13.2	4	4	1022	
+1m 30s	3.0	0.0	13.2	4	3	1022	
+2m	3.0	0.0	13.2	4	4	1022	
+2m 30s	3.1	0.0	13.2	4	4	1022	
+3m	3.1	0.0	13.2	3	4	1022	
+3m 30s	3.2	0.0	13.2	3	4	1022	
+4m	3.3	0.0	13.3	3	4	1022	
+4m 30s	3.3	0.0	13.3	3	3	1022	
+5m	3.4	0.0	13.3	3	3	1022	
Min	2.9	0.0	13.2	3	3	-	
Мах	3.4	0.0	16.3	4	4	-	
<u>Groundwater</u>							
Water Depth (m) 4.1		4.13	4.13				
Well Depth (m) 10		10.13	10.13			a	d D
Sample:		CP01, MON1, 4.15m			1	ENVI	RONMENTAL

agb Environmental Ltd

CP01, MON1, 4.15m

Comment:
Monitorin	g Record	l							
Site name / lo	Site name / location: Sheldon House, Cromwell Road, Teddington, TW11 9EJ								
Installation re	f.:	WS02							
Date:		11/07/2022							
Engineer:		HG							
Weather / tem	p:	Air pressure hi	gh and falling.	27 C, sunny.					
PID Monitorin	a				Flow Rate				
	Reading		Reading			Reading			
	ppm		ppm			l/hr			
Ambient	0.0	+3m	0.0						
+10s	0.0	+4m	-		+10s	0.0			
+30s	0.0	+5m	-		+30s	0.0			
+1m	0.0	+6m	-		+1m	0.0			
+1m 30s	0.0	+7m	-		+1m 30s	0.0			
+2m	0.0	+8m	-		+2m	0.0			
		Мах	0.0		Max	0.0			
				-					
<u>Gas Monitorir</u>		СЦА	02		Црс	Droceuro	Commonts		
	0/	0/_	0/_	nnm	nnm	mh	Commenta		
±10c	70 0 0	70	10.6	2	1 1	1023			
±20c	2.2	0.0	18.0	<u>۲</u>	1	1023			
±1m	2.1	0.0	10.0	1	2	1020			
+1m 30s	1.9	0.0	19.0	1	1	1023			
+2m	1.3	0.0	19.1	1	2	1023			
+2m 30s	1.7	0.0	19.3	1	2	1023			
+3m	1.6	0.0	19.3	1	2	1023			
+3m 30s	1.5	0.0	19.4	1	2	1023			
+4m	1.4	0.0	19.5	1	2	1023			
+4m 30s	1.3	0.0	19.5	1	2	1023			
+5m	1.3	0.0	19.6	1	2	1023			
Min	1.3	0.0	18.9	1	1	-			
Мах	2.2	0.0	19.6	2	2	-			
<u>Groundwater</u>					7		250g)		
water Depth (m)	Dry			_	a	ah		
well Depth (m)		1.90							

ENVIRONMENTAL agb Environmental Ltd

Sample:	Sa	ım	pl	e:
---------	----	----	----	----

Monitorin	g Record							
Site name / Io	cation:	Sheldon House	e, Cromwell R	oad, Teddingt	on, TW11 9EJ			
Installation re	f.:	: WS04						
Date:		11/07/2022						
Engineer:		HG						
Weather / tem	ıp:	Air pressure hi	gh and falling.	27 C, sunny.				
PID Monitorin	g				Flow Rate			
	Reading		Reading			Reading		
	ppm		ppm			l/hr		
Ambient	0.0	+3m	0.0					
+10s	0.0	+4m	-		+10s	0.0		
+30s	0.0	+5m	-		+30s	0.0		
+1m	0.0	+6m	-		+1m	0.0		
+1m 30s	0.0	+7m	-		+1m 30s	0.0		
+2m	0.0	+8m	-		+2m	0.0		
		Max	0.0		Мах	0.0		
 .								
Gas Monitorir	<u>19</u>	СЦА	02	<u> </u>	Цре	Brossuro	Commonts	
	 %	0/	02	00	nnm	mh	comments	
±10e	70	/0	10.3	1	2	1023		
+30s	3.3	0.0	17.7	1	2	1023		
+1m	3.2	0.0	17.7	1	2	1023		
+1m 30s	3.2	0.0	17.8	1	2	1023		
+2m	3.0	0.0	17.8	1	2	1023		
+2m 30s	2.8	0.0	18.0	1	1	1023		
+3m	2.7	0.0	18.1	1	2	1023		
+3m 30s	2.5	0.0	18.2	1	2	1023		
+4m	2.4	0.0	18.3	1	2	1023		
+4m 30s	2.2	0.0	18.4	1	2	1023		
+5m	2.2	0.0	18.4	1	2	1023		
Min	2.2	0.0	17.7	1	1	-		
Мах	3.3	0.0	19.3	1	2	-		
		· .		-	-			
<u>Groundwater</u>		-			7		459)	
Water Depth (m	1)	Dry			4	C	ah	
Well Depth (m)		1.98			4	U	gio -	

ENVIRONMENTAL agb Environmental Ltd

Sample:

Monitorin	g Record	l								
Site name / Io	me / location: Sheldon House, Cromwell Road, Teddington, TW11 9EJ									
Installation re	f.:	CP01	CP01							
Date:		21/07/2022								
Engineer:		NM								
Weather / tem	p:	Air pressure high and falling								
<u>PID Monitorin</u>	a			_	Flow Rate					
	Reading		Reading			Reading				
	ppm		ppm			l/hr				
Ambient	0.0	+3m	0.0							
+10s	0.0	+4m	-		+10s	0.0				
+30s	0.0	+5m	-		+30s	0.0				
+1m	0.0	+6m	-		+1m	0.0				
+1m 30s	0.0	+7m	-		+1m 30s	0.0				
+2m	0.0	+8m	-		+2m	0.0				
		Max	0.0		Мах	0.0				
Gas Monitorir	ng			-						
	CO2	CH4	02	со	H2S	Pressure	Comments			
	%	%	%	ppm	ppm	mb				
+10s	5.0	0.0	14.2	2	3	1022				
+30s	5.1	0.0	13.3	2	3	1022				
+1m	5.1	0.0	13.2	2	3	1022				
+1m 30s	5.1	0.0	13.2	2	3	1022				
+2m	5.1	0.0	13.2	2	3	1022				
+2m 30s	5.1	0.0	13.2	2	3	1022				
+3m	5.1	0.0	13.2	2	3	1022				
+3m 30s	5.1	0.0	13.2	2	3	1022				
+4m	5.1	0.0	13.2	2	3	1022				
+4m 30s	5.1	0.0	13.2	2	3	1022				
+5m	5.1	0.0	13.2	2	3	1022				
Min	5.0	0.0	13.2	2	3	-				
Max	5.1	0.0	14.2	2	3	-				
Groundwater										
Water Depth (m	1)	4.19m			7					
• • · ·						C				

Well Depth (m)

Sample:

10.12m	
CP01, MON2, 4.20m	

Monitorin	g Recorc	1								
Site name / loo	cation:	Sheldon House	Cromwell Ro	ad Tedding	ton TW11.9F.I					
Installation ret	F •	WS02				, IVVII 9EJ				
Nato:		21/07/2022								
Engineer:		NM								
Weather / tem	p:	Air pressure hig	gh and falling							
PID Monitorin	a				Flow Rate		_			
	Reading		Reading			Reading				
	ppm		ppm			l/hr				
Ambient	0.0	+3m	0.0							
+10s	0.0	+4m	-		+10s	0.0				
+30s	0.0	+5m	-		+30s	0.0				
+1m	0.0	+6m	-		+1m	0.0				
+1m 30s	0.0	+7m	-		+1m 30s	0.0				
+2m	0.0	+8m	-		+2m	0.0				
		Max	0.0		Мах	0.0				
Gas Monitorin	g									
	CO2	CH4	O2	со	H2S	Pressure	Comments			
	%	%	%	ppm	ppm	mb				
+10s	2.1	0.0	19.3	1	2	1021				
+30s	2.1	0.0	19.3	1	2	1021				
+1m	2.1	0.0	19.2	1	2	1021				
+1m 30s	2.1	0.0	19.2	1	2	1021				
+2m	2.1	0.0	19.3	1	2	1021				
+2m 30s	2.1	0.0	19.3	1	2	1021				
+3m	1.8	0.0	19.3	1	2	1021				
+3m 30s	1.8	0.0	19.3	1	2	1021				
+4m	1.8	0.0	19.4	1	2	1021				
+4m 30s	1.6	0.0	19.4	1	2	1021				
+5m	1.5	0.0	19.6	1	2	1021				
Min	1.5	0.0	19.2	1	2	-				
Мах	2.1	0.0	19.6	1	2	-				
<u>Groundwater</u> Water Depth (m)	Dry								

Well Depth (m)	
----------------	--

Sample:

Monitorin	g Record	1						
Site name / los		Chaldan House		and Todding				
	Incation: Sheldon House, Cromwell Road, Teddington, Twill 9EJ							
Installation rel	<i>I.:</i>	VVSU4						
Date:		21/07/2022						
Engineer:		NM						
Weather / tem	р:	Air pressure hig	gh and falling					
PID Monitorin	9	·			Flow Rate			
	Reading		Reading			Reading		
	ppm		ppm			l/hr		
Ambient	0.0	+3m	0.0					
+10s	0.0	+4m	-		+10s	0.0		
+30s	0.0	+5m	-		+30s	0.0		
+1m	0.0	+6m	-		+1m	0.0		
+1m 30s	0.0	+7m	-		+1m 30s	0.0		
+2m	0.0	+8m	-		+2m	0.0		
		Max	0.0		Мах	0.0		
				-			1	
<u>Gas Monitorin</u>	<u>a</u> CO2	СН4	02	со	H2S	Pressure	Comments	
	%	%	%	ppm	ppm	mb		
+10s	0.1	0.0	20.6	3	2	1021		
+30s	2.9	0.0	18.7	1	2	1021		
+1m	3.6	0.0	17.9	1	2	1021		
+1m 30s	3.6	0.0	17.9	1	2	1021		
+2m	3.6	0.0	17.9	1	2	1021		
+2m 30s	3.5	0.0	18.0	1	2	1021		
+3m	3.3	0.0	18.0	1	2	1021		
+3m 30s	3.3	0.0	18.0	1	2	1021		
+4m	3.0	0.0	18.3	1	2	1021		
+4m 30s	3.0	0.0	18.6	1	2	1021		
+5m	2.7	0.0	18.6	1	2	1021		
Min	0.1	0.0	17.9	1	2	-		
Мах	3.6	0.0	20.6	3	2	-		
<u>Groundwater</u> Water Depth (m)	Dry			7			

Well Depth (m)	
----------------	--

Sample:

Appendix 4 Laboratory Results

Helen Gildersleeves AGB Environmental Ltd 1 The Mill Copley Hill Business Park Abraham Road Cambridge CB22 3GN

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 22-05652

Site Reference:	P4301.3 - Sheldon House, Teddington
Project / Job Ref:	P4301.3
Order No:	9232
Sample Receipt Date:	01/07/2022
Sample Scheduled Date:	01/07/2022
Report Issue Number:	1
Reporting Date:	07/07/2022

Authorised by:

Must

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.

Soil Analysis Certificate						
DETS Report No: 22-05652	Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22
AGB Environmental Ltd	Time Sampled	None Supplied				
Site Reference: P4301.3 - Sheldon House,	TP / BH No	WS01	WS02	WS02	WS03	WS03
Teddinaton						
Project / Job Ref: P4301.3	Additional Refs	ES1	ES3	ES3 + DS3	ES1	ES1 + DS1
Order No: 9232	Depth (m)	0.30	1.00	1.00	0.30	0.30
Reporting Date: 07/07/2022	DETS Sample No	603240	603241	603242	603243	603244

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	IS017025	Not Detected	Not Detected	No	ot Detected	
pH	pH Units	N/a	MCERTS	8.4	7.9		6.7	
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS					
Total Sulphate as SO ₄	%	< 0.02	MCERTS					
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS					
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS					
Total Sulphur	%	< 0.02	NONE					
Organic Matter (SOM)	%	< 0.1	MCERTS	6.2	2.5		6.1	
Arsenic (As)	mg/kg	< 2	MCERTS	13	12		26	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	0.3		0.5	
Chromium (Cr)	mg/kg	< 2	MCERTS	14	13		14	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2		< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	18	23		63	
Lead (Pb)	mg/kg	< 3	MCERTS	77	137		635	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1		< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	14	11		16	
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3		< 3	
Zinc (Zn)	ma/ka	< 3	MCERTS	40	70		589	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate						
DETS Report No: 22-05652	Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22
AGB Environmental Ltd	Time Sampled	None Supplied				
Site Reference: P4301.3 - Sheldon House,	TP / BH No	WS04	TP01	WS02	WS04	WS01
Teddinaton						
Project / Job Ref: P4301.3	Additional Refs	ES2	ES1	ES1	ES4	ES3
Order No: 9232	Depth (m)	0.50	0.20	0.20	1.20	1.00
Reporting Date: 07/07/2022	DETS Sample No	603245	603246	603247	603248	603249

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	IS017025	Not Detected	Not Detected			
pH	pH Units	N/a	MCERTS	7.6	8.0	7.0	8.5	7.8
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS			302	450	633
Total Sulphate as SO ₄	%	< 0.02	MCERTS			0.03	0.05	0.06
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS			< 10	13	227
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS			< 0.01	0.01	0.23
Total Sulphur	%	< 0.02	NONE			< 0.02	< 0.02	0.02
Organic Matter (SOM)	%	< 0.1	MCERTS	1.2	2			
Arsenic (As)	mg/kg	< 2	MCERTS	9	11			
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	0.2			
Chromium (Cr)	mg/kg	< 2	MCERTS	15	16			
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2			
Copper (Cu)	mg/kg	< 4	MCERTS	7	25			
Lead (Pb)	mg/kg	< 3	MCERTS	16	214			
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1			
Nickel (Ni)	mg/kg	< 3	MCERTS	11	12			
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3			
Zinc (Zn)	ma/ka	< 3	MCERTS	40	106			

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 22-056	52		Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22
AGB Environmental Ltd			Time Sampled	None Supplied				
Site Reference: P4301.3	- Sheldon House,		TP / BH No	WS01	WS02	WS03	WS04	TP01
Teddington								
Project / Job Ref: P4301.3			Additional Refs	ES1	ES3	ES1	ES2	ES1
Order No: 9232			Depth (m)	0.30	1.00	0.30	0.50	0.20
Reporting Date: 07/07/2	022	D	ETS Sample No	603240	603241	603243	603245	603246
		1						
Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	0.12	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	1.15	0.20	< 0.1	0.11
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	0.35	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	1.65	0.12	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	18	2.39	< 0.1	1.25
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	4.44	0.48	< 0.1	0.26
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	28.70	6.38	< 0.1	3.23
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	25.10	6.04	< 0.1	2.86
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	13.30	3.63	< 0.1	1.67
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	11	2.37	< 0.1	1.37
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	11.50	3.28	< 0.1	1.70
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	4.24	1.10	< 0.1	0.52
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	12.60	3.30	< 0.1	1.60
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	7.38	2	< 0.1	1.04
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	2.07	0.44	< 0.1	0.28
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	6.37	1.71	< 0.1	0.93
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	148	33.4	< 1.6	16.8

Soil Analysis Certificate	- TPH CWG Bande	d						
DETS Report No: 22-056	52		Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22
AGB Environmental Ltd			Time Sampled	None Supplied				
Site Reference: P4301.3	- Sheldon House,		TP / BH No	WS01	WS02	WS03	WS04	TP01
Teddington	-							
Project / Job Ref: P4301	.3	Additional Refs		ES1	ES3	ES1	ES2	ES1
Order No: 9232		Depth (m)		0.30	1.00	0.30	0.50	0.20
Reporting Date: 07/07/2	022	D	ETS Sample No	603240	603241	603243	603245	603246
Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6 : HS_1D_MS_AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS 1D MS AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 :	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12 :	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16 :	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C21 :	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C21 - C34 :	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34) :	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Aromatic >C5 - C7 :	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8 : HS 1D MS AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10 : EH 1D FID AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12 : EH 1D FID AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16 : EH 1D FID AR	mg/kg	< 2	MCERTS	< 2	5	< 2	< 2	< 2
Aromatic >C16 - C21 : EH 1D FID AR	mg/kg	< 3	MCERTS	< 3	52	10	< 3	5
Aromatic >C21 - C35 : EH_1D_FID_AR	mg/kg	< 10	MCERTS	< 10	114	32	< 10	17
Aromatic (C5 - C35) : EH_1D_FID_MS_HS_AR	mg/kg	< 21	NONE	< 21	171	42	< 21	22
Total >C5 - C35 : EH_1D_FID_MS_HS_Total	mg/kg	< 42	NONE	< 42	171	42	< 42	< 42

Soli Analysis Certificate	- BTEX / MTBE							
DETS Report No: 22-0565	52		Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22
AGB Environmental Ltd		Time Sampled		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Site Reference: P4301.3 - Sheldon House, Teddington		TP / BH No		WS01	WS02	WS03	WS04	TP01
Project / Job Ref: P4301.3	3	1	Additional Refs	ES1	ES3	ES1	ES2	ES1
Order No: 9232			Depth (m)	0.30	1.00	0.30	0.50	0.20
Reporting Date: 07/07/2022			ETS Sample No	603240	603241	603243	603245	603246
Determinand	Unit	RL	Accreditation					
Determinand Benzene : HS_1D_MS	Unit ug/kg	RL < 2	Accreditation MCERTS	< 2	< 2	< 2	< 2	< 2
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS	Unit ug/kg ug/kg	RL < 2 < 5	Accreditation MCERTS MCERTS	< 2 < 5	< 2 < 5	< 2 < 5	< 2 < 5	< 2 < 5
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS	Unit ug/kg ug/kg ug/kg	RL < 2 < 5 < 2	Accreditation MCERTS MCERTS MCERTS	< 2 < 5 < 2	< 2 < 5 < 2	< 2 < 5 < 2	< 2 < 5 < 2	< 2 < 5 < 2
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS	Unit ug/kg ug/kg ug/kg ug/kg	RL < 2 < 5 < 2 < 2	Accreditation MCERTS MCERTS MCERTS MCERTS	< 2 < 5 < 2 < 2 < 2	< 2 < 5 < 2 < 2 < 2	<pre>< 2 << 5 </pre> < 2 < 2 < 2	< 2 < 5 < 2 < 2 < 2	< 2 < 5 < 2 < 2
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS o-xylene : HS_1D_MS	Unit ug/kg ug/kg ug/kg ug/kg ug/kg	RL < 2 < 5 < 2 < 2 < 2 < 2	Accreditation MCERTS MCERTS MCERTS MCERTS MCERTS	< 2 < 5 < 2 < 2 < 2 < 2 < 2	<pre>< 2 < 5 < 2 < 2 < 2 < 2 < 2 < 2 </pre>	<pre>< 2 < 5 < 2 < 2 < 2 < 2 < 2 < 2 </pre>	<pre>< 2 < 5 < 2 < 2 < 2 < 2 < 2 < 2 </pre>	< 2 < 5 < 2 < 2 < 2 < 2 < 2

Soil Analysis Certificate	- PCB (12 Congen	ers)				
DETS Report No: 22-056	52		Date Sampled	28/06/22		
AGB Environmental Ltd			Time Sampled	None Supplied		
Site Reference: P4301.3	- Sheldon House,		TP / BH No	WS03		
Teddington						
Project / Job Ref: P4301	.3		Additional Refs	ES1		
Order No: 9232			Depth (m)	0.30		
Reporting Date: 07/07/2	2022	D	ETS Sample No	603243		
Determinand	Unit	RL	Accreditation			
PCB Congener 77	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 81	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 105	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 114	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 118	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 123	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 126	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 156	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 157	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 167	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 169	mg/kg	: 0.008	NONE	< 0.008		
PCB Congener 189	mg/kg	: 0.008	NONE	< 0.008		
Total PCB (12 Congeners)	ma/ka	< 0.1	NONE	< 0.1		

Analytical rsults are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Waste Acceptance Criteri	a Analytical Ce	ertificate - B	S EN 12457	/3				
DETS Report No: 22-05652		Date Sampled	28/06/22			Landfill Wast	te Acceptance	Criteria Limits
AGB Environmental Ltd		Time Sampled	None Supplied					
Site Reference: P4301.3 - Si Teddington	heldon House,	TP / BH No	WS02				Stable Non-	
Project / Job Ref: P4301.3		Additional Refs	ES3 + DS3			Inert Waste	reactive HAZARDOUS	Hazardous Waste
Order No: 9232 Reporting Date: 07/07/2022		Depth (m)	1.00			Landfill	hazardous	Landfill
		DETS Sample No	603242				Landrin	
Determinand	Unit	MDL						
TOC ^{MU}	%	< 0.1	0.6			3%	5%	6%
Loss on Ignition	%	< 0.01	1.50					10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05			6		
Sum of PCBs	mg/kg	< 0.1	< 0.1			1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500		
Total PAH ^{MU}	mg/kg	< 1.7	4.4			100		
pH ^{MU}	pH Units	N/a	8.0				>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				To be evaluated	To be evaluated
			2:1	9.1	Cumulative	Limit values	for compliance	leaching test
Eluate Analysis			2:1	0:1	10:1	using BS E	N 12457-3 at l	/S 10 l/kg
			mg/l	mg/l	mg/kg		(mg/kg)	
Arsenic ^u			< 0.01	< 0.01	< 0.2	0.5	2	25
Barium ^U			< 0.02	< 0.02	0.1	20	100	300
Cadmium ^u			< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium ^U			< 0.005	< 0.005	< 0.20	0.5	10	70
Copper ^U			< 0.01	< 0.01	< 0.5	2	50	100
Mercury ^U			< 0.0005	< 0.0005	< 0.005	0.01	0.2	2
Molybdenum ^U			0.007	0.003	< 0.1	0.5	10	30
Nickel ^U			< 0.007	< 0.007	< 0.2	0.4	10	40
Lead ^U			< 0.005	< 0.005	< 0.2	0.5	10	50
Antimony ^u			< 0.005	< 0.005	< 0.05	0.06	0.7	5
Selenium ^u			< 0.005	< 0.005	< 0.05	0.1	0.5	7
Zinc ^U			< 0.005	0.007	< 0.2	4	50	200
Chloride ^U			21	5	63	800	15000	25000
Fluoride ^U			< 0.5	< 0.5	< 1	10	150	500
Sulphate ^U			13	6	60	1000	20000	50000
TDS			106	47	511	4000	60000	100000
Phenol Index			< 0.01	< 0.01	< 0.5	1	-	-
DOC			25.1	8.9	101	500	800	1000
Leach Test Information								
	-	-						
Sample Mass (kg)			0.18					
Dry Matter (%)			95.7					
Moisture (%)			4.6					
Stage 1								
Volume Eluate L2 (litres)			0.34					
Filtered Eluate VE1 (litres)			0.12					
					1			

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-

received portion

Kated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Page 9 of 14

Waste Acceptance Criteria	Analytical Ce	ertificate - B	S EN 12457	/3					
DETS Report No: 22-05652		Date Sampled	28/06/22				Landfill Wast	te Acceptance (Criteria Limits
AGB Environmental Ltd		Time Sampled	None Supplied						
Site Reference: P4301.3 - She Teddington	ldon House,	TP / BH No	WS03					Stable Non-	
Project / Job Ref: P4301.3 Order No: 9232		Additional Refs	ES1 + DS1				Inert Waste	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
		Depth (m)	0.30				Lanum		
Reporting Date: 07/07/2022		DETS Sample No	603244						
Determinand	Unit	MDL		1		ļ			ļ'
TOC ^{MU}	%	< 0.1	5.8	1			3%	5%	6%
Loss on Ignition	%	< 0.01	8.88	1		ļ			10%
BTEX ^{™U}	mg/kg	< 0.05	< 0.05	1		ļ	6		
Sum of PCBs	mg/kg	< 0.1	< 0.1	1		ļ	1		
	mg/kg	< 10	< 10	1		ļ	500		
	mg/kg	< 1./	20.6	4		ļ	100		
pH ^{™0}	pH Units	N/a	6./	4		ļ		>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1	Ĺ				I O DE evaluated	I O DE evaluated
			2:1	8:1		Cumulative	Limit values	for compliance	leaching test
Eluate Analysis			<u>ا</u> ا	· ··· ·		10:1	using BS E	N 12457-3 at l	_/S 10 l/kg
		/	mg/l	mg/l	<u> </u>	mg/kg		(mg/kg)	·
Arsenic	_		< 0.01	< 0.01		< 0.2	0.5	2	25
Barium ^u			0.04	0.04		0.4	20	100	300
Cadmium ^u	_	· · · · · · · · · · · · · · · · · · ·	< 0.0005	< 0.0005		< 0.02	0.04	1	5
Chromium			< 0.005	< 0.005		< 0.20	0.5	10	70
Copper			0.01	< 0.01	[< 0.5	2	50	100
Mercury			< 0.0005	< 0.0005		< 0.005	0.01	0.2	2
Molybdenum ^u			0.004	0.003	[< 0.1	0.5	10	30
Nickel	_		< 0.007	< 0.007		< 0.2	0.4	10	40
Lead ⁰			0.030	0.034	[0.3	0.5	10	50
Antimony			0.014	0.006		0.06	0.06	0.7	5
Selenium			< 0.005	< 0.005		< 0.05	0.1	0.5	7
Zinc ^u	_		0.024	0.049	 	0.5	4	50	200
Chloride			4	3		35	800	15000	25000
Fluoride			< 0.5	< 0.5	<u> </u>	< 1	10	150	500
Sulphate ^v	_		7	5	 	56	1000	20000	50000
TDS	_		56	52	 	524	4000	60000	100000
Phenol Index	_		< 0.01	< 0.01	 	< 0.5	1	-	l <u> </u>
DOC		/	20.6	16.2		166	500	800	1000
Leach Test Information		/				_	ſ		
		ļ/	ر ا	 '			1		
	'	L/	ب	 '	<u> </u>		l .		
			1 1	1 '			l		
		/	L!	 '	[d in the second s		
		/	ب	 '			1		
Sample Mass (kg)		/	0.19	└─── ′			1		
Dry Matter (%)		/	93.6	└─── ′			1		
Moisture (%)		!	6.8	 '			1		
Stage 1		!	L!	└─── ′	<u> </u>		1		
Volume Eluate L2 (litres)		!	0.34	└─── ′	<u> </u>		1		
Filtered Eluate VE1 (litres)]	0.16	<u> </u>					
			<u> </u>	<u> </u>			1		
			·	1	1		1		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or as-

received portion

Kated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 22-05652	
AGB Environmental Ltd	
Site Reference: P4301.3 - Sheldon House, Teddington	
Project / Job Ref: P4301.3	
Order No: 9232	
Reporting Date: 07/07/2022	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
603240	WS01	ES1	0.30	4.6	Brown sandy clay with stones and concrete
603241	WS02	ES3	1.00	5.5	Brown gravelly sand with stones and concrete
603242	WS02	ES3 + DS3	1.00	4.3	Light brown sandy clay with stones
603243	WS03	ES1	0.30	6.4	Light brown sandy clay
603244	WS03	ES1 + DS1	0.30	6.3	Light brown sandy clay
603245	WS04	ES2	0.50	4.9	Black sandy clay with stones and glass
603246	TP01	ES1	0.20	4.9	Black sandy clay with stones and vegetation
603247	WS02	ES1	0.20	5.4	Light brown sandy clay
603248	WS04	ES4	1.20	6.8	Brown sandy clay with stones
603249	WS01	ES3	1.00	4.6	Brown sandy clay with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm US}$

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-05652
AGB Environmental Ltd
Site Reference: P4301.3 - Sheldon House, Teddington
Project / Job Ref: P4301.3
Order No: 9232
Reporting Date: 07/07/2022

Matrix	Analysed	Determinand	Brief Method Description	Method
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2·1 bot water extract followed by ICP-OFS	F012
Soil	AR	RTFX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E001
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Suipnate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018
Soil		Sulphur - Total	Determination of total supplur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	E024
Soil	ΔR	Thiocyanate (as SCN)	GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E000
501			addition of ferric nitrate followed by colorimetry	
Soil	D	I oluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil			Determination of volatile organic compounds by headspace CC_MS & C2 C10 by CC ETD	E001
5011	AK	VPH (LO-LO & LO-LIU)	Determination of hydrocardons co-co by neadspace GC-MS & Co-C10 by GC-F1D	E001

AR As Received

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-05652
AGB Environmental Ltd
Site Reference: P4301.3 - Sheldon House, Teddington
Project / Job Ref: P4301.3
Order No: 9232
Reporting Date: 07/07/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end	E103
Water	F	Ammoniacal Nitrogen	point Determination of ammoniacal nitrogen by discrete analyser	F126
Water	LIF	BTEX	Determination of BTEX by beadenace GC-MS	E120
Water	E	Cations	Determination of options hy filtration followed by ICD MS	E101
Water	F LIE	Cauons Chamical Overgan Damand (COD)	Determination of cations by intraction followed by ICP-115	E102 E112
Water		Chemical Oxygen Demand (COD)	Determination of chlorida by filtration & apply of by ion chromatography	E100
Water	F	Chromium Hovavalant	Determination of choraulant chromium by acidification, addition of 1.5 dishopulgathazida fallowed by	E109 E116
Water	F LIE	Chiofilium - Hexavalent	Determination of nexavalent chromotin by actinication, addition of 1,5 dipterivical backet followed by	E110 E11E
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115 E115
water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
water	UF		Determination of total cyanide by distillation followed by colorimetry	E115
water		Cyclonexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	EIII
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid: liquid extraction with hexane followed by GC-FID	E104
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR deter	E110
Water	UF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123
Water	F	EPH (C10 – C40)	Determination of liquid: liquid extraction with hexane followed by GC-FID	E104
Water	F	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	F104
	•	C12-C16, C16-C21, C21-C40)	headspace GC-MS	
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F	Leachate Preparation - NRA	Based on National Rivers Authority leaching test 1994	E301
Leachate	F	Leachate Preparation - WAC	Based on BS EN 12457 Pt1, 2, 3	E302
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water	F	Mineral Oil (C10 - C40)	Determination of liquid: liquid extraction with hexane followed by GI-FID	E104
Water	F	Nitrate	Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethau	F108
Water	, LIF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid-liquid extraction with petroleum ether	F111
Water	LIF	nH	Determination of nH by electrometric measurement	E107
Water	F	Phoenbate	Determination of phosphate by filtration & analysed by ion chromatography	E107
Water	LIE	Redox Potential	Determination of redex potential by determination and see up on children and the second	E109
Water	E	Sulphato (as SO4)	Determination of readox potential by electronicatic measurement.	E115
Water	I IE	Sulphate (ds 304)	Determination of subplate by intration & analysed by colorimetry	E119
Walei	01	Sulphide	Determination of surphice by distinguish followed by consistentiation through SDE cartridge collection	LIIO
Water	F	SVOC	in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF	Total Organic Carbon (TOC)	Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water		VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

F Filtered UF Unfiltered

Parameter	Matrix Type	Suite Reference	Expanded Uncertainity Measurement	Unit
ТОС	Soil	BS EN 12457	20.0	%
Loss on Ignition	Soil	BS EN 12457	35.0	%
BTEX	Soil	BS EN 12457	14.0	%
Sum of PCBs	Soil	BS EN 12457	23.0	%
Mineral Oil	Soil	BS EN 12457	9.0	%
Total PAH	Soil	BS EN 12457	11.6	%
pН	Soil	BS EN 12457	0.28	Units
Acid Neutralisation Capacity	Soil	BS EN 12457	18.0	%
Arsenic	Leachate	BS EN 12457	18.7	%
Barium	Leachate	BS EN 12457	11.6	%
Cadmium	Leachate	BS EN 12457	20.3	%
Chromium	Leachate	BS EN 12457	18.3	%
Copper	Leachate	BS EN 12457	24.3	%
Mercury	Leachate	BS EN 12457	23.7	%
Molybdenum	Leachate	BS EN 12457	14.7	%
Nickel	Leachate	BS EN 12457	16.1	%
Lead	Leachate	BS EN 12457	15.7	%
Antimony	Leachate	BS EN 12457	17.9	%
Selenium	Leachate	BS EN 12457	22.0	%
Zinc	Leachate	BS EN 12457	17.4	%
Chloride	Leachate	BS EN 12457	15.3	%
Fluoride	Leachate	BS EN 12457	16.4	%
Sulphate	Leachate	BS EN 12457	20.6	%
TDS	Leachate	BS EN 12457	12.0	%
Phenol Index	Leachate	BS EN 12457	14.0	%
DOC	Leachate	BS EN 12457	10.0	%
Clay Content	Soil	BS 3882: 2015	15.0	%
Silt Content	Soil	BS 3882: 2015	14.0	%
Sand Content	Soil	BS 3882: 2015	13.0	%
Loss on Ignition	Soil	BS 3882: 2015	35.0	%
рН	Soil	BS 3882: 2015	0.14	Units
Carbonate	Soil	BS 3882: 2015	16.0	%
Total Nitrogen	Soil	BS 3882: 2015	12.0	%
Phosphorus (Extractable)	Soil	BS 3882: 2015	24.0	%
Potassium (Extractable)	Soil	BS 3882: 2015	20.0	%
Magnesium (Extractable)	Soil	BS 3882: 2015	26.0	%
Zinc	Soil	BS 3882: 2015	14.9	%
Copper	Soil	BS 3882: 2015	16.0	%
Nickel	Soil	BS 3882: 2015	17.7	%
Available Sodium	Soil	BS 3882: 2015	23.0	%
Available Calcium	Soil	BS 3882: 2015	23.0	%
Electrical Conductivity	Soil	BS 3882: 2015	10.0	%

List of HWOL Acronyms and Operators

Acronym

HS Headspace analysis

Description

- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- 2D GC-GC Double coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym Benzene - HS 1D MS Ethylbenzene - HS_1D_MS MTBE - HS 1D MS Mineral Oil (C10 - C40) (BS EN 12457-3) - EH_1D_FID TPH CWG - Aliphatic >C10 - C12 - EH_1D_FID_AL TPH CWG - Aliphatic >C12 - C16 - EH_1D_FID_AL TPH CWG - Aliphatic >C16 - C21 - EH 1D FID AL TPH CWG - Aliphatic >C21 - C34 - EH_1D_FID_AL TPH CWG - Aliphatic >C5 - C6 - HS 1D MS AL TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL TPH CWG - Aliphatic >C8 - C10 - EH 1D FID AL TPH CWG - Aliphatic C5 - C34 - EH_1D_FID_MS_HS_AL TPH CWG - Aromatic >C10 - C12 - EH_1D_FID_AR TPH CWG - Aromatic >C12 - C16 - EH_1D_FID_AR TPH CWG - Aromatic >C16 - C21 - EH 1D FID AR TPH CWG - Aromatic >C21 - C35 - EH 1D FID AR TPH CWG - Aromatic >C5 - C35 - EH_1D_FID_MS_HS_AR TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_Total Toluene - HS_1D_MS Total BTEX (BS EN 12457-3) - HS 1D MS Total m & p-xylene - HS_1D_MS o-Xylene - HS_1D_MS

Helen Gildersleeves AGB Environmental Ltd 1 The Mill Copley Hill Business Park Abraham Road Cambridge CB22 3GN

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 22-05766

Site Reference:	P4301.3 - Sheldon House, Teddington
Project / Job Ref:	P4301.3
Order No:	009248
Sample Receipt Date:	06/07/2022
Sample Scheduled Date:	06/07/2022
Report Issue Number:	1
Reporting Date:	11/07/2022

Authorised by:

Mul

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Mercury (Hg)

Selenium (Se)

Nickel (Ni)

mg/kg

mg/kg

mg/kg

< 1

< 3

< 2

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

DETS Report No: 22-05766				30/06/22	01/07/22	04/07/22	04/07/22
		Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
n House,		TP / BH No	CP01	CP01	CP01	CP01	CP01
-							1
		Additional Refs	ES1	ES3	ES	ES	ES
		Depth (m)	0.30	1.20	7.00	12.00	15.00
	D	ETS Sample No	603668	603669	603670	603671	603672
Unit	RL	Accreditation					
N/a	N/a	ISO17025	Not Detected				
pH Units	N/a	MCERTS	9.7	7.7	8.3	8.3	8.2
mg/kg	< 200	MCERTS		297	< 200	554	608
%	< 0.02	MCERTS		0.03	< 0.02	0.06	0.06
mg/l	< 10	MCERTS		53	< 10	150	148
g/l	< 0.01	MCERTS		0.05	< 0.01	0.15	0.15
%	< 0.02	NONE		< 0.02	< 0.02	0.33	0.65
%	< 0.1	MCERTS	3.4				
mg/kg	< 2	MCERTS	11				
mg/kg	< 0.2	MCERTS	< 0.2				
mg/kg	< 2	MCERTS	19				
mg/kg	< 2	NONE	< 2				
mg/kg	< 4	MCERTS	36				
mg/kg	< 3	MCERTS	241				
	n House, Unit N/a pH Units mg/kg % 0 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	n House, D Unit RL N/a D D Units N/a pH Units N/a mg/kg < 200 % < 0.02 mg/k] < 10 g/l < 0.01 % < 0.02 mg/k] < 0.01 % < 0.02 0,01 % < 0.02 mg/kg < 2 mg/kg < 2 mg/kg < 2 mg/kg < 2 mg/kg < 2 mg/kg < 2 mg/kg < 3	Date Sampled Time Sampled Time Sampled TP / BH No Additional Refs Depth (m) DETS Sample No Unit RL Accreditation N/a N/a ISO17025 pH Units N/a MCERTS mg/kg<<200	Date Sampled 30/06/22 Time Sampled None Supplied n House, TP / BH No CP01 Additional Refs ES1 Depth (m) 0.30 DETS Sample No 603668 Unit RL Accreditation N/a IS017025 Not Detected pH Units N/a MCERTS 9.7 mg/kg<<200 MCERTS 9.7 mg/kg<<200 MCERTS 9.7 mg/kg<<200 MCERTS 9.7 g/l<<0.01 MCERTS 9.7 mg/kg<<200 MCERTS 9.7 mg/kg<<20 MCERTS 11 mg/kg<<20 MCERTS 3.4 mg/kg<<2 MCERTS 11 mg/kg<<2 MCERTS 19	Date Sampled 30/06/22 30/06/22 Time Sampled None Supplied None Supplied n House, TP / BH No CP01 CP01 Additional Refs ES1 ES3 Depth (m) 0.30 1.20 DETS Sample No 603668 603669 Unit RL Accreditation N/a N/a ISO17025 Not Detected pH Units N/a MCERTS 9.7 7.7 mg/kg<<200 MCERTS 9.7 7.7 mg/kg<<200 MCERTS 9.7 53 g/l<<0.01 MCERTS 0.03 30 mg/l<<10 MCERTS 0.03 53 g/l<<0.01 MCERTS 0.05 0.02 %<<0.02 NONE <0.02 0.02 % 0.01 MCERTS 3.4 mg/kg<<2 MCERTS 3.4 0.02 % 0.2 MCERTS 11 mg/kg<<2 MCERTS 19 0.2 <th>Date Sampled 30/06/22 30/06/22 01/07/22 Time Sampled None Supplied None Supplied None Supplied n House, TP / BH No CP01 CP01 CP01 Additional Refs ES1 ES3 ES Depth (m) 0.30 1.20 7.00 DETS Sample No 603668 603669 603670 Unit RL Accreditation N/a N/a ISO17025 Not Detected </th> <th>Date Sampled 30/06/22 30/06/22 01/07/22 04/07/22 Time Sampled None Supplied None Supplied None Supplied None Supplied None Supplied n House, TP / BH No CP01 CP01 CP01 CP01 Additional Refs ES1 ES3 ES ES Depth (m) 0.30 1.20 7.00 12.00 DETS Sample No 603668 603669 603670 603671 Unit RL Accreditation N/a N/a IS017025 Not Detected Pi Units N/a MCERTS 9.7 7.7 8.3 8.3</th>	Date Sampled 30/06/22 30/06/22 01/07/22 Time Sampled None Supplied None Supplied None Supplied n House, TP / BH No CP01 CP01 CP01 Additional Refs ES1 ES3 ES Depth (m) 0.30 1.20 7.00 DETS Sample No 603668 603669 603670 Unit RL Accreditation N/a N/a ISO17025 Not Detected	Date Sampled 30/06/22 30/06/22 01/07/22 04/07/22 Time Sampled None Supplied None Supplied None Supplied None Supplied None Supplied n House, TP / BH No CP01 CP01 CP01 CP01 Additional Refs ES1 ES3 ES ES Depth (m) 0.30 1.20 7.00 12.00 DETS Sample No 603668 603669 603670 603671 Unit RL Accreditation N/a N/a IS017025 Not Detected Pi Units N/a MCERTS 9.7 7.7 8.3 8.3

< 1

13

< 3

Zinc (Zn) mg/kg < 3 MCERTS 121 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

MCERTS

MCERTS

MCERTS

Soil Analysis Certificate							
DETS Report No: 22-05766			Date Sampled	04/07/22	04/07/22	04/07/22	
AGB Environmental Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: P4301.3 - Sheldo	n House,		TP / BH No	CP01	CP01	CP01	
Teddinaton							
Project / Job Ref: P4301.3			Additional Refs	ES	ES	ES	
Order No: 009248			Depth (m)	18.00	21.00	24.00	
Reporting Date: 11/07/2022		D	ETS Sample No	603673	603674	603675	
	1		T T				
Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025				
pH	pH Units	N/a	MCERTS	8.9	8.7	6.8	
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	545	570	555	
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.05	0.06	0.06	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	108	150	141	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.11	0.15	0.14	
Total Sulphur	%	< 0.02	NONE	0.28	0.43	0.39	
Organic Matter (SOM)	%	< 0.1	MCERTS				
Arsenic (As)	mg/kg	< 2	MCERTS				
Cadmium (Cd)	mg/kg	< 0.2	MCERTS				
Chromium (Cr)	mg/kg	< 2	MCERTS				
Chromium (hexavalent)	mg/kg	< 2	NONE				
Copper (Cu)	mg/kg	< 4	MCERTS				
Lead (Pb)	mg/kg	< 3	MCERTS				
Mercury (Hg)	mg/kg	< 1	MCERTS				ļ
Nickel (Ni)	mg/kg	< 3	MCERTS				ļ
Selenium (Se)	mg/kg	< 2	MCERTS				ļ
Zinc (Zn)	ma/ka	~ 3	MCEDTS				

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate	- Speciated PAHs					
DETS Report No: 22-0570	66		Date Sampled	30/06/22		
AGB Environmental Ltd			Time Sampled	None Supplied		
Site Reference: P4301.3	- Sheldon House,		TP / BH No	CP01		
Teddington						
Project / Job Ref: P4301.	.3		Additional Refs	ES1		
Order No: 009248			Depth (m)	0.30		
Reporting Date: 11/07/2	022	D	ETS Sample No	603668		
Determinand	Unit	RL	Accreditation		 	-
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1		
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1		
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1		
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1		
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1		
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6		

Soil Analysis Certificate	- TPH CWG Bande	d				
DETS Report No: 22-057	66	Date Sampled		30/06/22		
AGB Environmental Ltd		Time Sampled		None Supplied		
Site Reference: P4301.3	- Sheldon House,		TP / BH No	CP01		
Teddington	-					
Project / Job Ref: P4301	.3	Additional Refs		ES1		
Order No: 009248			Depth (m)	0.30		
Reporting Date: 11/07/2	022	D	ETS Sample No	603668		
Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6 : HS 1D MS AL	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8 : HS 1D MS AL	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10 : EH 1D FID AL	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12 : EH 1D FID AL	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16 : FH 1D FID AL	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21 : EH 1D EID AL	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C21 - C34 :	mg/kg	< 10	MCERTS	< 10		
Aliphatic (C5 - C34) :	mg/kg	< 21	NONE	< 21		
Aromatic >C5 - C7 :	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8 : HS 1D MS AR	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10 : EH 1D FID AR	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12 : EH 1D FID AR	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16 : EH 1D FID AR	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21 : EH 1D FID AR	mg/kg	< 3	MCERTS	< 3		
Aromatic >C21 - C35 : EH 1D FID AR	mg/kg	< 10	MCERTS	< 10		
Aromatic (C5 - C35) : EH 1D FID MS HS AR	mg/kg	< 21	NONE	< 21		
Total >C5 - C35 : EH_1D_FID_MS_HS_Total	mg/kg	< 42	NONE	< 42		

Soil Analysis Certificate	- BTEX / MTBE					
DETS Report No: 22-05766			Date Sampled	30/06/22		
AGB Environmental Ltd			Time Sampled	None Supplied		
Site Reference: P4301.3 -	Sheldon House,		TP / BH No	CP01		
Teddinaton	-					
Project / Job Ref: P4301.3	3		Additional Refs	ES1		
Order No: 009248			Depth (m)	0.30		
Reporting Date: 11/07/20)22	D	ETS Sample No	603668		
Determinand	Unit	RL	Accreditation			
Determinand Benzene : HS_1D_MS	Unit ug/kg	RL < 2	Accreditation MCERTS	< 2		
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS	Unit ug/kg ug/kg	RL < 2 < 5	Accreditation MCERTS MCERTS	< 2 < 5		
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS	Unit ug/kg ug/kg ug/kg	RL < 2 < 5 < 2	Accreditation MCERTS MCERTS MCERTS	< 2 < 5 < 2		
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS	Unit ug/kg ug/kg ug/kg ug/kg	RL < 2 < 5 < 2 < 2	Accreditation MCERTS MCERTS MCERTS MCERTS	< 2 < 5 < 2 < 2 < 2		
Determinand Benzene : HS 1D_MS Toluene : HS 1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS o-xylene : HS_1D_MS	Unit ug/kg ug/kg ug/kg ug/kg ug/kg	RL < 2 < 5 < 2 < 2 < 2 < 2	Accreditation MCERTS MCERTS MCERTS MCERTS MCERTS	< 2 < 5 < 2 < 2 < 2 < 2 < 2		

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
603668	CP01	ES1	0.30	8.9	Brown sandy clay with brick and concrete
603669	CP01	ES3	1.20	13.5	Light brown sandy clay
603670	CP01	ES	7.00	4.2	Brown sandy clay with stones
603671	CP01	ES	12.00	20.1	Brown clay
603672	CP01	ES	15.00	22.4	Brown clay
603673	CP01	ES	18.00	18.8	Brown clay
603674	CP01	ES	21.00	21.1	Brown clay
603675	CP01	ES	24.00	21.4	Brown clay

Moisture content is part of procedure E003 & is not an accredited test

Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm U/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-05766
AGB Environmental Ltd
Site Reference: P4301.3 - Sheldon House, Teddington
Project / Job Ref: P4301.3
Order No: 009248
Reporting Date: 11/07/2022

Matrix	Analysed	Determinand	Brief Method Description	
Soil		Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 bot water extract followed by ICP-OES	F012
Soil	AR	BUIGH Water Soldble	Determination of BTEX by headspace GC-MS	F001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	F002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 15 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cvanide - Complex	Determination of complex cvanide by distillation followed by colorimetry	E015
Soil	AR	Cvanide - Free	Determination of free cvanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	Ha	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	F009
Soil	D	Sulphate (as SO4) - Total	Determination of total subbate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of substatic by extraction with water & analysed by ion chromatography	E019
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble subhate by extraction with water followed by ICP-OES	E005
Soil	ΔR	Sulphide (do do i) Water bolable (2:1)	Determination of subhide by distillation followed by colorimetry	E011
Soil	D	Sulphur - Total	Determination of statal sulphure by extraction with a gua-regia followed by ICP-OES	E010
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by cc-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric pitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	F011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E011
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil			Determination of volatile organic compounds by neadspace CC-MS & C2-C10 by CC-EID	E001
501	AK	ערה (נס-נא א נא-נוט)	שבובוזוווומנוטון טו וואטוטנמוטטוג נס-נס טא וופמטגאמנפ טנ-יוזג מ נא-נוע טא טנ-רוט	2001

AR As Received

List of HWOL Acronyms and Operators

Acronym

HS Headspace analysis

Description

- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- 2D GC-GC Double coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
 - _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym Benzene - HS 1D MS Ethylbenzene - HS_1D_MS MTBE - HS 1D MS TPH CWG - Aliphatic >C10 - C12 - EH_1D_FID_AL TPH CWG - Aliphatic >C12 - C16 - EH_1D_FID_AL TPH CWG - Aliphatic >C16 - C21 - EH_1D_FID_AL TPH CWG - Aliphatic >C21 - C34 - EH 1D FID AL TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL TPH CWG - Aliphatic >C8 - C10 - EH_1D_FID_AL TPH CWG - Aliphatic C5 - C34 - EH 1D FID MS HS AL TPH CWG - Aromatic >C10 - C12 - EH_1D_FID_AR TPH CWG - Aromatic >C12 - C16 - EH_1D_FID_AR TPH CWG - Aromatic >C16 - C21 - EH_1D_FID_AR TPH CWG - Aromatic >C21 - C35 - EH 1D FID AR TPH CWG - Aromatic >C5 - C35 - EH 1D FID MS HS AR TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_Total Toluene - HS 1D MS m & p-xylene - HS_1D_MS o-Xylene - HS 1D MS

Helen Gildersleeves AGB Environmental Ltd 1 The Mill Copley Hill Business Park Abraham Road Cambridge CB22 3GN

Derwentside Environmental Testing Services Ltd
 Unit 1
 Rose Lane Industrial Estate
 Rose Lane
 Lenham Heath
 Kent
 ME17 2JN
 t: 01622 850410

DETS Report No: 22-05987

Site Reference:	Sheldon House, Teddington
Project / Job Ref:	P4301.3
Order No:	009260
Sample Receipt Date:	13/07/2022
Sample Scheduled Date:	13/07/2022
Report Issue Number:	1
Reporting Date:	18/07/2022

Authorised by:

Man

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

-						
Water Analysis Certificate						
DETS Report No: 22-05987		Date Sampled		11/07/22		
AGB Environmental Ltd		Time Sampled		None Supplied		
Site Reference: Sheldon House, T	eddington		TP / BH No	CP01 MON1		1
Project / Job Ref: P4301.3			Additional Refs	P4301		
Order No: 009260			Depth (m)	4.15		
Reporting Date: 18/07/2022		D	ETS Sample No	604797		
Determinand	Unit	RL	Accreditation			
pH	pH Units	N/a	ISO17025	7.3		
Sulphate as SO ₄	mg/l	< 1	ISO17025	103		
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	7.1		
Arsenic (dissolved)	ug/l	< 5	ISO17025	< 5		
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	0.4		
Chromium (dissolved)	ug/l	< 5	ISO17025	< 5		
Chromium (hexavalent)	ug/l	< 20	NONE	< 20		
Copper (dissolved)	ug/l	< 5	ISO17025	< 5		
Lead (dissolved)	ug/l	< 5	ISO17025	< 5		
Mercury (dissolved)	ug/l	< 0.05	ISO17025	< 0.05		
Nickel (dissolved)	ug/l	< 5	ISO17025	18		
Selenium (dissolved)	ug/l	< 5	IS017025	< 5		
Zinc (dissolved)	ug/l	< 2	ISO17025	105		

Subcontracted analysis Insufficient sample ^{I/S} Unsuitable Sample ^{U/S}

Water Analysis Certificate - Speciated PAH								
DETS Report No: 22-0598	87		Date Sampled	11/07/22				
AGB Environmental Ltd		Time Sampled		None Supplied				
Site Reference: Sheldon	House, Teddington		TP / BH No	CP01 MON1				
Project / Job Pof: P4301	2		dditional Bofc	D4201				
Order No: 009260	.5	,	Denth (m)	P4501 / 15				
Reporting Date: 18/07/2	022	Depth (m)		604707				
Reporting Date: 10/07/2			Lib bumple no	001797				
Determinand	Unit	RL	Accreditation					
Naphthalene	ug/l	< 0.01	NONE	< 0.01				
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01				
Acenaphthene	ug/l	< 0.01	NONE	< 0.01				
Fluorene	ug/l	< 0.01	NONE	< 0.01				
Phenanthrene	ug/l	< 0.01	NONE	< 0.01				
Anthracene	ug/l	< 0.01	NONE	< 0.01				
Fluoranthene	ug/l	< 0.01	NONE	< 0.01				
Pyrene	ug/l	< 0.01	NONE	< 0.01				
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01				
Chrysene	ug/l	< 0.01	NONE	< 0.01				
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01				
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01				
Benzo(a)pyrene ug/l <			NONE	< 0.01				
Indeno(1,2,3-cd)pyrene ug/l ·			NONE	< 0.01				
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01				
Benzo(ghi)perylene	ug/l	: 0.008	NONE	< 0.008				
Total EPA-16 PAHs	ug/l	< 0.16	NONE	< 0.16				

Water Analysis Certificate - TPH CWG Banded									
DETS Report No: 22-0598	37		Date Sampled	11/07/22					
AGB Environmental Ltd		Time Sampled		None Supplied					
Site Reference: Sheldon H	louse, Teddington	TP / BH No		CP01 MON1					
Project / Job Ref: P4301.	3	Additional Refs		P4301					
Order No: 009260		Depth (m)		4.15					
Reporting Date: 18/07/2	022	DETS Sample No		604797					
							-		
Determinand	Unit	RL	Accreditation						
Aliphatic >C5 - C6 : HS 1D MS AL	ug/l	< 10	NONE	< 10					
Aliphatic >C6 - C8 : HS_1D_MS_AL	ug/l	< 10	NONE	< 10					
Aliphatic >C8 - C10 : EH 1D FID AL	ug/l	< 10	NONE	< 10					
Aliphatic >C10 - C12 : EH 1D FID AL	ug/l	< 10	NONE	< 10					
Aliphatic >C12 - C16 : EH 1D FID AL	ug/l	< 10	NONE	< 10					
Aliphatic >C16 - C21 : EH 1D FID AL	ug/l	< 10	NONE	< 10					
Aliphatic >C21 - C34 : EH 1D FID AL	ug/l	< 10	NONE	< 10					
Aliphatic (C5 - C34) : FH 1D FID MS HS AL	ug/l	< 70	NONE	< 70					
Aromatic >C5 - C7 : HS 1D MS AR	ug/l	< 10	NONE	< 10					
Aromatic >C7 - C8 : HS 1D MS AR	ug/l	< 10	NONE	< 10					
Aromatic >C8 - C10 : EH 1D FID AR	ug/l	< 10	NONE	< 10					
Aromatic >C10 - C12 : EH 1D FID AR	ug/l	< 10	NONE	< 10					
Aromatic >C12 - C16 : EH_1D_FID_AR	ug/l	< 10	NONE	< 10					
Aromatic >C16 - C21 : EH 1D FID AR	ug/l	< 10	NONE	< 10					
Aromatic >C21 - C35 : EH_1D_FID_AR	ug/l	< 10	NONE	< 10					
Aromatic (C5 - C35) : EH_1D_FID_MS_HS_AR	ug/l	< 70	NONE	< 70					
Total >C5 - C35 : EH_1D_FID_MS_HS_Total	ug/l	< 140	NONE	< 140					

Water Analysis Certificate - BTEX / MTBE									
DETS Report No: 22-05987			Date Sampled	11/07/22					
AGB Environmental Ltd			Time Sampled	None Supplied					
Site Reference: Sheldon H	louse, Teddington	TP / BH No		CP01 MON1					
Project / Job Ref: P4301.	3		Additional Refs	P4301					
Order No: 009260			Depth (m)	4.15					
Reporting Date: 18/07/20	022	D	ETS Sample No	604797					
Determinand	Unit	RL	Accreditation						
Determinand Benzene : HS_1D_MS	Unit ug/l	RL < 1	Accreditation ISO17025	< 1					
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS	Unit ug/l ug/l	RL < 1 < 5	Accreditation ISO17025 ISO17025	< 1 < 5					
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS	Unit ug/l ug/l ug/l	RL < 1 < 5 < 5	Accreditation IS017025 IS017025 IS017025	< 1 < 5 < 5					
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS	Unit ug/l ug/l ug/l	RL < 1 < 5 < 5 < 10	Accreditation IS017025 IS017025 IS017025 IS017025	< 1 < 5 < 5 < 10					
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS o-xylene : HS_1D_MS	Unit ug/l ug/l ug/l ug/l ug/l	RL < 1 < 5 < 5 < 10 < 5	Accreditation IS017025 IS017025 IS017025 IS017025 IS017025	< 1 < 5 < 5 < 10 < 5					

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-05987
AGB Environmental Ltd
Site Reference: Sheldon House, Teddington
Project / Job Ref: P4301.3
Order No: 009260
Reporting Date: 18/07/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1.5 diphenylcarbazide followed by	E116
Water	UF	Cvanide - Complex	Determination of complex cvanide by distillation followed by colorimetry	E115
Water	UF	Cvanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cvanide - Total	Determination of total cvanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid-liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid: liquid extraction with hexane followed by GC-FID	E104
Water	F	Dissolved Organic Content (DOC)	Petermination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	F110
Water	UF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123
Water	F	FPH (C10 - C40)	Determination of liquid-liquid extraction with because followed by GC-FID	F104
		EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	
Water	F	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E104
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F	Leachate Preparation - NRA	Based on National Rivers Authority leaching test 1994	E301
Leachate	F	Leachate Preparation - WAC	Based on BS EN 12457 Pt1, 2, 3	E302
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water	F	Mineral Oil (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F	Nitrate	Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethan	E108
Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF	pH	Determination of pH by electrometric measurement	E107
Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113
Water	F	Sulphate (as SO4)	Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF	Total Organic Carbon (TOC)	Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

List of HWOL Acronyms and Operators

Acronym

HS Headspace analysis

Description

- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- 2D GC-GC Double coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
 - _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym Benzene - HS 1D MS Ethylbenzene - HS_1D_MS MTBE - HS 1D MS TPH CWG - Aliphatic >C10 - C12 - EH_1D_FID_AL TPH CWG - Aliphatic >C12 - C16 - EH_1D_FID_AL TPH CWG - Aliphatic >C16 - C21 - EH_1D_FID_AL TPH CWG - Aliphatic >C21 - C34 - EH 1D FID AL TPH CWG - Aliphatic >C5 - C34 - EH_1D_FID_MS_HS_AL TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL TPH CWG - Aliphatic >C8 - C10 - EH 1D FID AL TPH CWG - Aromatic >C10 - C12 - EH_1D_FID_AR TPH CWG - Aromatic >C12 - C16 - EH_1D_FID_AR TPH CWG - Aromatic >C16 - C21 - EH_1D_FID_AR TPH CWG - Aromatic >C21 - C35 - EH 1D FID AR TPH CWG - Aromatic >C5 - C7 - HS 1D MS AR TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR TPH CWG - Aromatic C5 - C35 - EH_1D_FID_MS_HS_AR TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_Total Toluene - HS 1D MS m & p-xylene - HS_1D_MS o-Xylene - HS 1D MS

Natasha Masich AGB Environmental Ltd 1 The Mill Copley Hill Business Park Abraham Road Cambridge CB22 3GN

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 22-06311

Site Reference:	Sheldon House, Teddington
Project / Job Ref:	P4301.3
Order No:	009275
Sample Receipt Date:	25/07/2022
Sample Scheduled Date:	25/07/2022
Report Issue Number:	1
Reporting Date:	29/07/2022

Authorised by:

Man

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Water Analysis Certificate						
DETS Report No: 22-06311			Date Sampled	21/07/22		
AGB Environmental Ltd			Time Sampled	None Supplied		
Site Reference: Sheldon House, T	eddington		TP / BH No	CP01 MON2		
Project / Job Ref: P4301.3		1	Additional Refs	P4301		
Order No: 009275			Depth (m)	4.20		
Reporting Date: 29/07/2022		D	ETS Sample No	606204		
Determinand	Unit	RL	Accreditation	(hs)		
pH	pH Units	N/a	ISO17025	7.3		
Sulphate as SO ₄	mg/l	< 1	ISO17025	105		
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	7.2		
Arsenic (dissolved)	ug/l	< 5	ISO17025	< 5		
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	< 0.4		
Chromium (dissolved)	ug/l	< 5	IS017025	< 5		
Chromium (hexavalent)	ug/l	< 20	NONE	< 20		

	uy/i	< J	1301/025			
Chromium (hexavalent)	ug/l	< 20	NONE	< 20		
Copper (dissolved)	ug/l	< 5	IS017025	< 5		
Lead (dissolved)	ug/l	< 5	ISO17025	< 5		
Mercury (dissolved)	ug/l	< 0.05	ISO17025	< 0.05		
Nickel (dissolved)	ug/l	< 5	ISO17025	< 5		
Selenium (dissolved)	ug/l	< 5	ISO17025	< 5		
Zinc (dissolved)	ug/l	< 2	ISO17025	< 2		
Subcontracted analysis (S)						

Insufficient sample ^{US} Unsufficient sample ^{US} (hs) Please note deviating sample due to head space in container

Water Analysis Certifica	ate - Speciated PAH					
DETS Report No: 22-063	11		Date Sampled	21/07/22		
AGB Environmental Ltd			Time Sampled	None Supplied		
Site Reference: Sheldon I	House, Teddington		TP / BH No	CP01 MON2		
Project / Job Ref: P4301	.3		Additional Refs	P4301		
Order No: 009275		Depth (m)	4.20			
Reporting Date: 29/07/2	2022	D	ETS Sample No	606204		
Determinand	Unit	RL	Accreditation	(hs)	 	
Naphthalene	ug/l	< 0.01	NONE	< 0.01		
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01		
Acenaphthene	ug/l	< 0.01	NONE	< 0.01		
Fluorene	ug/l	< 0.01	NONE	< 0.01		
Phenanthrene	ug/l	< 0.01	NONE	< 0.01		
Anthracene	ug/l	< 0.01	NONE	< 0.01		
Fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Pyrene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01		
Chrysene	ug/l	< 0.01	NONE	< 0.01		
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01		
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01		
Benzo(ghi)perylene	ug/l	: 0.008	NONE	< 0.008		
Total EPA-16 PAHs	ug/l	< 0.16	NONE	< 0.16		

Water Analysis Certifica	te - TPH CWG Ban	ded				
DETS Report No: 22-0631	1		Date Sampled	21/07/22		
AGB Environmental Ltd			Time Sampled	None Supplied		
Site Reference: Sheldon I	louse, Teddington		TP / BH No	CP01 MON2		
Project / Job Ref: P4301	3		Additional Refs	P4301		
Order No: 009275			Depth (m)	4.20		
Reporting Date: 29/07/2	022	D	ETS Sample No	606204		
Determinand	Unit	RL	Accreditation	(hs)		
Aliphatic >C5 - C6 : HS 1D MS AL	ug/l	< 10	NONE	< 10		
Aliphatic >C6 - C8 : HS 1D MS AL	ug/l	< 10	NONE	< 10		
Aliphatic >C8 - C10 : EH 1D FID AL	ug/l	< 10	NONE	< 10		
Aliphatic >C10 - C12 : FH 1D FID AL	ug/l	< 10	NONE	< 10		
Aliphatic >C12 - C16 :	ug/l	< 10	NONE	< 10		
Aliphatic >C16 - C21 :	ug/l	< 10	NONE	< 10		
Aliphatic >C21 - C34 :	ug/l	< 10	NONE	< 10		
Aliphatic (C5 - C34) :	ug/l	< 70	NONE	< 70		
Aromatic >C5 - C7 :	ug/l	< 10	NONE	< 10		
Aromatic >C7 - C8 :	ug/l	< 10	NONE	< 10		
Aromatic >C8 - C10 :	ug/l	< 10	NONE	< 10		
Aromatic >C10 - C12 :	ug/l	< 10	NONE	< 10		
Aromatic >C12 - C16 :	ug/l	< 10	NONE	< 10		
Aromatic >C16 - C21 :	ug/l	< 10	NONE	< 10		
Aromatic >C21 - C35 :	ug/l	< 10	NONE	< 10		
Aromatic (C5 - C35) : EH 1D EID MS HS AP	ug/l	< 70	NONE	< 70		
Total >C5 - C35 : EH_1D_FID_MS_HS_Total	ug/l	< 140	NONE	< 140		

(hs) Please note deviating sample due to head space in container

Water Analysis Certifica	te - BTEX / MTBE					
DETS Report No: 22-0631	.1		Date Sampled	21/07/22		
AGB Environmental Ltd			Time Sampled	None Supplied		
Site Reference: Sheldon H	louse, Teddington		TP / BH No	CP01 MON2		
Project / Job Ref: P4301.	3		Additional Refs	P4301		
Order No: 009275			Depth (m)	4.20		
Reporting Date: 29/07/2	022	D	ETS Sample No	606204		
Determinand	Unit		Accuration	(h-a)		
	Unit	KL	Accreditation	(ns)		
Benzene : HS_1D_MS	ug/l	< 1	ISO17025	(hs) < 1		
Benzene : HS_1D_MS Toluene : HS_1D_MS	ug/l ug/l	< 1 < 5	ISO17025 ISO17025	(ns) < 1 < 5		
Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS	ug/l ug/l	<pre> RL < 1 < 5 < 5</pre>	ISO17025 ISO17025 ISO17025	(ns) < 1 < 5 < 5		
Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS	ug/l ug/l ug/l ug/l	<pre>< 1 < 5 < 5 < 10</pre>	ISO17025 ISO17025 ISO17025 ISO17025	(IIS) < 1 < 5 < 5 < 10		
Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS o-xylene : HS_1D_MS	ug/l ug/l ug/l ug/l ug/l	<pre>< 1 < 5 < 10 < 10 < 5</pre>	ISO17025 ISO17025 ISO17025 ISO17025 ISO17025	(its) < 1 < 5 < 5 < 10 < 5 < 20 < 5		

(hs) Please note deviating sample due to head space in container

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-06311
AGB Environmental Ltd
Site Reference: Sheldon House, Teddington
Project / Job Ref: P4301.3
Order No: 009275
Reporting Date: 29/07/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid: liquid extraction with hexane followed by GC-FID	E104
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	E110
Water	UF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123
Water	F	EPH (C10 – C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E104
Water	F	Fluoride	Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F	Leachate Preparation - NRA	Based on National Rivers Authority leaching test 1994	E301
Leachate	F	Leachate Preparation - WAC	Based on BS EN 12457 Pt1, 2, 3	E302
Water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102
Water	F	Mineral Oil (C10 - C40)	Determination of liquid: liquid extraction with hexane followed by GI-FID	E104
Water	F	Nitrate	Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	F108
Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid: liquid extraction with petroleum ether	E111
Water	UF	nH	Determination of pH by electrometric measurement	F107
Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113
Water	F	Sulphate (as SO4)	Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF	Total Organic Carbon (TOC)	low heat with persulphate addition followed by IR detection	F110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

List of HWOL Acronyms and Operators

Acronym

HS Headspace analysis

Description

- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- 2D GC-GC Double coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
 - _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym Benzene - HS 1D MS Ethylbenzene - HS_1D_MS MTBE - HS 1D MS TPH CWG - Aliphatic >C10 - C12 - EH_1D_FID_AL TPH CWG - Aliphatic >C12 - C16 - EH_1D_FID_AL TPH CWG - Aliphatic >C16 - C21 - EH_1D_FID_AL TPH CWG - Aliphatic >C21 - C34 - EH 1D FID AL TPH CWG - Aliphatic >C5 - C34 - EH_1D_FID_MS_HS_AL TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL TPH CWG - Aliphatic >C8 - C10 - EH 1D FID AL TPH CWG - Aromatic >C10 - C12 - EH_1D_FID_AR TPH CWG - Aromatic >C12 - C16 - EH_1D_FID_AR TPH CWG - Aromatic >C16 - C21 - EH_1D_FID_AR TPH CWG - Aromatic >C21 - C35 - EH 1D FID AR TPH CWG - Aromatic >C5 - C7 - HS 1D MS AR TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR TPH CWG - Aromatic C5 - C35 - EH_1D_FID_MS_HS_AR TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_Total Toluene - HS 1D MS m & p-xylene - HS_1D_MS o-Xylene - HS 1D MS

Contract		P4301 - Sheldon Ho	ouse, Teda	dington						
Serial No).	41057_1								
Client:	AGB Envi	ronmental Ltd		Soil Prop	perty T	esting Ltd				
	341 Exning Newmarke Suffolk	g Road et		15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG						
	CB8 OAT			Tel: 01480 455579 Email: <u>enquiries@soilpropertytesting.com</u> Website: www.soilpropertytesting.com						
Samples	Submitted	d By:		Approved Signatorie	es:					
	AGB Envi	ronmental Ltd		ס.נ 🗹	C. Garner B.E	ng (Hons) FGS				
Samples	Labelled:									
сир	P4301 - S	heldon House, Tedd	ington	🗆 W. Johnstone						
				Materials Lab Manager						
					Ille					
Date R	eceived:	06/07/2022	Samples	s Tested Between:	06/07/2022	and 19/07/2022				
Remarks	For the a Your Refe Your Ord	ttention of Helen Gil erence No: P4301 er No: 9249	dersleeve	!S						
Notes:	1	All remaining samples o	or remnants	from this contract will be	e disposed of afte	er 21 days from today,				
		unless we are notified t	o the contra	ary.						
	2	Opinions and interpreta	ations expre	essed herein are outside th	he scope of UKA	S accreditation.				
	3	Tests marked "NOT UKA Schedule for this testing	AS ACCREDIT g laboratory	FED" in this test report are <i>i</i> .	e not included in	the UKAS Accreditation				
	4	This test report may not issuing laboratory.	t be reprodu	uced other than in full exc	cept with the pri	or written approval of the				
	5	The results within this r	eport only r	relate to the items tested	or sampled.					

ISSUED BY SOIL PROPERTY TESTING LTD

Contra	act		P4301 ·	P4301 - Sheldon House, Teddington																		
Serial	No.		41057_	1													Target Date 20/07/2022				20/07/2022	
Sched	uled	Ву	AGB En	viro	onm	nen	tal	Ltd														
Sched	ule R	emarks																				
Bore Hole No.	Туре	Sample Ref.	Top Depth	op 2pth													Sample Remarks					
CP01	В	-	2.00	1		Í																
CP01	В	-	4.00	1																		
CP01	В	-	7.00	1																		
CP01	D	-	8.00		1	1																
CP01	D	-	9.00		1	1																
CP01	U	1	10.50					1														
CP01	D	-	11.00		1	1																
CP01	D	-	13.00		1	1																
CP01	U	2	14.00					1														
CP01	D	-	15.00		1	1																
CP01	U	3	17.00					1														
CP01	D	-	18.00		1	1																
CP01	D	-	21.00		1	1																
CP01	U	4	21.00					1														
CP01	D	-	24.00		1	1																
TP03	D	-	1.30		1	1	1															
WS02	D	-	1.40		1	1	1															
		Totals		3	10	10	2	4														End of Schedule

Contract	t	P430	4301 - Sheldon House, Teddington											
Serial No	0.	4105	57_1											
	SUMMA	ARY C	DF WATE		ENT, I		LIMIT	, PLAS		1IT <i>,</i> PL/	ASTICI	ΓΥ ΙΝΙ	DEX AND LIQUIDITY INDEX	
Borehole	Depth	Туре	Ref.	Water Content	Liquid Limit	Plastic	Plasti- city	Liquid- ity	S	ample Pro Ret'd	eparation _{Corr'd}	Curing	Description	Class
/Pit No.	(m)			(%)	(%)	(%)	Index (%)	Index	Wethou	0.425mm (%)	W/C <0.425mm	Time (hrs)	Description	Clubs
CP01	8.00	D	-	25.2	63	23	40	0.06	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	СН
CP01	9.00	D	-	24.2	61	23	38	0.03	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	СН
CP01	11.00	D	-	24.0	61	22	39	0.05	From Natural	0 (A)		25	Stiff fissured dark grey CLAY	СН
CP01	13.00	D	-	27.4	68	26	42	0.03	From Natural	0 (A)		25	Stiff fissured dark grey CLAY	СН
CP01	15.00	D	-	33.7	73	25	48	0.18	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	cv
CP01	18.00	D	-	28.1	71	25	46	0.07	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	CV
CP01	21.00	D	-	25.0	70	24	46	0.02	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	CH/CV
CP01	24.00	D	-	29.3	74	26	48	0.07	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	CV
Method Of Method of Type of San Comments:	Preparatior Test: nple Key:	:	BS EN ISO: BS EN ISO: U = Undistu	17892-1: 2 17892-1: 2 urbed, B =	2014 & B 2014 & B Bulk, D =	S 1377: P S 1377: P Disturbe	art 2:199 art 2:199 d, J = Jar,	0:4.2 0:3.2, 4.4 W = Wat	, 5.3, 5.4 er, SPT =	Split Spo	on Sampl	le, C = C	Core Cutter	
Table Notat	tion:		Ret'd 0.425	5mm: (A) =	Assume	d, (M) = N	Measured							

Contrac	t	P4301 - Sheldon House, Teddington												
Serial N	ο.	4105	57_1											
	SUMMA										Λςτιζι			
							Plasti-	Liquid-		ample Pr	enaration			
Borehole /Pit No.	Depth	Туре	Ref.	Water Content	Liquid Limit	Plastic Limit	city Index	ity	Method	Ret'd 0.425mm	Corr'd W/C	Curing Time	Description	Class
	(m)			(%)	(%)	(%)	(%)	mucx		(%)	<0.425mm	(hrs)		
TP03	1.30	D	-	10.1	29	14	15	-0.26	Wet Sieved	3 (M)	10.4*	25	Very stiff yellowish brown sandy silty CLAY with occasional recently active and decayed roots	CL
W502	1.40	D	-	7.9	30	16	14	-0.58	Wet Sieved	32 (M)	11.5*	24	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine to coarse angular and subangular chert	CL
Method Of Method of Type of San Comments:	Wethod Of Preparation:BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2Wethod of Test:BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4Type of Sample Key:U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core CutterComments:*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.													
			net u 0.425	5 (A) =	- Assume	u, (ivi) = i	vieasured	I						

ISSUED BY SOIL PROPERTY TESTING LTD

Contract		P4301	- Sheldo	n House, T	eddingto	on				
Serial No.		41057	_1							
		DET	ERMINA DI	FION OF W	ATER CO OF PLAS	NTENT, LIQ TICITY INDE	UID LIMIT A X AND LIQU	ND PLASTIC LII	MIT AND)
Borehole / Pit No.	Depti m	n S Type	Sample Reference	Water Content e (W) %		D	escription			Remarks
CP01	8.00	D	-	25.2	Stiff fissured	dark grey CLAY				
				PREPARATIO	ON			Liquid Limit		<mark>63</mark> %
Method of	prepa	aration	l				From natural	Plastic Limit		23 %
Sample ret	tained	0.425	mm sieve	(Assun	ned)		0 %	Plasticity Index		40 %
Corrected	water	conte	nt for mat	erial passing	g 0.425mr	n		Liquidity Index		0.06
Sample ret	tained	2mm	sieve	(Assun	ned)		0 %	NHBC Modified	(l'p)	n/a
Curing time	e		24	4 hrs	Clay C	ontent Not	analysed	Derived Activity	1	Not analysed
Curing time 24 hrs Clay Content Not analysed Derived Activity Not analysed C=CLAY 70 CL CL CL CH CV CE 10 10 10 10 10 10 10 10 10 10 20 30 40 50 60 70 80 90 100 110 120 10 <td1< td=""></td1<>										
Method of F Method of T Type of Sam Comments:	Prepar Test: nple Ke	ation: ey:	BS EN ISO BS EN ISO U=Undistu	: 17892-1: 2 : 17892-1: 2 rbed, B=Bulk	2014 & BS 2014 & BS , D=Disturk	1377: Part 2 1377: Part 2 ped, J=Jar, W=\	: 1990: 4.2 : 1990: 3.2, 4 Water, SPT=Spl	.4, 5.3, 5.4 it Spoon Sample, 1	C=Core Cu	utter

ISSUED BY SOIL PROPERTY TESTING LTD

Contract	Contract P4301 - Sheldon House, Teddington											
Serial No.		41057	_1									
		DET	ERMINAT	ION OF W	ATER C	ONTENT, L STICITY IN		.IMIT A ID LIOU	ND PLASTIC I	LIMIT AND)	
Borehole / Pit No.	Depth m	n S Type	Sample Reference	Water Content (W) %			Descrip	otion			Remark	S
CP01	9.00	D	-	24.2	Stiff fissure	ed dark grey CLA	ΑY					
			Р	REPARATI	ON				Liquid Limit			<mark>61</mark> %
Method of p	prepa	aration	l				From	natural	Plastic Limit			23 %
Sample reta	ained	0.425	mm sieve	(Assur	med)			<mark>0</mark> %	Plasticity Inde	x		<mark>38</mark> %
Corrected w	vater	conte	nt for mate	rial passin	g 0.425m	ım			Liquidity Inde	х		0.03
Sample reta	ained	2mm	sieve	(Assur	ned)			<mark>0</mark> %	NHBC Modifie	ed (l'p)		n/a
Curing time			24	hrs	Clay	Content	Not analys	ed	Derived Activi	ity	Not ar	alysed
Curing time 24 hrs Clay Content Not analysed C=CLAY 70 CL CL CL CL CL CL CL CL U U U Plasticity Index % 40 0 X 0 <												
Method of Pr Method of Te Type of Samp Comments:	repara est: ole Ke	ation: y:	BS EN ISO: BS EN ISO: U=Undistur	17892-1: : 17892-1: : bed, B=Bulk	2014 & B 2014 & B 3, D=Distu	S 1377: Par S 1377: Par rbed, J=Jar, V	t 2: 199(t 2: 199(V=Water,	Plasticit D: 4.2 D: 3.2, 4 , SPT=Spl	y Chart B55930: 20: .4, 5.3, 5.4 it Spoon Sample	15: Figure 8	utter	

ISSUED BY SOIL PROPERTY TESTING LTD

Contract	Contract P4301 - Sheldon House, Teddington											
Serial No.	(41057	′_1									
		DET	ERMINAT DE	ION OF W	ATER C	ONTENT, L STICITY IN	IQUID LI DEX ANI	MIT A	ND PLASTIC L)	
Borehole / Pit No.	Depth m	ז פ Type	Sample Reference	Water Content (W) %			Descript	ion			Remark	S
CP01 :	11.00	D	-	24.0	Stiff fissure	ed dark grey CLA	λŶ					
			P	REPARATI	ON				Liquid Limit			<mark>61</mark> %
Method of	prepa	aration					From n	natural	Plastic Limit			22 %
Sample reta	ained	0.425	mm sieve	(Assur	med)		() %	Plasticity Index	<		39 %
Corrected v	vater	conte	nt for mate	erial passin	g 0.425m	ım			Liquidity Index			0.05
Sample reta	ained	2mm	sieve	(Assur	med)		() %	NHBC Modifie	d (I'p)		n/a
Curing time	:		25	hrs	Clay	Content	Not analyse	d	Derived Activit	τ γ	Not an	alysed
Curing time 25 hrs Clay Content Not analysed Derived Activity Not analysed C=CLAY 70 CL CL CL CH CV CE Plasticity Index % 40 50 60 70 60 10 10 20 30 40 50 60 70 80 90 100 110 120 Liquid Limit %												
Method of P Method of To Type of Sam Comments:	repara est: ple Ke	ation:	BS EN ISO: BS EN ISO: U=Undistur	17892-1: 17892-1: bed, B=Bulk	2014 & B 2014 & B x, D=Distu	S 1377: Par S 1377: Par rbed, J=Jar, V	t 2: 1990: t 2: 1990: V=Water, S	: 4.2 : 3.2, 4 SPT=Spl	.4, 5.3, 5.4 it Spoon Sample,	, C=Core Cu	utter	

ISSUED BY SOIL PROPERTY TESTING LTD

Contract	Contract P4301 - Sheldon House, Teddington										
Serial No.		41057	′_1								
		DET	ERMINAT	ION OF W	ATER CC	NTENT, LI	QUID LIMIT	AND PLASTIC LIMIT	AND		
Borehole / Pit No.	Deptł m	ז ר Type	Sample Reference	Water Content (W) %			Description		Remarks		
CP01	13.00) D	-	27.4	Stiff fissurec	I dark grey CLAY	,				
			Р	REPARATI	ON			Liquid Limit	<mark>68</mark> %		
Method of	prep	aratior	1				From natur	al Plastic Limit	26 %		
Sample ret	ained	0.425	mm sieve	(Assur	ned)		0 %	Plasticity Index	42 %		
۲	water	[.] conte	nt for mate	rial passin	g 0.425mr	m		Liquidity Index	0.03		
Sample ret	ained	2mm	sieve	(Assur	ned)		0 %	NHBC Modified (I'p) n/a		
Curing time	e		25	hrs	Clay C	ontent N	ot analysed	Derived Activity	Not analysed		
Curing time 25 hrs Clay Content Not analysed Derived Activity Not analysed C=CLAY 70 CL CL CL CH CV CE Plasticity Index % 40 C CL CL											
Method of P Method of T Type of Sam Comments:	'repara 「est: ıple K€	ation: ¥y:	BS EN ISO: BS EN ISO: U=Undisturl	17892-1: 2 17892-1: 2 bed, B=Bulk	2014 & BS 2014 & BS , D=Disturl	1377: Part 1377: Part bed, J=Jar, W	2: 1990: 4.2 2: 1990: 3.2, =Water, SPT=!	, 4.4, 5.3, 5.4 Split Spoon Sample, C=Co	ore Cutter		

ISSUED BY SOIL PROPERTY TESTING LTD

Contract		P4301	- Sheldo	on House, T	eddingto	'n				
Serial No.		41057	′_1							
		DET	ERMINA D	TION OF W ERIVATION	ATER CO OF PLAS	NTENT, LIC	QUID LIMIT A DEX AND LIQU	ND PLASTIC LIMI JIDITY INDEX	T AND	
Borehole / Pit No.	Depti m	n S Type	Sample Referenc	Water Content e (W) %			Description		Remarks	
CP01	15.00) D	-	33.7	Stiff fissured	dark grey CLAY	,			
				PREPARATIO	ON			Liquid Limit		73 %
Method of	prepa	aration)				From natural	Plastic Limit		25 %
Sample ret	ained	0.425	mm sieve	(Assun	ned)		0 %	Plasticity Index		<mark>48</mark> %
Corrected v	water	conte	nt for mat	terial passing	g 0.425mn	n		Liquidity Index	().18
Sample ret	ained	2mm	sieve	(Assun	ned)		0 %	NHBC Modified (I'	p)	n/a
Curing time	2		2	4 hrs	Clay Co	ontent N	ot analysed	Derived Activity	Not ana	lysed
Curing time 24 hrs Clay Content Not analysed Derived Activity Not analysed C=CLAY 70 CL CL CL CH CV CE Plasticity Index 40 50 60 70 60 10 10 20 30 40 50 60 70 80 90 100 110 120									NHBC Volume Change Potential %	
Method of P Method of T Type of Sam Comments:	Prepar Test: ple Ke	ation: ey:	BS EN ISC BS EN ISC U=Undistu): 17892-1: 2): 17892-1: 2 ırbed, B=Bulk,	2014 & BS 2014 & BS , D=Disturb	1377: Part 1377: Part ied, J=Jar, W	2: 1990: 4.2 2: 1990: 3.2, 4 =Water, SPT=Sp	4, 5.3, 5.4 lit Spoon Sample, C=C	Core Cutter	

ISSUED BY SOIL PROPERTY TESTING LTD

Contract		P4301	L - Sheldo	on House, T	edding	ton											Contract P4301 - Sheldon House, Teddington											
Serial No.		41057	′_1																									
		DET	ERMINA	TION OF W	ATER C		NT, LI Y IN[QUID Dex a	LIMIT A	ND P		C LIM	IT AN	D														
Borehole / Pit No.	Depth m	ı S Type	Sample Referenc	Water Content ce (W) %				Desci	ription					R	emark	S												
CP01	18.00	D	-	28.1	Stiff fissur	ed dark gr	ey CLAY	(
				PREPARATI	ON					Liqui	d Limit	:				71	%											
Method of	prepa	aration	1					Fror	m natural	Plast	ic Limi	t				25	%											
Sample reta	ained	0.425	mm sieve	e (Assun	ned)				0 %	Plast	icity In	dex				46	%											
Corrected v	vater	conte	nt for ma	terial passing	g 0.425n	nm				Liqui	dity In	dex				0.07												
Sample reta	ained	2mm :	sieve	(Assun	ned)				0 %	NHB	C Mod	ified (l'p)			n/a												
Curing time	Curing time 24 hrs Clay Content Not analysed Derived Activity Not analysed																											
Curing time 24 hrs Clay Content Not analysed Derived Activity Not analysed C=CLAY 70 CL CL CH CV CE Plasticity Index 40 50 40 70 70 70 10 10 10 10 10 10 10 10																												
	O ML MI MH MV ME 0 10 20 30 40 50 60 70 80 90 100 110 120 Plasticity Chart BS5930: 2015: Figure 8																											
Method of Pi Method of Tr Type of Sam Comments:	repara est: ple Ke	ation: y:	BS EN ISC BS EN ISC U=Undist	D: 17892-1: 2 D: 17892-1: 2 urbed, B=Bulk	2014 & E 2014 & E , D=Distu	3S 1377 3S 1377 ırbed, J=	: Part : Part Jar, W	2: 19 2: 19 /=Wate	90: 4.2 90: 3.2, 4 er, SPT=Spl	.4, 5.3 lit Spo	3, 5.4 on Sam	ple, C=	-Core C	utter	-													

ISSUED BY SOIL PROPERTY TESTING LTD

Contract	Contract P4301 - Sheldon House, Teddington											
Serial No.		41057	/_1									
		DET	ERMINAT	ION OF W	ATER CO	NTENT, LI	QUID LIMIT		AND			
Borehole / Pit No.	Deptł m	ז ר Type	Sample Reference	Water Content (W) %			Description		Remarks			
CP01	21.00) D	-	25.0	Stiff fissured	dark grey CLAY	'					
			P	REPARATI	ON			Liquid Limit	70 %			
Method of	prepa	aratior	۱				From natura	al Plastic Limit	24 %			
Sample ret	ained	0.425	mm sieve	(Assur	ned)		0 %	Plasticity Index	46 %			
Corrected [,]	water	[.] conte	nt for mate	rial passing	g 0.425mr	n		Liquidity Index	0.02			
Sample ret	ained	2mm	sieve	(Assur	ned)		0 %	NHBC Modified (I'p)) n/a			
Curing time	e		24	hrs	Clay Cr	ontent N	lot analysed	Derived Activity	Not analysed			
Curing time 24 hrs Clay Content Not analysed Derived Activity Not analysed C=CLAY 70 CL CL CL CH CV CE Plasticity Index 40 50 60 50 70 70 10												
Method of P Method of T Type of Sam Comments:	'repara 'est: ıple Ke	ation: 2y:	BS EN ISO: BS EN ISO: U=Undistur	17892-1: 2 17892-1: 2 bed, B=Bulk	2014 & BS 2014 & BS :, D=Disturb	1377: Part 1377: Part ped, J=Jar, W	2: 1990: 4.2 2: 1990: 3.2, =Water, SPT=S	4.4, 5.3, 5.4 plit Spoon Sample, C=Cc	ore Cutter			

ISSUED BY SOIL PROPERTY TESTING LTD

Contract		P4301	- Sheldo	on House, T	eddingto	n					
Serial No.	1	41057	_1								
		DET	ERMINA	TION OF W	ATER COI OF PLAS	NTENT, LIC	QUID LIMIT A EX AND LIQU	ND PLASTIC L IIDITY INDEX	IMIT ANI)	
Borehole / Pit No.)epth m	ו S Type	Sample Referenc	Water Content e (W) %		I	Description			Remark	S
CP01 2	24.00	D	-	29.3	Stiff fissured	dark grey CLAY					
				PREPARATIO	N			Liquid Limit			74 %
Method of p	orepa	aration					From natural	Plastic Limit			<mark>26</mark> %
Sample retai	ined	0.425	mm sieve	(Assum	ned)		0 %	Plasticity Index	x		48 %
Corrected w	ater	conter	nt for ma	terial passing	g 0.425mm	1		Liquidity Index	(0.07
Sample retai	ined	2mm s	sieve	(Assum	ned)		0 %	NHBC Modifie	d (l'p)		n/a
Curing time			2	4 hrs	Clay Co	ontent No	ot analysed	Derived Activit	ty	Not an	alysed
Caring time 24 ms Clay Content Not analysed Derived Activity Not analysed C=CLAY 70 CL CL Cl CH CV CE Plasticity Index 40 40 X V											
Method of Pro Method of Te Type of Samp Comments:	epara st: ole Ke	ation:	BS EN ISC BS EN ISC U=Undist	D: 17892-1: 2 D: 17892-1: 2 Jrbed, B=Bulk,	2014 & BS 2014 & BS D=Disturbo	1377: Part 1 1377: Part 1 ed, J=Jar, W=	Plastici Plastici 2: 1990: 4.2 2: 1990: 3.2, 4 Water, SPT=Spl	ty Chart BS5930: 201 .4, 5.3, 5.4 it Spoon Sample	5: Figure 8	utter	

ISSUED BY SOIL PROPERTY TESTING LTD

Contract	Contract P4301 - Sheldon House, Teddington													
Serial No.		41057	′_1											
		DET		ION OF W	ATER CO	ONTENT, L	IQUID	LIMIT A	ND PLASTI	IC LIM	IT AND)		
Borehole / Pit No.	Deptł m	ז פאר Tvpe	Sample Reference	Water Content (W) %		<u></u>	Descri	iption				Remark	S	
TP03	1.30	D	-	10.1	Very stiff ye active and	ellowish brown decayed roots	sandy silty	y CLAY with	occasional recer	ntly				
	PREPARATION Liquid Limit 29 %													
Method of	Method of preparationWet sieved over 0.425mm sievePlastic Limit14 %													
Sample ref	tained	0.425	mm sieve	(Meası	ured)			3 %	Plasticity Ir	ndex			15	%
Corrected	water	conte	nt for mate	rial passin _{	g 0.425m	m	1(0.4 %	Liquidity In	ıdex			-0.26	
Sample ret	tained	2mm	sieve	(Measเ	ured)			<1 %	NHBC Mod	lified (I	'p)		15	%
Curing tim	e		25	hrs	Clay (Content	Not analy	/sed	Derived Ac	tivity		Not an	alysed	
Curing time 25 hrs Clay C=CLAY 70 CL Cl 60 50 60 60 50 40 50 60 9 30 70 70 M=SILT 0 10 ML MI					CI MI 40	CH MH 50 60	70	CV MV 80 Plastici	CE	110 : 2015: Fi	120 gure 8	Lidning T High	NHBC Volume Change Potential	6
Method of I Method of ⁻ Type of San Comments:	Prepara Test: nple Ke	ation: y:	BS EN ISO: BS EN ISO: U=Undisturi Corrected wa Volume Chan Note: Modifi	17892-1: 2 17892-1: 2 bed, B=Bulk iter content a ige Potential: ed Plasticity I	2014 & BS 2014 & BS ., D=Distur assume mar : NHBC Star Index I'p = I	5 1377: Par 5 1377: Par bed, J=Jar, V terial greater dards Chapte p x (% less tha	t 2: 199 t 2: 199 V=Water than 0.42 er 4.2 Unr an 425mi	 O: 4.2 O: 3.2, 4 r, SPT=Spl 25mm non-modified Pl icrons/100) 	.4, 5.3, 5.4 lit Spoon Sam -porous. See B lasticity Index	ոple, C= Տ1377։ Բ	Core Cu Part2: 19	utter 90 Clause 3	Note 1	

ISSUED BY SOIL PROPERTY TESTING LTD

Contract	Contract P4301 - Sheldon House, Teddington																	
Serial No.		41057	/_1															
		DET	FERMIN/	ATION OF W	ATER C		IT, LI [,] Y IN[QUID DEX A	LIMIT A	ND PI	LAST	IC LIN EX	1IT A	ND				
Borehole / Pit No.	Deptł m	n Type	Sample Referen	Water Content ce (W) %				Desci	ription						Ren	nark	5	
WS02	1.40	D	-	7.9	Hard yello occasional angular ar	wish brow I recently a nd subangu	n slight active a alar che	tly grave nd deca ert	lly slightly sa yed roots. Gr	ndy silty avel is fii	CLAY with the contract of the	vith barse						
	PREPARATION Liquid Limit 30 %																	
Method o	fprep	aratior	ו		Wet	sieved c	over ().425r	nm sieve	Plasti	c Lim	it					16	%
Sample re	tained	0.425	mm siev	e (Meas	ured)				32 %	Plasti	city lı	ndex					14	%
Corrected	water	[.] conte	ent for ma	aterial passing	g 0.425n	nm		1	1.5 %	Liquic	dity Ir	Idex				-	0.58	
Sample re	tained	2mm	sieve	(Meas	ured)				21 %	NHBC	Moc	lified (l'p)				10	%
Curing tim	ie			24 hrs	Clay	Conten	t N	lot anal	ysed	Deriv	ed Ac	tivity			N	ot an	alysed	
C=CLAY Plasticity % (Ip) M=SILT	Index	70 60 50 40 30 20 10 0 0	10	CL	CI MI 40	50	CH VIH 60	70	CV MV 80 Plasticit	90 ty Chart	CE ME 100 BS5930	110 : 2015: F	12 Figure 8	0	Liqu	T pir High	NHBC Volume Change Potential	6
Method of Method of Type of San Comments:	Prepara Test: nple Ke :	ation: y:	BS EN IS BS EN IS U=Undist Corrected Volume C Note: Mo	O: 17892-1: 2 O: 17892-1: 2 turbed, B=Bulk water content a hange Potential dified Plasticity	2014 & B 2014 & B ., D=Distu assume ma : NHBC Sta Index I'p =	S 1377: SS 1377: Irbed, J=J aterial gre Indards Cl Ip x (% le:	: Part : Part Jar, W eater tl hapter ss thar	2: 19 2: 19 '=Wate han 0.4 4.2 Un n 425m	90: 4.2 90: 3.2, 4 er, SPT=Spl 25mm non- modified Pl icrons/100)	.4, 5.3 lit Spoc -porous lasticity	, 5.4 on San . See B Index	nple, C S1377:	=Core Part2	e Cut : 199	tter 10 Clai	use 3	Note 1	

Contract P4301 - Sheldon House, Teddington												
Serial N [,]	0.	4105	7_1									
	DETERN	/INAT		DENSIT	r, wat	ER COI			DRAIN	ED SHE/	AR STR	ENGTH IN TRIAXIAL
	. 			<u>1PRESS</u>	ION W	<u> </u>	T MEAS	UREME	<u>NT OF F</u>	PORE PE	RESSU	RE
Borehole	Depth	Type	Reference	Water Content	Bulk Density	Dry Density	Lateral Pressure	Deviator Stress	Shear Stress	Mohrs Ana	s Circle lysis	Description
/Pit No.	(m)	Type	herefeltee	(%)	(Mg/m³)	(Mg/m³)	(kPa)	(kPa)	(kPa)	Cu (kPa)	Ø degrees	Description
CP01	10.50	U	1	27.1	2.01	1.58	206	241	121			Stiff (high strength) fissured dark grey CLAY
CP01	14.04	U	2	28.8	1.98	1.54	280	284	142			Stiff (high strength) fissured dark grey CLAY
CP01	17.03	U	3	29.8	1.99	1.53	340	297	149			Stiff (high strength) fissured dark grey CLAY
CP01	21.06	U	4	25.4	2.04	1.63	420	474	237			Very stiff (very high strength) fissured dark grey CLAY
Method of I Method of	Preparation Test:	:	BS 1377: Par BS 1377: Par Strength, 9 N	t 1: 1990: 7 t 2: 1990:3 Multistage	7.4.2 & 8, 1 3 Determin Loading	Part 2: 199 nation of M	0: 7.2, Part loisture Con	7: 1990: 8.3 itent, Part2:	3 : 1990:7 De	eterminatio	n of Densi	ty, Part 7: 1990: 8 Undrained Shear
Type of San Comments: Remarks to	nple Key: :) Include:		U = Undistur Sample distu	bed, B = Bu urbance, lo	ss of moist	sturbed, J =	= Jar, W = W tion from te	ater, SPT = st procedur	Split Spoor e, location	and origin	C = Core Cu of test spe	itter cimen within original sample, oven

ISSUED BY SOIL PROPERTY TESTING LTD

ISSUED BY SOIL PROPERTY TESTING LTD

ISSUED BY SOIL PROPERTY TESTING LTD

ISSUED BY SOIL PROPERTY TESTING LTD

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)

- a) select and justify the chosen metal species (Appendix B)
 e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
 g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

P4301.3

Description/Comments

Project

Sheldon House

Classified by

Name: Simon Pike	Company: AGB Environmental Ltd	HazWasteOnline™ provides a two day, hazardous waste classi of the software and both basic and advanced waste classification be renewed every 3 years.	fication course that covers the use on techniques. Certification has to
Date: 03 Aug 2022 09:35 GMT	341 Exning Road Newmarket	HazWasteOnline™ Certification:	-
Telephone:	CB8 0AT	Course	Date
01638 663 226		Hazardous Waste Classification	17 Sep 2015

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01	0.30	Non Hazardous		2
2	WS02	1.00	Non Hazardous		4
3	WS03	0.30	Non Hazardous		7
4	WS04	0.50	Non Hazardous		10
5	TP01	0.20	Non Hazardous		12
6	CP01	0.30	Non Hazardous		14

Related documents

#	Name	Description
1	Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created date: 03 Aug 2022 09:35 GMT

Appendices

Appendix A: Classifier defined and non GB MCL determinands	16
Appendix B: Rationale for selection of metal species	17
Appendix C: Version	17

Sheldon House, Cromwell Road, Teddington, TW11 9EJ

3 year Refresher overdue

Pane

HazWasteOnline[™]

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

Classification of sample: WS01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
WS01	Chapter:
Sample Depth:	
0.30 m	Entry:
Moisture content:	
4.6%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 4.6% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered da	ta	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic ti	rioxide }	4007 50 0		13 mg	g/kg	1.32	17.164	mg/kg	0.00172 %		
2	æ	cadmium { cadmiu	In oxide }	1327-53-3			a/ka	1 1 1 1 2	-0.229	malka	-0.0000228.8/		
2	-	048-002-00-0	215-146-2	1306-19-0	1	<0.2 1110	у/ку	1.142	<0.220	тту/ку	<0.0000220 %		<lod< td=""></lod<>
3	4	chromium in chron oxide (worst case)	nium(III) compounds }	{ • chromium(III)		14 mỹ	g/kg	1.462	20.462	mg/kg	0.00205 %		
4	4	chromium in chron compounds, with t of compounds spe 024-017-00-8	nium(VI) compounds he exception of barin cified elsewhere in t	<pre>s { chromium (VI) um chromate and his Annex }</pre>		<2 m(g/kg	2.27	<4.54	mg/kg	<0.000454 %		<lod< td=""></lod<>
5	4	copper { dicopper	oxide; copper (I) oxide	<mark>de</mark> }		18 mg	g/kg	1.126	20.266	mg/kg	0.00203 %		
6	4	lead { lead chroma	ate }		1	77 mg	g/kg	1.56	120.106	mg/kg	0.0077 %		
	•	082-004-00-2	231-846-0	//58-9/-6									
7	44	080-010-00-X	231-299-8	7487-94-7		<1 mų	g/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel chro	mate }	44704 40 7		14 mg	g/kg	2.976	41.668	mg/kg	0.00417 %		
	•	028-035-00-7	238-766-5	14721-18-7									
9	44	Selenium { nickers	b20 125 2	15060 62 5		<3 mg	g/kg	2.554	<7.662	mg/kg	<0.000766 %		<lod< td=""></lod<>
		zinc { zinc sulphate	200-120-2 a l	15000-02-5									
10	~	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		40 mỹ	g/kg	2.469	98.772	mg/kg	0.00988 %		
11	8	TPH (C6 to C40) p	petroleum group	ТРН		<42 mg	g/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>
12		tert-butyl methyl et 2-methoxy-2-meth	ther; MTBE; ylpropane			<5 m(g/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	-							-	
13		601-020-00-8	200-753-7	71-43-2		<2 mg	g/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
14		toluene				<5 m(n/ka		<5	ma/ka	<0.0005 %		
<u> </u>		601-021-00-3	203-625-9	108-88-3	1		yng			mg/kg			
15	0	ethylbenzene	202-849-4	100-41-4		<2 mg	g/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		001-023-00-4	202-043-4	100-41-4									

agb ENVIRONMENTAL

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

#		ELL CL D index	Determinand	CAS Number	P Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number	EC Number	CAS Number	Ч							ž	
		xylene	4										
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17	0	рН	1			8.4	pН		8.4	pН	8.4 pH		
				PH	_					_			
18		naphthalene	202 040 5	01 20 2	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenanhthylene	202-049-5	91-20-3	_							\square	
19			205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
00		acenaphthene				0.1			0.4		0.00004.0/		1.00
20			201-469-6	83-32-9	-	<0.1	тд/кд		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	8	fluorene		·		<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7									
22	Θ	phenanthrene	001 501 5		_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>			201-581-5	85-01-8	+								
23	8	anthracene	201 371 1	120 12 7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>		fluoranthene	204-371-1	120-12-1	+								
24			205-912-4	206-44-0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
05		pyrene				0.1			0.4		0.00004.0/		1.00
25			204-927-3	129-00-0	-	<0.1	mg/ĸg		<0.1	mg/кg	<0.00001 %		<lod< td=""></lod<>
26		benzo[a]anthracen	ie	^ 		<01	ma/ka		<01	ma/ka	<0.00001 %		
20		601-033-00-9	200-280-6	56-55-3			mg/kg			iiig/itg	<0.00001 //		LOD
27		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9								Ц	
28		benzo[b]fluoranthe	ene	605.00.0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	-								
29			b05-916-6	207-08-9	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]pyrene: be	enzoldeflchrysene	207-00-9	-								
30		601-032-00-3	200-028-5	50-32-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		indeno[123-cd]pyre	ene			0.1			0.4		0.00001.0/		1.00
31			205-893-2	193-39-5		<0.1	тд/кд		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		dibenz[a,h]anthrac	ene			<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3							g <0.0001 %		
33	8	benzo[ghi]perylene	9			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-883-8	191-24-2						T-4-1	0.0040.0/	\square	
1										iotal:	0.0349 %	1	

Kev

itoy	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

Classification of sample: WS02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
WS02	Chapter:
Sample Depth:	
1.00 m	Entry:
Moisture content:	
5.5%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 5.5% No Moisture Correction applied (MC)

#			Determinand		Note	User entered c	data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLI							MC	
1	4	arsenic { arsenic tr	rioxide }			12 r	ng/kg	1.32	15.844	mg/kg	0.00158 %		
		033-003-00-0	215-481-4	1327-53-3									
2	4	cadmium { cadmiu	Im oxide }			0.3 r	ng/kg	1.142	0.343	mg/kg	0.0000343 %		
		048-002-00-0	215-146-2	1306-19-0									
3	4	chromium in chron <mark>oxide (worst case)</mark>	nium(III) compound }	s { ^e <mark>chromium(III)</mark>		13 r	ng/kg	1.462	19	mg/kg	0.0019 %		
			215-160-9	1308-38-9									
4	4	chromium in chrom compounds, with t of compounds spe	nium(VI) compound he exception of bari cified elsewhere in	s { chromium (VI) ium chromate and this Annex }		<2 r	ng/kg	2.27	<4.54	mg/kg	<0.000454 %		<lod< td=""></lod<>
5	æ	copper { dicopper	oxide; copper (I) ox	ide }		23 r	na/ka	1 1 2 6	25 805	ma/ka	0.00259.%		
		029-002-00-X	215-270-7	1317-39-1		20 1	iiy/ky	1.120	23.035	iiig/kg	0.00233 /8		1
6	4	lead { lead chroma	ate }		1	137 r	na/ka	1 56	213 695	ma/ka	0 0137 %		
Ŭ		082-004-00-2	231-846-0	7758-97-6		107 1	iig/itg	1.00	210.000	iiig/itg	0.0107 /0		
7	4	mercury { mercury	<mark>/ dichloride</mark> }			<1 r	na/ka	1 353	<1.353	ma/ka	<0.000135 %		
Ĺ		080-010-00-X	231-299-8	7487-94-7			iig/itg	1.000	1.000	iiig/itg			
8	4	nickel { nickel chro	mate }			11 r	na/ka	2 976	32 739	ma/ka	0 00327 %		
_		028-035-00-7	238-766-5	14721-18-7									
9	4	selenium { nickel s	selenate }			<3 r	na/ka	2.554	<7.662	ma/ka	<0.000766 %		<lod< td=""></lod<>
		028-031-00-5	239-125-2	15060-62-5			0 0			0 0			ļ
4.0	4	zinc { zinc sulphate	<mark>e</mark> }			70		0.400	470.054		0.0170.0/		
10		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		70 r	ng/kg	2.469	172.851	mg/кg	0.0173 %		
11		TPH (C6 to C40) p	petroleum group	ТРН		171 r	ng/kg		171	mg/kg	0.0171 %		
		tert-butyl metbyl et	ther: MTBE:		+								
12		2-methoxy-2-meth	ylpropane			<5 r	ng/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
12		benzene	·			-2 r	na/ka		-2	ma/ka	<0.0002 %		
13		601-020-00-8	200-753-7	71-43-2		~~ 1	iig/kg		~2	пуку	<0.0002 /0		
14		toluene				<5 r	na/ka		<5	ma/ka	<0.0005 %		<lod< td=""></lod<>
Ľ		601-021-00-3	203-625-9	108-88-3	1		<u>9</u> ,9		<0	mg/kg			
15	۲	ethylbenzene				<2 r	na/ka		<2	ma/ka	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4		-			-				

NVIRONMENTAL

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

#		Determinand go Z			Note	User entere	d data	Conv. Factor	Compound conc.		Classification	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			T ACIUI			value	MC /	Useu
		xylene	4										
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17		рН				79	nН		79	nН	7 9 nH		
				PH			P			p			
18		naphthalene				0.12	ma/ka		0.12	ma/ka	0.000012 %		
		601-052-00-2	202-049-5	91-20-3									
19	0	acenaphthylene				1.15	ma/ka		1.15	mg/kg	0.000115 %		
			205-917-1	208-96-8									
20	8	acenaphthene	201-469-6	83-32-9	_	0.35	mg/kg		0.35	mg/kg	0.000035 %		
21	8	fluorene	b01 605 5	06 72 7		1.65	mg/kg		1.65	mg/kg	0.000165 %		
		nhenanthrene	201-033-3	00-73-7	+							-	
22		phenanthene	201-581-5	85-01-8	-	18	mg/kg		18	mg/kg	0.0018 %		
-		anthracene	201.001.0									-	
23	ľ		204-371-1	120-12-7	-	4.44	mg/kg		4.44	mg/kg	0.000444 %		
		fluoranthene											
24			205-912-4	206-44-0		28.7	mg/кg		28.7	mg/kg	0.00287 %		
25		pyrene	1			05.4	~~~//c~		25.4		0.00251.0/		
25			204-927-3	129-00-0		20.1	тід/кд		25.1	тід/кд	0.00251 %		
26		benzo[a]anthracen	e			13.3	ma/ka		13.3	ma/ka	0.00133 %		
20		601-033-00-9 200-280-6 56-55-3				15.5	mg/kg		13.5	тту/ку	0.00133 78		
27		chrysene				11	ma/ka		11	ma/ka	0.0011 %		
		601-048-00-0	205-923-4	218-01-9			iiig/itg			ing/itg			
28		benzo[b]fluoranthene			11.5	ma/ka		11.5	ma/ka	0.00115 %			
		601-034-00-4	205-911-9	205-99-2									
29		benzo[k]fluoranthe	ne			4.24	mg/ka		4.24	mg/ka	0.000424 %		
		601-036-00-5	205-916-6	207-08-9									
30		benzo[a]pyrene; be	enzo[def]chrysene			12.6	mg/kg		12.6	mg/kg	0.00126 %		
		601-032-00-3	200-028-5	50-32-8	_								
31	8	Indeno[123-cd]pyre	ene	400.00 5		7.38	mg/kg		7.38	mg/kg	0.000738 %		
<u> </u>		-Bhan-Faiblend	205-893-2	193-39-5	_							-	
32		dibenz[a,h]anthracene			_	2.07	mg/kg		2.07	mg/kg	g 0.000207 %		
<u> </u>		benzo[abi]norulona	<u>kon-101-0</u>	03-70-3								-	
33		benzolânijher viene	205-883-8	101-24-2	_	6.37	mg/kg		6.37	mg/kg	0.000637 %		
		<u> </u>	200 000 0	101 27 2					<u> </u>	Total:	0.0752 %	+	

Kev

100	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
æ <mark>i</mark>	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Soil matrix no free phase product

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0171%)

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

Classification of sample: WS03

Sample details

•		
Sample name:	LoW Code:	
WS03	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
6.4%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 6.4% No Moisture Correction applied (MC)

#		Determinand	Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index EC Number CAS Number	CLP		Factor	-	value	MC /	Used
1	4	arsenic { arsenic trioxide }	-	26 mg/kg	1.32	34.328 mg/kg	0.00343 %		
	•	033-003-00-0 215-481-4 1327-53-3	-						
2	*	048-002-00-0 215-146-2 1306-19-0	-	0.5 mg/kg	1.142	0.571 mg/kg	0.0000571 %		
3	*	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		14 mg/kg	1.462	20.462 mg/kg	0.00205 %		
4	\$	chromium in chromium (VI) compounds { chromium (VI) compounds { chromium (VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<2 mg/kg	2.27	<4.54 mg/kg	<0.000454 %		<lod< td=""></lod<>
5	*	copper { dicopper oxide; copper (l) oxide } 029-002-00-X 215-270-7 1317-39-1		63 mg/kg	1.126	70.931 mg/kg	0.00709 %		
6	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	635 mg/kg	1.56	990.483 mg/kg	0.0635 %		
7	\$	mercury { mercury dichloride }		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	*	nickel { nickel chromate }		16 mg/kg	2.976	47.62 mg/kg	0.00476 %		
9	4	selenium { nickel selenate }		<3 mg/kg	2.554	<7.662 mg/kg	<0.000766 %		<lod< td=""></lod<>
10	*	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1]		589 mg/kg	2.469	1454.416 mg/kg	0.145 %		
11	0	231-793-3 [2] 7733-02-0 [2] TPH (C6 to C40) petroleum group		42 mg/kg		42 mg/kg	0.0042 %		
12		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<5 mg/kg		<5 mg/kg	<0.0005 %	Ĺ	<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4							
13		benzene 601-020-00-8 200-753-7 71-43-2		<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
14		toluene 601-021-00-3 203-625-9 108-88-3		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
15	8	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< td=""></lod<>

	-
aa	
uy	
ENVIRON	

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

#		Determinand			Note	User entere	d data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			T ACIUI			value	MC /	USEU
		xylene	•	•									
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17	8	рН				6.7	pН		6.7	pН	6.7 pH		
				PH	_					-			
18		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	_								
19	Θ	acenaphthylene	005 047 4			0.2	mg/kg		0.2	mg/kg	0.00002 %		
			205-917-1	208-96-8	+								
20	۲	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	fluorene	201 400 0	00 02 0	+	0.40			0.40		0.000040.8/		
21			201-695-5	86-73-7	-	0.12	тд/кд		0.12	тд/кд	0.000012 %		
22	phenanthrene			2 39	ma/ka		2 39	ma/ka	0 000239 %				
			201-581-5	85-01-8									
23	Θ	anthracene				0.48	mg/kg		0.48	mg/kg	0.000048 %		
			204-371-1	120-12-7	_								
24	Θ	fluoranthene	005 010 1	000 110		6.38	mg/kg		6.38	mg/kg	0.000638 %		
<u> </u>			205-912-4	206-44-0	+								
25	Θ	pyrene	204 027 2	120.00.0	4	6.04	mg/kg		6.04	mg/kg	0.000604 %		
-		bonzo[a]anthracon	204-927-3	129-00-0	-								
26		601-033-00-9	200-280-6	56-55-3	-	3.63	mg/kg		3.63	mg/kg	0.000363 %		
		chrysene	200-200-0	00-00-0									
27		601-048-00-0	205-923-4	218-01-9	-	2.37	mg/kg		2.37	mg/kg	0.000237 %		
		benzo[b]fluoranthe	ne	1	+	2.00			0.00		0.000200.0/		
28		601-034-00-4	205-911-9	205-99-2		3.28	mg/kg		3.28	тд/кд	0.000328 %		
20		benzo[k]fluoranthe	ne			1 1	ma/ka		1 1	ma/ka	0.00011 %		
23		601-036-00-5	205-916-6	207-08-9		1.1	iiig/kg		1.1	iiig/kg	0.00011 /8		
30		benzo[a]pyrene; be	enzo[def]chrysene			33	ma/ka		33	ma/ka	0 00033 %		
		601-032-00-3	200-028-5	50-32-8									
31	0	indeno[123-cd]pyre	ene			2	mg/kg		2	mg/kg	0.0002 %		
<u> </u>	205-893-2 193-39-5			193-39-5	-								
32		dibenz[a,h]anthrac	ene	53 70 3		0.44	mg/kg		0.44	mg/kg	0.000044 %		
-	_	benzo[abi]pervlend	200-101-0	p3-70-3	-								
33		benzolânijber yiene	205-883-8	191-24-2		1.71	mg/kg		1.71	mg/kg	0.000171 %		
<u> </u>	L	I.		1	1				<u> </u>	Total:	0.237 %	1	

Kov

Ney	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Soil matrix no free phase product

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0042%)

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

Classification of sample: WS04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
WS04	Chapter:
Sample Depth:	
0.50 m	Entry:
Moisture content:	
4.9%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 4.9% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tr 033-003-00-0	ioxide }	1327-53-3		9 mg/kg	1.32	11.883 mg/kg	0.00119 %		
2	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	m oxide } 215-146-2	1306-19-0		<0.2 mg/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< th=""></lod<>
3	4	chromium in chron <mark>oxide (worst case)</mark>	nium(III) compounds } 215-160-9	{ • chromium(III)		15 mg/kg	1.462	21.923 mg/kg	0.00219 %		
4	4	chromium in chron compounds, with t of compounds spe 024-017-00-8	nium(VI) compounds he exception of bari cified elsewhere in t	s { chromium (VI) um chromate and his Annex }		<2 mg/kg	2.27	<4.54 mg/kg	<0.000454 %		<lod< th=""></lod<>
5	4	copper { dicopper 029-002-00-X	oxide; copper (I) oxi 215-270-7	de } 1317-39-1		7 mg/kg	1.126	7.881 mg/kg	0.000788 %		
6	4	lead {	<mark>ite</mark> } 231-846-0	7758-97-6	1	16 mg/kg	1.56	24.957 mg/kg	0.0016 %		
7	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel chro 028-035-00-7	<mark>mate</mark> } 238-766-5	14721-18-7		11 mg/kg	2.976	32.739 mg/kg	0.00327 %		
9	4	selenium { nickel s 028-031-00-5	<mark>elenate</mark> } 239-125-2	15060-62-5		<3 mg/kg	2.554	<7.662 mg/kg	<0.000766 %		<lod< th=""></lod<>
10	4	zinc { <mark>zinc sulphate</mark> 030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		40 mg/kg	2.469	98.772 mg/kg	0.00988 %		
11	0	TPH (C6 to C40) p	etroleum group	ТРН		<42 mg/kg		<42 mg/kg	<0.0042 %		<lod< th=""></lod<>
12		tert-butyl methyl et 2-methoxy-2-meth 603-181-00-X	her; MTBE; ylpropane 216-653-1	1634-04-4		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
13		benzene 601-020-00-8	200-753-7	71-43-2		<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< th=""></lod<>
14		toluene 601-021-00-3	203-625-9	108-88-3		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
15	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2 mg/kg		<2 mg/kg	<0.0002 %		<lod< th=""></lod<>

agb ENVIRONMENTAL

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

#		Determinand			Note	User entere	d data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP						value	MC /	USEU
		xylene	·										
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17	0	рН	1	DU		7.6	pН		7.6	pН	7.6 pH		
		nonhtholong		ГП									
18			b02 040 5	01 20 2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		aconanthylono	202-049-5	91-20-3	-								
19		acenapricityiene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene	200 517 1	200 30 0									
20	ľ		201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	8	fluorene				<01	ma/ka	Ì	<01	ma/ka	<0.00001 %		
21			201-695-5	86-73-7		<0.1	iiig/kg						LOD
22		phenanthrene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			201-581-5	85-01-8									
23	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>		<i>n</i>	204-371-1	120-12-7	-								
24	8	fluoranthene	bos 010 4	000 44 0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		nyrono	205-912-4	206-44-0	-							\vdash	
25		pyrene	204-927-3	129-00-0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		<u>204-927-3</u> benzo[a]anthracene											
26		601-033-00-9	200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
07		chrysene	1	1		0.4			0.4		0.00001.0/		1.00
27		601-048-00-0	205-923-4	218-01-9		<0.1	mg/ĸg		<0.1	mg/кg	<0.00001 %		<lod< td=""></lod<>
28		benzo[b]fluoranthe	ne			-01	ma/ka		-0.1	ma/ka	<0.00001 %		
20		601-034-00-4	205-911-9	205-99-2		<0.1	iiig/kg		<0.1	iiig/kg	<0.00001 /8		
29		benzo[k]fluoranthe	ne			<01	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9									
30		benzo[a]pyrene; be	enzo[def]chrysene			<0.1	ma/ka		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8	-								
31	0	indeno[123-cd]pyre	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		-Rhan-Fail 2	205-893-2	193-39-5	-							Н	
32		dibenz[a,h]anthrac		F2 70 2	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2 200-181-8 53-70-3										\vdash	
33	9	benzolânihei Alene	, 205-883-8	191-24-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		<u> </u>						l		Total:	0.0263 %	H	

Kev

ittey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

Classification of sample: TP01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
TP01	Chapter:
Sample Depth:	
0.20 m	Entry:
Moisture content:	
4.9%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 4.9% No Moisture Correction applied (MC)

#			Determinand		Note	User entered d	lata	Conv. Factor	Compound c	onc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
1	4	arsenic { arsenic ti	<mark>ioxide</mark> }			11 n	ng/kg	1.32	14.524	mg/kg	0.00145 %		
		033-003-00-0	215-481-4	1327-53-3	-								
2	4	cadmium { cadmiu	m oxide }			0.2 n	ng/kg	1.142	0.228	mg/kg	0.0000228 %		
		048-002-00-0	215-146-2	1306-19-0									
3	4	chromium in chron <mark>oxide (worst case)</mark>	nium(III) compounds }	s { ^e <mark>chromium(III)</mark>		16 n	ng/kg	1.462	23.385	mg/kg	0.00234 %		
			215-160-9	1308-38-9									
4	4	chromium in chron compounds, with t of compounds spe	nium(VI) compound: he exception of bari cified elsewhere in t	s { chromium (VI) um chromate and this Annex }		<2 n	ng/kg	2.27	<4.54	mg/kg	<0.000454 %		<lod< td=""></lod<>
5	2	copper { dicopper	oxide; copper (I) oxi	de }		25	na/ka	1 1 2 6	29 147	malka	0.00281.9/		
5	-	029-002-00-X	215-270-7	1317-39-1	1	25 1	пу/ку	1.120	20.147	шу/ку	0.00201 %		
6	<pre>lead { lead chromate }</pre>			1	214	na/ka	1 56	222.9	ma/ka	0.0214.94			
Ŭ		082-004-00-2	231-846-0	7758-97-6	1'	214 1	iig/kg	1.50	333.0	iiig/kg	0.0214 /0		
7	4	mercury { mercury dichloride }			<1 n	na/ka	1 353	<1 353	ma/ka	<0 000135 %		<lod< td=""></lod<>	
Ľ		080-010-00-X	231-299-8	7487-94-7			iig/itg	1.000		ing/kg			
8	4	nickel { nickel chro	mate }			12 n	na/ka	2.976	35.715	ma/ka	0.00357 %		
		028-035-00-7	238-766-5	14721-18-7			0 0						
9	4	selenium { nickel s	elenate }	T		<3 n	ng/kg	2.554	<7.662	mg/kg	<0.000766 %		<lod< td=""></lod<>
		028-031-00-5	239-125-2	15060-62-5	_						-		
10	4	zinc { zinc sulphate	<mark>e</mark> }			106 m	na/ka	2 460	261 745	ma/ka	0 0262 %		
		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]			пу/ку	2.409	201.745	шу/ку	0.0202 /8		
11	0	TPH (C6 to C40) p	etroleum group	трц		<42 n	ng/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>
		tert-butyl mothyl of	ber: MTBE:	ורח	\vdash								
12		2-methoxy-2-meth	ylpropane			<5 n	ng/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4			0 0						
12		benzene				-2 1	na/ka		-2	ma/ka	<0.0002.94		
		601-020-00-8	200-753-7	71-43-2		~~ 11	ng/kg		~2	ing/kg	<0.0002 /0		
14		toluene				<5 n	na/ka		<5	ma/ka	<0.0005 %		<lod< td=""></lod<>
Ľ		601-021-00-3	203-625-9	108-88-3			<u>9</u> ,9						
15	۲	ethylbenzene				<2 n	ng/ka		<2	mg/ka	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4			5 5			5.5			

agb ENVIRONMENTAL

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

#		Determinand g			Note	User entere	ed data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP						value	MC /	Useu
		xylene	4										
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17	0	рН				8	pН		8	pН	8pH		
				PH	_						-		
18		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	_								
19	0	acenaphthylene				0.11	mg/kg		0.11	mg/kg	0.000011 %		
			205-917-1	208-96-8	_								
20	•	acenaphthene	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	8	fluorene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7			ing/kg			ing/kg			.200
22		phenanthrene				1.25	ma/ka		1.25	ma/ka	0.000125 %		
			201-581-5	85-01-8									
23	0	anthracene				0.26	mg/kg		0.26	mg/kg	0.000026 %		
			204-371-1	120-12-7									
24	0	fluoranthene				3.23	mg/kg		3.23	mg/kg	0.000323 %		
			205-912-4	206-44-0	_								
25	8	pyrene	204-927-3	129-00-0		2.86	mg/kg		2.86	mg/kg	0.000286 %		
26		benzo[a]anthracen	e			1.67	malka		1.67	malka	0.000167.9/		
20		601-033-00-9	200-280-6	56-55-3		1.07	шу/ку		1.07	тту/ку	0.000107 %		
27		chrysene				1 37	ma/ka		1 37	ma/ka	0.000137.%		
21		601-048-00-0	205-923-4	218-01-9		1.57	mg/kg		1.57	шу/ку	0.000137 /8		
28		benzo[b]fluoranthe	ne			17	ma/ka		17	ma/ka	0.00017 %		
20		601-034-00-4	205-911-9	205-99-2		1.7	ing/kg		1.7	ing/kg	0.00017 /0		
29		benzo[k]fluoranthe	ne			0.52	ma/ka		0.52	ma/ka	0 000052 %		
		601-036-00-5	205-916-6	207-08-9		0.02	ing/kg		0.02	ing/kg	0.000002 //		
30		benzo[a]pyrene; be	enzo[def]chrysene			16	ma/ka		1.6	ma/ka	0.00016 %		
		601-032-00-3	200-028-5	50-32-8									
31	0	indeno[123-cd]pyre	ene			1 04	ma/ka		1 04	ma/ka	0 000104 %		
<u> </u>			205-893-2	193-39-5									
32		dibenz[a,h]anthrac	ene			0.28	ma/ka		0.28	ma/ka	0.000028 %		
Ľ		601-041-00-2	200-181-8	53-70-3]		39			39			
33		benzo[ghi]perylene				0.93	mg/kg		0.93	mg/kg	0.000093 %		
<u> </u>			205-883-8	191-24-2						T-4-1	0.0000.0%		
1										iotal:	0.0000 %	1	

Kev

itoy	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

Classification of sample: CP01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
CP01	Chapter:
Sample Depth:	
0.30 m	Entry:
Moisture content:	
8.9%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 8.9% No Moisture Correction applied (MC)

#	Determinand EU CLP index EC Number number CAS Number			CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used	
1	4	arsenic { arsenic tr 033-003-00-0	r <mark>ioxide</mark> }	1327-53-3		11 mg/kg	1.32	14.524 mg/kg	0.00145 %		
2	4	cadmium {	215-146-2	1306-19-0		<0.2 mg/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< th=""></lod<>
3	4	chromium in chron <mark>oxide (worst case)</mark>	nium(III) compounds } 215-160-9	s {		19 mg/kç	1.462	27.77 mg/kg	0.00278 %		
4	4	chromium in chron compounds, with t of compounds spe 024-017-00-8	nium(VI) compound he exception of bari cified elsewhere in t	s { chromium (VI) um chromate and this Annex }		<2 mg/kg	2.27	<4.54 mg/kg	<0.000454 %		<lod< th=""></lod<>
5	4	copper { dicopper 029-002-00-X	o <mark>xide; copper (I) oxi</mark> 215-270-7	de } 1317-39-1	-	36 mg/kg	1.126	40.532 mg/kg	0.00405 %		
6	4	lead {	a <mark>te</mark> } 231-846-0	7758-97-6	1	241 mg/kg	1.56	375.915 mg/kg	0.0241 %		
7	4	mercury { mercury 080-010-00-X	<mark>r dichloride</mark> } 231-299-8	7487-94-7		<1 mg/kg	1.353	<1.353 mg/kg	<0.000135 %		<lod< th=""></lod<>
8	4	nickel {	<mark>mate</mark> } 238-766-5	14721-18-7		13 mg/kg	2.976	38.691 mg/kg	0.00387 %		
9	4	selenium {	elenate } 239-125-2	15060-62-5		<3 mg/kg	2.554	<7.662 mg/kg	<0.000766 %		<lod< th=""></lod<>
10	4	zinc { <mark>zinc sulphate</mark> 030-006-00-9	<mark>e</mark> } 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		121 mg/kg	2.469	298.785 mg/kg	0.0299 %		
11	0	TPH (C6 to C40) p	petroleum group	ТРН		<42 mg/kg	3	<42 mg/kg	<0.0042 %		<lod< th=""></lod<>
12		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	ther; MTBE; ylpropane 216-653-1	1634-04-4		<5 mg/kg	1	<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
13		benzene 601-020-00-8	200-753-7	71-43-2		<2 mg/kg	3	<2 mg/kg	<0.0002 %		<lod< th=""></lod<>
14		toluene 601-021-00-3	203-625-9	108-88-3		<5 mg/kg	3	<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
15	8	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2 mg/kg	9	<2 mg/kg	<0.0002 %		<lod< th=""></lod<>

agb ENVIRONMENTAL

HazWasteOnline[™] Report created by Simon Pike on 03 Aug 2022

#	Determinand FU CLP index FC Number CAS Number		P Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used		
		number	201100		U							ž	
		xylene											
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17	0	рН	1			9.7	pН		9.7	pН	9.7 pH		
				РН	-								
18		naphthalene	202 040 5	01 20 2	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenanhthylene	202-049-5	91-20-3	-							\square	
19		acenaphinylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		acenaphthene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		
20			201-469-6	83-32-9		<0.1	ing/kg		<0.1	mg/kg	<0.00001 78		
21	9	fluorene			_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
<u> </u>			201-695-5	86-73-7	_								
22	Θ	pnenanthrene	001 501 5	05.01.0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-	anthracene			-									
23	23 0 204-371-1 120-12-7		_	<0.1 mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>			
		fluoranthene		.20 .2 .									
24			205-912-4	206-44-0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25		pyrene				-0.1	ma/ka		-0.1	ma/ka	<0.00001.94		
25	204-927-3 129-00-0				mg/kg		<0.1	тту/ку	<0.00001 %		<lud< td=""></lud<>		
26	6 benzo[a]anthracene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>	
		601-033-00-9	200-280-6	56-55-3								Ц	
27		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9									
28		benzo[b]fluoranthe	ene	605.00.0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	601-034-00-4	205-911-9	205-99-2	_								
29		601-036-00-5	b05-916-6	207-08-9	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		001-036-00-5 205-916-6 207-08-9		-									
30		601-032-00-3 200-028-5 50-32-8		-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
24		indeno[123-cd]pyre	ene			0.1			0.4		0.00001.0/		1.00
31			205-893-2	193-39-5	-	<0.1	mg/kg		<0.1	тід/кд	<0.00001 %		<lud< td=""></lud<>
32		dibenz[a,h]anthrac	ene			<01	ma/ka		<0.1	ma/ka	<0.00001 %		
		601-041-00-2	200-181-8	53-70-3			ing/kg			ing/kg			
33	0	benzo[ghi]perylene	9			<0.1	ma/ka		<0.1	mg/ka	<0.00001 %		<lod< td=""></lod<>
			205-883-8	191-24-2			55						-
										Iotal:	0.0735 %	1	

Kev

itoy	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Report created by Simon Pike on 03 Aug 2022

Appendix A: Classifier defined and non GB MCL determinands

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eve Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

^o fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

• anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

[•] **pyrene** (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc sulphate}

Insufficient chromium for Zinc Chromate

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2022.192.5237.9831 (11 Jul 2022) HazWasteOnline Database: 2022.192.5237.9831 (11 Jul 2022)

This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021

Appendix 5 CSM Risk Evaluation Methodology

Classification of Consequence

The classifications of consequence (severity) are taken from R&D Publication 66 (NHBC and Environment Agency, 2008). agb Environmental has chosen to apply the classifications to a broad range of development scenarios.

It should be noted that the categories of pollution incident have no relation to the categories of significant possibility of significant harm to human health or significant possibility of significant pollution of controlled waters in respect of the Part 2A Statutory Guidance.

Classification	Definition
	Highly elevated concentrations likely to result in "significant harm" to human health as defined by the EPA 1990, Part 2A, if exposure occurs.
Severe	Equivalent to EA Category 1 pollution incident including persistent and/or extensive effects on water quality; leading to closure of a potable abstraction point; major impact on amenity value or major damage to agriculture or commerce.
	Major damage to aquatic or other ecosystems, which is likely to result in a substantial adverse change in its functioning or harm to a species of special interest that endangers the long-term maintenance of the population.
	Catastrophic damage to crops, buildings or property.
	Elevated concentrations which could result in "significant harm" to human health as defined by the EPA 1990, Part 2A if exposure occurs.
Medium	Equivalent to EA Category 2 pollution incident including significant effect on water quality; notification required to abstractors; reduction in amenity value or significant damage to agriculture or commerce.
	Significant damage to aquatic or other ecosystems, which may result in a substantial adverse change in its functioning or harm to a species of special interest that may endanger the long-term maintenance of the population.
	Significant damage to crops, buildings or property.
	Exposure to human health unlikely to lead to "significant harm".
	Equivalent to EA Category 3 pollution incident including minimal or short lived effect on water quality; marginal effect on amenity value, agriculture or commerce.
Mild	Minor or short lived damage to aquatic or other ecosystems, which is unlikely to result in a substantial adverse change in its functioning or harm to a species of special interest that would endanger the long-term maintenance of the population.
	Minor damage to crops, buildings or property.
	No measurable effect on humans.
Minor	Equivalent to insubstantial pollution incident with no observed effect on water quality or ecosystems.
	Repairable effects of damage to buildings, structure and services.

Classification of Probability

The classifications of probability are taken from R&D Publication 66 (NHBC and Environment Agency, 2008). agb Environmental has chosen to apply the classifications to a broad range of development scenarios.

It should be noted that the categories of pollution incident have no relation to the categories of significant possibility of significant harm to human health or significant possibility of significant pollution of controlled waters in respect of the Part 2A Statutory Guidance. Also, in the Part 2A Statutory Guidance "pollutant linkage" is now termed "contaminant linkage", although it is noted that the terms are effectively synonymous.

Category	Definition
High Likelihood	There is pollutant linkage and an event would appear very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is pollutant linkage and all the elements are present and in the right place which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low likelihood	There is pollutant linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a long period such an event would take place, and is less likely in the shorter term.
Unlikely	There is pollutant linkage but circumstances are such that it is improbably that an event would occur even in the very long-term.

Categorisation of Risk

		Consequence (Severity)						
		Severe	Medium	Mild	Minor			
lbility hood)	High Likelihood Very high ris		High risk	Moderate risk	Moderate/low risk			
	Likely	High risk	Moderate risk	Moderate/low risk	Low risk			
roba ikeli	Low Likelihood	Moderate risk	Moderate/low risk	Low risk	Very low risk			
а <u>-</u>	Unlikely	Moderate/low risk	Low risk	Very low risk	Very low risk			

Description of Risk Levels and Likely Action Required

Term	Description
Very high risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard at the site without appropriate remediation action <u>or</u> there is evidence that severe harm to a designated receptor is already occurring. Realisation of that risk is likely to present a substantial liability to be site owner or occupier. Investigation is required as a matter of urgency and remediation works likely to follow in the short-term.
High risk	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate remediation action. Realisation of the risk is likely to present a substantial liability to the site owner or occupier. Investigation is required as a matter of urgency to clarify the risk. Remediation works may be necessary in the short-term and are likely over the longer term.
Moderate risk	It is possible that without appropriate remediation action, harm would arise to a designated receptor. It is relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely that the harm would be relatively mild. Further investigative work is normally required to clarify the risk and to determine the potential liability to site owner/occupier. Some remediation works may be required in the longer term.
Low risk	It is possible that harm could arise to a designated receptor from identified hazard. It is likely that, at worst, if any harm was realised any effects would be mild. It is unlikely that the site owner/or occupier would face substantial liabilities from such a risk. Further investigative work (which is likely to be limited) to clarify the risk may be required. Any subsequent remediation works are likely to be relatively limited.
Very low risk	It is a low possibility that harm could arise to a designated receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.

Summary of Definitions

Term	Description
Hazard	A property or situation which in certain circumstances could lead to harm. (The properties of different hazards must be assessed in relation to their potential to affect the various different receptors).
Consequences	The adverse effects (or harm) arising from a defined hazard which impairs the quality of the environment or human health in the short or longer term.
Probability	The mathematical expression of the chance of a particular event in a given period of time (e.g. probability of 0.2 is equivalent to 20% or a 1 in 5 chance).
Likelihood	Probability; the state of face of being likely.
Risk	A combination of the probability or frequency of the occurrences of a defined hazard AND the magnitude of the consequences of that occurrence.
Contaminant linkage	An identified pathway is capable of exposing a receptor to a contaminant and that contaminant is capable of harming the receptor. In the Part 2A Statutory Guidance the terms "contaminant", "pollutant" and "substance" have the same meaning, and some non-statutory technical guidance relevant to land contamination uses alternative terms such as "pollutant", "substance" and associated terms in effect to mean the same thing.

Appendix D

Asset location search

Ardent Consulting Engineers Hallmark Building Leadenhall Street LONDON EC3M 5JE

Search address supplied

1 Sheldon House Cromwell Road Teddington TW11 9EJ

Your reference

Sheldon House

Our reference

ALS/ALS Standard/2022_4727673

Search date

3 October 2022

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: 1, Sheldon House, Cromwell Road, Teddington, TW11 9EJ

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater.propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Based on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u> NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level				
261B	n/a	n/a				
2506	n/a	n/a				
351A	n/a	n/a				
3501	9.12	6.18				
261A	n/a	n/a				
361A	n/a	n/a				
2601	9.1	6.07				
3601	9.21	6.34				
3603	9.19	-2.2				
2505	n/a	n/a				
2503	n/a	n/a				
2504	n/a	n/a				
2603	8.96	6.65				
2605	9.01	6.62				
2602A	9.03	-2.39				
1601	9.06	6.9				
1603	8.9	n/a				
1606	8.99	-2.49				
2604	9.05	6.41				
2607	8.92	-2.3				
1504	9.02	6.19				
1501	8.99	7.56				
1505	9.07	6.08				
The position of the apparatus shown on this plan i	s given without obligation and warranty, and the acc	surgey cannot be guaranteed. Service pines are not				
shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position						

of mains and services must be verified and established on site before any works are undertaken.

Asset Location Search - Sewer Key

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plan are metric.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate the direction of flow.

Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a server line indicates the internal diameter of the pipe in millimeters. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

Based on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Asset Location Search - Water Key

Meter

Blank Flange

Capped End

Emptying Pit Undefined End

Manifold

Fire Supply

Customer Supply

Meters

Other Symbols

Operational Sites

Other

Booster Station

Data Logger

Casement: Ducts may contain high voltage cables. Please check with Thames Water.

Other	Water Pipes (Not Operated or Maintained by Thames Water)	
-	Other Water Company Main: Occusionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed slong them.	
	 Private Main: Indiales that the water main in question is not owned by Thames Water. These mains normally have text associated with them indication the deameter and owner of the pipe. 	

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0800 009 4540 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Ardent Consulting Engineers

Leadenhall Street

Search address supplied

1 Sheldon House Cromwell Road Teddington TW11 9EJ

Your reference	Sheldon House
Our reference	SFH/SFH Standard/2022_4727676
Received date	3 October 2022
Search date	3 October 2022

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: 1,Sheldon House,Cromwell Road,Teddington,TW11 9EJ

This search is recommended to check for any sewer flooding in a specific address or area

- TWUL, trading as Property Searches, are responsible in respect of the following:-
- (i) any negligent or incorrect entry in the records searched;
- (ii) any negligent or incorrect interpretation of the records searched;
- (iii) and any negligent or incorrect recording of that interpretation in the search report
- (iv) compensation payments

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

History of Sewer Flooding

Is the requested address or area at risk of flooding due to overloaded public sewers?

The flooding records held by Thames Water indicate that there have been no incidents of flooding in the requested area as a result of surcharging public sewers.

For your guidance:

- A sewer is "overloaded" when the flow from a storm is unable to pass through it due to a permanent problem (e.g. flat gradient, small diameter). Flooding as a result of temporary problems such as blockages, siltation, collapses and equipment or operational failures are excluded.
- "Internal flooding" from public sewers is defined as flooding, which enters a building or passes below a suspended floor. For reporting purposes, buildings are restricted to those normally occupied and used for residential, public, commercial, business or industrial purposes.
- "At Risk" properties are those that the water company is required to include in the Regulatory Register that is presented annually to the Director General of Water Services. These are defined as properties that have suffered, or are likely to suffer, internal flooding from public foul, combined or surface water sewers due to overloading of the sewerage system more frequently than the relevant reference period (either once or twice in ten years) as determined by the Company's reporting procedure.
- Flooding as a result of storm events proven to be exceptional and beyond the reference period of one in ten years are not included on the At Risk Register.
- Properties may be at risk of flooding but not included on the Register where flooding incidents have not been reported to the Company.
- Public Sewers are defined as those for which the Company holds statutory responsibility under the Water Industry Act 1991.
- It should be noted that flooding can occur from private sewers and drains which are not the responsibility of the Company. This report excludes flooding from private sewers and drains and the Company makes no comment upon this matter.
- For further information please contact Thames Water on Tel: 0800 316 9800 or website www.thameswater.co.uk

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Appendix E

File Location: z:\ardent projects\2200650 - sheldon house, teddington\technical\acad\drawings\2200650-001a foul and surface water drainage strategy.dwg

TR

BC

Α

Appendix F
Print

HR Wallingford Warking with water

Calculated by:	Theo Risley
Site name:	Sheldon House
Site location:	Teddington

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation approach IH124 Site characteristics Total site area (ha): 0.111 Methodology Q_{BAR} estimation method: Calculate from SPR and SAAR SPR estimation method: Calculate from SOIL type Default Edited Soil characteristics SOIL type: 2 2 HOST class: N/A N/A SPR/SPRHOST: 0.3 0.3 Default Edited Hydrological characteristics SAAR (mm): 600 600 Hydrological region: 6 6 Growth curve factor 1 year: 0.85 0.85 Growth curve factor 30 years: 2.3 2.3 Growth curve factor 100 years: 3.19 3.19 Growth curve factor 200 years: 3.74 3.74

Notes

(1) Is Q_{BAR} < 2.0 l/s/ha?

Date:

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST ≤ 0.3 ?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited	
Q _{BAR} (I/s):	0.17	0.17	
1 in 1 year (l/s):	0.14	0.14	
1 in 30 years (l/s):	0.39	0.39	
1 in 100 year (l/s):	0.54	0.54	
1 in 200 years (l/s):	0.63	0.63	

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details	
Latitude:	51.42282° N
Longitude:	0.32913° W
Reference:	1994907515

Oct 10 2022 15:17

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix G

EXISTING SURFACE WATER

Existing site information:

Site Boundary Area	1650	m2
Developable Area	0.165	ha
Impermeable Area	0.111	ha

Modified Rational Method Equation:

 $Q_n = 2.78 \ CiA$

where:

- C Runoff Coeffic = 1 (in this case 1 as using impermeable area)
- *i*_n Rainfall Intensity for n return period (mm/hr)
- A Impermeable Area (Ha)
- Q_n Runoff for n return period (l/s)

Rainfall Intensity:

The rainfall intensities for various return periods were extracted from Table 1(a) of the	i <u>1</u>	50.8 mm/hr
Transport and Road Research Laboratory Report - Estimated rainfall for drainage calculations	i ₃₀	113.02 mm/hr
in the United Kingdom (TRRL Report LR 595) by C. P. Young. For the 5 min duration.	i ₁₀₀	143.9 mm/hr

Existing Surface Water Runoff:

Therefore:

			С		i _n		A		Q _n	
Q ₁	2.78	х	1	x	50.8	х	0.111	=	15.68	l/s
Q ₃₀	2.78	x	1	x	113.0	x	0.111	=	34.88	l/s
Q ₁₀₀	2.78	x	1	x	143.9	x	0.111	=	44.40	l/s

PROPOSED SURFACE WATER

Discharge rate 2 l/s

Impermeable Area 0.069 ha including no uplift for urban Creep

Quick Storage EstimateLower26 m3Upper38 m3Average32 m3

		Cellula	ar Tanks		Perme	eable Pavi	ng	Total Storage Volume	
Catchment	Total Impermeable area (ba)	Area A	Alloc: Stor (m3	rage vo	Area A	Alloca Stor	age vo	lume Offered	
Area 1	0.069	(1112)	24	9.12	(112)	230	, 20.7	29.82	
		400m	m depth	at 95%	300m	m deep st	orage	membrane at 30% void r	ratio

Total	0.069	24	9.12	230	20.7	29.82
Total	0.005	27	J.12	230	20.7	20.02

Appendix H

Ardent	Page 1
3rd Floor, The Hallmark Building	
52-56 LeadenHall Street	
London, EC3M 5JE	Micro
Date 15/12/2022 23:39	Checked by trisley Drainage
Innovyze	Network 2020 1
	NCCWOIK 2020.1
STORM SEWER DESIGN	by the Modified Rational Method
Design	Criteria for Storm
Pipe Sizes STA	NDARD Manhole Sizes STANDARD
FSR Rainfall	Model - England and Wales
Return Period (years) M5-60 (mm)	5 PIMP (%) 100 20.000 Add Flow / Climate Change (%) 40
Ratio R	0.427 Minimum Backdrop Height (m) 0.200
Maximum Rainfall (mm/hr) Maximum Time of Concentration (mins)	300 Maximum Backdrop Height (m) 1.500 30 Min Design Depth for Optimisation (m) 0.900
Foul Sewage (l/s/ha)	0.000 Min Vel for Auto Design only (m/s) 1.00
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation (1:X) 500
Designe	ed with Level Soffits
Time Are	ea Diagram for Storm
Time	Area Time Area
(mins)	(na) (mins) (na)
0-4	0.044 4-8 0.017
Total Area	Contributing (ha) = 0.061
Total Pi	pe Volume $(m^3) = 0.696$
Network D	esign Table for Storm
« - Indica	tes pipe capacity < flow
PN Length Fall Slope I.Area T.I (m) (m) (1:X) (ha) (min	E. Base k HYD DIA Section Type Auto ns) Flow (l/s) (mm) SECT (mm) Design
1.001 5.780 0.228 25.4 0.009 0	.00 0.0 0.600 0 150 Pipe/Conduit 🍎
1.002 14.304 0.360 39.7 0.000 0	00 0.0 0.600 o 150 Pipe/Conduit 🥚
Netwo	ork Results Table
	The Street Foull Add Flow Vol Con Flore
(mm/hr) (mins) (m) (ha)	Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)
1.000 90.95 5.39 7.790 0.0	0.0 0.0 5.2 0.82 14.5« 18.2
1.001 90.59 5.44 7.668 0.0	061 0.0 0.0 6.0 2.01 35.5 21.1 061 0.0 0.0 6.0 1.60 28.3 21.1
1.002 09.30 3.39 /.440 0.0	VOI 0.0 0.0 0.0 1.60 28.3 21.1
©198	2-2020 Innovyze

Ardent	Page 2
3rd Floor, The Hallmark Building	
52-56 LeadenHall Street	Constant and
London, EC3M 5JE	Micro
Date 15/12/2022 23:39 Designed by trisley	Desinado
File SHELDON HOUSE HYDRAULIC Checked by	Diamaye
Innovyze Network 2020.1	
Free Flowing Outfall Details for Storm	
Outfall Outfall C. Level I. Level Min D.L W	
Pipe Number Name (m) (m) I. Level (mm) (mm) (m)	
1.002 9.050 7.080 0.000 0 0	
Simulation Criteria for Storm	
Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flo Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storad Hot Start (mins) 0 Inlet Coefficien Hot Start Level (mm) 0 Flow per Person per Day (l/per/day Manhole Headloss Coeff (Global) 0.500 Run Time (mins Foul Sewage per hectare (l/s) 0.000 Output Interval (mins	ow 0.000 ge 2.000 nt 0.800 y) 0.000 s) 60 s) 1
Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0	
Synthetic Rainfall Details	
Rainfall ModelFSRProfile Type SummReturn Period (years)5Cv (Summer)0.7Region England and WalesCv (Winter)0.8M5-60 (mm)20.000 Storm Duration (mins)Ratio R0.427	ner 50 340 30

Ardent		Page 3
3rd Floor, The Hallmark Building		
52-56 LeadenHall Street		
London, EC3M 5JE		Micro
Date 15/12/2022 23:39	Designed by trisley	Dcainago
File SHELDON HOUSE HYDRAULIC	Checked by	Diamage
Innovyze	Network 2020.1	

Online Controls for Storm

Orifice Manhole: 4, DS/PN: 1.001, Volume (m³): 2.0

Diameter (m) 0.029 Discharge Coefficient 0.600 Invert Level (m) 7.668

Ardent	Page 4
3rd Floor, The Hallmark Building	
52-56 LeadenHall Street	
Date 15/12/2022 23:39 Designed by trisley	Micro
File SHELDON HOUSE HYDRAULIC Checked by	Drainage
Innovyze Network 2020.1	- Conf
Storage Structures for Storm	
Porous Car Park Manhole: 3, DS/PN: 1.000	
Infiltration Coefficient Base (m/hr) 0.00000 Width (m) Membrane Percolation (mm/hr) 1000 Length (m)	10.0 23.0
Max Percolation (1/s) 63.9 Slope (1:X)	500.0
Safety Factor 2.0 Depression Storage (mm) Porosity 0.30 Evaporation (mm/day)	5 3
Invert Level (m) 8.840 Membrane Depth (mm)	0
Tank or Pond Manhole, 4. DS/PN, 1 001	
Invert Level (m) 7.800	
Depth (m) Area (m ²) Depth (m) Area (m ²) Depth (m) Area (m ²)	
0.000 24.0 0.400 24.0 0.401 0.0	
©1982-2020 Innovvze	
STAR STAR	

Ardent								Page 5
3rd Floo	or, The	Hallmark	: Buildin	ng				(
52-56 Le	eadenHa.	ll Street		199				Contract of the
London,	EC3M 5	JE						Micco
Date 15	/12/202	2 23:39		De	signed by	trisley		
File SH	ELDON H	IOUSE HYI	RAULIC.	Ch	ecked by	-		Drainage
Innovyz	e			Ne	twork 2020	0.1		
S	Summary	of Crit	ical Res	ults 1	by Maximum	n Level	(Rank 1) fo	r Storm
	Δr	eal Reduct	tion Fact	Simula or 1 00	ation Criter	<u>nal Flow</u>	- % of Total	Flow 0 000
		Hot St	tart (min	s)	0 MAC	D Factor	* 10m ³ /ha Sto	prage 2.000
		Hot Start	Level (m	m)	0	I	nlet Coeffied	ient 0.800
Man	hole Hea	dloss Coe:	ff (Globa	1) 0.50	0 Flow per	Person pe	er Day (l/per/	'day) 0.000
Ľ	oul Sewa	ige per ne	ctare (1/	s) 0.00)0			
	N	umber of I	nput Hydr	ograph	s 0 Number o	of Storage	e Structures	2
		Number of	Online C	Control	s 1 Number o	of Time/A	rea Diagrams	0
	1	Number of	Offline (Control	s U Number (of Real T	ime Controls	0
			Syr	nthetic	Rainfall De	etails		
		Rainfa	ll Model	- 1	FSR	Ratio	o R 0.427	
		MS	-60 (mm)	Englan	d and Wales	Cv (Summe	er) 0.750	
		110	00 (11111)		20.000	01 (11110)	0.010	
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF								
Analysis Timestep Fine Inertia Status OFF								
		Π.					Cummon and I	Wintow
		Duration(s	s) (mins)	15	, 30, 60, 12	20, 180, 2	240, 360, 480	, 600,
			-, (-,		720, 960, 14	440, 2160,	, 2880, 4320,	5760,
			<i>,</i>				7200, 8640,	10080
	Return	Period(s) Climate Ch	(years)					40
		CIIIIdee oi	lange (0)					10
	a /am	-						Water
PN N	S/MH Name S	Storm Pe	eriod Cha	ange	Surcharge	First (1 Flood	Overflow	Act. (m)
					· · · · · · · · · · · · · · · · · · ·			
1.000	3 120	Winter	100	+40% 1(00/15 Summer	-		9.000
1.001	4 120 5 120	Winter	100	+403 IU +408	JU/15 Summer			9.004 7.467
	_							
	S TIS/MH	Depth	Flooded	Flow /	Ha	alf Drain	Pipe Flow	Level
PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s) Stat	us Exceeded
	-			-				
1.000	3 1	1.060	0.000	0.61		60	8.3 FLOOD	RISK Risk
1.002	5	-0.123	0.000	0.08			2.0 FLOOD	OK

Appendix I

1.0 INTRODUCTION

- 1.1 The development at Sheldon House includes a number of Sustainable Drainage Systems (SuDS) as part of the surface water drainage system including green roofs, permeable paving and geocellular tanks. This Technical Note sets out an outline management plan for the aforementioned SuDS components.
- 1.2 The proposed SuDS components in addition to addressing climate change will bring a number of benefits in terms of water quality, environmental, and social amenity.
- 1.3 The maintenance of all SuDS components will be in accord with the best practices and CIRIA document C753 "The SuDS Manual". Typical maintenance activities for the proposed SuDS components have been reproduced from Table 32.1 of "The SuDS Manual" in **Table 1** below. A private management company will be set up to maintain the surface water drainage network, including on-site SuDS.

OCTOBER 2022

Table 1: Typical SuDS Maintenance Activities

Operation and		SuDS component				
activity	Geo-cellular Tank	Permeable paving	Green roof			
		Regular maintenance				
Inspection						
Litter and debris removal		•	-			
Grass cutting			•			
Weed and invasive plant control			-			
Shrub management						
Shoreline vegetation						
Aquatic vegetation management						
Occasional maintenance						
Sediment management		•				
Vegetation replacement			-			
Vacuum sweeping and brushing		-				
Remedial maintenance						
Structure rehabilitation / repair						
	■ wil	I be required may be required	d			

2.1 This plan is intended to cover all on-site drainage structures. The Site Management Team should oversee and implement the SuDS Management Plan and designate a qualified person who will be responsible for the proper operation and maintenance of the surface water drainage structures.

Water Quality Management

- 2.2 In line with Tables 26.2 and 26.3 of the CIRIA C753 The SuDS Manual, it can be seen that the proposed greenroofs and permeable paving would provide sufficient treatment for the surface water runoff from the Site.
- 2.3 The surface drainage network would also be designed to protect and enhance the quality of surface water runoff through the removal of sediment and pollutants. Catchpit manholes and silt trapped gullies will reduce the amount of pollutants entering the system. Preventive maintenance of the system will include a comprehensive source reduction program of regular sweeping and litter removal, prohibitions on the use of pesticides, and maintenance of bin areas.

Maintenance Program

- 2.4 The Site Management Team will conduct the SuDS Management Plan set forth in this document. The Site Management will ensure that inspections and record keeping are timely and accurate. Inspection & Maintenance Log Forms should include the date and physical conditions of the structures, depth of sediment in structures, evidence of overtopping or debris blockage and maintenance required of each structure. Records of maintenance will be kept on file on-site and copies of Inspection & Maintenance Log sheets indicating all work and inspections will be available to the Council upon request. A model Maintenance log in appended for reference.
- 2.5 Regular maintenance should include:
- Inspect channel and gully inlet grates and remove any debris every 6 months or as determined to be reasonable based on experience with the installed

systems to ensure that the gullies are working in their intended fashion and that they are free of debris;

- Inspect gully sumps and bottom of drain manholes quarterly; if depth of sediment in sumps exceeds 50% capacity, sediment must be removed. Excessive sediment shall be removed and properly disposed by a licensed drainage cleaning company.
- All litter shall be picked up and removed from the parking areas, external bin store, wetland areas, green roofs, and soft landscaping.
- Inspect all green roofs. Replant bare areas or areas with sparse growth.
- Inspect external bin stores for spillage and scattered litter must be performed on a regular basis to prevent the spread of pollutants into the surface water drainage network.
- Green roofs will require regular inspection and maintenance on a weekly or fortnightly basis, especially during the establishment stage (first 12 – 15 months). Maintenance during the establishment stage should be made the responsibility of the green roof provider, to ensure healthy growth and satisfactory establishment. Regular inspections of the green roof area should also include the soil substrate for the presence of erosion and drainage inlets to ensure run-off can discharge unrestricted.
- The inlets, outlet and vents and overflows of SuDS components should be checked annually and after large storms to ensure that they are in good condition and operating as designed. Regular maintenance includes inspection and identification of any areas that are not operating correctly monthly for the first 3 months and then every 6 months after.

Winter Maintenance Program

2.6 Ensure that drainage structures are not blocked by ice, snow, debris or rubbish during winter months.

Operation and Maintenance requirements

2.7 Recommendations for the operation and maintenance including typical frequencies are included in **Tables 2, 3** and **4** below.

	Table 2: SuDS O	peration a	nd Maintenance	Requirements-	Green Roofs
--	-----------------	------------	----------------	----------------------	--------------------

SUDS Element	Green Roofs				
Maintenance	Maintenance Task	Frequency			
Period					
	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	6 monthly and annually, or as required			
	During establishment (i.e. year one) replace dead plants	Monthly			
	Post establishment, replace dead plants as required (where >5% coverage)	Annually (in autumn)			
Regular Maintenance	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required			
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required			
	Mow grasses, prune shrubs and manage other planting (if appropriate) as required – clippings should be removed and not allowed to accumulate	Six monthly or as required			
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required.			
Remedial Work	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources or erosion damage should be	As required.			

SHELDON HOUSE, TEDDINGTON

SuDS MANAGEMENT PLAN

OCTOBER 2022

	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability.	Annually and after severe storms.
Monitoring	Inspect soil substrate for evidence of erosion channels and identify any sediment sources.	Annually and after severe storms.
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system.	Annually and after severe storms.
	Inspect underside of roof for evidence of leakage.	Annually and after severe storms.

Table 3: SuDS Operation and Maintenance Requirements- Permeable paving

SUDS Element	Permeable Paving	
Maintenance Period	Maintenance Task	Frequency
Regular Maintenance	Brushing and vacuuming	Once a year or as required
	Stabilise and mow contributing adjacent area	As required
Occasional Maintenance	Removal of weed or management using glyphospate applied directly into weeds by an applicator rather than spraying	As required
Remedial Work	Remediate any landscaping which has been raised to within 50mm of the level of the paving	As required.
	Remedial work to any depressions, rutting and cracked or broken	As required.

OCTOBER 2022

	blocks considered detrimental to structural performance or a hazard	
	Rehabilitation of surface or upper structure by remedial sweeping	Every 10 to 15 years, or as required
	Initial inspection	Monthly for three months after installation
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	3 monthly, 48hrs after large storms in first 6 months
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually
	Monitor inspection chambers	Annually

Table 4: SuDS Operation and Maintenance Requirements- Attenuation tank

SUDS Element	Attenuation Tank	
Maintenance Period	Maintenance Task	Frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then annually
Maintenance Work	Remove debris from the catchment surface (where it may cause risk to performance)	Monthly
	Remove sediment from pre-treatment structures and/or internal forebays.	Annually, or as required
Remedial Work	Repair/rehabilitate inlets, outlets, overflows and vents	As required.

OCTOBER 2022

	Inspect/check all inlets,	
	outlets, vents, and	
	overflows to ensure that	Annually.
	they are in good condition	
Monitoring	and operating as designed	
	Survey inside of tank for	
	sediment build-up and	Every 5 years or as
	remove if necessary	requirea.

SHELDON HOUSE, TEDDINGTON

SuDS MANAGEMENT PLAN

OCTOBER 2022

Suds Management Plan- Appendix A

Drainage Operation and Maintenance Log

Site Maintenance S	Supervisor:	Date:
□ _{Routine} □	Response to rainfall event _ in	Other:

onthly		
Shering		
spections		
aintenance		
uarterly and		
necessary		
Jarterly		
veeping		
ıbbish & Litter		
emoval as		
ecessary		
inual inspection		
-annual maintenance		
necessary		
spect and identify		
eas not operating		
operty every 3		
onths (for the first 3		
onths) and every 6		
onths after		
II bi-annual inspection		
	intenance arterly and necessary arterly eeping bbish & Litter moval as cessary nual inspection annual maintenance necessary spect and identify eas not operating operty every 3 onths (for the first 3 onths) and every 6 onths after I bi-annual inspection	spections intenance arterly and necessary arterly eeping bbish & Litter moval as cessary nual inspection annual maintenance necessary spect and identify eas not operating operty every 3 onths (for the first 3 onths) and every 6 onths after I bi-annual inspection

C753 SIMPLE INDEX TREATMENT METHOD

October 2022

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/industrial roofs)	Low	0.3	0.2	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, home zones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non- residential car parking with frequent change (e.g. hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	0.7	0.6	0.7
Sites with heavy pollution (e.g. haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways	High	0.8	0.8	0.9

Table 1: Pollution hazard indices for different land use classifications

(land use in bold applicable for the development).

	Mitigation indices						
Type of SuDS component	TSS	Metals	Hydrocarbons				
Filter strip	0.4	0.4	0.5				
Filter drain	0.4	0.4	0.4				
Swale	0.5	0.6	0.6				
Bio retention system	0.8	0.8	0.8				
Permeable pavement	0.7	0.6	0.7				
Detention basin	0.5	0.5	0.6				
Pond	0.7	0.7	0.5				
Wetland	0.8	0.8	0.8				
Proprietary treatment systems These must demonstrate that they can address each of the contaminan types to acceptable levels for frequent events up to approximately the in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.							

Table 2: Indicative SuDS mitigation indices for discharges to surface waters

(bold text is applicable to this development).

C753 SIMPLE INDEX TREATMENT METHOD

October 2022

For surface water discharge from Residential Parking Areas and Low Traffic Roads <300 traffic movements/day								
	Required mitigation indices							
Source	TSS	Metals	Hydrocarbons					
Low	0.5	0.4	0.4					
Type of SuDS component provided								
Permeable pavement	0.7	0.6	0.7					
Total	0.7	0.6	0.7					
Check	+0.20	+0.20	+0.3					

Table 3: SuDS mitigation indices provided

Appendix J

Theo Risley

Ardent Consulting Engineers The Hallmark Building (Third Floor) 52-56 Leadenhall Street London EC3M 5JE Wastewater pre-planning Our ref DS6100696

30 November 2022

Pre-planning enquiry: Confirmation of sufficient capacity

Site Address: Sheldon House, Cromwell Road, Teddington, TW11 9EJ

Dear Theo,

Thank you for providing information on your development.

Proposed site: 34 residential units, proposed foul water connection by gravity into a foul water sewer 450mm in dia in Cromwell Road. Proposed surface water connection into a surface water sewer 225mm in dia in Cromwell Road at total 2l/s.

We have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul water sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Surface Water

When developing a site, policy 5.13 of the London Plan and Policy 3.4 of the Supplementary Planning Guidance (Sustainable Design And Construction) states that every attempt should be made to use flow attenuation and SuDS/Storage to reduce the surface water discharge from the site as much as possible.

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you

have followed the sequential approach to the disposal of surface water and considered all practical means.

The disposal hierarchy being:

- 1) rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2) rainwater infiltration to ground at or close to source

3) rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)

- 4) rainwater discharge direct to a watercourse (unless not appropriate)
- 5) controlled rainwater discharge to a surface water sewer or drain
- 6) controlled rainwater discharge to a combined sewer.

Where connection to the public sewerage network is required to manage surface water flows we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If the above surface water hierarchy has been followed and if the flows are restricted to a total of 2 l/s then Thames Water would not have any objections to the proposal.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 07747 641932

Yours sincerely

Natalya Collins Developer Services – Adoptions Engineer Mobile: 07747 641 932 Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u> Get advice on making your sewer connection correctly at <u>connectright.org.uk</u>

Appendix K

PRELIMINARY DRAINAGE CALCULATIONS

EXISTING FOUL WATER

	Existing	Hours	Foul Water Flow Rate	Peak	Peaked Loading	Loading
Unit Type	Area/Units	(hrs)	l/day	Factor	l/s	(I/s)
General Housing p	24 units	24	600 per property	6.6	0.0458333 per property	1.100

TOTAL EXISTING FOUL LOADING = 1.100

PROPOSED FOUL WATER

Unit Type	Proposed Area/Units		Hours (hrs)	Foul Water Flow Rate I/day		Peak Factor	Peaked Loading I/s			Loading (I/s)	
General Housing p	27	units	24	600	per	property	6.6	0.0458333	per	property	1.238

TOTAL PROPOSED FOUL LOADING = 1.238