

Phase II Site Investigation Report

Sheldon House, Cromwell Road, Teddington, TW11 9EJ

Client Name: Richmond Housing Partnership

Project Number: P4301.3.0

Date: 3 August 2022

ENABLING DEVELOPMENT

Client:	Richmond Housing Partnership	
Site:	Site: Sheldon House, Cromwell Road, Teddington, TW11 9EJ	
Report ref.:	P4301.3.0	
Prepared:	H. Gildersleeves MSci FGS J. Gooch BSc FGS	
Reviewed:	S. Pike MSc MIEnvSc G. Dowlen MSc CGeol FGS RoGEP EurGeol	
Approved:	S. Pike MSc MIEnvSc	
Date:	03 August 2022	
Version:	Final	

agb Environmental Ltd has prepared this document in accordance with the instructions of the client, Richmond Housing Partnership, for their sole and specific use. Any other persons who use any information contained herein do so at their own risk.

© agb Environmental Ltd 2022

1, The Mill, Copley Hill Business Park, Babraham Road, Cambridge, CB22 3GN

Tel: 01223 776 117

www.agbenvironmental.co.uk

Revision	Description	Date
.0	Final	03 August 2022

agb Environmental Ltd

Executive Summary

Client and Site Location

The client, Richmond Housing Partnership, commissioned agb Environmental to complete a Phase II ground investigation at Sheldon House, Cromwell Road, Teddington, TW11 9EJ.

Development Proposals

Development proposals are understood to include the demolition of the existing 7-storey residential block and replacement with a 31-unit, 5-storey residential block with car parking provisions and a communal garden area.

<u>Summary of Encountered Ground Conditions</u>

Made Ground was encountered from surface level in all exploratory hole positions to a maximum depth of 0.60mbgl.

Beneath the Made Ground superficial geology of the Kempton Park Gravel Member was initially encountered as medium dense, becoming dense and then very dense with depth, variably silty, sometimes slightly gravelly sand, to 1.20-3.70mbgl, succeeded by either dense sandy silt (to 1.20-1.40mbgl) or medium dense to very dense, variably silty, sometimes cobbly, gravelly to very gravelly sand (to 1.30-3.10mbgl). In CP01 the Kempton Park Gravel Member continued as dense orange sand with chert gravel and cobbles from 3.70mbgl to a maximum depth of 7.30mbgl.

Underlying the superficial geology was the London Clay Formation, encountered as a firm to stiff grey clay to 9.50mbgl, followed by claystone to 10.40mbgl, and stiff grey clay with occasional claystone patches to 25.00mbgl.

A groundwater seepage was encountered at 2.2mbgl during the formation of borehole CP01. During monitoring groundwater was observed in CP01 between 4.13mbgl and 4.19mbgl.

Summary of Analysis, Screening and Monitoring Results

Elevated concentrations of lead and four congeners of polycyclic aromatic hydrocarbons have been identified in soil samples from four locations at depths between 0.20mbgl and 1.00mbgl. These concentrations exceed the screening values for residential developments, both with and without homegrown produce. Two of the exceedances are from an area within the proposed future soft landscaping.

Elevated concentrations of cadmium, nickel and zinc have been identified in groundwater sampling which exceed water quality standards for surface water. These exceedances were found in the first round of monitoring only.

The exceedances in relation to surface water quality standards are not considered to be significant given the industrial history of the surrounding area and the lack of exceedances during a subsequent round of monitoring and sampling. The closest surface water receptor is a lake in Bushy Park, located approximately 850m south of site. Given the distance to the identified receptor, an unacceptable risk is not considered to be present.

Ground gas monitoring results and subsequent classification indicate CIRIA 665 Characteristic Situation CS-1 is appropriate for the site based on monitoring undertaken.

Based on the conceptual site model and risk assessment there is a considered to be moderate geoenvironmental risk to end users.

It is recommended that delineation through further sampling and testing could be considered in the proposed soft landscaping area to the south of the new building. This may remove the need for soil remediation to be completed, or reduce the area requiring remediation.

In the absence of a delineation exercise remedial works will be required in the proposed new landscaping area to the south of the proposed building to address the risks identified. A remedial strategy must be undertaken and submitted to the Local Planning Authority prior to any of the aforementioned works being undertaken. Any remediation undertaken would then require validation to show that the identified risks have been adequately addressed.

Excavations within the root protection zones of trees on site should have consideration for the NHBC trees standards and root protection areas associated with the existing trees on site and adjacent to site. The Local Planning Authority Tree Officer should be contacted to discuss options.

Based on the soil testing results, waste soils to be removed from site should be classified as **Non-Hazardous**, categorised as 17 05 04 in the List of Waste from WM3. WAC testing was undertaken for completeness and samples failed the Inert Waste WAC limits. Therefore, as per EA guidance 'Dispose of Waste to Landfill' (published January 2020), excavated soils to be removed off-site meet the requirements for disposal at a landfill for non-hazardous waste.

We would recommend that this report be forwarded to the relevant statutory consultees including the Environment Agency and Local Authority to seek their comments and subsequent approval prior to site works commencing.

Geotechnical Comments

It is anticipated that finished ground levels will be at, or close to, existing ground levels. Should this not be the case then this assessment may need to be reviewed.

Based on the site investigation data and testing currently available, for a 1.0m wide strip/trench fill foundation, bearing on the underlying natural coarse Kempton Park Gravel Member soils at a depth of 1.0m, a design bearing resistance of 300kN/m²-is considered appropriate. For a 1.0m wide strip/trench fill foundation at a depth of 2.0m, a design bearing resistance of 350kN/m² should be available.

Alternatively for a 2.0m square pad foundation also bearing on the underlying natural coarse Kempton Park Gravel Member soils at a depth of 1.0m, a design bearing resistance of 285kN/m² should be available. For a 2.0m square pad foundation at 2.0m, a design bearing resistance of 325kN/m² should be available.

The above values should result in total settlements of not more than 25mm, keeping differential settlements within acceptable limits.

If structural loads cannot be accommodated on shallow strip/pad foundations, then it would be necessary to consider a piled design.

Shallow ground conditions on site comprise approximately 600mm of made ground overlying natural coarse soils. Grubbing out of existing foundations and services may disturb the ground

to a deeper and greater extent. At this stage consideration should be given to adopting a suspended floor slab. Whilst the natural coarse soils could be considered a suitable formation for ground bearing slabs following proof rolling any Made Ground/disturbed ground would need to be removed and replaced with selected compacted granular materials. During preparation, the formation should be inspected and any soft or unsuitable materials should be removed and replaced with a suitable compacted granular fill.

A CBR value of 2% is considered suitable for underlying made ground following treatment. It is recommended that once the site has been graded to the appropriate pavement formation level, it is inspected and, if necessary, in situ CBR testing be conducted on the subgrade to confirm the appropriate pavement design.

Analysis indicates an ACEC Class of DS-1 / AC-1 for the Made Ground, underlying Kempton Park Gravel Member and groundwater. An ACEC Class of DS-4/AC-4 is recommended for the London Clay Formation. The London Clay Formation has been designated a design sulphate class of DS-4/AC-4 based on the Total Potential Sulphate values calculated. However, it is recognised that given the depth of the London Clay on site oxidation is unlikely and concrete placed within this strata is therefore also unlikely to be exposed to ground that has been disturbed. A lower design sulphate class could therefore be considered if for example piled foundations were to be placed into the London Clay.

Contents

1	Intro	oduction	8
	1.1	Development Proposals	8
	1.2	Previous Reports	8
	1.3	Purpose of Investigation	8
2	Site	Details	9
	2.1	Location and Topography	9
	2.2	Site Description	9
3		nmary of Desk Study Information1	
	3.1	Anticipated Ground Conditions and Permeability	
	3.2	Geological and Engineering Hazards1	
	3.3	Radon	
	3.4	Hydrogeology and Hydrology 1	
	3.5	Summary of Site History	
4		liminary Conceptual Site Model and Risk Assessment	
	4.1	Potential Contaminant Sources	
	4.2	Pathways	
	4.3	Receptors	
_	4.4	Preliminary Conceptual Site Model	
5	Fiel 5.1	dwork and Analysis	
	_	Site Investigation	
	5.1.	1 Cable Percussive Boreholes 1	Э
	5.1.	2 Trial Pits	5
	5.1.	3 Dynamic Sampling Boreholes1	5
	5.1.	4 Plate Bearing Tests 1	5
	5.1.	5 Standpipe Installations and Monitoring 1	6
	5.2	Laboratory Analysis	6
6	Gro	und Conditions1	8
	6.1	Encountered Ground Conditions	8
	6.1.	1 Made Ground 1	8
	6.1.	2 Kempton Park Gravel Member1	8
	6.1.	3 London Clay Formation 1	9
	6.1.	4 Groundwater1	9
	6.1.	5 Visual and Olfactory Evidence1	9

7	Che	emical Laboratory Test Results and Monitoring	. 20
	7.1	Soil Analysis	. 20
	7.2	Groundwater Analysis	. 20
	7.3	Aggressive Ground	. 20
	7.4	Ground Gas Monitoring	. 20
	7.5	Soil Analysis and Screening Results	. 22
	7.6	Groundwater Analysis and Screening Results	. 26
	7.7	Aggressive Ground Analysis	. 29
	7.8	Ground Gas Monitoring Results	. 30
8	Upd	lated Risk Assessment	. 31
	8.1	Discussion of Results, Screening and Monitoring Results	. 31
9		ste Classification	
	9.1	Soil Waste Classification	
	9.2	Soil Waste Disposal	
10	-	dated Conceptual Site Model and Qualitative Risk Assessment	
11	Con 11.1	ntamination Conclusion and Recommendations	
	11.1		
	—	Recommendations	
	11.2	2.1 Delineation / Remediation	. 30
	11.2	2.2 Protection of Ground Workers	. 37
	11.2	2.3 Watching Brief	. 37
	11.2	2.4 Buried Services	. 37
	11.2	2.5 Importing and Re-Use of Soil and Materials Management Plan	. 37
	11.2	2.6 Soil Disposal	. 37
	11.2	2.7 Statutory Authority Consultation	. 38
12	. Geo	otechnical Assessment	. 39
	12.1	Summary of Proposals and Ground Conditions	. 39
	12.1	1.1 Development Proposals	. 39
	12.1	1.2 Summary of Ground Conditions and Test Results	. 39
	12.2	Foundations	. 42
	12.3	Stability of Excavations and Dewatering Considerations	
	12.4	Floor Slabs	
	12.5	Hardstanding	
	12.6	Chemical Attack on Buried Concrete	
13	_	itations	45

Appendices

Appendix 1 Plans

Appendix 2 Fieldwork Records
Appendix 3 Monitoring Results
Appendix 4 Laboratory Results

Appendix 5 CSM Risk Evaluation Methodology

1 Introduction

The client commissioned agb Environmental to complete a Phase II Ground Investigation at Sheldon House, Cromwell Road, Teddington, TW11 9EJ.

1.1 Development Proposals

Development proposals are understood to include the demolition of the existing 7 storey residential block and replacement with a 31-unit, 5 storey residential block with car parking and communal garden areas. Proposal plans are provided in **Appendix 1**.

Prior to demolition the current 7-storey structure should be inspected for presence of asbestos containing materials (ACM). Should such materials be present these will need to be removed by specialist licensed contractors prior to demolition. The current 7-storey structure is likely to be constructed on a piled foundation. Grubbing out of substructures will need to establish the location of any such piles if present to establish if the pile positions conflict with potential pile locations for the proposed 5-storey structure.

1.2 Previous Reports

A Phase I geoenvironmental desk study for the site and the surrounding area was completed by agb Environmental Ltd, report reference P4301.2.0, dated 15th June 2022, and should be read in conjunction with this report.

1.3 Purpose of Investigation

The principal technical objectives of the report were as follows:

- Review of desk study information,
- Establish the ground conditions,
- Undertake analysis of selected soil samples and groundwater samples,
- Provide a Conceptual Site Model (CSM) and risk assessment,
- Provide geoenvironmental recommendations, and
- Provide geotechnical recommendations for foundation design, floor slabs, pavements, excavations, groundwater control and chemical attack.

The report has been formulated in general accordance with BS10175:2011+A2:2017 Investigation into Potentially Contaminated Sites – Code of Practice, Environment Agency LCRM guidance, BS5930:2015 Code of Practice for Site Investigations, and guidance from the National Planning Policy Framework.

2 Site Details

Details regarding the site and anticipated ground conditions extracted from the desk study are provided below.

2.1 Location and Topography

The irregularly shaped site is located in an urban area approximately 275m south-east of Teddington railway station in the suburb of Teddington, within the London Borough of Richmond upon Thames. The site covers an area of approximately 0.16ha and is centred at National Grid Reference 516263 170626. The site is at an elevation of approximately 10mOD, and the surrounding land is generally level. A location plan is presented in **Appendix 1**.

2.2 Site Description

The site fronted and was accessed via Cromwell Road to the north. The hardstanding areas in the north of site were noted to be relatively level. Towards the south west of site the areas of soft landscaping slope gently downwards to the south. The western soft landscaped planted area was raised 0.20m from surface level.

Vegetation comprised the entire southern half of site and consisted of mowed grass, with mature bushes and trees lining the southern boundaries. At the west and north of site is a small soft landscaped, planted area. In the north, and central area of site are large >6m trees. There is a singular large building within the centre of site. It is a red brick apartment block, which is seven storeys, and consists of several garages on the ground floor. The building is relatively square in shape. There are no other structures on site.

Towards the north and west of site are a selection of parking spaces bordering the northern boundary and surrounding the access. It is estimated that 50% of the site consists of permeable soft landscaping and 50% comprising concreted, hard landscaping.

3 Summary of Desk Study Information

Salient information extracted from the desk study report is provided below.

3.1 Anticipated Ground Conditions and Permeability

Based on the BGS mapping the site is underlain by superficial geology of the Kempton Park Gravel Formation, which is in turn underlain by bedrock geology of the London Clay Formation. There are no records of artificial or made ground deposits within 250m of site.

3.2 Geological and Engineering Hazards

According to BGS data, the highest risk on site is very low from running sands, collapsible deposits, and landslides. There is a negligible risk from shrink-swell clays, compressible deposits and the ground dissolution of soluble rocks.

3.3 Radon

The study site is not located within a Radon Affected Area, as less than 1% of properties are above the Action Level. Therefore, no radon protective measures are necessary for new properties or extensions to existing ones as described in Building Research Establishment (BRE) publication BR211.

3.4 Hydrogeology and Hydrology

The superficial geology on site is classed as a Principal aquifer and the bedrock is designated unproductive. There are no abstraction licences noted within 500m of site and no surface water features within 250m of site.

3.5 Summary of Site History

Historical development of site began in 1896 with small structures, which underwent several smaller redevelopments up to the year of 1971, where the site structures were replaced by the apartment block seen during the walkover. Significant residential development and redevelopment of the surrounding site began in 1913 and continued till 1994. The railway 2m south of site has been present since 1840.

4 Preliminary Conceptual Site Model and Risk Assessment

An initial CSM and preliminary assessment of plausible contaminant source-pathway-receptor linkages is presented in this section. It is aimed at identifying possible risks, if any, arising from substances used or deposited on-site, or from other sources of land contamination. Both past and current potentially contaminative land uses have been considered.

4.1 Potential Contaminant Sources

Based on the site walkover and desk study research, the identified potentially contaminative land uses on or within the vicinity of the site are summarised in **Table 4.1**.

Table 4.1 Potential Contaminant Sources

Identified Potentially Contaminative Land Uses / Sources	Distance From Site (approx.)	Potential Contaminants Associated with Identified Sources	Plausible S-P-R Contaminant Linkage?	
Made Ground (from previous development on site), potential asbestos containing materials.	On site	Metals, Polycyclic Aromatic Hydrocarbons (PAH), Total Organic Hydrocarbons (TPH), Asbestos Containing Materials (ACMs). Soil gas generation (including CH4 and CO2).	Yes – given the historical development of the site, a potential contaminant source may be present with the potential to impact site.	
Railway Sidings	2m south- west to 19m south-west (1840- present day)	Metals, TPH, PAHs, ACMs, polychlorinated biphenyls (PCBs), acids, alkalis, sulphates.	Yes – potential contaminant source is present with the potential to impact site.	
Unspecified Pit	41m north (1938)	Metals, TPH, PAHs, ground gasses, vapour.	No - Given and the significant time passed, and how relatively small the pit is, it is considered unlikely that there would be any impact to site.	
Three historical tanks	137m south (1896) 236m north (1994) 248m north (1934).	TPH, Semi Volatile Organic Compounds (SVOCs), Volatile Organic Compounds (VOCs).	No - Given the distance from site and significant time since, it is considered unlikely that there would be any impact to site.	
Historical ponds	103-111m south and south-east (1938 and 1945)	Metals, TPH, PAHs, ground gasses, vapour.	Yes – Although given the distance from site and significant time since, it is considered that because of its large size it is likely to be a potential contaminant source to site.	
Historical and current electricity substation	Historical (53m west 153m east) Current (57m west)	PCBs, Metals, TPH, PAHs.	No – given the distance from site combined with the low mobility, hydrophobic nature and high viscosity of PCB oils, it is considered unlikely that there would be any impact to site from historical or recent potential contaminant leaks.	

4.2 Pathways

For this assessment, the principal potential pathways for contaminant migration are provided in **Table 4.2**.

Table 4.2 Pathways

Source	Pathway
Soil / dust / fibres	Dermal contact, ingestion and inhalation.
Liquid (including surface water / groundwater)	Dermal contact, ingestion. Leaching, infiltration and migration through groundwater. Preferential pathways such as service trenches.
Harmful ground gases / vapour	Migration through permeable geological strata and preferential pathways. Inhalation, accumulation within confined spaces with subsequent asphyxiation or explosion.

4.3 Receptors

Based on the proposals and the findings of the desk study the identified receptors are described in **Table 4.3**.

Table 4.3 Receptors

Receptor	Detail
Site workers	Site workers are anticipated to include those involved with the construction works and long-term maintenance on site.
End users	Residents and visitors.
Neighbouring sites	Residents, visitors and workers.
Controlled Waters	The underlying superficial deposits is designated a principal aquifer underlain by bedrock geology designated as unproductive. The site is not within a Source Protection Zone and there are no abstractions or water features within 250m of site.
Flora and fauna	Plants and animals that may be affected by proposed development. Soft landscaping is anticipated as part of proposals.
Buildings	The completed building and neighbouring residential structures.
Buried services	Potable water pipes are anticipated as part of proposals.

4.4 Preliminary Conceptual Site Model

The preliminary conceptual site model presented in **Table 4.4** has been derived using the findings of the desk study. The risk evaluation methodology is presented in **Appendix 5**.

 Table 4.4
 Preliminary Conceptual Site Model

Source	Pathway	Receptor	Consequence	Probability	Potential Risk	Detail
		End users	Medium	Likely	Moderate	Contact is likely between future site users/visitors in shallow soils in the proposed soft landscaping areas of the site, soil/dust
	Dermal contact, ingestion and inhalation of	Site workers	Medium	Likely	Moderate	tracked back into premises, and potentially from ingestion of produce grown on site. The historical age of various structures and outbuildings is such that the presence of asbestos cannot be
On site	contaminated soil, dust and/or fibres	Adjacent users	Medium	Likely	Moderate	discounted. Future site workers are likely to come into direct contact with soils during groundworks. Safe working practices should be implemented, and appropriate personal protective equipment (PPE) should be used to mitigate any potential risk.
On site Made Ground (from previous site development). Potential asbestos containing materials (within	Leaching / infiltration through soils and migration via groundwater or soil pore moisture.	Controlled waters	Medium	Likely	Moderate	There is no current evidence to suggest that groundwater quality beneath the site is affected by contaminant leaching. The superficial geology is a principal aquifer, and the bedrock geology is designated as unproductive. The site is not located within a SPZ. Any potential contamination could have a significant impact on receptors and cannot be presently ruled out.
on site buildings). (Metals, TPHs, PAHs, AMCs, PCBs and ground gases/vapour.).	Permeation of water pipes.	Construction materials, future end users	Medium	Likely	Moderate	Hydrocarbons, especially aromatics and chlorinated solvents, are known to permeate plastic pipes. Provision of water supply pipes and connectors formed from proprietary "barrier pipe" materials (e.g., polyethylene aluminium-polyethylene) may be required by the water supply company.
	Gas Migration and build up within buildings.	Future end users and building structures	Severe	Low likelihood	Moderate	A moderate risk is considered given the potential for Made Ground to be present and from the historical redevelopment which has occurred on site. The high permeability of the underlying superficial geology, potential contaminant migration could impact the site.
	Plant Uptake	Flora and Fauna	Medium	Likely	Moderate	Phytotoxic contamination as a consequence of historical and current land uses is likely due to the made ground from redevelopment at the site.

Source	Pathway	Receptor	Consequence	Probability	Potential Risk	Detail
	Dermal contact, ingestion and inhalation of contaminated	End users	Medium	Low likelihood	Moderate / low	Contact is likely between future residential occupiers/visitors in shallow soils in the proposed garden area of the site, soil/dust tracked back into premises, and from ingestion of home grown produce. Future site workers are likely to come into direct contact
	soil, dust and/or fibres	Site workers	Medium	Low likelihood	Moderate / low	with soils during groundworks. Safe working practices should be implemented, and appropriate personal protective equipment (PPE) should be used to mitigate any potential risk.
Off site Railway sidings (1840 – present day)	Leaching / infiltration through soils and migration via groundwater or soil pore moisture.	Controlled waters	Medium	Unlikely	Moderate	There is no current evidence to suggest that groundwater quality beneath the site is affected by contaminant leaching. The superficial geology is a principal aquifer, and the bedrock geology is designated as unproductive. The site is not located within a SPZ. Any potential contamination could have a significant impact on receptors and cannot be presently ruled out.
(Metals, TPHs, PAHs, PCBs and ground gases/vapour.).	Permeation of water pipes.	Construction materials, future end users	Medium	Likely	Moderate	Hydrocarbons, especially aromatics and chlorinated solvents, are known to permeate plastic pipes. Provision of water supply pipes and connectors formed from proprietary "barrier pipe" materials (e.g., polyethylene aluminium-polyethylene) may be required by the water supply company.
	Gas Migration and build up within buildings.	Future end users and building structures	Severe	Low likelihood	Moderate	A moderate risk is considered given the significant development surrounding the site and unspecified and infilled pits. The high permeability of the underlying superficial geology, potential contaminant migration could impact the site.
	Plant Uptake	Flora and Fauna	Mild	Low likelihood	Low	Phytotoxic contamination as a consequence of historic and current land uses is unlikely.

5 Fieldwork and Analysis

The works undertaken as part of the site investigation and subsequent analysis of selected samples is summarised below.

5.1 Site Investigation

The locations of the exploratory holes were selected based on available access, the objectives of the investigation and proposed development plans.

Statutory services plans were obtained by agb Environmental. Prior to breaking ground, a cable avoidance tool and signal generator were used to confirm each location was clear of detectable services.

The exploratory hole location plan and fieldwork records are presented in **Appendix 2**. The exploratory holes completed as part of the investigation are detailed below.

5.1.1 Cable Percussive Boreholes

One cable percussive borehole referenced CP01 was drilled between 30th June 2022 and 5th July 2022 to a depth of 25m bgl. Prior to boring CP01, a service inspection pit was excavated to a depth of 1.20mbgl using hand tools to confirm the absence of services. This borehole was advanced in 200mm diameter casing to a depth of 8mbgl, followed by 150mm diameter to a depth of 25mbgl.

Small or bulk disturbed, and undisturbed samples were taken at regular intervals. Standard Penetration Tests (SPTs) were undertaken at intervals to provide an indication of the strength or density of the soil, the results are presented as 'N' values on the borehole logs. Excess spoil was transferred to a skip for off-site disposal by a licensed waste carrier.

5.1.2 Trial Pits

A total of three trial pits, referenced TP01 to TP03, were excavated on 29th June 2022. The trial pits were advanced using a JCB 3CX and completed to depths between 3.00mbgl and 3.10mbgl. Small, and bulk disturbed samples were taken at regular intervals.

5.1.3 Dynamic Sampling Boreholes

A total of 4 dynamic sampling (windowless) boreholes, referenced WS01 to WS04, were formed on 28th June 2022. The boreholes were completed to depths between 1.30mbgl and 2.00mbgl, the density of the deposits preventing deeper penetration. The sampling equipment comprised of a track-mounted rig used to drive successive 1.00m long, lined 90mm to 50mm diameter core sample barrels into the ground. The recovered plastic core barrel 'liners' were split, logged and sub-sampled on-site by an engineer, and the samples, taken at regular intervals throughout the length of the boreholes, were placed in laboratory supplied sealed glass jars or plastic containers prior to being stored in cool boxes during transit to the laboratory. Soil penetration tests (SPTs) were undertaken at regular intervals in the boreholes to provide data regarding the strength or density of the soil, the result of each test is presented as the 'N' value on the borehole logs.

5.1.4 Plate Bearing Tests

Plate bearing tests were completed at six locations, referenced CBR01 to CBR06. The tests were completed either at ground level or at a depth of up to 0.2mbgl, using an 8.5t excavator as a reaction load and a 452mm diameter plate. The results are provided in **Appendix 2**.

5.1.5 Standpipe Installations and Monitoring

Single standpipe installations were placed into boreholes WS02 and WS04; these comprised of 50mm diameter PTFE piping, plain from surface level to 0.50mbgl, slotted between 0.50mbgl and 1.90-2.00mbgl, and installed to a depth of 1.90-2.00mbgl. Once introduced into the ground the slotted section was surrounded by suitable gravel pack, above which a sealing material (bentonite) was used. A rubber bung with a gas tap was placed at the top of the pipework and a flush cover concreted at surface to protect the installation from damage.

A single standpipe installation was placed in CP01, comprised of 50mm diameter PTFE piping, plain from surface level to 1.00mbgl, slotted between 1.00mbgl and 10.00mbgl, and installed to a depth of 10.00mbgl. Arisings were placed into the borehole between 25.00mbgl and 12.00mbgl, above which a bentonite seal was placed between 12.00mbgl and 10.00mbgl prior to the introduction of the standpipe. Once introduced into the ground the slotted section was surrounded by suitable gravel pack, above which a sealing material (bentonite) was used. A rubber bung with a gas tap was placed at the top of the pipework and a flush cover concreted at surface to protect the installation from damage.

The standpipes were monitored on two occasions between 11th July and 21st July 2022. The ground gas flow was monitored for a period of up to two minutes, the concentration of volatile organic compounds (VOCs) was monitored for a period of up to three minutes and the concentrations of ground gases including methane, carbon dioxide, hydrogen sulphide and carbon monoxide were monitored for up to five minutes.

The groundwater was sampled and monitored from the deep install of CP01. The monitoring results are presented in **Appendix 3**.

5.2 Laboratory Analysis

The scheduled chemical analysis and number of samples tested is summarised **Table 5.1**; the scheduled geotechnical laboratory testing is summarised in **Table 5.2**. The results are presented in **Appendix 4**.

 Table 5.1
 Summary of Scheduled Contamination Testing

Analysis	No. of Samples Tested		
Analysis	Soil	Groundwater	
Metals	6	2	
Speciated polycyclic aromatic hydrocarbons (PAHs) (USEPA 16 – PAHs)	6	2	
Total petroleum hydrocarbons (CWG Aromatic/Aliphatic Split)	6	2	
ВТЕХМТВЕ	6	2	
Asbestos screening	6	-	
pH	16	2	
Soil organic matter (SOM)	6	-	
Polychlorinated Biphenyls	1	-	
Total Sulphate (as SO4)	10	-	
Total Sulphur	10	-	
Water Soluble Sulphate (SO4)	10	2	
Waste Acceptance Criteria Testing (BS EN 12457/3)	2	-	

 Table 5.2
 Summary of Scheduled Geotechnical Testing

Test	No. of Soil Samples Tested
Plasticity index	10
Natural Water Content	10
Particle Size Distribution	3
Triaxial Test	4

6 Ground Conditions

The encountered ground conditions are summarised below.

6.1 Encountered Ground Conditions

The ground conditions encountered are summarised in **Table 6.1** and discussed below.

Table 6.1 Summary of Encountered Ground Conditions

Stratum	Location	Surface Depth (mbgl)	Base Depth (mbgl)	Thickness (m)			
Made Ground	All positions	0.00	0.30 to 0.60	0.30 to 0.60			
Kempton Park Gravel Member	All positions	0.30-0.60	≥1.30* to 7.30	≥0.70 to 6.90			
London Clay Formation	CP01	7.30	≥25.00*	≥17.70			
Groundwater	Groundwater seepage was noted in CP01 at 2.2mbgl during the intrusive site investigation works. No groundwater was encountered in the dynamic sampling boreholes or trial pits. During monitoring, groundwater was observed between 4.12mbgl and 4.19mbgl in borehole CP01; the dynamic sampling boreholes were dry.						

^{*} base of stratum not proven at all borehole locations

6.1.1 Made Ground

Made Ground was encountered from surface level in all exploratory hole positions.

This was encountered from surface level as concrete with 7-8mm diameter rebar in positions CP01, WS01 and WS04 to a maximum depth of 0.20mbgl. Underlying the concrete in these positions was brown or dark grey gravelly sand, sand and gravel, or brick and concrete rubble to depths between 0.30 and 0.60mbgl. Gravel comprised brick, chert, limestone and concrete with rare clinker.

In position TP02, the Made Ground was encountered from surface level to a maximum depth of 0.30mbgl as dark brown silty sand. Sand was fine.

In positions TP01, TP03, WS02 and WS03, the Made Ground was encountered from surface level as dark brown, sometimes slightly gravelly, slightly silty to silty sand or slightly gravelly to gravelly sandy silt. Gravel was brick, chert and concrete with occasional brick, glass, clinker and porcelain. Occasional concrete and chert cobbles. Glass, metal and porcelain were notably abundant in the Made Ground at WS03 and concrete was abundant in TP03.

The base of the Made Ground was proven to depths between 0.30mbgl and 0.40mbgl in positions CP01, TP01-TP03 and WS04, and to a maximum depth of 0.60mbgl in positions WS01, WS02 and WS03.

6.1.2 Kempton Park Gravel Member

Beneath the Made Ground in all positions the natural geology was initially encountered as medium dense to very dense, brown, yellowish brown or dark grey, sometimes slightly silty to very silty, sometimes slightly gravelly sand to depths between 1.20mbgl and 3.70mbgl. Gravel was chert, generally rounded or recovered fractured. The sand or slightly gravelly sand was succeeded by stiff yellowish brown, sometimes gravelly, sandy silty clay in positions TP03, WS02 and WS03 to depths between 1.20mbgl and 1.40mbgl. The sand became medium dense to very dense brown or yellowish brown, sometimes slightly silty to silty, sometimes cobbly, gravelly to very gravelly, sand from 1.20-1.60mbgl to the base of most positions at

≥1.30mbgl to ≥3.10mbgl. In CP01 the brown cobbly gravelly fine sand was succeeded by orange sand with some chert gravel and cobbles from 3.70mbgl to a maximum depth of 7.30mbgl.

These strata are initially fine sand-dominated, generally becoming gravelly to very gravelly at 1.20-1.60mbgl, and are considered representative of the Kempton Park Gravel Member, which is shown on the BGS mapping to underlie the site. All positions except CP01 were completed in the Kempton Park Gravel Member between 1.30mbgl and 3.10mbgl.

6.1.3 London Clay Formation

The London Clay Formation was encountered beneath the Kempton Park Gravel Member in CP01 only, at a depth of 7.30mbgl. This stratum was encountered as a firm to stiff grey clay between 7.30mbgl and 9.50mbgl, followed by a claystone from 9.50mbgl to 10.40mbgl, overlying a stiff to very stiff grey clay with occasional patches of claystone between 10.40mbgl and 25.00mbgl.

CP01 was completed in the London Clay Formation at 25.00mbgl; the base of the stratum was not proven.

6.1.4 Groundwater

Groundwater was not observed during the formation of the dynamic sampling boreholes or the trial pits. A groundwater seepage was noted in cable percussive borehole CP01 at 2.2mbgl.

During monitoring, groundwater was observed in CP01 between 4.12mbgl and 4.19mbgl.

6.1.5 <u>Visual and Olfactory Evidence</u>

During the site investigation works and subsequent monitoring there were no visual or olfactory indications of gross contamination in soils or groundwater. The presence of Made Ground across the site could be a potential indicator of the presence of contaminants in soil.

7 Chemical Laboratory Test Results and Monitoring

The results of chemical laboratory testing and ground gas monitoring are detailed in the following section.

7.1 Soil Analysis

Based on the proposed end use as a residential development, with the incorporation of soft landscaping, the variability of Made Ground encountered and the results of soil organic matter content testing results, the results of chemical laboratory testing of soil samples for inorganic and organic compounds have been compared against screening criteria for residential with homegrown produce end use with 1.0% soil organic matter content as this is the most appropriate generic assessment criteria (GAC) applicable. The screening criteria hierarchy used is as follows:

- Chartered Institute of Environmental Health (CIEH) and Land Quality Management Ltd (LQM) Suitable for Use Levels (S4ULs).
- Department for Environment Food and Rural Affairs (Defra) Category 4 Screening Levels (C4SLs).
- Contaminated Land: Applications in Real Environments (CL:AIRE) soil generic assessment criteria (GACs).
- Environment Agency: Soil Guideline Values (SGVs)

Screening levels for certain organic contaminants have been selected based on laboratory testing for soil organic matter (SOM) content. A conservative SOM of 1% has been considered appropriate for this risk assessment based on the range recorded by laboratory testing in Made Ground samples.

7.2 Groundwater Analysis

The superficial geology on site is classed as a Principal aquifer and the bedrock is designated unproductive. There are no abstraction licences noted within 500m of site and no surface water features within 250m of site.

In order to assess the risk to surface water from potential contaminants, the results of groundwater analysis have been compared to water quality standards provided in:

- The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015 (WFD, 2015).
- The Water Supply (Water Quality) Regulations 2016 (WSR).
- WHO Guidelines for Drinking-Water Quality, Fourth Edition Incorporating the First Addendum (WHO, 2017).

7.3 Aggressive Ground

The results of testing for aggressive ground conditions have been classified using values provided in BRE Special Digest 1:2005: Concrete in aggressive ground.

7.4 Ground Gas Monitoring

Where applicable the results of ground gas and volatile organic compound (VOC) monitoring have been compared to:

CIRIA 665: Assessing risks posed by hazardous ground gases to buildings.

- BS 8485:2015: Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.
- HSE EH40/2005 Workplace exposure limits.

7.5 Soil Analysis and Screening Results

 Table 7.1
 Results of Laboratory Analysis for Metals

Determinand Metals	Determinand / Concentration Range (mg/kg)		Screening Values for Resid		No. of Samples with Elevated Concentrations	Samples with Elevated Concentrations	
	Minimum	Maximum	S4ULs	C4SLs	Concentiations		
Arsenic	9	26	37	-	0	None elevated	
Cadmium	< 0.2 0.5 11 -		-	0	None elevated		
Chromium (III)	13	19	910	-	0	None elevated	
Chromium (VI)	< 2	< 2	6	-	0	None elevated	
Copper	7	63	2400	-	0	None elevated	
Lead	16	635	-	210	3	CP01- 0.30m TP01 - 0.20m WS03 - 0.30m	
Mercury	< 1	< 1	40	-	0	None elevated	
Nickel	11	16	130	-	0	None elevated	
Selenium	< 3	< 3	250	-	0	None elevated	
Zinc	40	589	3,700	-	0	None elevated	

 Table 7.2
 Results of Laboratory Analysis for Polycyclic Aromatic Hydrocarbons

Determinand	Concentration Range (mg/kg)		Screening Values for Resider Produce Land Us		No. of Samples with	Samples with Elevated	
PAHs	Minimum	Maximum	S4ULs	C4SLs	Elevated Concentrations	Concentrations	
	WIITIITIUTTI	IVIAXIIIIUIII	1% som	C43L8			
Naphthalene	< 0.1	0.12	2.3	-	0	None elevated	
Acenaphthylene	< 0.1	1.15	170	-	0	None elevated	
Acenaphthene	< 0.1	0.35	210	-	0	None elevated	
Fluorene	< 0.1	1.65	170	-	0	None elevated	
Phenanthrene	< 0.1	18	95	-	0	None elevated	
Anthracene	< 0.1	4.44	2,400	-	0	None elevated	
Fluoranthene	< 0.1	28.7	280	-	0	None elevated	
Pyrene	< 0.1	25.1	620	-	0	None elevated	
Benzo[a]anthracene	< 0.1	13.3	7.2	-	1	WS02 – 1.00m	
Chrysene	< 0.1	11	15	-	0	None elevated	
Benzo[b]fluoranthene	< 0.1	11.5	2.6	-	1	WS02 – 1.00m	
Benzo[k]fluoranthene	< 0.1	4.24	77	-	0	None elevated	
Benzo[a]pyrene	< 0.1	12.6	2.2	10	1	WS02 – 1.00m	
Indeno[123-cd]pyrene	< 0.1	7.38	27	-	0	None elevated	
Dibenzo[ah]anthracene	< 0.1	2.07	0.24	-	3	TP01 – 0.20m WS02 – 1.00m WS03 – 0.30m	
Benzo[ghi]perylene	< 0.1	6.37	320	-	0	None elevated	
Total PAH	< 1.6	148	-	-	-	-	

 Table 7.3
 Results of Laboratory Analysis for Speciated Total Petroleum Hydrocarbons

Determinand	Determinand Concentration Range (mg/kg) Minimum Maximum		Screening Values for Residential with Homegrown Produce Land Use (mg/kg)	No. of Samples with	Samples with Elevated Concentrations	
Petroleum Hydrocarbons			S4ULs	Elevated Concentrations		
Speciated - Aliphatic			1% som			
>C5-C6	< 0.01	< 0.01	42	0	None elevated	
>C6-C8	< 0.05	< 0.05	100	0	None elevated	
>C8-C10	< 2	< 2	27	0	None elevated	
>C10-C12	< 2	< 2	130	0	None elevated	
>C12-C16	< 3	< 3	1100	0	None elevated	
>C16-C34	< 13	< 13	65000	0	None elevated	
Aliphatic C5-C34	< 21	< 21	-	-	-	
Speciated - Aromatic	Minimum	Maximum	1% som			
>C5-7	< 0.01	< 0.01	70	0	None elevated	
>C7-8	< 0.05	< 0.05	130	0	None elevated	
>C8-10	< 2	< 2	34	0	None elevated	
>C10-12	< 2	< 2	74	0	None elevated	
>C12-16	< 2	5	140	0	None elevated	
>C16-21	< 3	52	260	0	None elevated	
>C21-35	< 10	114	1,100	0	None elevated	
Aromatic C5-35	< 21	171	-	-	-	

 Table 7.4
 Results of Laboratory Analysis for BTEX and MTBE

Determinand	Concentration Range (mg/kg)		Screening Values for Residential with Homegrown Produce Land Use (mg/kg)	No. of Samples with	Samples with Elevated	
BTEX	Minimum	Maximum	S4ULs	Elevated Concentration	Concentrations	
	WIIIIIIIIIIII	Maximum	1% som			
Benzene	< 0.002	< 0.002	0.087	0	None elevated	
Toluene	< 0.005	< 0.005	130	0	None elevated	
Ethylbenzene	< 0.002	< 0.002	47	0	None elevated	
o-xylene	< 0.002	< 0.002	60	0	None elevated	
m-xylene	< 0.002	< 0.002	59	0	None elevated	
p-xylene	< 0.002	< 0.002	56	0	None elevated	
Determinand	Minimum	Maximum	GACs	No. of Samples with	Samples with Elevated Concentrations	
MTBE	iviiriimum	iviaximum	1% som	Elevated Concentration		
MTBE	< 0.005	< 0.005	49	0	None elevated	

Table 7.5PCB Analysis

Determinand	Concentration Range (mg/kg)		Screening Values for Residential with Homegrown Produce Land Use (mg/kg)	No. of Samples with	Samples with Elevated	
Determinand	Minimum	Maximum	EA SGVs	Elevated Concentration	Concentrations	
Total PCB (12 congeners)	< 0.1	< 0.1	8	0	-	

 Table 7.6
 Asbestos Screening

Determina	nd	Screening Result	Asbestos Matrix	Asbestos Type	Quantification (%)	Samples with Detected Asbestos
Asbestos		Not Detected	-	-	-	-

7.6 Groundwater Analysis and Screening Results

 Table 7.7
 Summary of Groundwater Analysis Results

Determine and		ninand ation (ug/l)	Th	nreshold Value (ug	/I)	No. of Samples	Location of Samples with Elevated Concentrations	
Determinand	Minimum	Maximum	Surface Water	Drinking Water	Odour or Taste Threshold	with Elevated Concentrations		
Inorganic								
Arsenic	< 5	< 5	50 ª	10 ^g	-	0	None elevated	
Cadmium	< 0.4	0.4	0.08 to 0.25 a,b	5 ^g	-	1	CP01 – 4.15m	
Chromium (III)	< 5	< 5	4.7 ª	50 ^g	-	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.	
Chromium (VI)	< 20	< 20	3.4 ^a	-	-	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.	
Copper	< 5	< 5	1 ^{a, i}	2,000 ^g	5,000	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.	
Lead	< 5	< 5	1.2 ^{a,i}	10 ^g	-	0	Threshold value is less than limit of detection, but no indication of significant contaminant impact of either soils or groundwaters.	
Mercury	< 0.05	< 0.05	0.07 b	1 ⁹	-	0	None elevated	
Nickel	< 5	18	4 a, ⁱ	20 ^g	-	1	CP01 – 4.15m	
Selenium	< 5	< 5		10 ^g	-	0	None elevated	
Zinc	< 2	105	10.9 ^{a, i, j}		-	1	CP01 – 4.15m	
Polycyclic Aromatic Hydro	carbons							
Naphthalene	< 0.01	< 0.01	2 ^a	0.075 ^d	-	0	None elevated	
Acenaphthylene	< 0.01	< 0.01			-	0	None elevated	
Acenaphthene	< 0.01	< 0.01			-	0	None elevated	

		ninand ation (ug/l)	т	nreshold Value (ug	J/I)	No. of Samples	Location of Samples with Elevated
Determinand	Minimum	Maximum	Surface Water	Drinking Water	Odour or Taste Threshold	with Elevated Concentrations	Concentrations
Fluorene	< 0.01	< 0.01			-	0	None elevated
Phenanthrene	< 0.01	< 0.01			-	0	None elevated
Anthracene	< 0.01	< 0.01	0.1 a		-	0	None elevated
Fluoranthene	< 0.01	< 0.01	0.0063 ª	0.075 ^d	-	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.
Pyrene	< 0.01	< 0.01			-	0	None elevated
Benzo[a]anthracene	< 0.01	< 0.01			-	0	None elevated
Chrysene	< 0.01	< 0.01			-	0	None elevated
Benzo[b]fluoranthene	< 0.01	< 0.01	0.017 ^b	0.075 ^d	-	0	None elevated
Benzo[k]fluoranthene	< 0.01	< 0.01	0.017 b		-	0	None elevated
Benzo[a]pyrene	< 0.01	< 0.01	0.00017 ^a	0.01 ^g	-	0	Threshold value is less than limit of detection, but no indication of significant contaminant impact of either soils or groundwaters.
Indeno[123-cd]pyrene	< 0.01	< 0.01			-	0	None elevated
Dibenzo[ah]anthracene	< 0.01	< 0.01			-	0	None elevated
Benzo[ghi]perylene	< 0.008	< 0.008	0.0082 b		-	0	None elevated
Total PAH	< 0.16	< 0.16		0.1 ^g	-	0	Threshold value is less than limit of detection, but no indication of contaminant impact of either soils or groundwaters.
ВТЕХ							
Benzene	< 1	< 1	10 ^a	1 ^g	-	0	None elevated
Toluene	< 5	< 5	74 ^a	700 ^h	40	0	None elevated
Ethylbenzene	< 5	< 5	-	300 h	72	0	None elevated
Xylenes	< 15	< 15	30 ^f	500 ^h	300	0	None elevated

Determinand	Determinand Concentration (ug/l)		Tł	nreshold Value (ug	/I)	No. of Samples	Location of Samples with Elevated	
Determinand	Minimum	Maximum	Surface Water	Drinking Water	Odour or Taste Threshold	Concentrations	Concentrations	
MTBE	< 10	< 10	-	-	15 ^m	0	None elevated	
Petroleum Hydrocarbons								
Aliphatic >EC5-6	< 10	< 10	-	15000 ⁿ	-	0	None elevated	
Aliphatic>EC6-8	< 10	< 10	-	15000 ⁿ	-	0	None elevated	
Aliphatic>EC8-10	< 10	< 10	-	300 ⁿ	-	0	None elevated	
Aliphatic>EC10-12	< 10	< 10	1	300 n	-	0	None elevated	
Aliphatic>EC12-16	< 10	< 10	1	300 n	-	0	None elevated	
Aliphatic>EC16-35	< 10	< 10	-	-	-	0	None elevated	
Aromatic >EC5-7	< 10	< 10	-	10 ⁿ	-	0	None elevated	
Aromatic >EC7-8	< 10	< 10	-	700 ⁿ	-	0	None elevated	
Aromatic >EC8-10	< 10	< 10	-	300 n	-	0	None elevated	
Aromatic >EC10-12	< 10	< 10	-	90 ⁿ	-	0	None elevated	
Aromatic >EC12-16	< 10	< 10	-	90 ⁿ	-	0	None elevated	
Aromatic >EC16-21	< 10	< 10	-	90 ⁿ	-	0	None elevated	
Aromatic >EC21-35	< 10	< 10	-	90 ⁿ	-	0	None elevated	
TPH	< 140	< 140	-	-	10 ^{I, m}	0	None elevated	

- a Water Framework Directive (Standards and Classification), 2015 EQS Value for Rivers based on long term mean or an annual average.
- b Water Framework Directive Maximum Allowable Concentration for Rivers
- c Water Framework Directive Groundwater value where end receptor is surface water
- d Water Framework Directive Groundwater value where end receptor is drinking water supply
- e Water Framework Directive General quality of groundwater value
- f Environment Agency "operational" target
- g Water Supply Regulations
- h WHO, 2017 Drinking Water Standards
- i bioavailable component
- j plus Ambient Background Concentration (dissolved)

k - hardness dependant

I - WHO, 2017 - lower bound taste threshold

m - WHO, 2017 - lower bound odour threshold

n - WHO, 2008 Drinking Water Standards (adopted by CL:AIRE)

7.7 Aggressive Ground Analysis

 Table 7.8
 Summary of Aggressive Ground Analysis

			Determinand			
Stratum	Total sulphate (%)	W/S sulphate SO ₄ (mg/l)	Total sulphur (%)	рН	Total Potential Sulphate	DS / ACEC Class
Made Ground	0.03	< 10	< 0.02	7	-	DS-1 / AC-1
Kempton Park Gravel Member	0.03–0.06	13–227	< 0.02 - 0.02	7.7 - 8.5	-	DS-1 / AC-1
London Clay Formation	0.05 -0.06	108-150	0.28 - 0.65	6.8 – 8.9	0.84-1.95	DS-4 / AC-4
Groundwater	-	103-105	-	7.3	-	DS-1 / AC-1

7.8 Ground Gas Monitoring Results

 Table 7.9
 Summary of Ground Gas Monitoring Results

Date	Location	CO ₂ (%)		CH ₄ (%)		O ₂ (%)		Flow	Atmos. Pres.
Date		Min	Max	Min	Max	Min	Max	(Max. l/hr.)	(mb)
11.07.2022	CP01	2.9	3.4	0.0	0.0	13.2	16.3	0.0	1022 (falling)
11.07.2022	WS02	1.3	2.2	0.0	0.0	18.9	19.6	0.0	1023 (falling)
11.07.2022	WS04	2.2	3.3	0.0	0.0	17.7	19.3	0.0	1023 (falling)
21.07.2022	CP01	5.0	5.1	0.0	0.0	13.2	14.2	0.0	1022 (falling)
21.07.2022	WS02	1.5	2.1	0.0	0.0	19.2	19.6	0.0	1021 (falling)
21.07.2022	WS04	0.1	3.6	0.0	0.0	17.9	20.6	0.0	1021 (falling)

 Table 7.10
 Gas Screening Values for Carbon Dioxide and Methane

Peak Flow Rate (I/hr)	Worst Case CO ₂ (%)	CO₂ GSV	Worst Case CH ₄ (%)	CH₄ GSV	CIRIA 665 Characteristic Situation
<0.1	5.1	0.0051l/hr CO ₂	<0.1	0.0001l/hr CH ₄	GSV = CS-1 Max recorded values = CS-1*

Table 7.11 Workplace Exposure Limits

volkplace	Recorded Concentration (ppm)							
Location	Carbon monoxide		Hydroger	n sulphide	Liquefied Petroleum Gas (VOCs)			
	Min	Max	Min	Max	Min	Max		
All Boreholes	1	4	1	4	<0.1	<0.1		
HSE Workplace Exposure Limits (ppm)	Long Term	Short Term	Long Term	Long Term Short Term		Short Term		
	30	200	5	10	1000	1250		
Locations with Elevated Concentrations	None elevated.		None e	levated.	None elevated.			

8 Updated Risk Assessment

Discussion of analysis, screening and monitoring results, and an updated qualitative risk assessment are provided below.

8.1 Discussion of Results, Screening and Monitoring Results

The soil and groundwater screening and the results of the ground gas monitoring visits are summarised below in **Table 8.1**, **Table 8.2** and **Table 8.3**.

<u>Soil</u>

Elevated concentrations of lead and four congeners of polycyclic aromatic hydrocarbons (PAH), namely benzo[a]anthracene, benzo[b]fluoranthene, benzo[a]pyrene and dibenzo[ah]anthracene, have been identified within soils across four exploratory hole positions, which exceed the screening criteria for residential developments with homegrown produce. Additional comparison has been undertaken below against screening criteria for residential developments without homegrown produce end use. The results are presented below in **Table 8.1**.

Table 8.1 Summary of soil screening value comparisons for samples with screening threshold exceedances.

exceedances.							
Determinand	Samples with Exceedance and Location for Screening Values (1% SOM)						
Determinand	Residential with homegrown produce	Residential without homegrown produce					
Lead	CP01 - 0.30m TP01 - 0.20m WS03 - 0.30m	CP01 - 0.30m TP01 - 0.20m WS03 - 0.30m					
Benzo[a]anthracene	WS02 – 1.00m	WS02 – 1.00m					
Benzo[b]fluoranthene	WS02 – 1.00m WS03 – 0.30m	WS02 – 1.00m WS03 – 0.30m					
Benzo[a]pyrene	WS02 – 1.00m WS03 – 0.30m	WS02 – 1.00m WS03 – 0.30m					
Dibenzo[ah]anthracene	TP01 - 0.20m WS02 - 1.00m WS03 - 0.30m	WS02 – 1.00m WS03 – 0.30m					

Positions CP01 and WS02 are below the footprint of the proposed building on site; position TP01 is beneath proposed parking and WS03 beneath proposed soft landscaping on site. These results indicate that the Made Ground is not suitable for soft landscaped areas on site which may be accessed by residents. The sample from WS02 at 1.00m is from the natural soil underlying the Made Ground. It is noted that this has the potential to be reworked soil and that the PAH exceedances are in similar congeners to the shallow Made Ground soil from WS03.

Groundwater

 Table 8.2
 Groundwater Screening Summary

Determinand	Samples with Exceedance
Cadmium	CP01 – 4.15m. Exceeding surface water criteria.
Nickel	
Zinc	

Elevated concentrations of cadmium, nickel and zinc have been identified in the first round of groundwater sampling underlying the site which exceed water quality standards for surface water. No source has been identified within shallow Made Ground soils on site.

The exceedances in relation to surface water quality standards concentrations are not considered to be significant given the industrial history of the surrounding area and the lack of exceedances during a subsequent round of monitoring and sampling. The closest surface water receptor is a lake in Bushy Park, located approximately 850m south of site. Given the distance to this receptor an unacceptable risk is not considered to be present..

Ground Gas

Table 8.3 Summary of Ground Gas Monitoring

Item	Result
Characteristic Situation	CS-1 (CIRIA C665)
Workplace Exposure Limits	None elevated.

Ground gas monitoring was undertaken during two visits between 11th July and 21st July 2022. Based upon the gas screening values, Characteristic Situation 1 is considered appropriate for the site. The maximum recorded carbon dioxide gas concentration is slightly above the 5% threshold between CS-1 and CS-2. However, given that no positive flow rates have been encountered from any of the boreholes monitored on site and the very marginal exceedance of the 5% threshold, CS-1 is still considered appropriate.

Based on the information discussed above, Characteristic Situation (CS) 1 is identified as the appropriate ground gas regime for the site.

9 Waste Classification

Excavated soil from the construction works intended for disposal is required to be assessed for hazardous properties prior to disposal. The soil would be classified as either:

- Hazardous
- Non hazardous
- Inert

9.1 Soil Waste Classification

An assessment of the chemical data has been undertaken with respect to the Environment Agency's (EA) Technical Guidance Document WM3 (2021) 'Waste Classification- Guidance on the classification and assessment of waste' (1st Ed. V1.2.GB) to determine whether arisings from the site, if intended for disposal to landfill, possess hazardous properties and therefore would require disposal to a hazardous landfill or an alternative facility that deals with designated Hazardous Waste. It is assumed the chemical data obtained is representative of conditions of the soils at the site.

A waste classification assessment was undertaken on 6no. soil samples using HazWasteOnline $^{\text{TM}}$ software. The Waste Classification Report is presented in **Appendix 4**. All six of the samples classify as non-hazardous.

Based on the soil testing results, waste soils to be removed from site should be classified as **Non-Hazardous**, categorised as 17 05 04 in the List of Waste from WM3.

9.2 Soil Waste Disposal

The Landfill Directive, introduced to the UK via the Landfill Regulations (England and Wales) 2002 aims to reduce reliance on landfill as a disposal option. The Regulations include updated waste assessment criteria (WAC) as limit values for waste destined to various classes of landfill.

WAC testing was undertaken on two soil samples, from WS02 (1.00m) and WS03 (0.30m). The sample from WS02 passed the Inert Waste WAC limits, but the sample from WS03 failed the Inert Waste WAC limit from antimony. Therefore, as per EA guidance 'Dispose of Waste to Landfill' (published January 2020), excavated soils to be removed off-site meet the requirements for disposal at a landfill for non-hazardous waste. The WAC testing results are presented in **Appendix 4**.

The developer has a statutory responsibility under the Duty of Care Regulations of the Environmental Protection Act 1990 to ensure that contaminated soil and water is disposed of off-site to a suitably licensed waste management facility in a safe and approved manner.

To comply with the Duty of Care all wastes taken off site, in solid or liquid form, must be handled by a registered waste carrier and be accompanied by a consignment note that describes the waste.

10 Updated Conceptual Site Model and Qualitative Risk Assessment

The updated assessment of plausible contaminant linkages based on the results of the investigation and a summary of the potential geoenvironmental risks associated with the site and in the context of the proposed development is provided in **Table 10.1**. The CSM risk evaluation methodology is presented in **Appendix 5**.

 Table 10.1
 Updated Qualitative Risk Assessment

Source	Pathway	Receptor	Consequence	Probability	Potential Risk	Detail
	Dermal contact, ingestion and inhalation of contaminated soil, dust and/or fibres	End users	Medium	Likely	Moderate	Contact is likely between future site users/visitors in shallow soils in the proposed soft landscaping areas of the site, soil/dust tracked back into premises, and potentially from ingestion of produce grown on site. Future site workers are likely to come into direct contact with soils during groundworks. Safe working practices should be implemented, and appropriate personal protective equipment (PPE) should be used to mitigate any potential risk.
		Site workers	Medium	Likely	Moderate	
		Adjacent users	Medium	Unlikely	Low	
On site Made Ground (from previous site development). Potential asbestos containing materials (within on site buildings).	Leaching / infiltration through soils and migration via groundwater or soil pore moisture.	Controlled waters	Medium	Unlikely	Low	Groundwater screening indicates exceedances for heavy metals beneath the site in the first water sample tested. No on-site contamination source has been identified in the Made Ground, and subsequent monitoring did not identify chemical exceedances in groundwater. Given the distance to the nearest identified surface water feature and no abstraction licenses within 500m, an unacceptable risk is not considered to be present.
(Metals, TPHs, PAHs, AMCs, PCBs and ground gases/vapour.).	Permeation of water pipes.	Construction materials, future end users	Medium	Low likelihood	Moderate / low	A moderate to low likelihood of potential hydrocarbon permeation of pipes is considered to site based upon the results of soil and groundwater screening. The results should be supplied to the water supply company to determine the appropriate pipework for use on site.
	Gas Migration and build up within buildings.	Future end users and building structures	Severe	Unlikely	Moderate / low	Based upon the results of ground gas monitoring, a moderate to low risk is considered to site from ground gasses. Characteristic Situation CS-1 has been considered appropriate for the site based on the ground gas monitoring results.
	Plant Uptake	Flora and Fauna	Mild	Low likelihood	Low	Phytotoxic contamination as a consequence of historic and current land uses is unlikely.

Source	Pathway	Receptor	Consequence	Probability	Potential Risk	Detail
	Dermal contact, ingestion and inhalation of contaminated soil, dust and/or fibres	End users	Medium	Low likelihood	Moderate / low	Contact is likely between future residential occupiers/visitors in shallow soils in the proposed garden area of the site, soil/dust tracked back into premises, and from ingestion of home grown produce. Future site workers are likely to come into direct contact with soils during groundworks. Safe working practices should be implemented, and appropriate personal protective equipment (PPE) should be used to mitigate any potential risk.
		Site workers	Medium	Low likelihood	Moderate / low	
Off site Railway sidings (1840 – present day) (Metals, TPHs, PAHs, PCBs and	Leaching / infiltration through soils and migration via groundwater or soil pore moisture.	Controlled waters	Medium	Unlikely	Low	Groundwater screening indicates exceedances for heavy metals beneath the site in the first water sample tested. These may have come from an off-site source. No on-site contamination source has been identified in the Made Ground, and subsequent monitoring did not identify chemical exceedances in groundwater. Given the distance to the nearest identified surface water feature and no abstraction licenses within 500m, an unacceptable risk is not considered to be present.
ground gases/vapour.).	Permeation of water pipes.	Construction materials, future end users	Medium	Low likelihood	Moderate / low	A moderate to low likelihood of potential hydrocarbon permeation of pipes is considered to site based upon the results of soil and groundwater screening. The results should be supplied to the water supply company to determine the appropriate pipework for use on site.
	Gas Migration and build up within buildings.	Future end users and building structures	Severe	Unlikely	Moderate / low	Based upon the results of ground gas monitoring, a moderate to low risk is considered to site from ground gasses. Characteristic Situation CS-1 has been considered appropriate for the site based on the ground gas monitoring results.
	Plant Uptake	Flora and Fauna	Mild	Low likelihood	Low	Phytotoxic contamination as a consequence of historic and current land uses is unlikely.

11 Contamination Conclusion and Recommendations

The following recommendations are based on the results of the conceptual site model and risk assessment.

11.1 Conclusion

Based on the conceptual site model and risk assessment there is a considered moderate risk to end users, site workers and other environmental receptors.

Elevated concentrations of lead and four congeners of polycyclic aromatic hydrocarbons have been identified within soils up to 1.00mbgl in soils beneath proposed soft landscaping, parking and building footprints, which exceed the screening values for residential developments both with and without homegrown produce. Future site users and workers have the potential to come into contact with these soils.

Elevated concentrations of cadmium, nickel and zinc were identified in the first round of groundwater sampling which exceed water quality standards for surface water. No source has been identified within shallow Made Ground soils on site and the exceedances were not repeated during the second round of sampling.

The exceedances in relation to surface water quality standards concentrations are not considered to be significant given the industrial history of the surrounding area and the lack of exceedances during a subsequent round of monitoring and sampling. The closest surface water receptor is a lake in Bushy Park, located approximately 850m south of site, and given the distance to this receptor and unacceptable risk is not considered to be present

Based on the gas monitoring results and in line with classification, as detailed within C665 documentation, the CS level has been calculated as CS-1. Consequently, gas protection measures are not considered to be required to be installed within the proposed development.

11.2 Recommendations

11.2.1 Delineation / Remediation

It is considered that a pathway break will be introduced between soils and human receptors in the proposed parking and building footprint areas.

It is recommended that delineation through further sampling and testing could be considered in the proposed soft landscaping area in the south. This may reduce the area requiring remediation.

In the absence of a delineation exercise remedial works will be required in the proposed soft landscaping area in the south of site to address the risks identified. If soils are removed in this part of the site, then this could remediate the area by removing the contamination source. The recommended minimum thickness for clean capping soils is 600mm.

Excavations within the root protection zones of trees on site should have consideration for the NHBC trees standards and root protection areas associated with the existing trees on site and adjacent to site. The Local Planning Authority Tree Officer should be contacted to discuss options.

A remedial strategy must be undertaken and submitted to the Local Planning Authority prior to any of the aforementioned works being undertaken. Any remediation undertaken would then require validation to show that the identified risks have been adequately addressed.

11.2.2 Protection of Ground Workers

Suitable health and safety measures will be required for groundworkers. Appropriate precautions should be put in place following risk assessment. This should include, but not limited to, the adoption of suitable safe systems of work, provision of personal protective equipment, dust suppression, the provision and use of welfare facilities and suitable protective measures for the current site users.

11.2.3 Watching Brief

It is recommended that a watching brief be maintained on site, particularly during the groundwork stage. During any ground works a competent person should make an appraisal of the exposed soils. If any material is noted to show visual and/or olfactory signs of contamination it should be stockpiled separately and tested prior to its appropriate removal off-site or re-use. If soils suspected of being contaminated are encountered, it is recommended that a contaminated land specialist be consulted.

11.2.4 Buried Services

Potable water pipework shall comply with the Water Supply Regulations. The agreement of the water provider and Local Authority should be sought regarding the potable water pipework and fittings selected prior to commencement.

11.2.5 Importing and Re-Use of Soil and Materials Management Plan

It is not anticipated that excavated materials will be re-used on site. A material would not be considered a waste if it is uncontaminated soil and other naturally occurring material excavated in the course of construction activities, where it is certain that the material will be used for the purposes of construction in its natural state on the site from which it was excavated.

Where the reuse of excavated material is intended, in accordance with the 'CL:AIRE Definition of Waste: Development Industry Code of Practice', a MMP should be prepared. The Environment Agency should be consulted at an early stage in this process, and this should be overseen by a 'competent person' as defined by LCRM.

11.2.6 Soil Disposal

The client and contractors are advised to follow the process outlined in the Environment Agency's Technical Guidance Document WM3 'Waste Classification – Guidance on the Classification and Assessment of Waste', 1st edition 2021, v1.2 GB.

Based on the soil testing results, waste soils to be removed from site should be classified as **Non-Hazardous**, categorised as 17 05 04 in the List of Waste from WM3. WAC testing was undertaken for completeness and samples failed the Inert Waste WAC limits. Therefore, as per EA guidance 'Dispose of Waste to Landfill' (published January 2020), excavated soils to be removed off-site meet the requirements for disposal at a landfill for non-hazardous waste.

The developer has a statutory responsibility under the Duty of Care Regulations of the Environmental Protection Act 1990 to ensure that contaminated soil and water is disposed of off-site to a suitably licensed waste management facility in a safe and approved manner.

To comply with the Duty of Care all wastes taken off site, in solid or liquid form, must be handled by a registered waste carrier and be accompanied by a consignment note that describes the waste.

11.2.7 Statutory Authority Consultation

It is recommended that this report be sent to the statutory authorities including the Local Authority Environmental Health and Planning Departments prior to site works commencing to seek their comments. Where necessary, they will consult the Environment Agency or other relevant statutory authorities. If applicable to this project, this report should also be provided to the relevant building warranty provider.

12 Geotechnical Assessment

Comments regarding foundation design and construction are provided below.

12.1 Summary of Proposals and Ground Conditions

The development proposals and encountered ground conditions are summarised below.

12.1.1 Development Proposals

Development proposals are understood to include the demolition of the existing 7-storey residential block and replacement with a 31-unit, 5-storey residential block with car parking provisions and a communal garden.

12.1.2 <u>Summary of Ground Conditions and Test Results</u>

The encountered ground conditions and in-situ and geotechnical laboratory test results are summarised in **Table 12.1** to **Table 12.3**.

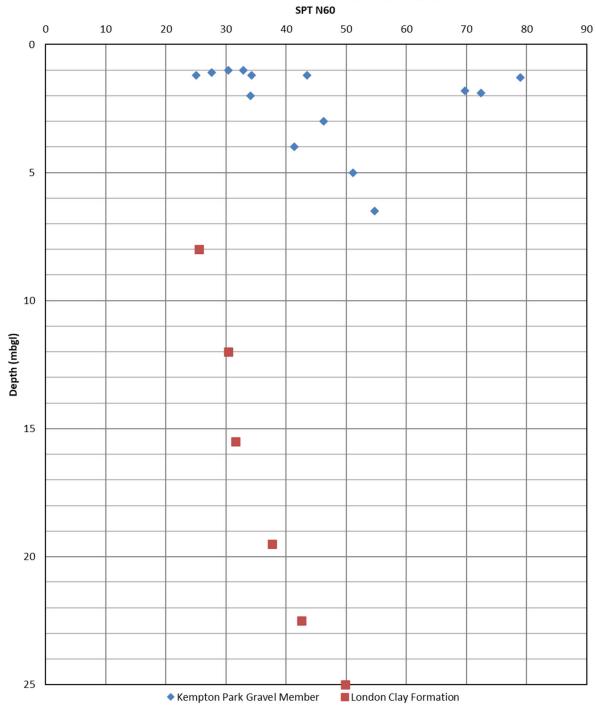
 Table 12.1
 Summary of Encountered Ground Conditions

Stratum	Location	Surface Depth (mbgl)	Base Depth (mbgl)	Thickness (m)					
Made Ground	All positions	0.00	0.30 to 0.60	0.30 to 0.60					
Kempton Park Gravel Member	All positions	0.30-0.60	≥1.30* to 7.30	≥0.70 to 6.90					
London Clay Formation	CP01	7.30	≥25.00*	≥17.60					
Groundwater	Groundwater seepage was noted in CP01 at 2.2mbgl during the intrusive site investigation works. No groundwater was encountered in the dynamic sampling boreholes or trial pits. During monitoring, groundwater was observed between 4.12mbgl and 4.19mbgl in borehole CP01; the dynamic sampling boreholes were dry.								

^{*}base of stratum not proven at all borehole locations

Table 12.2 Summary of Test Results

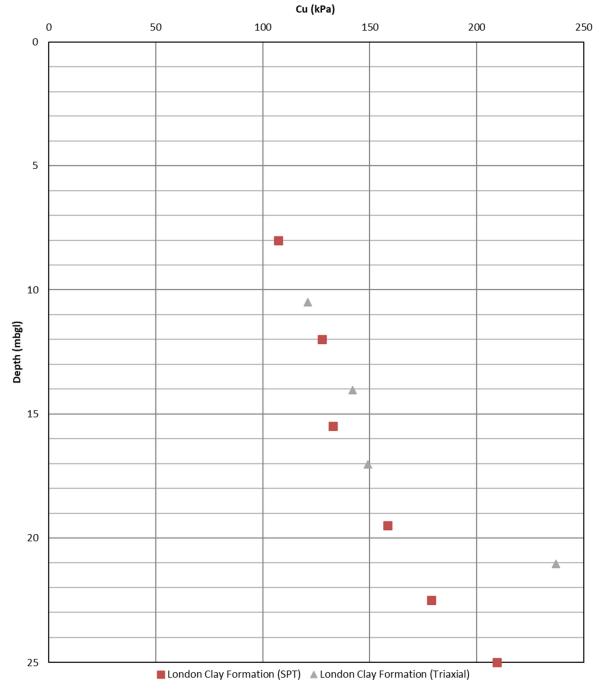
	Corrected SPT	Angle of	Moisture	Plasticity	C _u (k	Ра)
Stratum	'N60' Value	Shearing Resistance	Content (%)	Index (%)	SPT N60 x 4.2	Triaxial Test
Kempton Park Gravel Member	25 - 79	35 - 46	8 - 10	14 - 15	1	-
London Clay Formation	26 - 50	-	24 - 34	38 - 48	107 - 210	121 - 237


Table 12.3 Summary of PSD Results

Stratum	Fines (%)	Sand (%)	Gravel (%)	Cobbles (%)
Kempton Park Gravel Member	2 – 3	36 – 63	35 – 61	0

The SPT N60 values have been calculated using an energy ratio of 73% from the cable percussive drilling rig and 79% from the dynamic sampling drilling rig. The corrected results are compared to depth in **Figure 12.1** below.

Figure 12.1 SPT N60 Values vs Depth (mbgl)



The undrained shear strengths calculated from N60 values for the cohesive London Clay Formation soils and determined by laboratory and in-situ testing have been plotted against depth and are presented as **Figure 12.2**.

Figure 12.2 Cu (kPa) vs Depth (mbgl)

12.2 Foundations

The following assessment is based on the ground conditions encountered and parameters determined from the intrusive site investigation, including the results of laboratory analysis. At the time of writing detailed design information and structural loads of the proposed buildings were not available, however it is assumed that the proposed structure will form a new multi storey residential block.

It is assumed that finished ground levels will be at or close to current ground levels, if this is not the case then this assessment will need to be reviewed.

Based on the geotechnical data obtained to date, the ground conditions encountered on site are considered appropriate for traditional trench fill/pad foundations bearing on the underlying natural coarse Kempton Park Gravel Member soils. The soils encountered on site have been interpreted to represent superficial deposits of the Kempton Park Gravel Member overlying bedrock of the London Clay Formation.

Testing undertaken on the coarse soils of the Kempton Park Gravel Member indicated soils of a medium dense to very dense relative density. Testing undertaken on the fine cohesive London Clay Formation soils encountered underlying the superficial coarse soils indicated stiff to very stiff clay with a medium to high volume change potential.

A number of trees are present on site. Thin bands of low volume change potential superficial gravelly clay soils have been encountered to depths of up to 1.70m bgl at locations TP03 and WS02. Whilst the medium to high shrinkable London Clay Formation cohesive clay soils have not been encountered until 7.30mbgl at location CP01, foundations constructed within the influencing distance of trees (whether on or off site and whether to remain, be removed or planted), should have the foundations locally deepened. Rare roots were only identified to some 2m depth, Localised clay units within the Kempton Park Gravel Member were only encountered within the shallowest 2m depth with granular deposits extending to some 7m depth. On this basis it is considered that minimum foundation depths based on appropriate industry guidance, such as NHBC Standards Chapter 4.2, may be excessively conservative and foundation depths may be limited to 2m to take such foundations below any shallow clay units and below observed rare root growth. Such foundations may still require heave protection.

Any made ground or reworked soils encountered within the proposed building footprint are considered unsuitable as a founding stratum and all foundations will need to fully penetrate any made ground, low strength or otherwise unsuitable soils and below any ground affected by grubbing out of the existing foundations and services and be founded a minimum of 150mm into the natural undisturbed founding stratum. It is recommended that shallow foundations are placed within the natural coarse soils and if any areas of superficial fine cohesive soils are encountered, such as at locations TP03 and WS02, these soils are fully penetrated.

A competent person should inspect foundation excavations to ensure they comply with design assumptions. Made Ground has been encountered to a maximum depth of 0.60mbgl at locations WS01, WS02 and WS03, but could be deeper in other areas of the site; grubbing out of existing foundations and services is likely to result in deeper disturbed ground.

Based on the site investigation data and testing available, for a 1.0m wide strip/trench fill foundation, bearing on the underlying natural coarse Kempton Park Gravel Member soils at a

depth of 1.0m, a design bearing resistance of 300kN/m²⁻is considered appropriate. However it is recommended that foundations are taken to 2m due to presence of clay lenses and rare rootlets.

For a 1.0m wide strip/trench fill foundation bearing on the Kempton Park Gravel Member at 2.0m depth, a design bearing resistance of 350kN/m² should be available.

Alternatively for a 2.0m square pad foundation bearing on the underlying natural coarse Kempton Park Gravel Member soils at a depth of 1.0m, a design bearing resistance of 285kN/m² should be available. However it is recommended that foundations are taken to 2m due to presence of clay lenses and rare rootlets.

For a 2.0m square pad foundation bearing on the coarse Kempton Park Gravel Member soils at a depth of 2.0m, a design bearing resistance of 325kN/m² should be available.

The above is only applicable for foundations with loads that are applied vertically and centrally and should result in total settlements of not more than 25mm, keeping differential settlements within acceptable limits.

In the absence of design loads the bearing capacity assessment has been undertaken for Design Approach 1, Combination 2 only, and a further assessment taking account of anticipated loadings will be required during detailed design in order to confirm the limit states are satisfied.

If the design bearing capacities noted above are considered inadequate, then consideration should be given to the use of a piled foundation solution. The choice of piling system and detailed design of piles are beyond the scope of this report and should be undertaken by a specialist piling contractor.

12.3 Stability of Excavations and Dewatering Considerations

The sides of excavations through Made Ground or granular soils would not be expected to remain stable and may require temporary support with appropriate shoring to prevent excavation collapse during construction.

Instability is more likely where excavations are left open for longer periods and during inclement weather and may require temporary support with appropriate shoring to prevent excavation collapse during construction.

Where support systems are required, this must be designed by a suitably qualified engineer. Precautionary measures should be adopted should excavations be expected to remain open for an extended period and must be installed if personnel are to enter.

Groundwater seepage was noted in CP01 at 2.2mbgl during fieldwork. It is considered that should groundwater be encountered at shallow excavation depths, it will likely be suitably controlled using sump pumps.

12.4 Floor Slabs

Shallow ground conditions on site comprise approximately 600mm of made ground overlying natural coarse soils. Grubbing out of existing foundations and services may disturb the ground to a deeper and greater extent. At this stage consideration should be given to adopting a suspended floor slab. Whilst the natural coarse soils could be considered a suitable formation for ground bearing slabs following proof rolling any Made Ground/disturbed ground would

need to be removed and replaced with selected compacted granular materials. During preparation, the formation should be inspected and any soft or unsuitable materials should be removed and replaced with a suitable compacted granular fill.

12.5 Hardstanding

Following site preparation and regrading it is considered that the subgrade will comprise made ground or natural coarse soils.

The made ground on site is likely to be variable and for preliminary design purposes is considered to have a CBR of 2%. It is recommended that once the site has been graded to the appropriate pavement formation level, it is inspected and, if necessary, in situ CBR testing be conducted on the subgrade to confirm the appropriate pavement design (i.e. to determine the subbase and capping thickness). In addition, the formation should be proof-rolled and any soft/loose pockets encountered should be excavated and replaced with well-compacted granular fill prior to pavement construction. Additional guidance is provided in BS7533-10:2010.

Plate bearing tests on the hardstanding recorded an equivalent CBR value of >26%, with a result of 10% on the block paving and results between 1% and 4% on the shallow Made Ground at a depth of 0.20mbgl.

12.6 Chemical Attack on Buried Concrete

The results of testing for aggressive ground conditions have been summarised below in **Table 12.4**, the design sulphate class (DS) and aggressive chemical environment for concrete (ACEC) has also been provided.

Table 12.4 Summary of Test Results

	Cultimary of Tool Toolate												
			Determinand			DS/							
Stratum	Total sulphate (%)	W/S sulphate SO ₄ (mg/l)	Total sulphur (%)	рН	Total Potential Sulphate	ACEC Class							
Made Ground	0.03	< 10	< 0.02	7	1	DS-1 / AC- 1							
Kempton Park Gravel Member	0.03-0.06	13–227	< 0.02 - 0.02	7.7 - 8.5	-	DS-1 / AC- 1							
London Clay Formation	0.05 -0.06	108-150	0.28 - 0.65	6.8 – 8.9	0.84-1.95	DS-4 / AC- 4							
Groundwater	-	103-105	-	7.3	-	DS-1 / AC- 1							

The London Clay Formation has been designated a design sulphate class of DS-4/AC-4 based on the Total Potential Sulphate values calculated. However, it is recognised that given the depth of the London Clay on site oxidation is unlikely and concrete placed within this strata is therefore also unlikely to be exposed to ground that has been disturbed. A lower design sulphate class could therefore be considered if for example piled foundations were to be placed into the London Clay.

13 Limitations

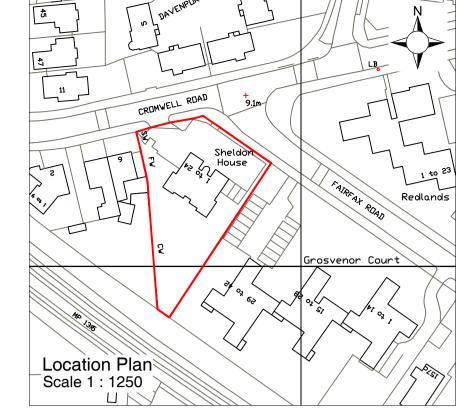
The conclusions and recommendations made in this report are limited to those that can be made on the basis of the research carried out. The results of the research should be viewed in the context of the work that has been carried out and no liability can be accepted for matters outside the stated scope of the research. Any comments made on the basis of information obtained from third parties are given in good faith on the assumption that the information is accurate. No independent validation of third party information has been made by agb Environmental Ltd.

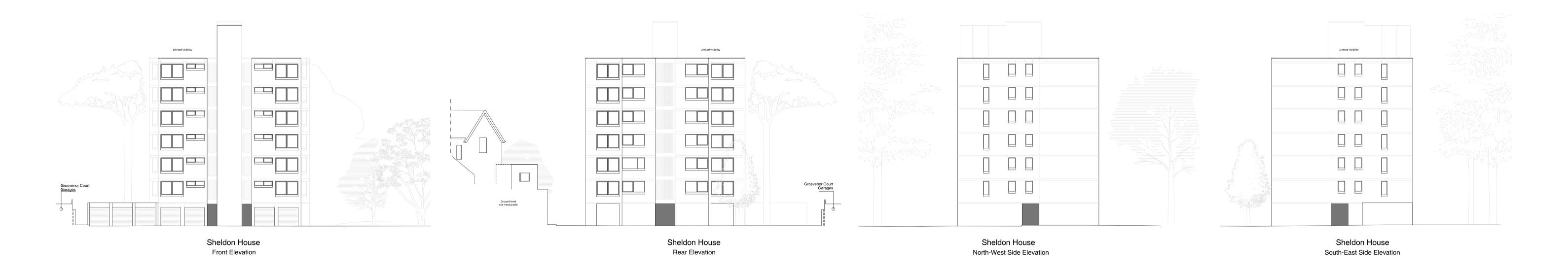
Should any changes to the development be proposed, including changes to the proposed landscaping, then the risks will need to be reassessed. This may require additional site investigation work and may result in the need for alteration of the remedial works.

Advice provided within this report is based on current guidelines available at the time of writing. This report is subject to amendment in light of additional information becoming available or statutory consultee review, including the Environment Agency and Local Authority and the NHBC.

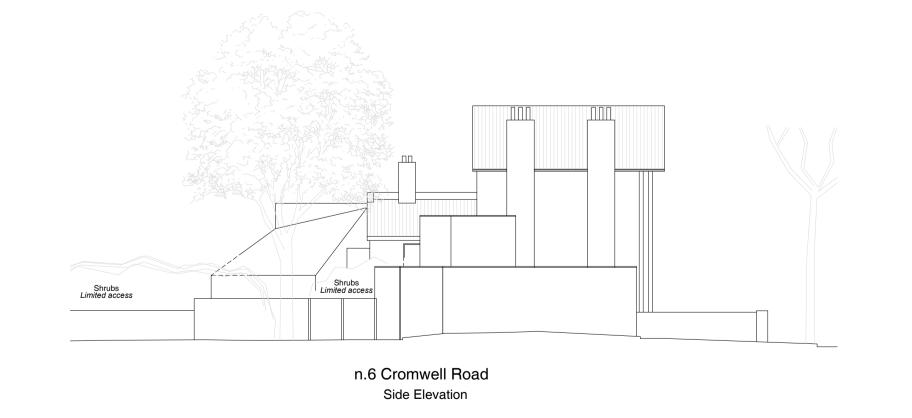
It is possible the conditions observed during the site investigation may change. This may result in changes to sources, pathways or receptors that were unforeseen and unexpected. Statements relating to ground gas or groundwater conditions are based on observations made at the time of the site investigation (unless otherwise stated). Ground gas or groundwater conditions may vary as a result of seasonal fluctuations or other effects.

Ground contamination can exist as small discrete areas of contamination and there can be no certainty that any or all such areas have been sampled or identified. This is particularly significant for an investigation by exploratory holes (as used in this site investigation) as a relatively small sample of soil is extracted, which may not be entirely representative of the surrounding ground conditions.

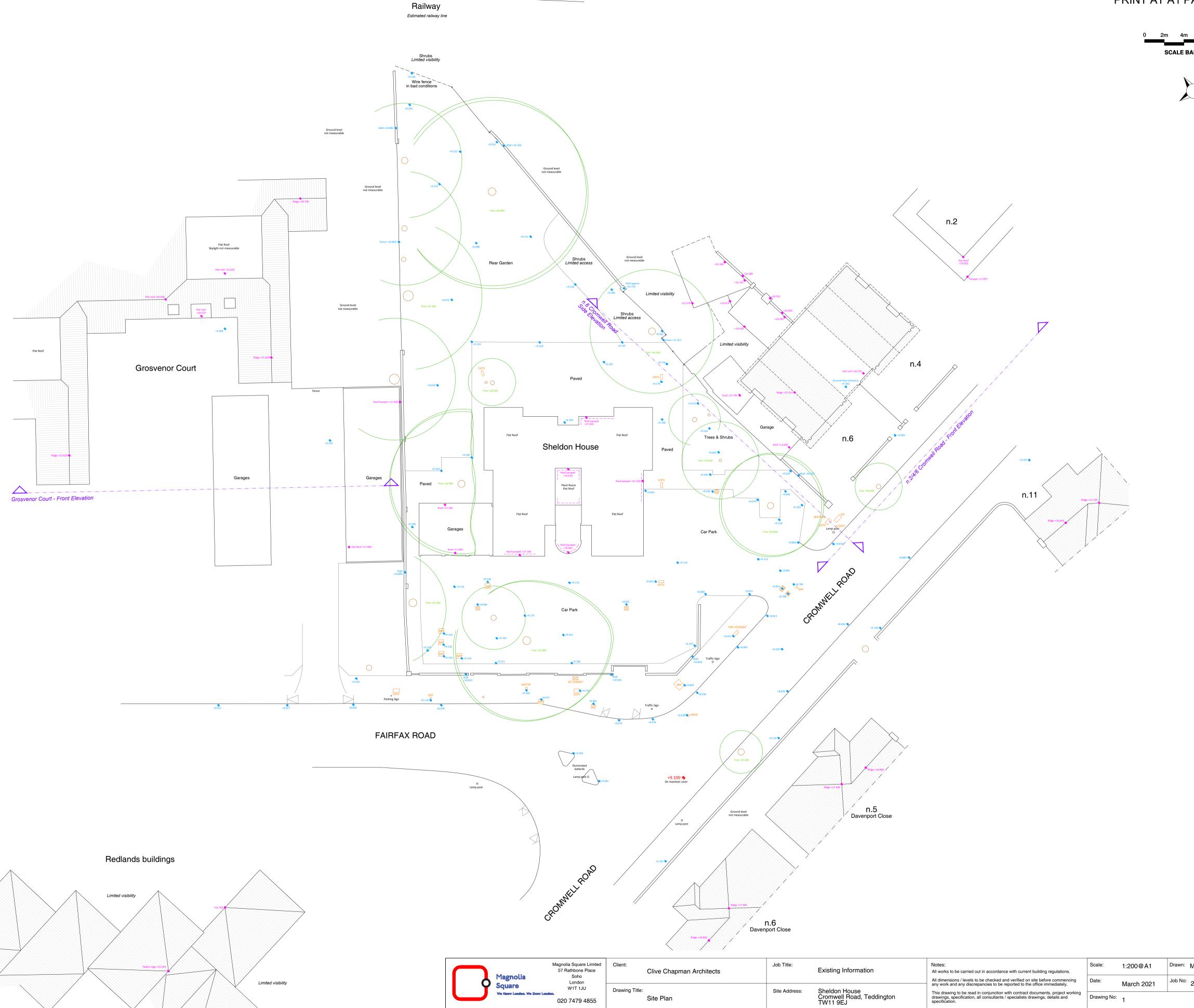

The geotechnical advice given in this report seeks to provide foundation design guidelines for the proposed building(s). The recommendations/advice given is based on the available information obtained during the investigation. Should any unusual ground conditions be encountered that differ from those proved in the exploratory holes further advice should be sought from agb Environmental Ltd.

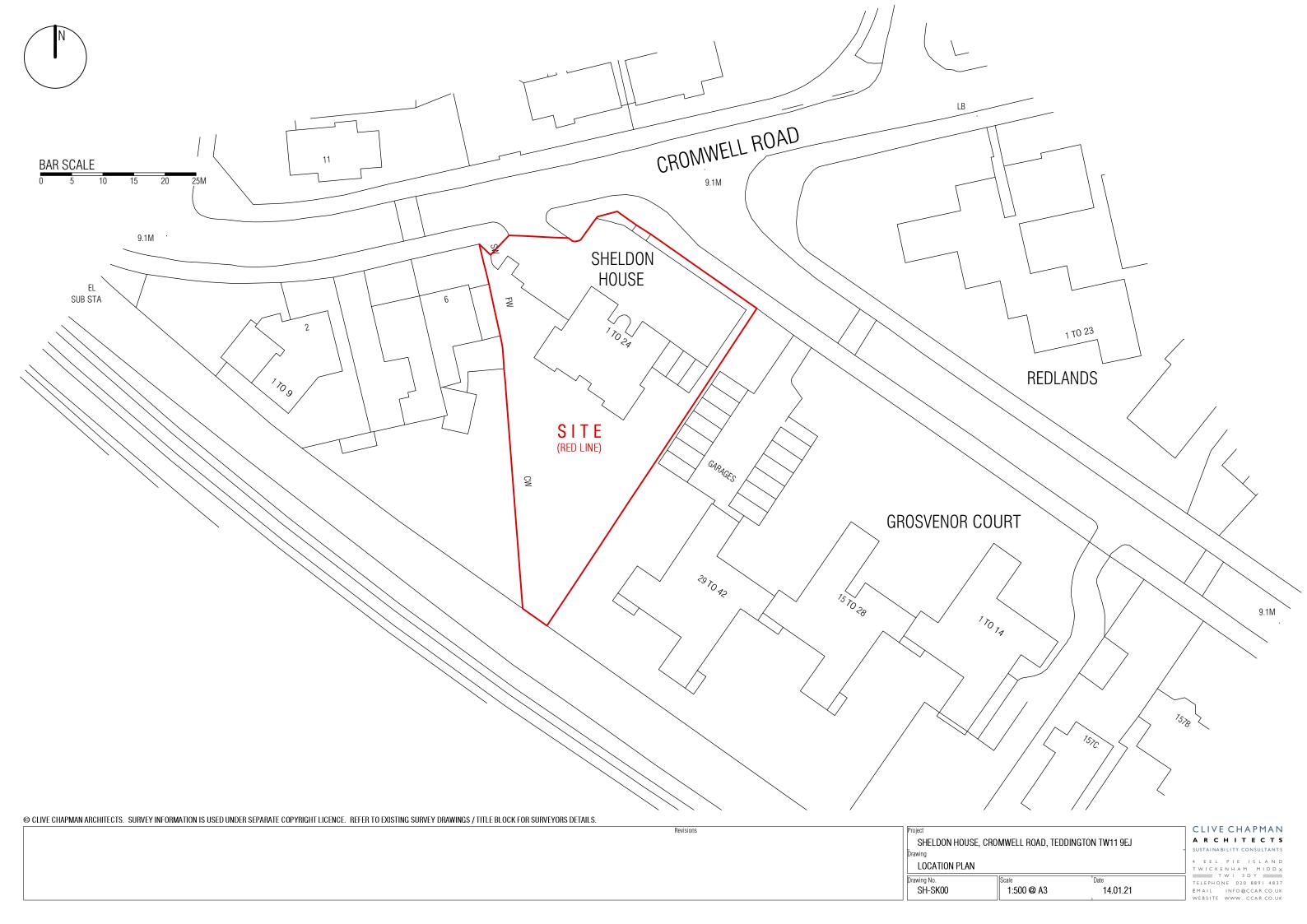

This report is written in the context of an agreed scope of work between agb Environmental Ltd and the Client and should only be used in this specific context. Re-interpretation of the Site Investigation and/or this report in whole or part may become necessary if additional information becomes available or practices or legislation changes. agb Environmental Ltd does not provide legal advice; the advice of the Client's legal advisors may also be required. agb Environmental Ltd Terms and Conditions apply.

Appendix 1 Plans


PRINT AT A1 PAPER SIZE

	Magnolia Square Limited 57 Rathbone Place	Client: Clive Chapman Architects	Job Title: Existing Information		Notes: All works to be carried out in accordance with current building regulations.	Scale:	1:200@A1	Drawn: MZ	
Magnolia Square	Soho London W1T 1JU	Drawing Title:	Site Address:	Sheldon House	All dimensions / levels to be checked and verified on site before commencing any work and any discrepancies to be reported to the office immediately.	Date:	March 2021	Job No: 21100	
We Know London. We Draw Londo	020 7479 4855	Elevations	Sile Address.	Cromwell Road, Teddington TW11 9EJ	This drawing to be read in conjunction with contract documents, project working drawings, specification, all consultants / specialists drawings, details and specification.	Drawing No	^{D:} 2		Rev:


KEY


Location Plan Scale 1 : 1250

+20.800 ♦ Tree height

+11.580 \$\rightarrow\$ Roof level

Revisions

1-9 SHELDON HOUSE, CROMWELL ROAD, TEDDINGTON TW11 9EJ

EXISTING VISUALS

| Drawing No. | Scale | 'Date | NTS @ A3 | 03.03.21 |

CLIVE CHAPMAN
A R C H I T E C T S
SUSTAINABILITY CONSULTANTS

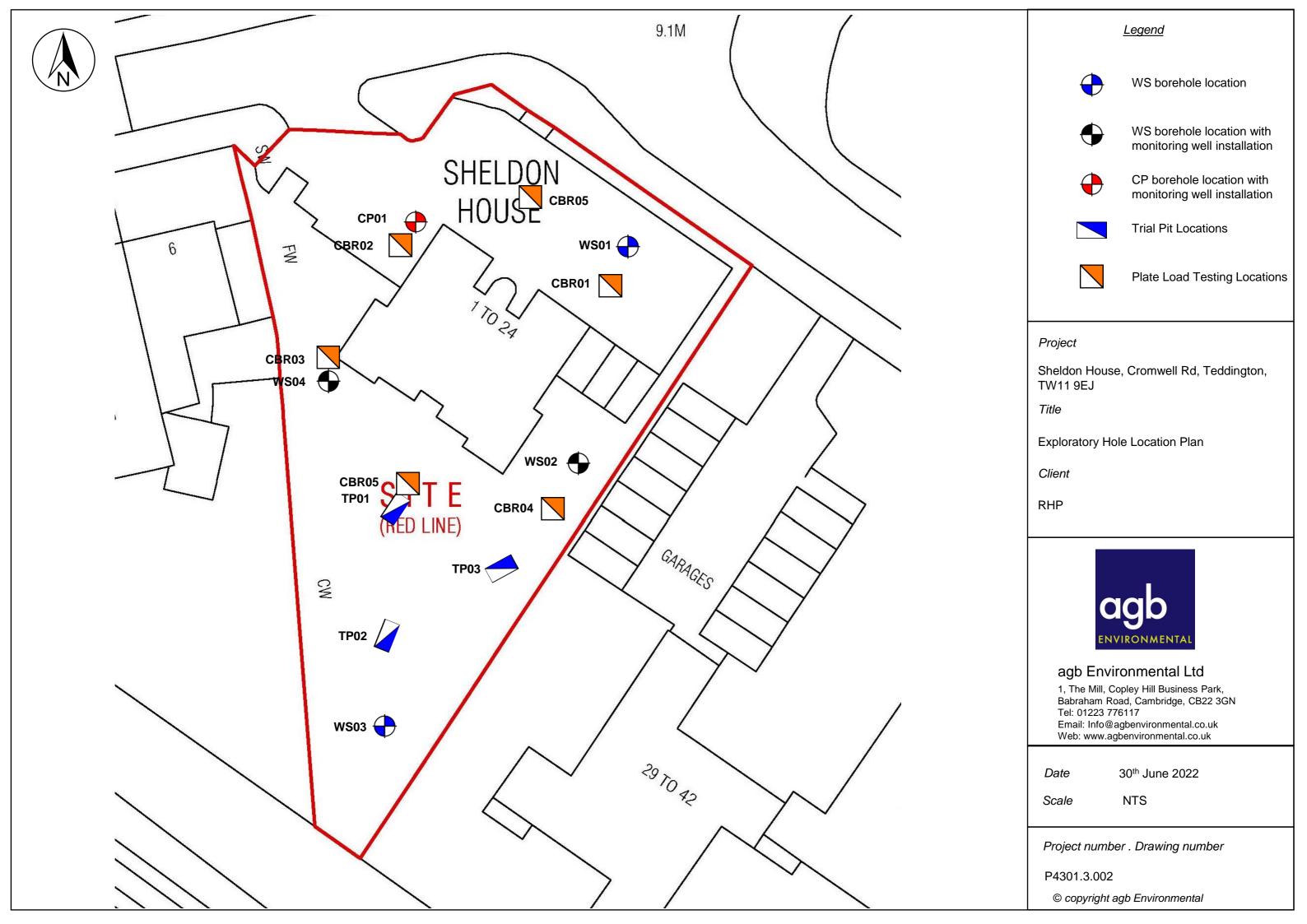
4 EEL PIE ISLAND
TWICKENHAM MIDDX
TW 1 3 D Y
ELEPHONE 020 8891 4837
EMAIL INFO@CCAR.CO.UK
WEBSITE WWW.CCAR.CO.UK

Revisions

1-9 SHELDON HOUSE, CROMWELL ROAD, TEDDINGTON TW11 9EJ

FEASIBILITY VISUALS

| Drawing No. | Scale | Drawing No. | SH-SK08 | NTS @ A3 | 03.03.21


CLIVE CHAPMAN

A R C H I T E C T S

SUSTAINABILITY CONSULTANTS

4 EEL PIE ISLAND
TWICKENHAM MIDDX
TW 1 3 D Y
ELEPHONE 020 8891 4837
EMAIL INFO@CCAR.CO.UK
WEBSITE WWW.CCAR.CO.UK

Appendix 2 Fieldwork Records

Project				BOREHOLE No
Sheldon House	CP01			
Job No	Date 30-06-22	Ground Level (m)	Co-Ordinates ()	CPUT
P4301	05-07-22			
Contractor				Sheet
Agb Environme	1 of 5			

SAMPL	ES & TI	ESTS	<u>_</u>					STRA	ΛTA					
Depth	Type No	Test Result	Water	Reduced Level	dLegend	Depth (Thick- ness)			DESC	RIPTION			Geology	, ,
						0.20	Concrete	with 7mm	diameter re	bar at 0.10	Om.			K
0.30	D					0.40		ROUND: Br and chert g		lly SAND.	Gravel is bi	rick,		*
0.30 0.50	ES D					-	Dark grey	fine SAND).	ENADED)				
0.50	ES					- (0.40) - 0.80	(KEMPTC	IN PARK G	BRAVEL M	EMBEK)				
						-			n fine SAN BRAVEL M					
1.00		N25				- (0.00)	(1121111111), O (V II)	LINDLIN				
1.20 1.20	D ES					- (0.80) -								
0						1.60								
					000	-			nse brown are rounde		avelly fine S	AND.]
1.80 1.80	D ES				80	_	(KEMPTC	N PARK G	RAVEL M	EMBER)				
2.00 2.00	В	N28			I	-								
					0.0	-								
					8 0	-								
					0 0	(2.10)								
					0	-								
3.00 3.00	ES	N38			0 0	-								
						-								
					ô	- 0.70								
					0 0	3.70				vith gravel	and cobble	es of		-
					000	-		ed to round N PARK G	led chert. BRAVEL M	EMBER)				
4.00 4.00	В	N34			0.0	-								
					0.0	-								
					0 0	-								
					0.0	- -								
5.00	ES				0.0	-								
5.00		N42			0 0	-								
					8 0	-								
Borir	ng Progr	ess and						Chisellin	g	Water	Added	GENE		
Date	Time	Depth	D	Casin epth [ig Dia. mm	Water Dpt	From	То	Hours	From	То	REMA		
												Groundwater s 2.2m. No sign *No recovery i at 9.5m.	ificant	ro
All dimens	sions in m	etres C	lient	Richi	mond H	ousing	Meti		able per			Logged By		_

Project				BOREHOLE No									
Sheldon House	Sheldon House, Cromwell Road, Teddington, TW11 9EJ												
Job No	Date 30-06-22	Ground Level (m)	Co-Ordinates ()	CP01									
P4301	05-07-22												
Contractor	Sheet												
Agb Environme	2 of 5												

SAMPLI	ES & TI	ESTS	ŀ					STRA	ATA				_ >	ent
Depth	Type No	Test Result	Water	Reduced Level	dLegend	ness)			DESC	RIPTION			Geology	Instrument/
					0,00000	(3.60) - - - - - -	subround	ed to round	um SAND v ded chert. GRAVEL M	_				
6.50		N45			0 0	- - -								
7.00 7.00	B ES				0,000	- - - 7.30								-
7.30	В					- - - -	Firm to sti (LONDON	ff grey CL/ I CLAY FC	AY. DRMATION)				
8.00 8.00	D	N21				- - - - (2.20)								
9.00	D					- - -								
9.50	U*					9.50	CLAYSTO (LONDON		PRMATION)				=
10.50	U					10.40	Stiff to ve of claysto	ry stiff grey ne.(LOND)	/ CLAY with ON CLAY F	n occasion FORMATIC	al patches)N)			
Borin	g Progr	ess and						Chisellin	g	Water	Added	GEN	IERAL	
Date	Time	Depth	D	Casir epth [ng Dia. mm	Water Dpt	From	То	Hours	From	То	REM	IARKS	
												Groundwate 2.2m. No sig *No recover at 9.5m.	nificant	roc
All dimens	ions in m 1:34.375		lient	Richi	mond H nership	ousing	Met	hod/ nt Used C	Lable per		<u> </u>	Logged By	HG	

POPEHOLE LOG

ENVIRONMENIAL						D	OKEHULE	LUG			
Project									BOREH	OLE	No
Shel	don Ho	ouse, C	rom	well Roa	ad, Ted	ldington,	TW11 9EJ		CD	04	
Job No		Dat	te 3	0-06-22		Ground L	evel (m)	Co-Ordinates ()	СР	UI	
P4301			05-07-22								
Contractor		•							Sheet		
Agb	Enviro	nmenta	l Ltc	<u>t</u>					3 of 5		
SAMPLES & TESTS								_	ent/		
Depth	Type No	Test Result	Water	Reduced Level		Depth (Thick- ness)		DESCRIPTION		Geology	Instrument Backfill

9										
SAMPLE	S & TI	ESTS					STRATA		>	ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION		Geology	Instrument/ Backfill
11.00	D						Stiff to very stiff grey CLAY with occasional patches of claystone.(LONDON CLAY FORMATION) (continued)			
- 12.00 - 12.00	ES	N25				-				
13.00	D									
14.00	U					- - - - - -				
14.50	D					- - - - -				
15.00 15.00	D ES					- - - -				
15.50 Boring		N26								
Boring			W	ater Ob	servat	ions	Chiselling Water Added	GENEI REMAI	RAL	
Date	Time	Depth		Casin	g	Water	From To Hours From To	REMAI	RKS	

GB1.GDT 25/7/22	- - - - -					- - - -									
٩	Bori	ng Progi	ress ar	nd Water (Observati	ions		Chisel	ling]	Water	Added	GENE	RAL	
V2.GPJ	Date	Time	Depth	Ca Depth	sing Dia. mm	Water Dpt	From	То		Hours	From	То	REMA	RKS	
(BH P4301 SHELDON HOUSE.													Groundwater s 2.2m. No signi *No recovery in at 9.5m.	ficant r	oots.
AGS3 UK	All dimer Sca	ousing		ethod/ ant Used	Ca	able perd	cussive ri	9	Logged By HG	}					

Project	Project							
Sheldon House	e, Cromwell Road, Te	ddington, TW11 9EJ		CP01				
Job No	CPUI							
P4301	30-06-22 05-07-22							
Contractor	Sheet							
Agb Environme	4 of 5							

Agb	Enviro	nmental	Ltd								4	of 5	
SAMPLE	S & TI	ESTS					STRA	TA			<u> </u>	\top	ent/
Depth	Type No	Test Result	Reduce Level	edLegend	Depth (Thick- ness)				RIPTION			Geology	Instrument/ Backfill
17.00	U					Stiff to very of claystone (continued)	stiff grey .(LONDC	CLAY with	occasiona ORMATIC	al patches N)			
. 18.00 . 18.00	D ES				- (14.60)								
19.50		N31											
21.00 21.00 21.00 21.00	D ES U												
Boring	Proar	ess and	I Water C	bservat	ions	CI	hiselling	1	Water	Added	GEN	ERAL	=
	Time	Depth	Cas	ing Dia. mm	Water	From	То	Hours	From	То	REM	ARKS	

GB1.GDT 25/7/22						-								
GPJ A	Bori	ng Progi	ess and	d Water C	Observati	ions		Chisellin	g	Water	Added	GENE	RAL	
V2.G	Date	Time	Depth	Cas Depth	sing Dia. mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	
(BH P4301 SHELDON HOUSE.				·		·						Groundwater s 2.2m. No signi *No recovery ii at 9.5m.	ficant ro	oots.
AGS3 UK		All dimensions in metres Scale 1:34.375 Client Richmond Housing Partnership						hod/ nt Used C	able per	cussive ri	g	Logged By HO	}	

Logged By HG All dimensions in metres Scale 1:34.375 Richmond Housing Partnership

Project	BOREHOLE No									
Sheldon House	Sheldon House, Cromwell Road, Teddington, TW11 9EJ Job No Date as as a Ground Level (m) Co-Ordinates ()									
Job No	CP01									
P4301	05-07-22									
Contractor	Sheet									
Agb Environme	5 of 5									

Contractor		· · · · · · · · · · · · · · · · · · ·						I				Sheet		
Agb	Enviro	nmental	Ltd									5 o	f 5	
SAMPLE	S & TI	ESTS	<u>.</u>					STRA	TA				>	ent/
Depth	Type No	Test Result	Water	Reduce Level	dLegend	Depth (Thick- ness)				RIPTION			Geology	Instrument/ Backfill
22.50		N35				-	Stiff to ver of claystor (continued	y stiff grey ie.(LONDC)	CLAY with	i occasiona ORMATIC	al patches N)			
24.00 24.00 24.00 24.00	D ES U	N41				25.00								
						-								
Boring	g Progr	ess and	I Wa	ater O	bservat	- - - - - - - ions		Chiselling	<u> </u>	Water	Added	GENE		
	Time	Depth	De	Casi epth	ng Dia. mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	
												Groundwater s 2.2m. No signit *No recovery ir at 9.5m.	eepag ficant i	e at roots. mple

AGS3 UK BH P4301 SHELDON HOUSE V2.GPJ AGB1.GDT 25/7/22

All dimensions in metres Scale 1:34.375 Client Richmond Housing Partnership

Method/
Plant Used Cable percussive rig Logged By
HG

Project				BOREHOLE No
Sheldon House	e, Cromwell Road, Ted	ddington, TW11 9EJ		TP01
Job No	Date	Ground Level (m)	Co-Ordinates ()	IPUI
P4301	29-06-22			
Contractor				Sheet
Agb Environme	1 of 1			

SAMPLE	ES & TI	ESTS	ē						STRA	TA				<u>~</u>	Jent
Depth	Type No	Test Result	Water	Reduced Level	dLegend	Depth (Thick- ness)				DESC	RIPTION			Geology	Instrument/
0.20 0.20	DS ES					(0.40)						sandy SILT crete cobbl			
0.20						-	rounde	ed ch	nert grave	AND. Sand I. Occasion BRAVEL M	al pockets	are subrour of silt.	nded to		
0.80 0.80	DS ES					(0.90)									
1.40	DS				0	1.30	subrou	unde	d chert.	•		s fine. Grav	vel is		
1.40	ES				0000	- - (0 40)				RAVEL M		Sand is fine	to medium.	1	
1.70	DS				0000	1.90	Grave (KEMF	l is m PTON	nedium to N PARK G	coarse sub RAVEL M	oangular to EMBER)	subrounde	ed chert.		
2.00 2.00	DS ES					- (0.60)	to med	dium. ntrate	. Gravel is ed into ler	subangula	ar to subro	velly SAND unded cher	D. Sand is fine t. Silt is		
					0	2.50						angular to r			
2.60 2.60	DS ES				0	(0.50)				medium. (GRAVEL M		I chert cobb	oles.		
2.90 2.90	DS ES					3.00									+
Borine	a Proar	ess and	l Wa	ater Ob	servat	ions	П	<u> </u>	Chisellin	<u> </u>	Water	Added	GENE	RAI	<u></u>
Date	Time	Depth		Casir epth [Water Dpt	Froi		То	Hours	From	То	REMA		
													Groundwater encountered. to 1.5m. Dry s	Rare r	
All dimensi	ione in m	etres C	lient	Richi	mond H	loueina		Metho	od/				Logged By		

Project				BOREHOLE No
Sheldon House	e, Cromwell Road, Ted	ddington, TW11 9EJ		TP02
Job No	Date	Ground Level (m)	Co-Ordinates ()	1702
P4301	29-06-22			
Contractor				Sheet
Agb Environme	1 of 1			

SAMPLI	ES & TI	ESTS	ər						STRA	ΛTA				ly	ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)				DESC	RIPTION			Geology	Instrument/
0.20	DS					(0.30) 0.30	MADE	GRC	OUND: da	ark brown s	ilty SAND.				
0.20	ES					(0.30) 0.60	Brown gravel.	sligh (KEN	tly silty S IPTON F	AND. San PARK GRA	d is fine. O	ccasional c BER)	hert		
0.80 0.80	DS ES					- - - (0.60) -	rounde	d ch	ert.	lly slightly s	•	Gravel is s	subangular to		
1.20 1.20	DS ES					1.20	subrou	nded	l chert.	D. Sand is		el is subanç	gular to		
					0	1.80						nedium. Gi			
2.00 2.00	DS ES				0 0 0	2.00	\(KEMP	TON	PARK C	RAVEL M	EMBER)	AND. Sand	es. is medium to		
2.00	500				0	(0.70)				BRAVEL M					
2.60 2.60 2.90 2.90	DS ES DS ES				0 0 0	2.70 - - (0.40) - - 3.10	Gravel	is su	ıbangulai	yey gravell to rounde GRAVEL M	d chert.	and is med	ium to coarse.		
						- - - - -									
						- - - -									
						- - - -									
		ess and					<u> </u>		hisellin -	ĭ		Added	GENE		
Date	Time	Depth	D	Casin epth E	iy Dia. mm	Water Dpt	Fron	n	То	Hours	From	То	REMA Groundwater r encountered. I to 2.0m. Dry so	not Rare r	oots
All dimens	ions in m	etres C	lient	Richr	mond H	ousing	<u> </u>	/letho	od/				Logged By		_

Project				BOREHOLE No
Sheldon House	e, Cromwell Road, Ted	ddington, TW11 9EJ		TD02
Job No	Date	Ground Level (m)	Co-Ordinates ()	TP03
P4301	29-06-22			
Contractor				Sheet
Agb Environme	1 of 1			

Contractor							Sheet		
Agb Envi	ronmenta	I Ltd	1				1 0	of 1	
SAMPLES &	TESTS	ير				STRATA		>	ent/
Depth Typ		Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION		Geology	Instrument/
0.20 DS					(0.30) 0.30	MADE GROUND: dark brown slightly gravelly sandy SIL Occasional concrete cobbles. Sand is fine. Gravel is cor chert with occasional glass and brick.	T. ocrete and		
0.20 ES					(0.70)	Brown SAND with minor silt lenses. Sand is fine. (KEMPTON PARK GRAVEL MEMBER)			
0.80 DS .0.80 ES				× ×	1.00	Very stiff yellowish brown sandy silty CLAY. Sand is fine	Rare		
1.30 DS				×> ×> ×>	(0.40)	gravel is medium to coarse subangular to subrounded chert.	. rturo		
1.30 ES				0	- - (0.60)	Brown gravelly to very gravelly SAND. Sand is fine to me Gravel is medium to coarse chert. (KEMPTON PARK GRAVEL MEMBER)	edium.		
1.90 DS 1.90 ES				0	2.00	Yellowish brown gravelly SAND. Sand is fine. Gravel is r	nedium to		-
2.30 DS					(0.50) 2.50	coarse chert. (KEMPTON PARK GRAVEL MEMBER)			
2.60 DS 2.60 ES				0	(0.50)	Brown very gravelly SAND. Sand is fine to medium. Gramedium to coarse chert. Occasional lenses of firm grey a brown mottled slightly sandy gravelly CLAY; sand is fine is chert. (KEMPTON PARK GRAVEL MEMBER)	and		
					-				
					- - - -				
					-				
					- - -				
Daring Dro	aroos on	7 / / /	ator Ob	oon (ot	iono	Chiselling Water Added			
Boring Pro	Depth		Casin Depth D		Water Dpt	Chiselling Water Added From To Hours From To	GENE REMA		
THIE	Берит		pepth D	ola. mm	<u>Dpt</u>	Gi	roundwater r ncountered. I 2.0m. Dry so	not Rare re	
All dimensions in Scale 1:34.3		lient		nond H ership	lousing	Method/ Plant Used Excavator	ogged By HO		=

EHTIKOHMEHIAE						D	OKEHOL	LUG				
Project										BOREH	OLE	No
Shel	don Ho	ouse, C	rom	well Roa	ad, Ted	ldington,	TW11 9EJ			\A/C	-Λ4	
Job No		Dat	te			Ground L	evel (m)	Co-Ordi	nates ()	WS	UT	
P43	01		2	8-06-22								
Contractor					,					Sheet		
Agb	Enviro	nmenta	I Ltd	l						1 o	f 1	
SAMPLE	S & TE	ESTS	ڀ					STRAT	A			ent/
Depth	Type No	Test Result	Water	Reduced	Legend	Depth (Thick- ness)			DESCRIPTION		Seology	nstrument 3ackfill

Ag	gb Enviro	nmenta	l Ltd	1 of					of 1					
SAMPI	LES & T	ESTS						STRA	TA				_	ut/
Depth	Type No	Test Result	Water	Reduce Level	edLegend	ness)			DESCF	RIPTION			Geology	Instrument/ Backfill
					0 4 1 0		Concrete v	with 7mm c	liameter re	bar at 0.10)m.			
+					P 6 1 P	0.20	(001101010					/		
0.30	DS1					0.35						and the description		-
0.30	ES1 DS2				-	0.50	MADE GR	with pocke	nse dark g ts of reworl	rey gravell ked brown	y SAND. Grav sandv silt.	vei is drick /		-
0.50	ES2				×		MADE GR	OUND: de		gravelly S	AND. Gravel	is brick,		
1.00	DS3				× · · · ·	(0.60)	gravel.(KE		and is fine. ARK GRA\					
1.00 1.20	ES3	N26			× ×	1.20	Dense bro	wn silty SA	ND. Sand ARK GRA	is fine. Oc	casional cher	t		
1.00	DC4				× ° 0 0 0	1.50	Very dens				SAND. Sand	is fine.		
1.60 1.60 1.80	DS4 ES4	N53			000	1.80	Gravel is subrounde (KEMPTO		RAVEL ME	EMBER)				
-						-	`			,				
-														
-						-								
- - -						-								
-						-								
-						-								
- - -						-								
-						-								
-						-								
- - -						-								
-						-								
- -						-								
-														
Bori Date					1	<u> </u>	П							
Bori	ng Progr						1	Chiselling		Water		GENE		
Date	Time	Depth	D	epth	ng Dia. mm	Water Dpt	From	То	Hours	From	To	REMA Froundwater r		
											e	ncountered. I 1.8m. Refus	Rare ro	
All dimer	nsions in m	etres C	lient	Rich	mond F	Housing	Meth	od/			. L	ogged By		

AGS3 UK BH P4301 SHELDON HOUSE, V2. GPJ AGB1. GDT 25/7/22

All dimensions in metres Scale 1:34.375 Client Richmond Housing Partnership Method/ Plant Used Dynamic sampling rig Logged By HG

Project	BOREHOLE No			
Sheldon House	WS02			
Job No	Date	Ground Level (m)	Co-Ordinates ()	VV3U2
P4301	28-06-22			
Contractor	Sheet			
Agb Environme	1 of 1			

SAMPLE	ES & TI	ESTS	<u>.</u> —				STRA	TA				<u>></u>
Depth	Type No	Test Result		ducedLegen evel	Depth (Thick- ness)			DESC	RIPTION			Geology
0.20 0.20 0.50 0.50	DS1 ES1 DS2 ES2				(0.30) 0.30 (0.30) 0.60	Sand is with occ chert colors fine. Colors fine.	fine. Gravel asional fine obles. GROUND: br Gravel is che	is medium clinker and rownish gre rt and cond	subangula medium w ey slightly s crete with c	r to subrou white porce	y SAND. Sand	
1.00 1.00 1.20	DS3 ES3	N19		× · · · × · · · · · · · · · · · · · · ·	(0.50)	\(KEMPT Yellowis (KEMPT	lowish browi ON PARK G h brown slig ON PARK G	GRAVEL M htly silty SA GRAVEL M	EMBER) AND. Sand EMBER)			
1.40 1.40	DS4 ES4			× × × × × × × × × × × × × × × × × × ×	(0.40)	sandy si chert. O (KEMPT	ccasional su ON PARK C	ravel is fine bhorizonta SRAVEL M	to coarse I dark brow EMBER)	angular ar n staining	nd subangular	
1.80 1.80 2.00	DS5 ES5	N52		0, 10	1.90	is chert. (KEMPT Very der recovere	ON PARK Conse brown said fractured. ON PARK CON PARK CON	GRAVEL M andy GRA\ Sand is fir	EMBER) /EL. Grave le to mediu	el is chert,	edium. Gravel	
					-							
Borin	g Progr	ess and		r Observa			Chisellin	g	Water	Added	GENE	
Date	Time	Depth	Depth	Casing n Dia. mm	Water Dpt	From	То	Hours	From	То	REMA	RKS
											Groundwater n encountered. F to 1.9m. Refus	Rare r

Project	BOREHOLE No				
Sheldon House	WS03				
Job No	Date Ground Level (m) Co-Ordinates ()				
P4301	28-06-22				
Contractor	Sheet				
Agb Environme	1 of 1				

Contractor												Sheet		
Agb	Enviro	nmental	Ltd									1 o	f 1	
SAMPLE	ES & TI	ESTS	-					STRA	TA					ant/
Depth	Type No	Test Result	Water	Reduce Level	dLegend	Depth (Thick- ness)				RIPTION			Geology	Instrument/ Backfill
0.30 0.30	DS1 ES1					- - (0.60) - 0.60	Gravel is g metal wire concrete c	lass fragm and lumps obbles.	ents, glass s, red brick	s bottles, po and red c	elly slightly sa orcelain fragn hert. Occaiso	nents, nal		
0.80	DS2 ES2				× · · · · · · · · · · · · · · · · · · ·	- (0.60)	(KEMPTO	ense yellov N PARK G	vish brown RAVEL ME	sandy SIL EMBER, P	T. Sand is fin OSSIBLY RE	worked)		
1.20 1.20 1.20 1.30	DS3 ES3	N33 N60			8 . 8	1.20 1.30	Very dense Gravel is o (KEMPTO	hert, recov	ered fragn	nented.	RAVEL. Sand	d is fine.		
-						-								
						-								
						- - - -								
						- - - -								
						- - -								
-						- - - -								
						-								
Boring	g Progr	ess and	Wa	ater O	bservat	ions		Chiselling	3	Water	Added	GENE	RAL	
	Time	Depth			ng Dia. mm	Water Dpt	From	То	Hours	From	То	REMA	RKS	
											e	Groundwater nencountered. No ignificant root it 1.3m.	lo	usal

AGS3 UK BH P4301 SHELDON HOUSE.V2.GPJ AGB1.GDT 25/7/22

All dimensions in metres Scale 1:34.375 Client Richmond Housing Partnership

Method/
Plant Used Dynamic sampling rig

Logged By
HG

Project	BOREHOLE No			
Sheldon House	WS04			
Job No	Date	Ground Level (m)	Co-Ordinates ()	VV3U4
P4301	28-06-22			
Contractor	Sheet			
Agb Environme	1 of 1			

SAMPLE	S & TE	ESTS	<u>.</u>		1			STRA	TA				≥
Depth	Type No	Test Result	Water	Reduced Level		ness)			DESCI	RIPTION			Geology
						0.06		paving slat) .				
. 05	D04					0.20 0.30	\oun. oc			ND 101	241/51 0	/	
).25).25	DS1 ES1				×	- 0.00	VINADE G	ROUND: ha		ND and GI	RAVEL. Gra	avel is	
0.50	DS2				×			ery silty SAN		fine.			
0.50	ES2				×	(0.75)	(KEMPT	ON PÅRK G	RAVEL M	EMBER)			
					×								
1.00	Des				×	1.05							
1.00 1.00	DS3 ES3				0000		Medium	dense off-w	hite and cr	eam slightl	y gravelly to	gravelly	
1.10	D04	N21			0000	1.30	SAND. S KEMPT \	and is fine. ON PARK G	Graver is d	nen, recov EMBER)	ered fractu	rea.	
1.20 1.20	DS4 ES4						Very der	se yellowish	n brown gra	avelly SAN	D, becomin	g very	
					0	(0.60)	gravelly	at 1.5m. Sar .(KEMPTON	N PARK G	Gravel is ch	nert, recove	red	
						4 00	naotaree	.(INEIVII TOI	1174410	O (VEE IVIE	IVIDEI()		
1.80 1.80	DS5 ES5					1.90							-
1.90		N55				-							
						-							
						-							
						-							
						_							
						-							
						_							
						-							
						-							
						_							
						_							
						-							
						-							
						_							
						-							
						_							
							П			T	1		
		ess and						Chiselling	ī —	Water	Added	GENE	
Date	Time	Depth	D	Casin epth D	g)ia. mm	Water Dpt	From	То	Hours	From	То	REMA	RKS
					<u> </u>							Groundwater n	
												encountered. It significant root	
				1		l						at 1.9m.	
							ll						

Report No: 8152-1 Report Date: 29/06/2022

Client: AGB Environment Ltd Address: Copley Hill Business Park

> Babraham Road Cambridge CB22 3GN

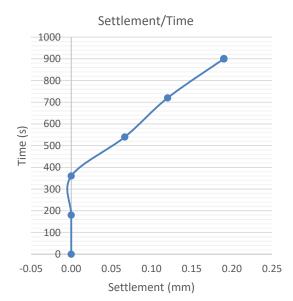
Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

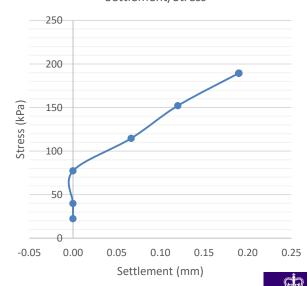
Test Location: CBR 01 Date of Test: 29/06/2022
Description: Concrete Reaction Load: 8 Tonne JCB

Material Class: Pile Mat Weather: Wet Layer: Ground Level Plate Diameter (mm): 452

Condition: The results apply only to the location tested and the material was tested in an 'as found' condition


Test Results

Deviation: Settlement of ≥1.25mm was not achieved so reported CBR is calculated at the maximum plate stress


Time, s	Settlement, mm	Plate Stress, kPa			
0	0.00	22			
180	0.00	40			
360	0.00	77			
540	0.07	115			
720	0.12	152			
900	0.19	189			

Maximum Applied Stress (kPa):	189
Maximum Settlement (mm):	0.19
Equivalent CBR Value (%):	>26
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m²/m):	95

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Issued subject to Hixtra Terms and Conditions available at www.hixtra.com HU-SOI-01E Issue 3

Report No: 8152-2 Report Date: 29/06/2022

Client: AGB Environment Ltd Address: Copley Hill Business Park

> Babraham Road Cambridge CB22 3GN

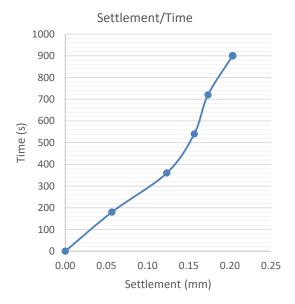
Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

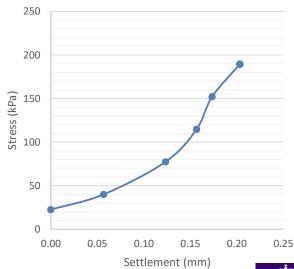
Test Location: CBR 02 Date of Test: 29/06/2022
Description: Concrete Reaction Load: 8 Tonne JCB

Material Class: Pile Mat Weather: Wet Layer: Ground Level Plate Diameter (mm): 452

Condition: The results apply only to the location tested and the material was tested in an 'as found' condition


Test Results

Deviation: Settlement of ≥1.25mm was not achieved so reported CBR is calculated at the maximum plate stress


Time, s	Settlement, mm	Plate Stress, kPa			
0	0.00	22			
180	0.06	40			
360	0.12	77			
540	0.16	115			
720	0.17	152			
900	0.20	189			

Maximum Applied Stress (kPa):	189
Maximum Settlement (mm):	0.20
Equivalent CBR Value (%):	>26
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	95

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Issued subject to Hixtra Terms and Conditions available at www.hixtra.com HU-SOI-01E Issue 3

Report No: 8152-3 Report Date: 29/06/2022

Client: AGB Environment Ltd Address: Copley Hill Business Park

> Babraham Road Cambridge CB22 3GN

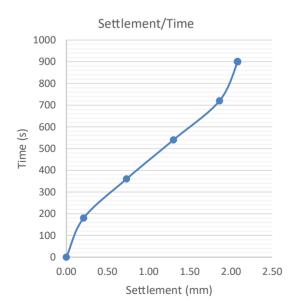
Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

Test Location: CBR 03 Date of Test: 29/06/2022
Description: Block Paving Reaction Load: 8 Tonne JCB

Material Class: Pile Mat Weather: Wet
Layer: Ground Level Plate Diameter (mm): 452

Condition: The results apply only to the location tested and the material was tested in an 'as found' condition


Test Results

Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	22
180	0.21	40
360	0.73	77
540	1.30	115
720	1.86	152
900	2 08	189

Maximum Applied Stress (kPa):	189
Maximum Settlement (mm):	2.08
Equivalent CBR Value (%):	10
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	56

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

250 200 200 150 50 0 0,00 0.50 1.00 1.50 2.00 2.50

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Issued subject to Hixtra Terms and Conditions available at www.hixtra.com HU-SOI-01E Issue 3

Settlement (mm)

Report No: 8152-4 Report Date: 29/06/2022

Client: AGB Environment Ltd Address: Copley Hill Business Park

> Babraham Road Cambridge CB22 3GN

Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

Test Location: CBR 04 Date of Test: 29/06/2022
Description: Top Soil Reaction Load: 8 Tonne JCB

Material Class: Pile Mat Weather: Wet
Layer: 0.2m BGL Plate Diameter (mm): 452

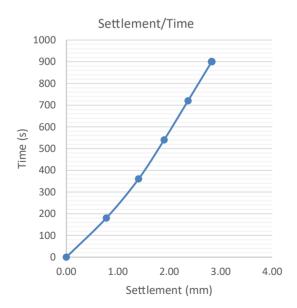
Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

250

0

0.00

1.00


Test Results

Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	12
180	0.78	40
360	1.40	77
540	1.90	115
720	2.36	152
900	2 82	189

Maximum Applied Stress (kPa):	189
Maximum Settlement (mm):	2.82
Equivalent CBR Value (%):	4
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	34

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

200 (R) 150 (K) 150

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Issued subject to Hixtra Terms and Conditions available at www.hixtra.com HU-SOI-01E Issue 3

2.00

Settlement (mm)

3.00

4.00

Report No: 8152-5 Report Date: 29/06/2022

Client: AGB Environment Ltd Address: Copley Hill Business Park

> Babraham Road Cambridge CB22 3GN

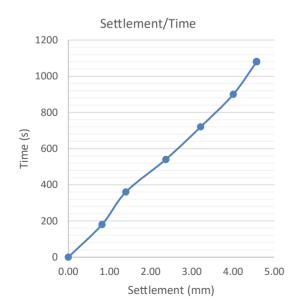
Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

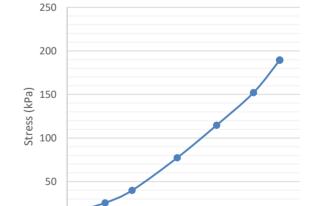
Test Details

Test Location: CBR 05 Date of Test: 29/06/2022
Description: Top Soil Reaction Load: 8 Tonne JCB

Material Class: Pile Mat Weather: Wet
Layer: 0.2m BGL Plate Diameter (mm): 452

Condition: The results apply only to the location tested and the material was tested in an 'as found' condition


Test Results


Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	12
180	0.82	26
360	1.40	40
540	2.37	77
720	3.21	115
900	4.01	152
1080	4.57	189

Maximum Applied Stress (kPa):	189
Maximum Settlement (mm):	4.57
Equivalent CBR Value (%):	1
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m²/m):	18

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

2.00

Settlement (mm)

3.00

4.00

5.00

n

0.00

1.00

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Issued subject to Hixtra Terms and Conditions available at www.hixtra.com HU-SOI-01E Issue 3

Certificate for the Determination of the Vertical Deformation and Strength Characteristics of Soil by the Incremental Plate Loading Test to BS 1377 Part 9: 1990

Report No: 8152-5 Report Date: 29/06/2022

Client: AGB Environment Ltd Address: Copley Hill Business Park

> Babraham Road Cambridge CB22 3GN

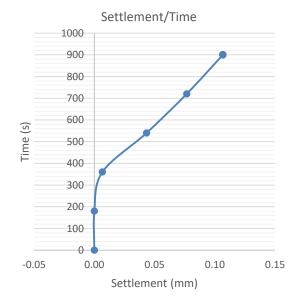
Site: Sheldon House, Cromwell Rd, Teddington, TW11 9EJ

Test Details

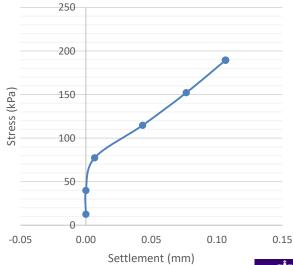
Test Location: CBR 06 Date of Test: 29/06/2022
Description: Concrete Reaction Load: 8 Tonne JCB

Material Class: Pile Mat Weather: Wet Layer: 0.2m BGL Plate Diameter (mm): 452

Condition: The results apply only to the location tested and the material was tested in an 'as found' condition


Test Results

Deviation: Settlement of ≥1.25mm was not achieved so reported CBR is calculated at the maximum plate stress


Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	12
180	0.00	40
360	0.01	77
540	0.04	115
720	0.08	152
900	0.11	189

Maximum Applied Stress (kPa):	189
Maximum Settlement (mm):	0.11
Equivalent CBR Value (%):	>26
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	95

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Kevin Shorthouse Authorised signatory

Issued subject to Hixtra Terms and Conditions available at www.hixtra.com HU-SOI-01E Issue 3

Appendix 3 Monitoring Results

Site name / location:	Sheldon House, Cromwell Road, Teddington, TW11 9EJ		
Installation ref.:	CP01		
Date:	11/07/2022		
Engineer:	нд		

Weather / temp: Air pressure high and falling. 28 C, sunny.

PID Monitoring

	Reading		Reading
	ppm		ppm
Ambient	0.0	+3m	0.0
+10s	0.0	+4m	-
+30s	0.0	+5m	-
+1m	0.0	+6m	-
+1m 30s	0.0	+7m	-
+2m	0.0	+8m	-
		Мах	0.0

Flow Rate

	Reading		
	l/hr		
+10s	0.0		
+30s	0.0		
+1m	0.0		
+1m 30s	0.0		
+2m	0.0		
Мах	0.0		

Gas Monitoring

	CO2	CH4	O2	со	H2S	Pressure	Comments
	%	%	%	ppm	ppm	mb	
+10s	2.9	0.0	16.3	4	3	1022	
+30s	2.9	0.0	13.3	4	3	1022	
+1m	2.9	0.0	13.2	4	4	1022	
+1m 30s	3.0	0.0	13.2	4	3	1022	
+2m	3.0	0.0	13.2	4	4	1022	
+2m 30s	3.1	0.0	13.2	4	4	1022	
+3m	3.1	0.0	13.2	3	4	1022	
+3m 30s	3.2	0.0	13.2	3	4	1022	
+4m	3.3	0.0	13.3	3	4	1022	
+4m 30s	3.3	0.0	13.3	3	3	1022	
+5m	3.4	0.0	13.3	3	3	1022	
Min	2.9	0.0	13.2	3	3	-	
Max	3.4	0.0	16.3	4	4	-	

Groundwater

	_
Water Depth (m)	4.13
Well Depth (m)	10.13
Sample:	CP01, MON1, 4.15m
Comment:	-

Site name / location:	Sheldon House, Cromwell Road, Teddington, TW11 9EJ		
Installation ref.:	WS02		
Date:	11/07/2022		
Engineer:	HG		

Weather / temp: Air pressure high and falling. 27 C, sunny.

PID Monitoring

	Reading		Reading
	ppm		ppm
Ambient	0.0	+3m	0.0
+10s	0.0	+4m	-
+30s	0.0	+5m	-
+1m	0.0	+6m	-
+1m 30s	0.0	+7m	-
+2m	0.0	+8m	-
		Мах	0.0

Flow Rate

	Reading		
	l/hr		
+10s	0.0		
+30s	0.0		
+1m	0.0		
+1m 30s	0.0		
+2m	0.0		
Мах	0.0		

Gas Monitoring

	CO2	CH4	O2	со	H2S	Pressure	Comments
	%	%	%	ppm	ppm	mb	
+10s	2.2	0.0	19.6	2	1	1023	
+30s	2.1	0.0	18.9	1	1	1023	
+1m	2.1	0.0	19.0	1	2	1023	
+1m 30s	1.9	0.0	19.1	1	1	1023	
+2m	1.8	0.0	19.2	1	2	1023	
+2m 30s	1.7	0.0	19.3	1	2	1023	
+3m	1.6	0.0	19.3	1	2	1023	
+3m 30s	1.5	0.0	19.4	1	2	1023	
+4m	1.4	0.0	19.5	1	2	1023	
+4m 30s	1.3	0.0	19.5	1	2	1023	
+5m	1.3	0.0	19.6	1	2	1023	
Min	1.3	0.0	18.9	1	1	-	
Max	2.2	0.0	19.6	2	2	-	

Groundwater

Water Depth (m)

Well Depth (m)

Sample:

Comment:

Dry

1.96

-

Site name / location:	Sheldon House, Cromwell Road, Teddington, TW11 9EJ		
Installation ref.:	WS04		
Date:	11/07/2022		
Engineer:	нд		

Weather / temp: Air pressure high and falling. 27 C, sunny.

PID Monitoring

	Reading		Reading
	ppm		ppm
Ambient	0.0	+3m	0.0
+10s	0.0	+4m	-
+30s	0.0	+5m	-
+1m	0.0	+6m	-
+1m 30s	0.0	+7m	-
+2m	0.0	+8m	-
		Мах	0.0

Flow Rate

	Reading
	l/hr
+10s	0.0
+30s	0.0
+1m	0.0
+1m 30s	0.0
+2m	0.0
Мах	0.0

Gas Monitoring

	CO2	CH4	O2	со	H2S	Pressure	Comments
	%	%	%	ppm	ppm	mb	
+10s	3.3	0.0	19.3	1	2	1023	
+30s	3.3	0.0	17.7	1	2	1023	
+1m	3.2	0.0	17.7	1	2	1023	
+1m 30s	3.2	0.0	17.8	1	2	1023	
+2m	3.0	0.0	17.8	1	2	1023	
+2m 30s	2.8	0.0	18.0	1	1	1023	
+3m	2.7	0.0	18.1	1	2	1023	
+3m 30s	2.5	0.0	18.2	1	2	1023	
+4m	2.4	0.0	18.3	1	2	1023	
+4m 30s	2.2	0.0	18.4	1	2	1023	
+5m	2.2	0.0	18.4	1	2	1023	
Min	2.2	0.0	17.7	1	1	-	
Мах	3.3	0.0	19.3	1	2	-	

Groundwater

Comment:

Water Depth (m) Well Depth (m) Sample:

Dry		
1.98		
-		
-		

Site name / location:	Sheldon House, Cromwell Road, Teddington, TW11 9EJ	
Installation ref.:	CP01	
Date:	21/07/2022	
Engineer:	NM	

Weather / temp: Air pressure high and falling

PID Monitoring

	Reading		Reading	
	ppm		ppm	
Ambient	0.0	+3m	0.0	
+10s	0.0	+4m	-	
+30s	0.0	+5m	-	
+1m	0.0	+6m	-	
+1m 30s	0.0	+7m	-	
+2m	0.0	+8m	-	
		Мах	0.0	

Flow Rate

	Reading
	l/hr
+10s	0.0
+30s	0.0
+1m	0.0
+1m 30s	0.0
+2m	0.0
Мах	0.0

Gas Monitoring

	CO2	CH4	O2	со	H2S	Pressure	Comments
	%	%	%	ppm	ppm	mb	
+10s	5.0	0.0	14.2	2	3	1022	
+30s	5.1	0.0	13.3	2	3	1022	
+1m	5.1	0.0	13.2	2	3	1022	
+1m 30s	5.1	0.0	13.2	2	3	1022	
+2m	5.1	0.0	13.2	2	3	1022	
+2m 30s	5.1	0.0	13.2	2	3	1022	
+3m	5.1	0.0	13.2	2	3	1022	
+3m 30s	5.1	0.0	13.2	2	3	1022	
+4m	5.1	0.0	13.2	2	3	1022	
+4m 30s	5.1	0.0	13.2	2	3	1022	
+5m	5.1	0.0	13.2	2	3	1022	
Min	5.0	0.0	13.2	2	3	-	
Мах	5.1	0.0	14.2	2	3	-	

Groundwater

	_
Water Depth (m)	4.19m
Well Depth (m)	10.12m
Sample:	CP01, MON2, 4.20m
Comment:	-

Site name / location:	Sheldon House, Cromwell Road, Teddington, TW11 9EJ	
Installation ref.:	WS02	
Date:	21/07/2022	
Engineer:	NM	

Weather / temp: Air pressure high and falling

PID Monitoring

	Reading		Reading
	ppm		ppm
Ambient	0.0	+3m	0.0
+10s	0.0	+4m	-
+30s	0.0	+5m	-
+1m	0.0	+6m	-
+1m 30s	0.0	+7m	-
+2m	0.0	+8m	-
		Мах	0.0

Flow Rate

	Reading
	l/hr
+10s	0.0
+30s	0.0
+1m	0.0
+1m 30s	0.0
+2m	0.0
Мах	0.0

Gas Monitoring

	CO2	CH4	O2	со	H2S	Pressure	Comments
	%	%	%	ppm	ppm	mb	
+10s	2.1	0.0	19.3	1	2	1021	
+30s	2.1	0.0	19.3	1	2	1021	
+1m	2.1	0.0	19.2	1	2	1021	
+1m 30s	2.1	0.0	19.2	1	2	1021	
+2m	2.1	0.0	19.3	1	2	1021	
+2m 30s	2.1	0.0	19.3	1	2	1021	
+3m	1.8	0.0	19.3	1	2	1021	
+3m 30s	1.8	0.0	19.3	1	2	1021	
+4m	1.8	0.0	19.4	1	2	1021	
+4m 30s	1.6	0.0	19.4	1	2	1021	
+5m	1.5	0.0	19.6	1	2	1021	
Min	1.5	0.0	19.2	1	2	-	
Max	2.1	0.0	19.6	1	2	-	

<u>Groundwater</u>

Water Depth (m)

Well Depth (m)

Sample:

Comment:

Dry

1.96

-

Site name / location:	Sheldon House, Cromwell Road, Teddington, TW11 9EJ
Installation ref.:	WS04
Date:	21/07/2022
Engineer:	NM

Weather / temp: Air pressure high and falling

PID Monitoring

	Reading		Reading
	ppm		ppm
Ambient	0.0	+3m	0.0
+10s	0.0	+4m	-
+30s	0.0	+5m	-
+1m	0.0	+6m	-
+1m 30s	0.0	+7m	-
+2m	0.0	+8m	-
		Мах	0.0

Flow Rate

	Reading
	l/hr
+10s	0.0
+30s	0.0
+1m	0.0
+1m 30s	0.0
+2m	0.0
Мах	0.0

Gas Monitoring

	CO2	CH4	O2	со	H2S	Pressure	Comments
	%	%	%	ppm	ppm	mb	
+10s	0.1	0.0	20.6	3	2	1021	
+30s	2.9	0.0	18.7	1	2	1021	
+1m	3.6	0.0	17.9	1	2	1021	
+1m 30s	3.6	0.0	17.9	1	2	1021	
+2m	3.6	0.0	17.9	1	2	1021	
+2m 30s	3.5	0.0	18.0	1	2	1021	
+3m	3.3	0.0	18.0	1	2	1021	
+3m 30s	3.3	0.0	18.0	1	2	1021	
+4m	3.0	0.0	18.3	1	2	1021	
+4m 30s	3.0	0.0	18.6	1	2	1021	
+5m	2.7	0.0	18.6	1	2	1021	
Min	0.1	0.0	17.9	1	2	-	
Мах	3.6	0.0	20.6	3	2	-	

<u>Groundwater</u>

Comment:

Water Depth (m) Well Depth (m) Sample:

Dry			
1.98			
-			
-			

Appendix 4 Laboratory Results

Helen Gildersleeves AGB Environmental Ltd 1 The Mill Copley Hill Business Park Abraham Road Cambridge CB22 3GN

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 22-05652

Site Reference: P4301.3 - Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 9232

Sample Receipt Date: 01/07/2022

Sample Scheduled Date: 01/07/2022

Report Issue Number: 1

Reporting Date: 07/07/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.

Soil Analysis Certificate						
DETS Report No: 22-05652	Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22
AGB Environmental Ltd	Time Sampled	None Supplied				
Site Reference: P4301.3 - Sheldon House,	TP / BH No	WS01	WS02	WS02	WS03	WS03
Teddington						
Project / Job Ref: P4301.3	Additional Refs	ES1	ES3	ES3 + DS3	ES1	ES1 + DS1
Order No: 9232	Depth (m)	0.30	1.00	1.00	0.30	0.30
Reporting Date: 07/07/2022	DETS Sample No	603240	603241	603242	603243	603244

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	
pH	pH Units	N/a	MCERTS	8.4	7.9	6.7	1
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS				
Total Sulphate as SO ₄	%	< 0.02	MCERTS				
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS				
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS				
Total Sulphur	%	< 0.02	NONE				
Organic Matter (SOM)	%	< 0.1	MCERTS	6.2	2.5	6.1	
Arsenic (As)	mg/kg	< 2	MCERTS	13	12	26	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	0.3	0.5	
Chromium (Cr)	mg/kg	< 2	MCERTS	14	13	14	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	18	23	63	
Lead (Pb)	mg/kg	< 3	MCERTS	77	137	635	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	14	11	16	
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	
Zinc (Zn)	mg/kg	< 3	MCERTS	40	70	589	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate						
DETS Report No: 22-05652	Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22
AGB Environmental Ltd	Time Sampled	None Supplied				
Site Reference: P4301.3 - Sheldon House,	TP / BH No	WS04	TP01	WS02	WS04	WS01
Teddington						
Project / Job Ref: P4301.3	Additional Refs	ES2	ES1	ES1	ES4	ES3
Order No: 9232	Depth (m)	0.50	0.20	0.20	1.20	1.00
Reporting Date: 07/07/2022	DETS Sample No	603245	603246	603247	603248	603249

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected			
рН	pH Units	N/a	MCERTS	7.6	8.0	7.0	8.5	7.8
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS			302	450	633
Total Sulphate as SO ₄	%	< 0.02	MCERTS			0.03	0.05	0.06
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS			< 10	13	227
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS			< 0.01	0.01	0.23
Total Sulphur	%	< 0.02	NONE			< 0.02	< 0.02	0.02
Organic Matter (SOM)	%	< 0.1	MCERTS	1.2	2			
Arsenic (As)	mg/kg	< 2	MCERTS	9	11			
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	0.2			
Chromium (Cr)	mg/kg	< 2	MCERTS	15	16			
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2			
Copper (Cu)	mg/kg	< 4	MCERTS	7	25			
Lead (Pb)	mg/kg	< 3	MCERTS	16	214			
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1			
Nickel (Ni)	mg/kg	< 3	MCERTS	11	12			
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3			
Zinc (Zn)	mg/kg	< 3	MCERTS	40	106			

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 22-05652	Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22
AGB Environmental Ltd	Time Sampled	None Supplied				
Site Reference: P4301.3 - Sheldon House,	TP / BH No	WS01	WS02	WS03	WS04	TP01
Teddington						
Project / Job Ref: P4301.3	Additional Refs	ES1	ES3	ES1	ES2	ES1
Order No: 9232	Depth (m)	0.30	1.00	0.30	0.50	0.20
Reporting Date: 07/07/2022	DETS Sample No	603240	603241	603243	603245	603246

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	0.12	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	1.15	0.20	< 0.1	0.11
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	0.35	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	1.65	0.12	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	18	2.39	< 0.1	1.25
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	4.44	0.48	< 0.1	0.26
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	28.70	6.38	< 0.1	3.23
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	25.10	6.04	< 0.1	2.86
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	13.30	3.63	< 0.1	1.67
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	11	2.37	< 0.1	1.37
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	11.50	3.28	< 0.1	1.70
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	4.24	1.10	< 0.1	0.52
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	12.60	3.30	< 0.1	1.60
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	7.38	2	< 0.1	1.04
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	2.07	0.44	< 0.1	0.28
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	6.37	1.71	< 0.1	0.93
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	148	33.4	< 1.6	16.8

Soil Analysis Certificate - TPH CWG Banded									
DETS Report No: 22-05652	Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22			
AGB Environmental Ltd	Time Sampled	None Supplied							
Site Reference: P4301.3 - Sheldon House,	TP / BH No	WS01	WS02	WS03	WS04	TP01			
Teddington									
Project / Job Ref: P4301.3	Additional Refs	ES1	ES3	ES1	ES2	ES1			
Order No: 9232	Depth (m)	0.30	1.00	0.30	0.50	0.20			
Reporting Date: 07/07/2022	DETS Sample No	603240	603241	603243	603245	603246			

Determinand	Unit	RL	Accreditation					
Aliphatic >C5 - C6 : HS 1D MS AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 : HS 1D MS AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 : EH 1D FID AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C10 - C12 : EH 1D FID AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aliphatic >C12 - C16 : EH 1D FID AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C16 - C21 : EH 1D FID AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	< 3
Aliphatic >C21 - C34 : EH 1D FID AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10
Aliphatic (C5 - C34) : EH 1D FID MS HS AL	mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	< 21
Aromatic >C5 - C7 : HS 1D MS AR	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8 : HS 1D MS AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10 : EH_1D_FID_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C10 - C12 : EH 1D FID AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Aromatic >C12 - C16 : EH 1D FID AR	mg/kg	< 2	MCERTS	< 2	5	< 2	< 2	< 2
Aromatic >C16 - C21 : EH 1D FID AR	mg/kg	< 3	MCERTS	< 3	52	10	< 3	5
Aromatic >C21 - C35 : EH_1D_FID_AR	mg/kg	< 10	MCERTS	< 10	114	32	< 10	17
Aromatic (C5 - C35) : EH_1D_FID_MS_HS_AR	ma/ka	< 21	NONE	< 21	171	42	< 21	22
Total >C5 - C35 : EH_1D_FID_MS_HS_Total	ma/ka	< 42	NONE	< 42	171	42	< 42	< 42

Soil Analysis Certificate - BTEX / MTBE									
DETS Report No: 22-05652	Date Sampled	28/06/22	28/06/22	28/06/22	28/06/22	28/06/22			
AGB Environmental Ltd	Time Sampled	None Supplied							
Site Reference: P4301.3 - Sheldon House,	TP / BH No	WS01	WS02	WS03	WS04	TP01			
Teddington									
Project / Job Ref: P4301.3	Additional Refs	ES1	ES3	ES1	ES2	ES1			
Order No: 9232	Depth (m)	0.30	1.00	0.30	0.50	0.20			
Reporting Date: 07/07/2022	DETS Sample No	603240	603241	603243	603245	603246			

Determinand	Unit	RL	Accreditation					
Benzene: HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
MTBE: HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	< 5

Tel: 01622 850410

Soil Analysis Certificate - PCB (12 Congeners)									
DETS Report No: 22-05652	Date Sampled	28/06/22							
AGB Environmental Ltd	Time Sampled	None Supplied							
Site Reference: P4301.3 - Sheldon House,	TP / BH No	WS03							
Teddington									
Project / Job Ref: P4301.3	Additional Refs	ES1							
Order No: 9232	Depth (m)	0.30							
Reporting Date: 07/07/2022	DETS Sample No	603243							

Determinand	Unit	RL	Accreditation				
PCB Congener 77	mg/kg	0.008	NONE	< 0.008			
PCB Congener 81	mg/kg	0.008	NONE	< 0.008			
PCB Congener 105	mg/kg	0.008	NONE	< 0.008			
PCB Congener 114	mg/kg	0.008	NONE	< 0.008			
PCB Congener 118	mg/kg	0.008	NONE	< 0.008			
PCB Congener 123	mg/kg	0.008	NONE	< 0.008			
PCB Congener 126	mg/kg	0.008	NONE	< 0.008			
PCB Congener 156	mg/kg	0.008	NONE	< 0.008			
PCB Congener 157	mg/kg	0.008	NONE	< 0.008			
PCB Congener 167	mg/kg	0.008	NONE	< 0.008			
PCB Congener 169	mg/kg	0.008	NONE	< 0.008			
PCB Congener 189	mg/kg	0.008	NONE	< 0.008	•		
Total PCB (12 Congeners)	mg/kg	< 0.1	NONE	< 0.1			

Analytical rsults are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Waste Acceptance Criteria Analytical Certificate - BS EN 12457/3 Date DETS Report No: 22-05652 28/06/22 **Landfill Waste Acceptance Criteria Limits** Sampled Time None AGB Environmental Ltd Sampled Supplied Site Reference: P4301.3 - Sheldon House, TP / BH No WS02 Stable Non-Teddington reactive Additional Hazardous Project / Job Ref: P4301.3 ES3 + DS3 **Inert Waste** HAZARDOUS Refs Waste Landfill waste in non Landfill Order No: 9232 Depth (m) 1.00 hazardous Landfill DETS Reporting Date: 07/07/2022 603242 Sample No MDL Determinand Unit < 0.1 0.6 3% 5% 6% oss on Ignition % < 0.01 1.50 10% BTEX^{MU} < 0.05 < 0.05 6 mg/kg Sum of PCBs < 0.1 mg/kc < 0.1 Mineral Oil^{MU} 500 < 10 mg/kg < 10 Total PAH^{MU} 4.4 100 mg/kg < 1.7 >6 pΗ pH Units N/a 8.0 To be To be Acid Neutralisation Capacity mol/kg (+/-) < 1 < 1 Cumulative Limit values for compliance leaching test 2:1 8:1 using BS EN 12457-3 at L/S 10 l/kg Eluate Analysis 10:1 mg/l mg/l (mg/kg) mg/kg Arsenic^U < 0.01 < 0.01 < 0.2 0.5 25 < 0.02 < 0.02 0.1 20 100 300 Barium⁰ Cadmium < 0.0005 < 0.0005 < 0.02 0.04 < 0.005 < 0.005 < 0.20 0.5 10 70 Chromium < 0.01 < 0.01 < 0.5 50 100 Copper Mercury⁰ < 0.0005 < 0.0005 < 0.005 0.01 0.2 0.007 0.003 30 Molybdenum^U < 0.1 0.5 10 40 Nickel^U < 0.007< 0.007< 0.20.4 10 < 0.005 < 0.005 < 0.2 0.5 10 50 Lead[∪] < 0.005 < 0.005 < 0.05 0.06 0.7 5 Antimony^l Selenium^U < 0.005 < 0.005 < 0.05 0.1 0.5 < 0.005 0.007 < 0.2 4 50 200 Zinc 800 15000 25000 Chloride^U 21 63 Fluoride < 0.5 < 0.5 < 1 10 150 500 1000 50000 Sulphate^l 13 6 60 20000 106 47 511 4000 60000 100000 Phenol Index < 0.01 < 0.01 < 0.5 25.1 8.9 101 500 800 1000 Leach Test Information Sample Mass (kg) 0.18 Dry Matter (%) 95.7 Moisture (%) 4.6 Stage 1 Volume Eluate L2 (litres) 0.34 Filtered Eluate VE1 (litres) 0.12

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or asreceived portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

Stated limits are for guidance only a M Denotes MCERTS accredited test

U Denotes ISO17025 accredited test

Waste Acceptance Criteria Analytical Certificate - BS EN 12457/3 Date DETS Report No: 22-05652 28/06/22 **Landfill Waste Acceptance Criteria Limits** Sampled Time AGB Environmental Ltd Sampled Supplied Site Reference: P4301.3 - Sheldon House, TP / BH No WS03 Stable Non-Teddington reactive Additional Hazardous Project / Job Ref: P4301.3 ES1 + DS1 **Inert Waste** HAZARDOUS Refs Waste Landfill waste in non Landfill Order No: 9232 Depth (m) 0.30 hazardous Landfill DETS Reporting Date: 07/07/2022 603244 Sample No MDL Determinand Unit < 0.1 5.8 3% 6% oss on Ignition % < 0.01 8.88 10% BTEX^{MU} < 0.05 < 0.05 6 mg/kg Sum of PCBs < 0.1 mg/kc < 0.1 Mineral Oil^{MU} 500 < 10 mg/kg < 10 Total PAH^{MU} 20.6 100 mg/kg < 1.7 >6 pΗ pH Units N/a 6.7 To be To be Acid Neutralisation Capacity mol/kg (+/-) < 1 < 1 Cumulative Limit values for compliance leaching test 2:1 8:1 using BS EN 12457-3 at L/S 10 l/kg Eluate Analysis 10:1 mg/l mg/l (mg/kg) mg/kg Arsenic^U < 0.01 < 0.01 < 0.2 0.5 25 0.04 0.04 0.4 20 100 300 Barium⁰ Cadmium < 0.0005 < 0.0005 < 0.02 0.04 < 0.005 < 0.005 < 0.20 0.5 10 70 Chromium 0.01 < 0.01 < 0.5 50 100 Copper Mercury⁰ < 0.0005 < 0.0005 < 0.005 0.01 0.2 0.004 30 Molybdenum^U 0.003 < 0.1 0.5 10 40 Nickel^U < 0.007< 0.007< 0.20.4 10 0.030 0.034 0.3 0.5 10 50 Lead[∪] 0.014 0.006 0.06 0.06 0.7 5 Antimony^l Selenium^U < 0.005 < 0.005 < 0.05 0.1 0.5 0.024 0.049 0.5 4 50 200 Zinc 800 15000 25000 Chloride^U 4 35 3 < 0.5 Fluoride < 0.5 < 1 10 150 500 56 1000 50000 Sulphate^l 7 5 20000 56 52 524 4000 60000 100000 Phenol Index < 0.01 < 0.01 < 0.5 20.6 16.2 166 500 800 1000 Leach Test Information Sample Mass (kg) 0.19 Dry Matter (%) 93.6 Moisture (%) 6.8 Stage 1 Volume Eluate L2 (litres) 0.34 Filtered Eluate VE1 (litres) 0.16

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or asreceived portion

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test

U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 22-05652

AGB Environmental Ltd

Site Reference: P4301.3 - Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 9232

Reporting Date: 07/07/2022

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
603240	WS01	ES1	0.30	4.6	Brown sandy clay with stones and concrete
603241	WS02	ES3	1.00	5.5	Brown gravelly sand with stones and concrete
603242	WS02	ES3 + DS3	1.00	4.3	Light brown sandy clay with stones
603243	WS03	ES1	0.30	6.4	Light brown sandy clay
603244	WS03	ES1 + DS1	0.30		Light brown sandy clay
603245	WS04	ES2	0.50		Black sandy clay with stones and glass
603246	TP01	ES1	0.20	4.9	Black sandy clay with stones and vegetation
603247	WS02	ES1	0.20	5.4	Light brown sandy clay
603248	WS04	ES4	1.20	6.8	Brown sandy clay with stones
603249	WS01	ES3	1.00	4.6	Brown sandy clay with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm VS}$ Unsuitable Sample $^{\rm US}$

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-05652
AGB Environmental Ltd

Site Reference: P4301.3 - Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 9232

Reporting Date: 07/07/2022

		Determinand Priof Method Description						
Matrix	Analysed On	Determinand	Brief Method Description	Method No				
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012				
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001				
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002				
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009				
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016				
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015				
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015				
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015				
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011				
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004				
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022				
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023				
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020				
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004				
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004				
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004				
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009				
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027				
Soil	D		Determination of TOC by combustion analyser.	E027				
Soil	D		Determination of TOC by combustion analyser.	E027				
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029				
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010				
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019				
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025				
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002				
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004				
Soil	AR		Moisture content; determined gravimetrically	E003				
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009				
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010				
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005				
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008				
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011				
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007				
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021				
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009				
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013				
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009				
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014				
Soil Soil	AR D	Culphur Total	Determination of sulphide by distillation followed by colorimetry Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E018 E024				
		Suipriur - Total	Determination of total supplur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by					
Soil	AR	SVOC	GC-1413	E006				
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017				
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011				
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010				
		TPH CWG (ali: C5- C6, C6-C8, C8-C10,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE					
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004				
		TPH LQM (ali: C5-C6, C6-C8, C8-C10,	Determination of hovang/acotone extractable budges whose by CC FID for this paties with CDF					
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004				
		•						
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001				
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001				

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-05652
AGB Environmental Ltd

Site Reference: P4301.3 - Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 9232

Reporting Date: 07/07/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water	F		Determination of cations by filtration followed by ICP-MS	E102
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF		Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F	EPH (C10 - C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	E104
Water	F		Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F		Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of phenols by distillation followed by colorimetry	E121
		,	Determination of DAH compounds by concentration through SDE cartridge, collection in	
Water	F	PAH - Speciated (EPA 16)	dichloromethane followed by GC-MS	E105
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	E108
Water	UF		Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of redox potential by electrometric measurement	E113
Water	F		Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	UF	Sulnhide	Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

Parameter	Matrix Type	Suite Reference	Expanded Uncertainity Measurement	Unit
тос	Soil	BS EN 12457	20.0	%
Loss on Ignition	Soil	BS EN 12457	35.0	%
BTEX	Soil	BS EN 12457	14.0	%
Sum of PCBs	Soil	BS EN 12457	23.0	%
Mineral Oil	Soil	BS EN 12457	9.0	%
Total PAH	Soil	BS EN 12457	11.6	%
рН	Soil	BS EN 12457	0.28	Units
Acid Neutralisation Capacity	Soil	BS EN 12457	18.0	%
Arsenic	Leachate	BS EN 12457	18.7	%
Barium	Leachate	BS EN 12457	11.6	%
Cadmium	Leachate	BS EN 12457	20.3	%
Chromium	Leachate	BS EN 12457	18.3	%
Copper	Leachate	BS EN 12457	24.3	%
Mercury	Leachate	BS EN 12457	23.7	%
Molybdenum	Leachate	BS EN 12457	14.7	%
Nickel	Leachate	BS EN 12457	16.1	%
Lead	Leachate	BS EN 12457	15.7	%
Antimony	Leachate	BS EN 12457	17.9	%
Selenium	Leachate	BS EN 12457	22.0	%
Zinc	Leachate	BS EN 12457	17.4	%
Chloride	Leachate	BS EN 12457	15.3	%
Fluoride	Leachate	BS EN 12457	16.4	%
Sulphate	Leachate	BS EN 12457	20.6	%
TDS	Leachate	BS EN 12457	12.0	%
Phenol Index	Leachate	BS EN 12457	14.0	%
DOC	Leachate	BS EN 12457	10.0	%
Clay Content	Soil	BS 3882: 2015	15.0	%
Silt Content	Soil	BS 3882: 2015	14.0	%
Sand Content	Soil	BS 3882: 2015	13.0	%
Loss on Ignition	Soil	BS 3882: 2015	35.0	%
pН	Soil	BS 3882: 2015	0.14	Units
Carbonate	Soil	BS 3882: 2015	16.0	%
Total Nitrogen	Soil	BS 3882: 2015	12.0	%
Phosphorus (Extractable)	Soil	BS 3882: 2015	24.0	%
Potassium (Extractable)	Soil	BS 3882: 2015	20.0	%
Magnesium (Extractable)	Soil	BS 3882: 2015	26.0	%
Zinc	Soil	BS 3882: 2015	14.9	%
Copper	Soil	BS 3882: 2015	16.0	%
Nickel	Soil	BS 3882: 2015	17.7	%
Available Sodium	Soil	BS 3882: 2015	23.0	%
Available Calcium	Soil	BS 3882: 2015	23.0	%
Electrical Conductivity	Soil	BS 3882: 2015	10.0	%

List of HWOL Acronyms and Operators

Description
Headspace analysis
Extractable Hydrocarbons - i.e. everything extracted by the solvent
Clean-up - e.g. by florisil, silica gel
GC - Single coil gas chromatography
GC-GC - Double coil gas chromatography
Aliphatics & Aromatics
Aliphatics only
Aromatics only
EH_2D_Total but with humics mathematically subtracted
EH_2D_Total but with fatty acids mathematically subtracted
Operator - underscore to separate acronyms (exception for +)
Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym Benzene - HS 1D MS Ethylbenzene - HS_1D_MS MTBE - HS_1D_MS Mineral Oil (C10 - C40) (BS EN 12457-3) - EH_1D_FID TPH CWG - Aliphatic >C10 - C12 - EH_1D_FID_AL TPH CWG - Aliphatic >C12 - C16 - EH_1D_FID_AL TPH CWG - Aliphatic >C16 - C21 - EH_1D_FID_AL TPH CWG - Aliphatic >C21 - C34 - EH_1D_FID_AL TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL TPH CWG - Aliphatic > C8 - C10 - EH 1D FID AL TPH CWG - Aliphatic C5 - C34 - EH_1D_FID_MS_HS_AL TPH CWG - Aromatic >C10 - C12 - EH_1D_FID_AR TPH CWG - Aromatic >C12 - C16 - EH_1D_FID_AR TPH CWG - Aromatic >C16 - C21 - EH_1D_FID_AR TPH CWG - Aromatic >C21 - C35 - EH 1D FID AR TPH CWG - Aromatic >C5 - C35 - EH_1D_FID_MS_HS_AR TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_Total Toluene - HS_1D_MS Total BTEX (BS EN 12457-3) - HS 1D MS Total m & p-xylene - HS_1D_MS o-Xylene - HS_1D_MS

Helen Gildersleeves AGB Environmental Ltd 1 The Mill Copley Hill Business Park Abraham Road Cambridge CB22 3GN

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 22-05766

Site Reference: P4301.3 - Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 009248

Sample Receipt Date: 06/07/2022

Sample Scheduled Date: 06/07/2022

Report Issue Number: 1

Reporting Date: 11/07/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 22-05766	Date Sampled	30/06/22	30/06/22	01/07/22	04/07/22	04/07/22
AGB Environmental Ltd	Time Sampled	None Supplied				
Site Reference: P4301.3 - Sheldon House,	TP / BH No	CP01	CP01	CP01	CP01	CP01
Teddington						
Project / Job Ref: P4301.3	Additional Refs	ES1	ES3	ES	ES	ES
Order No: 009248	Depth (m)	0.30	1.20	7.00	12.00	15.00
Reporting Date: 11/07/2022	DETS Sample No	603668	603669	603670	603671	603672

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected				
pH	pH Units	N/a	MCERTS	9.7	7.7	8.3	8.3	8.2
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS		297	< 200	554	608
Total Sulphate as SO ₄	%	< 0.02	MCERTS		0.03	< 0.02	0.06	0.06
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS		53	< 10	150	148
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS		0.05	< 0.01	0.15	0.15
Total Sulphur	%	< 0.02	NONE		< 0.02	< 0.02	0.33	0.65
Organic Matter (SOM)	%	< 0.1	MCERTS	3.4				
Arsenic (As)	mg/kg	< 2	MCERTS	11				
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2				
Chromium (Cr)	mg/kg	< 2	MCERTS	19				
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2				
Copper (Cu)	mg/kg	< 4	MCERTS	36				
Lead (Pb)	mg/kg	< 3	MCERTS	241				
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1				
Nickel (Ni)	mg/kg	< 3	MCERTS	13				
Selenium (Se)	mg/kg	< 2	MCERTS	< 3				
Zinc (Zn)	mg/kg	< 3	MCERTS	121				

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate					
DETS Report No: 22-05766	Date Sampled	04/07/22	04/07/22	04/07/22	
AGB Environmental Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: P4301.3 - Sheldon House,	TP / BH No	CP01	CP01	CP01	
Teddington					
Project / Job Ref: P4301.3	Additional Refs	ES	ES	ES	
Order No: 009248	Depth (m)	18.00	21.00	24.00	
Reporting Date: 11/07/2022	DETS Sample No	603673	603674	603675	

Determinand	Unit	RL	Accreditation				
Asbestos Screen (S)	N/a	N/a	ISO17025				
pH	pH Units	N/a	MCERTS	8.9	8.7	6.8	
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	545	570	555	
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.05	0.06	0.06	
W/S Sulphate as SO ₄ (2:1)		< 10	MCERTS	108	150	141	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.11	0.15	0.14	
Total Sulphur	%	< 0.02	NONE	0.28	0.43	0.39	
Organic Matter (SOM)	%	< 0.1	MCERTS				
Arsenic (As)	mg/kg	< 2	MCERTS				
Cadmium (Cd)	mg/kg	< 0.2	MCERTS				
Chromium (Cr)	mg/kg	< 2	MCERTS				
Chromium (hexavalent)	mg/kg	< 2	NONE				
Copper (Cu)	mg/kg	< 4	MCERTS				
Lead (Pb)	mg/kg	< 3	MCERTS				
Mercury (Hg)	mg/kg	< 1	MCERTS				
Nickel (Ni)	mg/kg	< 3	MCERTS				
Selenium (Se)	mg/kg	< 2	MCERTS				
Zinc (Zn)	mg/kg	< 3	MCERTS				

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 22-05766	Date Sampled	30/06/22				
AGB Environmental Ltd	Time Sampled	None Supplied				
Site Reference: P4301.3 - Sheldon House,	TP / BH No	CP01				
Teddington						
Project / Job Ref: P4301.3	Additional Refs	ES1				
Order No: 009248	Depth (m)	0.30				
Reporting Date: 11/07/2022	DETS Sample No	603668				

Determinand	Unit	RL	Accreditation	
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6

Soil Analysis Certificate - TPH CWG Banded						
DETS Report No: 22-05766	Date Sampled	30/06/22				
AGB Environmental Ltd	Time Sampled	None Supplied	•			
Site Reference: P4301.3 - Sheldon House,	TP / BH No	CP01				
Teddington						
Project / Job Ref: P4301.3	Additional Refs	ES1				
Order No: 009248	Depth (m)	0.30	•			
Reporting Date: 11/07/2022	DETS Sample No	603668				

Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6 :	ma/ka	< 0.01	NONE				
HS_1D_MS_AL	mg/kg	\ 0.01	NONE	< 0.01			
Aliphatic >C6 - C8 :	ma/ka	< 0.05	NONE				
HS_1D_MS_AL	5/5	. 0.00		< 0.05			
Aliphatic >C8 - C10 :	mg/kg	< 2	MCERTS	. 2			
EH_1D_FID_AL Aliphatic >C10 - C12 :				< 2			
EH 1D FID AL	mg/kg	< 2	MCERTS	< 2			
Aliphatic >C12 - C16 :		-					
EH_1D_FID_AL	mg/kg	< 3	MCERTS	< 3			
Aliphatic >C16 - C21 :	ma //ca	< 3	MCERTS	< 3			
EH_1D_FID_AL	mg/kg	< 3	MCERTS	< 3			
Aliphatic >C21 - C34 :	mg/kg	< 10	MCERTS	< 10			
EH_1D_FID_AL	5. 5	< 10	MCERTS	< 10			
Aliphatic (C5 - C34):	mg/kg	< 21	NONE	< 21			
EH_1D_FID_MS_HS_AL	mg/kg	\ 21	NONE	\ Z1			
Aromatic >C5 - C7 :	ma/ka	< 0.01	< 0.01	NONE			
HS_1D_MS_AR	5/5	. 0.01		< 0.01			
Aromatic >C7 - C8 :	ma/ka	< 0.05	0.05 NONE	2.25			
HS_1D_MS_AR	3, 3		_	< 0.05			
Aromatic >C8 - C10 :	mg/kg	< 2	MCERTS	< 2			
EH_1D_FID_AR Aromatic >C10 - C12 :				< 2			
EH 1D FID AR	mg/kg	< 2	MCERTS	< 2			
Aromatic >C12 - C16 :							
EH 1D FID AR	mg/kg	< 2	MCERTS	< 2			
Aromatic >C16 - C21 :		_					
EH 1D FID AR	mg/kg	< 3	MCERTS	< 3			
Aromatic >C21 - C35 :		. 10	MOTERTO	. 10			
EH_1D_FID_AR	mg/kg	< 10	MCERTS	< 10			
Aromatic (C5 - C35) :	pa a /lea	< 21	NONE	< 21			
EH_1D_FID_MS_HS_AR	mg/kg	< 21	NONE	< 21			
Total >C5 - C35 :					 		
EH_1D_FID_MS_HS_Total	mg/kg	< 42	NONE	< 42			
FLI_ID_LID_IJS_US_10fql							

Soil Analysis Certificate - BTEX / MTBE				
DETS Report No: 22-05766	Date Sampled	30/06/22		
AGB Environmental Ltd	Time Sampled	None Supplied		
Site Reference: P4301.3 - Sheldon House,	TP / BH No	CP01		
Teddington				
Project / Job Ref: P4301.3	Additional Refs	ES1		
Order No: 009248	Depth (m)	0.30		
Reporting Date: 11/07/2022	DETS Sample No	603668		

Determinand	Unit	RL	Accreditation	
Benzene: HS_1D_MS	ug/kg	< 2	MCERTS	< 2
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	< 5
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2
MTBE: HS_1D_MS	ug/kg	< 5	MCERTS	< 5

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 22-05766

AGB Environmental Ltd

Site Reference: P4301.3 - Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 009248

Reporting Date: 11/07/2022

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
603668	CP01	ES1	0.30	8.9	Brown sandy clay with brick and concrete
603669	CP01	ES3	1.20	13.5	Light brown sandy clay
603670	CP01	ES	7.00	4.2	Brown sandy clay with stones
603671	CP01	ES	12.00	20.1	Brown clay
603672	CP01	ES	15.00	22.4	Brown clay
603673	CP01	ES	18.00	18.8	Brown clay
603674	CP01	ES	21.00	21.1	Brown clay
603675	CP01	ES	24.00	21.4	Brown clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm I/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-05766 AGB Environmental Ltd

Site Reference: P4301.3 - Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 009248

Reporting Date: 11/07/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D AD		Gravimetrically determined through extraction with cyclohexane	E011
Soil Soil	AR AR	Electrical Conductivity	Determination of hexane/acetone extractable hydrocarbons by GC-FID Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E004 E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil Soil	AR D	Exchangeable Ammonium FOC (Fraction Organic Carbon)	Determination of ammonium by discrete analyser. Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E029 E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content		E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D		Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil Soil	D D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES Determination of sulphate by extraction with water & analysed by ion chromatography	E013 E009
Soil	D D		Determination of sulphate by extraction with water & analysed by ion chromatography Determination of water soluble sulphate by extraction with water followed by ICP-OES	E009
Soil	AR		Determination of water soluble sulphate by extraction with water followed by ICF-OES Determination of sulphide by distillation followed by colorimetry	E014
Soil	D	Culphus Total	Determination of total colors by outside with a second followed by ICD OFC	E024
Soil	AR	SVOC	Determination of total sulphur by extraction with aqua-regia followed by ICP-DES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

	List of HWOL Acronyms and Operators
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
	Det - Acronym
	Benzene - HS_1D_MS
	Ethylbenzene - HS_1D_MS
	MTBE - HS_1D_MS
	TPH CWG - Aliphatic >C10 - C12 - EH_1D_FID_AL
	TPH CWG - Aliphatic >C12 - C16 - EH_1D_FID_AL
	TPH CWG - Aliphatic >C16 - C21 - EH_1D_FID_AL

TPH CWG - Aliphatic >C21 - C34 - EH_1D_FID_AL TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL TPH CWG - Aliphatic >C8 - C10 - EH_1D_FID_AL

TPH CWG - Aliphatic C5 - C34 - EH_1D_FID_MS_HS_AL TPH CWG - Aromatic >C10 - C12 - EH_1D_FID_AR TPH CWG - Aromatic >C12 - C16 - EH_1D_FID_AR TPH CWG - Aromatic >C16 - C21 - EH_1D_FID_AR TPH CWG - Aromatic >C21 - C35 - EH_1D_FID_AR

TPH CWG - Aromatic >C5 - C35 - EH_1D_FID_MS_HS_AR

TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_Total

TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR

Toluene - HS_1D_MS m & p-xylene - HS_1D_MS o-Xylene - HS_1D_MS

Helen Gildersleeves AGB Environmental Ltd 1 The Mill Copley Hill Business Park Abraham Road Cambridge CB22 3GN

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 22-05987

Site Reference: Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 009260

Sample Receipt Date: 13/07/2022

Sample Scheduled Date: 13/07/2022

Report Issue Number: 1

Reporting Date: 18/07/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

4480

Water Analysis Certificate									
DETS Report No: 22-05987	Date Sampled	11/07/22							
AGB Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Sheldon House, Teddington	TP / BH No	CP01 MON1							
Project / Job Ref: P4301.3	Additional Refs	P4301							
Order No: 009260	Depth (m)	4.15							
Reporting Date: 18/07/2022	DETS Sample No	604797							

Determinand	Unit	RL	Accreditation			
pH	pH Units	N/a	ISO17025	7.3		
Sulphate as SO ₄	mg/l	< 1	ISO17025	103		
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	7.1		
Arsenic (dissolved)	ug/l	< 5	ISO17025	< 5		
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	0.4		
Chromium (dissolved)	ug/l	< 5	ISO17025	< 5		
Chromium (hexavalent)	ug/l	< 20	NONE	< 20		
Copper (dissolved)	ug/l	< 5	ISO17025	< 5		
Lead (dissolved)	ug/l	< 5	ISO17025	< 5		
Mercury (dissolved)	ug/l	< 0.05	ISO17025	< 0.05		
Nickel (dissolved)	ug/l	< 5	ISO17025	18		
Selenium (dissolved)	ug/l	< 5	ISO17025	< 5		
Zinc (dissolved)	ug/l	< 2	ISO17025	105		

Subcontracted analysis ^(S) Insufficient sample ^{I/S} Unsuitable Sample ^{U/S}

Tel: 01622 850410

Water Analysis Certificate - Speciated PAH									
DETS Report No: 22-05987	Date Sampled	11/07/22							
AGB Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Sheldon House, Teddington	TP / BH No	CP01 MON1							
Project / Job Ref: P4301.3	Additional Refs	P4301							
Order No: 009260	Depth (m)	4.15							
Reporting Date: 18/07/2022	DETS Sample No	604797							

Determinand	Unit	RL	Accreditation			
Naphthalene		< 0.01		< 0.01		
Acenaphthylene	,	< 0.01		< 0.01		
Acenaphthene		< 0.01		< 0.01		
Fluorene				< 0.01		
Phenanthrene	ug/l	< 0.01	NONE	< 0.01		
Anthracene	ug/l	< 0.01	NONE	< 0.01		
Fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Pyrene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01		
Chrysene	ug/l	< 0.01	NONE	< 0.01		
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01		
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01		
Benzo(ghi)perylene	ug/l	0.008	NONE	< 0.008		
Total EPA-16 PAHs	ug/l	< 0.16	NONE	< 0.16		

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone

Kent ME17 2JN Tel : 01622 850410

Water Analysis Certificate - TPH CWG Banded									
DETS Report No: 22-05987	Date Sampled	11/07/22							
AGB Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Sheldon House, Teddington	TP / BH No	CP01 MON1							
Project / Job Ref: P4301.3	Additional Refs	P4301							
Order No: 009260	Depth (m)	4.15							
Reporting Date: 18/07/2022	DETS Sample No	604797							

Determinand	Unit	DI	Accreditation			
Aliphatic >C5 - C6 :	Ollic					
·	ug/l	< 10	NONE	< 10		
HS_1D_MS_AL Aliphatic >C6 - C8 :				< 10		
HS_1D_MS_AL	ug/l	< 10	NONE	< 10		
Aliphatic >C8 - C10 :				V 10		
EH_1D_FID_AL	ug/l	< 10	NONE	< 10		
Aliphatic >C10 - C12 :						
EH_1D_FID_AL	ug/l	< 10	NONE	< 10		
Aliphatic >C12 - C16 :						
EH_1D_FID_AL	ug/l	< 10	NONE	< 10		
Aliphatic >C16 - C21 :		- 40				
EH 1D FID AL	ug/l	< 10	NONE	< 10		
Aliphatic >C21 - C34 :						
EH 1D FID AL	ug/l	< 10	NONE	< 10		
Aliphatic (C5 - C34) :	,,			70		
EH 1D FID MS HS AL	ug/l	< 70	NONE	< 70		
Aromatic >C5 - C7 :	. 10	. 10	NONE			
HS_1D_MS_AR	ug/l	< 10	NONE	< 10		
Aromatic >C7 - C8 :		< 10	NONE			
HS_1D_MS_AR	ug/l	< 10	INOINE	< 10		
Aromatic >C8 - C10 :	ug/l	< 10	NONE			
EH_1D_FID_AR	ug/1	< 10	NONL	< 10		
Aromatic >C10 - C12 :	ug/l	< 10	NONE	< 10		
EH_1D_FID_AR	ug/i	\ 10	NONE	\ 10		
Aromatic >C12 - C16 :	ug/l	< 10	NONE	< 10		
EH_1D_FID_AR	49/1	1 10	HONE	, 10		
Aromatic >C16 - C21 :	ug/l	< 10	NONE	< 10		
EH_1D_FID_AR	49/1	1 10	HONE	, 10		
Aromatic >C21 - C35 :	ug/l	< 10	NONE	< 10		
EH_1D_FID_AR	<u> </u>	. 10	HOHE	110		
Aromatic (C5 - C35):		< 70	NONE	< 70		
EH_1D_FID_MS_HS_AR	ug/i	. 70	HONE	170		
Total >C5 - C35 :						
EH_1D_FID_MS_HS_Total	ug/l	< 140	NONE	< 140		
2.1_10_110_110_115_10tal						

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Water Analysis Certificate - BTEX / MTBE										
DETS Report No: 22-05987	Date Sampled	11/07/22								
AGB Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Sheldon House, Teddington	TP / BH No	CP01 MON1								
·										
Project / Job Ref: P4301.3	Additional Refs	P4301								
Order No: 009260	Depth (m)	4.15								
Reporting Date: 18/07/2022	DETS Sample No	604797								

Determinand	Unit	RL	Accreditation			
Benzene : HS_1D_MS	ug/l	< 1	ISO17025	< 1		
Toluene : HS_1D_MS	ug/l	< 5	ISO17025	< 5		
Ethylbenzene : HS_1D_MS	ug/l	< 5	ISO17025	< 5		
p & m-xylene : HS_1D_MS	ug/l	< 10	ISO17025	< 10		
o-xylene : HS_1D_MS	ug/l	< 5	ISO17025	< 5		
MTBE : HS_1D_MS	ug/l	< 10	ISO17025	< 10		

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Water Analysis Certificate - Methodology & N	Miscellaneous Information
--	---------------------------

DETS Report No: 22-05987

AGB Environmental Ltd
Site Reference: Sheldon House, Teddington

Project / Job Ref: P4301.3 Order No: 009260

Reporting Date: 18/07/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF		Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF		Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF		Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F	FPH (C10 – C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
			Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	
Water	F	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E104
Water	F		Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F		Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCR - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	E108
Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of prospriate by initiation & analysed by for chromatography Determination of redox potential by electrometric measurement	E113
Water	F		Determination of readx potential by electrometric measurement Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	ÜF		Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection	E106
Mata:	UF	Taluana Estractable Matter (TEM)	in dichloromethane followed by GC-MS	E111
Water	UF		Gravimetrically determined through liquid:liquid extraction with toluene	
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F		Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

	List of HWOL Acronyms and Operators
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
	Det - Acronym
	Benzene - HS_1D_MS
	Ethylbenzene - HS_1D_MS
	MTBE - HS_1D_MS
	TPH CWG - Aliphatic >C10 - C12 - EH_1D_FID_AL
	TPH CWG - Aliphatic >C12 - C16 - EH_1D_FID_AL
	TPH CWG - Aliphatic >C16 - C21 - EH_1D_FID_AL

TPH CWG - Aliphatic >C21 - C34 - EH_1D_FID_AL
TPH CWG - Aliphatic >C5 - C34 - EH_1D_FID_MS_HS_AL
TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH CWG - Aromatic >C10 - EH_1D_FID_AL
TPH CWG - Aromatic >C10 - C12 - EH_1D_FID_AR
TPH CWG - Aromatic >C12 - C16 - EH_1D_FID_AR
TPH CWG - Aromatic >C16 - C21 - EH_1D_FID_AR
TPH CWG - Aromatic >C21 - C35 - EH_1D_FID_AR
TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR
TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR
TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_MS_HS_AR
TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_AR
TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_TOtal
Toluene - HS_1D_MS

m & p-xylene - HS_1D_MS o-Xylene - HS_1D_MS

Natasha Masich AGB Environmental Ltd 1 The Mill Copley Hill Business Park Abraham Road Cambridge CB22 3GN

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 22-06311

Site Reference: Sheldon House, Teddington

Project / Job Ref: P4301.3

Order No: 009275

Sample Receipt Date: 25/07/2022

Sample Scheduled Date: 25/07/2022

Report Issue Number: 1

Reporting Date: 29/07/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

4480

Water Analysis Certificate				
DETS Report No: 22-06311	Date Sampled	21/07/22		
AGB Environmental Ltd	Time Sampled	None Supplied		
Site Reference: Sheldon House, Teddington	TP / BH No	CP01 MON2		
Project / Job Ref: P4301.3	Additional Refs	P4301		
Order No: 009275	Depth (m)	4.20		
Reporting Date: 29/07/2022	DETS Sample No	606204		

Determinand	Unit	RL	Accreditation	(hs)	
pH	pH Units	N/a	ISO17025	7.3	
Sulphate as SO ₄	mg/l	< 1	ISO17025	105	
Total Organic Carbon (TOC)	mg/l	< 0.1	NONE	7.2	
Arsenic (dissolved)	ug/l	< 5	ISO17025	< 5	
Cadmium (dissolved)	ug/l	< 0.4	ISO17025	< 0.4	
Chromium (dissolved)	ug/l	< 5	ISO17025	< 5	
Chromium (hexavalent)	ug/l	< 20	NONE	< 20	
Copper (dissolved)	ug/l	< 5	ISO17025	< 5	
Lead (dissolved)	ug/l	< 5	ISO17025	< 5	
Mercury (dissolved)	ug/l	< 0.05	ISO17025	< 0.05	
Nickel (dissolved)	ug/l	< 5	ISO17025	< 5	
Selenium (dissolved)	ug/l	< 5	ISO17025	< 5	
Zinc (dissolved)	ug/l	< 2	ISO17025	< 2	

Subcontracted analysis (S)

Unsufficient sample ^{US}
Unsuitable Sample ^{U/S}
(hs) Please note deviating sample due to head space in container

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

Water Analysis Certificate - Speciated PAH										
DETS Report No: 22-06311	Date Sampled	21/07/22								
AGB Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Sheldon House, Teddington	TP / BH No	CP01 MON2								
Project / Job Ref: P4301.3	Additional Refs	P4301								
Order No: 009275	Depth (m)	4.20								
Reporting Date: 29/07/2022	DETS Sample No	606204								

Determinand	Unit	RL	Accreditation	(hs)		
Naphthalene	ug/l	< 0.01	NONE	< 0.01		
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01		
Acenaphthene	ug/l	< 0.01	NONE	< 0.01		
Fluorene	ug/l	< 0.01	NONE	< 0.01		
Phenanthrene	ug/l	< 0.01	NONE	< 0.01		
Anthracene	ug/l	< 0.01	NONE	< 0.01		
Fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Pyrene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01		
Chrysene	ug/l	< 0.01	NONE	< 0.01		
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01		
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01		
Indeno(1,2,3-cd)pyrene	ug/l	< 0.01	NONE	< 0.01		
Dibenz(a,h)anthracene	ug/l	< 0.01	NONE	< 0.01		
Benzo(ghi)perylene	ug/l	0.008	NONE	< 0.008		
Total EPA-16 PAHs	ug/l	< 0.16	NONE	< 0.16		

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN

Tel: 01622 850410

Water Analysis Certificate - TPH CWG Banded									
DETS Report No: 22-06311	Date Sampled	21/07/22							
AGB Environmental Ltd	Time Sampled	None Supplied							
Site Reference: Sheldon House, Teddington	TP / BH No	CP01 MON2							
Project / Job Ref: P4301.3	Additional Refs	P4301							
Order No: 009275	Depth (m)	4.20							
Reporting Date: 29/07/2022	DETS Sample No	606204							

Determinand	Unit	RL	Accreditation	(hs)		
Aliphatic >C5 - C6 :	ug/l	< 10	NONE			
HS_1D_MS_AL	ug/1	\ 10	NONE	< 10		
Aliphatic >C6 - C8 :	ug/l	< 10	NONE			
HS_1D_MS_AL	9/			< 10		
Aliphatic >C8 - C10 :	ug/l	< 10	NONE	. 10		
EH_1D_FID_AL Aliphatic >C10 - C12 :				< 10		
EH_1D_FID_AL	ug/l	< 10	NONE	< 10		
Aliphatic >C12 - C16 :						
EH_1D_FID_AL	ug/l	< 10	NONE	< 10		
Aliphatic >C16 - C21 :	. //	. 10	NONE	. 10		
EH_1D_FID_AL	ug/l	< 10	NONE	< 10		
Aliphatic >C21 - C34 :	ug/l	< 10	NONE	< 10		
EH_1D_FID_AL	ug/l	< 10	NONE	< 10		
Aliphatic (C5 - C34):	ug/l	< 70	NONE	< 70		
EH_1D_FID_MS_HS_AL	ug/i	\ 70	NONE	< 70		
Aromatic >C5 - C7 :	ug/l	< 10	NONE			
HS_1D_MS_AR	9/			< 10		
Aromatic >C7 - C8 :	ug/l	< 10	NONE	. 10		
HS_1D_MS_AR Aromatic >C8 - C10 :				< 10		
EH 1D FID AR	ug/l	< 10	NONE	< 10		
Aromatic >C10 - C12 :						
EH 1D FID AR	ug/l	< 10	NONE	< 10		
Aromatic >C12 - C16 :	. //	. 10	NONE	. 10		
EH 1D FID AR	ug/l	< 10	NONE	< 10		
Aromatic >C16 - C21 :	ug/l	< 10	NONE	< 10		
EH_1D_FID_AR	ug/i	< 10	NONE	< 10		
Aromatic >C21 - C35 :	ug/l	< 10	NONE	< 10		
EH_1D_FID_AR	ug/i	× 10	NONL	< 10		
Aromatic (C5 - C35):	ug/l	< 70	NONE	< 70		
EH_1D_FID_MS_HS_AR	ug/1	` , 0	HONE	` 70		
Total >C5 - C35 :			Nove			
EH_1D_FID_MS_HS_Total	ug/l	< 140	NONE	< 140		
(hs) Please note deviating sample d					I	

(hs) Please note deviating sample due to head space in container

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Water Analysis Certificate - BTEX / MTBE										
DETS Report No: 22-06311	Date Sampled	21/07/22								
AGB Environmental Ltd	Time Sampled	None Supplied								
Site Reference: Sheldon House, Teddington	TP / BH No	CP01 MON2								
Project / Job Ref: P4301.3	Additional Refs	P4301								
Order No: 009275	Depth (m)	4.20								
Reporting Date: 29/07/2022	DETS Sample No	606204								

Determinand	Unit	RL	Accreditation	(hs)		
Benzene : HS_1D_MS	ug/l	< 1	ISO17025	< 1		
Toluene : HS_1D_MS	ug/l	< 5	ISO17025	< 5		
Ethylbenzene : HS_1D_MS	ug/l	< 5	ISO17025	< 5		
p & m-xylene : HS_1D_MS	ug/l	< 10	ISO17025	< 10		
o-xylene : HS_1D_MS	ug/l	< 5	ISO17025	< 5		
MTBE : HS_1D_MS	ug/l	< 10	ISO17025	< 10		

(hs) Please note deviating sample due to head space in container

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 22-06311
AGB Environmental Ltd

Site Reference: Sheldon House, Teddington

Project / Job Ref: P4301.3 Order No: 009275

Reporting Date: 29/07/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Water	UF	Alkalinity	Determination of alkalinity by titration against hydrochloric acid using bromocresol green as the end	E103
Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water	UF		Determination of BTEX by headspace GC-MS	E101
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102
Water	UF		Determination using a COD reactor followed by colorimetry	E112
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116
Water	UF		Determination of complex cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of free cyanide by distillation followed by colorimetry	E115
Water	UF		Determination of total cyanide by distillation followed by colorimetry	E115
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111
Water	F		Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
Water	F		Determination of DOC by filtration followed by low heat with persulphate addition followed by IR dete	E110
Water	UF		Determination of electrical conductivity by electrometric measurement	E123
Water	F	FPH (C10 – C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104
			Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	
Water	F	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E104
Water	F		Determination of Fluoride by filtration & analysed by ion chromatography	E109
Water	F		Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate	F		Based on National Rivers Authority leaching test 1994	E301
Leachate	F		Based on BS EN 12457 Pt1, 2, 3	E302
Water	F		Determination of metals by filtration followed by ICP-MS	E102
Water	F		Determination of liquid:liquid extraction with hexane followed by GI-FID	E104
Water	F		Determination of nitrate by filtration & analysed by ion chromatography	E109
Water	UF	Monohydric Phenol	Determination of phenols by distillation followed by colorimetry	E121
Water	F	PAH - Speciated (EPA 16)	Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E105
Water	F	PCR - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	E108
Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
Water	UF		Determination of pH by electrometric measurement	E107
Water	F		Determination of phosphate by filtration & analysed by ion chromatography	E109
Water	UF		Determination of prospriate by initiation & analysed by for chromatography Determination of redox potential by electrometric measurement	E113
Water	F		Determination of readx potential by electrometric measurement Determination of sulphate by filtration & analysed by ion chromatography	E109
Water	ÜF		Determination of sulphide by distillation followed by colorimetry	E118
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection	E106
Mata:	UF	Taluana Estractable Matter (TEM)	in dichloromethane followed by GC-MS	E111
Water	UF		Gravimetrically determined through liquid:liquid extraction with toluene	
Water	UF		Low heat with persulphate addition followed by IR detection	E110
Water	F		Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water	F	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104
Water	UF		Determination of volatile organic compounds by headspace GC-MS	E101
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

	List of HWOL Acronyms and Operators
Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
	Det - Acronym
	Benzene - HS_1D_MS
	Ethylbenzene - HS_1D_MS
	MTBE - HS_1D_MS
	TPH CWG - Aliphatic >C10 - C12 - EH_1D_FID_AL
	TPH CWG - Aliphatic >C12 - C16 - EH_1D_FID_AL
	TPH CWG - Aliphatic >C16 - C21 - EH_1D_FID_AL

TPH CWG - Aliphatic >C21 - C34 - EH_1D_FID_AL
TPH CWG - Aliphatic >C5 - C34 - EH_1D_FID_MS_HS_AL
TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH CWG - Aromatic >C10 - EH_1D_FID_AL
TPH CWG - Aromatic >C10 - C12 - EH_1D_FID_AR
TPH CWG - Aromatic >C12 - C16 - EH_1D_FID_AR
TPH CWG - Aromatic >C16 - C21 - EH_1D_FID_AR
TPH CWG - Aromatic >C21 - C35 - EH_1D_FID_AR
TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR
TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_AR
TPH CWG - Aromatic >C8 - C10 - EH_1D_FID_MS_HS_AR
TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_AR
TPH CWG - Total >C5 - C35 - EH_1D_FID_MS_HS_TOtal
Toluene - HS_1D_MS

m & p-xylene - HS_1D_MS o-Xylene - HS_1D_MS

ISSUED BY SOIL PROPERTY TESTING LTD

DATE ISSUED: 19/07/2022

Contract	:	P4301 - Sheldon Ho	ouse, Tedo	dington							
Serial No).	41057_1									
Client:	AGB Envi	ronmental Ltd		Soil Property Testing Ltd							
	341 Exnin Newmark Suffolk	_		15, 16, 18 Halcyon Court, St Margaret's Way, Stukeley Meadows, Huntingdon, Cambridgeshire, PE29 6DG							
	CB8 OAT			Tel: 01480 455579 Email: enquiries@soilpropertytesting.com Website: www.soilpropertytesting.com							
Samples	Submitte	d Bv:		Approved Signatories:							
		ronmental Ltd									
				✓ J.C. Garner B.Eng (Hons) FGS							
				Technical Director & Quality Manager							
Samples	Labelled:	andre en e	P								
	P4301 - S	Sheldon House, Tedd	lington	□ W. Johnstone							
				Materials Lab Manager							
				Ill-							
Date R	eceived:	06/07/2022	Sample	s Tested Between: 06/07/2022 and 19/07/2022							
Remarks):										
	For the a	ttention of Helen Gil	ldersleeve	es							
	Your Refe	erence No: P4301									
	Your Ord	er No: 9249									
Notes:	1	All remaining samples of unless we are notified t		from this contract will be disposed of after 21 days from today, ary.							
	2	Opinions and interpreta	ations expre	essed herein are outside the scope of UKAS accreditation.							
	3	Tests marked "NOT UKA Schedule for this testing		DITED" in this test report are not included in the UKAS Accreditation ory.							
	4	This test report may no issuing laboratory.	t be reprod	uced other than in full except with the prior written approval of the							
	5	The results within this r	eport only r	relate to the items tested or sampled.							

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

Contra	act		P4301 - Sheldon House, Teddington																			
Serial	No.		41057_	1													Т	arg	et [Dat	e	20/07/2022
Sched	uled I	Ву	AGB En	viro	onm	nen [.]	tal	Ltd														
Sched	ule R	emarks																				
Bore Hole No.	Туре	Sample Ref.	Top Depth 2.00 1																Sample Remarks			
CP01	В	-	2.00	1																		
CP01	В	-	4.00	1																		
CP01	В	-	7.00	1																		
CP01	D	-	8.00		1	1																
CP01	D	-	9.00		1	1																
CP01	U	1	10.50					1														
CP01	D	-	11.00		1	1																
CP01	D	-	13.00		1	1																
CP01	U	2	14.00					1														
CP01	D	-	15.00		1	1																
CP01	U	3	17.00					1														
CP01	D	-	18.00		1	1																
CP01	D	-	21.00		1	1																
CP01	U	4	21.00					1														
CP01	D	-	24.00		1	1																
TP03	D	-	1.30		1	1	1															
WS02	D	-	1.40		1	1	1															
Totals 3 10 10						10	2	4														End of Schedule

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

1998

Contract	P4301 - Sheldon House, Teddington
Serial No.	41057_1

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

Dorobol-	Dantk	T	Def	Water	Liquid	Plastic	Plasti-	Liquid-	S	ample Pr				
Borehole /Pit No.	Depth	Туре	Ref.	Content	Limit	Limit	city Index	ity Index	Method	Ret'd 0.425mm	Corr'd W/C	Curing Time	Description	Class
/1 it ivo.	(m)			(%)	(%)	(%)	(%)	illuex		(%)	<0.425mm	(hrs)		
CP01	8.00	D	-	25.2	63	23	40	0.06	From Natural	0 (A)			Stiff fissured dark grey CLAY	СН
CP01	9.00	D		24.2	61	23	38	0.03	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	СН
CP01	11.00	D	-	24.0	61	22	39	0.05	From Natural	0 (A)		25	Stiff fissured dark grey CLAY	СН
CP01	13.00	D	-	27.4	68	26	42	0.03	From Natural	0 (A)		25	Stiff fissured dark grey CLAY	СН
CP01	15.00	D	-	33.7	73	25	48	0.18	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	CV
CP01	18.00	D	1	28.1	71	25	46	0.07	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	CV
CP01	21.00	D	-	25.0	70	24	46	0.02	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	CH/CV
CP01	24.00	D	-	29.3	74	26	48	0.07	From Natural	0 (A)		24	Stiff fissured dark grey CLAY	CV

Method Of Preparation: Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

Type of Sample Key:

BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

Comments:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Table Notation:

Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

Contract	P4301 - Sheldon House, Teddington
Serial No.	41057_1

SUMMARY OF WATER CONTENT, LIQUID LIMIT, PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX

				Water	Liquid	Plastic	Plasti-	Liquid-	Sample Preparation					
Borehole /Pit No.	Depth	Туре	Ref.	Content	Limit	Limit	city	ity	Method	Ret'd 0.425mm	Corr'd W/C	Curing Time	Description	Class
/PIL NO.	(m)			(%)	(%)	(%)	Index (%)	Index		(%)	<0.425mm	(hrs)		
	(111)			(70)	(70)	(70)	(70)			(70)	10.12511111	(1113)		
TP03	1.30	D	-	10.1	29	14	15	-0.26	Wet Sieved	3 (M)	10.4*	25	Very stiff yellowish brown sandy silty CLAY with occasional recently active and decayed roots	CL
WS02	1.40	D	-	7.9	30	16	14	-0.58	Wet Sieved	32 (M)	11.5*	24	Hard yellowish brown slightly gravelly slightly sandy silty CLAY with occasional recently active and decayed roots. Gravel is fine to coarse angular and subangular chert	CL

Method Of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:4.2

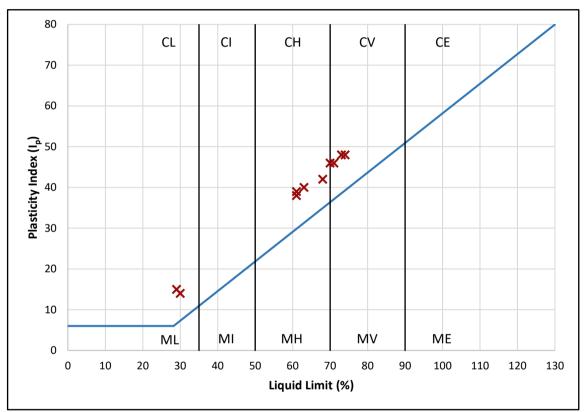
Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2:1990:3.2, 4.4, 5.3, 5.4

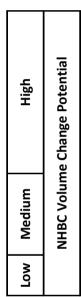
Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

*Corrected water content assume material greater than 0.425mm is non-porous. See BS1377: Part 2: 1990 Clause 3 Note 1.

Table Notation: Ret'd 0.425mm: (A) = Assumed, (M) = Measured

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022


998


Contract P4301 - Sheldon House, Teddington

Serial No. 41057_1

PLOT OF PLASTICITY INDEX AGAINST LIQUID LIMIT USING CASAGRANDE CLASSIFICATION CHART

	Plasticity											
Low	Medium	High	Very High	Extremely High								

Plasticity Chart BS5930: 2015: Figure 8

Method of Preparation: BS 1377: Part 2: 1990: 4.2

Method of Test: BS1377: Part 2: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

Contract	ı	P4301	- Sheldo	on House, T	eddingto	on													
Serial No.	4	41057	_1																
		DET		TION OF W			-						MIT	ΓΑΝΙ)				
/ Pit No.	epth m		Sample Reference	Water Content		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			ription	0.2.					R	Remarks			
	3.00	D	-	25.2	Stiff fissured dark grey CLAY														
				PREPARATI	ON					Liqu	ıid Lim	it					63 9		
Method of p	repa	ration						Fro	m natura	Plas	tic Lim	nit					23 9		
Sample retai	ned	0.425r	mm sieve	e (Assur	ned)				0 %	Plas	ticity I	ndex	(40 9		
Corrected wa	ater	conte	nt for ma	terial passing	g 0.425m	m				Liqu	idity li	ndex					0.06		
Sample retai	ned	2mm s	sieve	(Assur	ned)				0 %	NHI	BC Mod	difie	d (I'p	p)			n/a		
Curing time			2	24 hrs	Clay C	Content	: Not	t ana	ılysed	Der	ived A	ctivit	У			Not ar	nalysed		
C=CLAY		70 60 50		CL	CI	C	CH		CV		CE					High	Change Potential		
Plasticity Ind % (Ip)		30					x									Medium	NHBC Volume Cha		
		20														Low	NHBC		
M=SILT		10	10	ML	MI		ИΗ		MV		ME		•	120		iquid :	Limit %		
	L	0	10	20 30	40	50 6	60	70	80	90	100 rt BS5930	11		120]	quiu	LIIII / C		

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

											0998			
Contract		P4301	L - Sheldo	n House, T	eddingto	n								
Serial No.		41057	7_1											
		DET					QUID LIMIT A	ND PLASTIC LIMI	T AND)				
/ Pit No.	epth		Sample	Water Content	l l l L L A S		Description	ADITI NODEX		Remarks				
	m 0.00		Referenc -	e (W) %	Stiff fissured									
<u> </u>	PREPARATION Liquid Limit													
Method of p	repa		23 %											
Sample retai	ned	0.425	mm sieve	(Assur	ned)		0 %	Plasticity Index		38 %				
Corrected wa	ater	conte	nt for mat	erial passing	g 0.425mr	n		Liquidity Index			0.03			
Sample retai	ned	2mm	sieve	(Assur	ned)		0 %	NHBC Modified (I'	p)		n/a			
Curing time			2	4 hrs	Clay C	ontent N	lot analysed	Derived Activity		Not ar	nalysed			
C=CLAY Plasticity Ind	lex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential			
% (Ip)		30 -				×				Low Medium	NHBC Volume C			
M=SILT		0 0	10	ML 20 30	MI 40 5	MH 50 60	MV 70 80	ME 90 100 110	120	Liquid l	Limit %			

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

Plasticity Chart BS5930: 2015: Figure 8

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

Contract		P4301	Sheldo	n House, T	edding	ton											
Serial No.	•	41057	_1														
		DET		TION OF W			-						MIT	ΓAΝΙ)		
Borehole / Pit No.	Depth m		Sample Reference	Water Content		10.11	<u> </u>		cription		<u> </u>				R	emark	ζS
CP01 1	11.00		-	24.0	Stiff fissur	ed dark	grey CLA	Υ									
				PREPARATI	ON					Liqu	iid Lim	it					61 %
Method of p	prepa	aration	·	_				Fr	om natura	Plas	tic Lim	iit					22 %
Sample reta	ained	0.425	mm sieve	(Assur	ned)				0 %	Plas	ticity I	ndex					39 %
Corrected w	vater	conte	nt for mat	erial passing	g 0.425n	nm				Liqu	idity Ii	ndex					0.05
Sample reta	ained	2mm	sieve	(Assur	ned)				0 %	NHE	BC Mod	dified	l (I'p	p)			n/a
Curing time	!		2!	5 hrs	Clay	Conte	ent I	Not ar	nalysed	Der	ived A	ctivity	/			Not ar	nalysed
C=CLAY Plasticity In	ndex	70 60 50 40		CL	CI		CH		CV		CE					High	Change Potential
% (Ip)		30 -														v Medium	NHBC Volume
M=SILT		10 0	10	ML 20 30	MI 40	50	MH 60	70	MV 80	90	ME 100	110)	120	Li	wo]	Limit %
	L								Plastic	ity Cha	rt BS5930): 2015	: Figu	ıre 8	J		

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

													0998
Contract		P4301	L - Sheldor	House, T	eddingto	n							
Serial No.		41057	'_1										
		DET					IQUID LIMI DEX AND LI		PLASTIC LIMI	T AND)		
Borehole / Pit No.	eptl		Sample	Water Content			Description				Rer	nark	S
CP01 1	m 3.00		Reference -	(W) % 27.4	Stiff fissured	dark grey CLA	Υ						
			P	REPARATIO	ON			Lic	րuid Limit				68 %
Method of p	repa	aration	1				From natu	ural Pla	astic Limit				26 %
Sample retai	ined	0.425	mm sieve	(Assun	ned)		0 %	Pla	asticity Index				42 %
Corrected w	ater	conte	nt for mate	rial passing	g 0.425mn	า		Lic	quidity Index				0.03
Sample retai	ined	l 2mm	sieve	(Assun	ned)		0 %	NI NI	HBC Modified (I'	p)			n/a
Curing time			25	hrs	Clay Co	ontent	Not analysed	De	erived Activity		N	lot an	alysed
C=CLAY Plasticity Inc	dex	70 60 50		CL	CI	СН	CV		CE			High	Change Potential
% (Ip)		30 -									- -	Low Medium	NHBC Volume Ch
M=SILT		0 0	10 7	ML 20 30	MI 40 5	MH 0 60	MV 70 80	90	ME 100 110	120	Liq	uid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

Plasticity Chart BS5930: 2015: Figure 8

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

Contract	ļ	P4301	- Sheld	on House,	Teddingto	on								0998
Serial No.		41057												
		DET				•	-		ND PLASTIC		ΓΑΝΕ)		
Borehole / Pit No.	Depth m		Sample Reference	Water Content				scription				Rem	nark	S
CP01 1	L5.00	D	-	33.7	Stiff fissured	d dark grey CL	LAY							
				PREPARAT	ION				Liquid Limit					73 %
Method of p	orepa	ration	1				Fr	om natural	Plastic Limit	t				25 %
Sample reta	ined	0.425	mm sieve	e (Assu	med)			0 %	Plasticity In	dex				48 %
Corrected w	/ater	conte	nt for ma	terial passir	ng 0.425mr	n			Liquidity Ind	dex				0.18
Sample reta	ined	2mm	sieve	(Assu	med)			0 %	NHBC Modi	fied (I'p	o)			n/a
Curing time				24 hrs	Clay C	ontent	Not ar	nalysed	Derived Act	ivity		N	ot an	alysed
C=CLAY Plasticity Inc.	dex	70 60 50 40		CL	CI	СН		CV X	CE			_	High	ne Change Potential
(lp)		20										-	w Medium	NHBC Volum
M=SILT		10 0	10	ML 20 30	MI 40 5	MH 50 60	70	MV 9 80	ME 90 100	110	120		nid L	imit %
	L								ty Chart BS5930:]		

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

Contract		P4301	Sheldor	n House, T	eddingto	n						
Serial No.	(41057	_1									
		DET				-			ND PLASTIC LIN	IIT AND)	
/ Pit No.	Depth m		Sample Reference	Water Content				cription			Remark	:S
CP01 18	18.00		-	28.1	Stiff fissured o	dark grey CL	AY					
			P	REPARATI	ON				Liquid Limit			71 %
Method of p	repa	aration					Fro	om natural	Plastic Limit			25 %
Sample retai	ined	0.425	mm sieve	(Assur	ned)			0 %	Plasticity Index			46 %
Corrected wa	ater	conte	nt for mate	rial passing	g 0.425mm	1			Liquidity Index			0.07
Sample retai	ined	2mm	sieve	(Assun	med)			0 %	NHBC Modified (l'p)		n/a
Curing time			24	hrs	Clay Co	ntent	Not and	alysed	Derived Activity		Not an	alysed
C=CLAY Plasticity Inc. %	dex	70 60 50 40		CL	CI	СН	×	CV	CE		ium	NHBC Volume Change Potential
(lp)		20									Low Mediun	NHBC Vol
M=SILT		10 0	10	ML 20 30	MI 40 50	MH 0 60	70	MV 80	ME 90 100 110	120	Liquid L	imit %
	L							Plasticit	ry Chart BS5930: 2015: F	igure 8	J	

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

Contract	$\overline{}$	D4201	Chalda	n Hausa T	ام ما دا ام م							0998
Serial No.				on House, T	eaaingto	on						
Seriai ivo.		41057	_1									
		DET				-	-		ND PLASTIC LIMIT	AND		
Borehole _				Water	OF PLAS	STICITY IN	DEX AND	LIQU	JIDITY INDEX			
/ Pit No.	Depth m		Sample Referenc	Content			Descripti	on		F	Remark	s
CP01 2	21.00) D	-	25.0	Stiff fissured	d dark grey CLA	Y					
_				PREPARATI	ON				Liquid Limit			70 %
Method of p	prepa	aration	1				From na	atural	Plastic Limit			24 %
Sample reta	ined	0.425	mm sieve	(Assur	ned)		0	%	Plasticity Index			46 %
Corrected w	vater	conte	nt for ma	terial passing	g 0.425mi	m			Liquidity Index			0.02
Sample reta	ined	2mm	sieve	(Assur	ned)		0	%	NHBC Modified (I'p)			n/a
Curing time			2	24 hrs	Clay C	ontent	Not analysed		Derived Activity		Not an	alysed
	Γ	70			-							
C=CLAY		70		CL	CI	СН	C	V	CE			
		60									ے ا	tial
		50									High	Change Potential
	J 211	30					*					inge F
Plasticity Inc %	aex	40									$\mid - \mid$	ь
(lp)		30									Medium	NHBC Volum
											Ž	HBC \
		20									Low	Z
		10										
M=SILT		0		ML	МІ	МН	М	V	ME			
		0	10	20 30	40	50 60	70 8	0	90 100 110 1	20 L	iquid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

Plasticity Chart BS5930: 2015: Figure 8

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

											0998
Contract		P4301	- Sheldor	n House, T	eddingto	n					
Serial No.		41057	_1								
		DET				•	-	AND PLASTIC LIMI	T AND		
/ Pit No.	eptl m		Sample Reference	Water Content	OF PLAS		Description	JIDITY INDEX		Remarks	5
CP01 24	4.00	D D	-	29.3	Stiff fissured	dark grey CLAY					
•			P	REPARATI	ON			Liquid Limit			74 %
Method of p	repa	aration	l				From natura	Plastic Limit			26 %
Sample retai	ned	0.425	mm sieve	(Assun	ned)		0 %	Plasticity Index			48 %
Corrected wa	ater	conte	nt for mate	rial passin	g 0.425mr	n		Liquidity Index			0.07
Sample retai	ned	2mm	sieve	(Assun	ned)		0 %	NHBC Modified (I'	p)		n/a
Curing time			24	hrs	Clay C	ontent No	t analysed	Derived Activity		Not and	alysed
C=CLAY Plasticity Inc	dex	70 60 50		CL	CI	СН	CV	CE		High	Change Potential
% (Ip)		30								Low Medium	NHBC Volume C
M=SILT		0 0	10	ML 20 30	MI 40 5	MH 60 60	MV 70 80	ME 90 100 110	120	Liquid Li	mit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

Plasticity Chart BS5930: 2015: Figure 8

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

Contract	\neg	P4301	L - Sheldon	House T	eddingto	n						0998
Serial No.		41057		Tilouse, i	Cuumato	<u>"</u>						
	<u></u>											
		DET				-			AND PLASTIC LIMI JIDITY INDEX	IT AND)	
Borehole / Pit No.	Depth		Sample	Water Content				scription	<u></u>		Remark	:S
TP03	m 1.30		Reference -		Very stiff yell active and de		-	silty CLAY with	occasional recently			
1			Р	REPARATION	ON				Liquid Limit			29 %
Method of	prepa	aration	1		Wet sie	eved ove	r 0.42	25mm sieve	Plastic Limit			14 %
Sample reta	ained	0.425	mm sieve	(Measu	ured)			3 %	Plasticity Index			15 %
Corrected v	water	conte	nt for mate	rial passing	g 0.425mn	า		10.4 %	Liquidity Index			-0.26
Sample reta	ained	2mm	sieve	(Measu	ured)			<1 %	NHBC Modified (I	'p)		15 %
Curing time	<u></u>		25	hrs	Clay Co	ontent	Not a	nalysed	Derived Activity		Not an	alysed
C=CLAY Plasticity In	ndex	70 60 50 40		CL	СІ	СН		cv	CE		High	Change Potential
% (Ip)		30 -		×							Low Medium	NHBC Volume
M=SILT		10 0	10 2	ML 20 30	MI 40 5	MH 60 60	70		ME 90 100 110 ity Chart BS5930: 2015: Fig	120	Liquid L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

Note: Modified Plasticity Index I'p = Ip x (% less than 425microns/100)

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

0998

																		0998
Contract		P4301	L - Sh	eldon	House, T	edding	ton											
Serial No.		41057	'_1															
		DF1	FRM	INATI	ON OF W	ATFR (CON	ΓFNT. L	IOUI	D LIMIT	AND	PLAST	IC LIN	ЛIT	AND			
					RIVATION													
Borehole / Pit No.	eptl m		Sampl Refer		Water Content (W) %				Desc	cription						Re	mark	S
WS02 1	1.40			-	7.9	occasiona	al recei	_	and dec	velly slightly rayed roots.	-	-						
•				PI	REPARATI	ON					Liqu	uid Lim	it	•				30 %
Method of p	orepa	aratior	1			Wet	siev	ed over	0.425	imm siev	e Plas	stic Lim	it					16 %
Sample retai	ined	0.425	mm si	ieve	(Meas	ured)				32 %	Plas	sticity I	ndex					14 %
Corrected w	ater	conte	nt for	mate	rial passin	g 0.425ı	nm			11.5 %	Liqu	uidity Ir	ndex					-0.58
Sample retai	ined	2mm	sieve		(Meas	ured)				21 %	NHI	BC Mod	dified	(l'p)				10 %
Curing time				24	hrs	Clay	Con	tent	Not ana	alysed	Der	ived A	tivity				Not an	alysed
	ſ	_									ļ					1		
C=CLAY		706050			CL	CI		СН		CV		CE					High	otential
Plasticity Inc	dex	40															ш	ıme Change Potential
(lp)		30															Medium	NHBC Volum
		20			×												Low	_
		10																
M=SILT		0		_	ML	МІ		МН		MV		ME				1:.	ו לאנוני	imi+ º/
	Į	0	10) 2	0 30	40	50	60	70	80	90	100	110		L20	"	_l uiu L	imit %

Method of Preparation: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 4.2

Method of Test: BS EN ISO: 17892-1: 2014 & BS 1377: Part 2: 1990: 3.2, 4.4, 5.3, 5.4

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

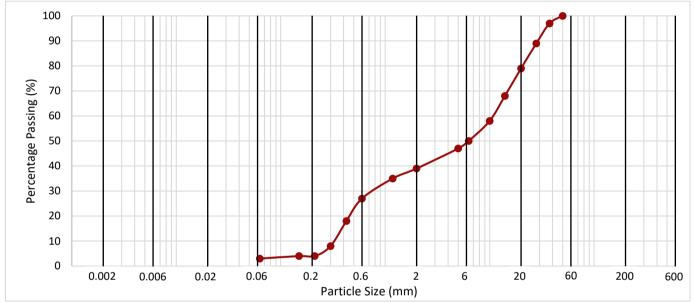
Comments: Corrected water content assume material greater than 0.425mm non-porous. See BS1377: Part2: 1990 Clause 3 Note 1

Plasticity Chart BS5930: 2015: Figure 8

Volume Change Potential: NHBC Standards Chapter 4.2 Unmodified Plasticity Index

Note: Modified Plasticity Index I'p = Ip x (% less than 425microns/100)

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022



റമമ

Social No. 41057 1	Contract	P4301 - Sheldon House, Teddington
Serial No. 41037_1	Serial No.	41057_1

Borehole / Pit No. | Depth (m) | Sample | Description | Remarks | CP01 | 2.00 | B | - | Black, brown and white subangular and subrounded slightly silty very sandy chert GRAVEL. Sand is yellowish brown

Method of Test: Wet Sieve Method of Pretreatment: Not required

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOULDERS
CLAT		SILT			SAND			GRAVEL		COBBLES	BOULDER3

н	Particle Size (mm)	Passing (%)	Silt by Dry Mass (%)
y d			
r			
О			
m			Clay by
е			Clay by Dry Mass
e t			
е			Dry Mass
e t			Dry Mass
e t e			Dry Mass

Sieve Size (mm)	Passing (%)	Sand By Dry Mass (%)
2.00	39	
1.18	35	
0.600	27	
0.425	18	36
0.300	8	30
0.212	4	
0.150	4	
0.063	3	

Fines By Dry Mass (%)					
<0.063mm	3				

Sieve Size (mm)	Passing (%)	2mm+ By Dry Mass (%)
300		
125		
90		
63		
50	100	
37.5	97	61
28	89	01
20	79	
14	68	
10	58	
6.3	50	
5	47	

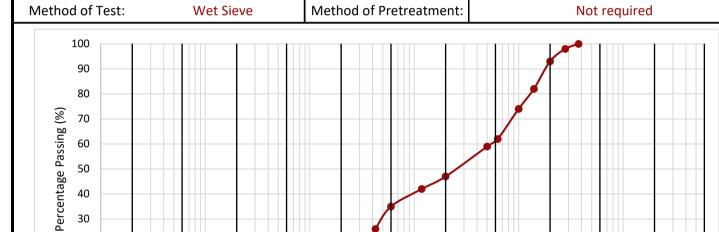
Method of Preparation: BS1377: Part 1: 2016: 8.3 & 8.4.5

Method of test: BS1377: Part 2: 1990: 9.2

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

TEST REPORT


ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

naag

Contract	P4301 - Sheldon House, Teddington
Serial No.	41057_1

Borehole / Pit No. CP01 4.00 B - Black, brown and white subangular and subrounded slightly silty very sandy chert GRAVEL. Sand is yellowish brown

	Particle Size (mm)										
CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	CODDIEC	DOLU DEDC
CLAY		SILT		SAND		SAND GRAVEL			COBBLES	BOULDERS	

0.6

н :	Particle Size (mm)	Passing (%)	Silt by Dry Mass (%)
y d			
r			
0			
m			Clay by
е			Dry Mass
t			(%)
е			
r			

0.002

0.006

0.02

0.06

0.2

Sieve Size (mm)	Passing (%)	Sand By Dry Mass (%)
2.00	47	
1.18	42	
0.600	35	
0.425	26	44
0.300	15	44
0.212	8	
0.150	5	
0.063	3	

Fines By Dry Mas	ss (%)
<0.063mm	3

Sieve Size (mm)	Passing (%)	2mm+ By Dry Mass (%)
300		
125		
90		
63		
50		
37.5	100	53
28	98	33
20	93	
14	82	
10	74	
6.3	62	
5	59	

200

600

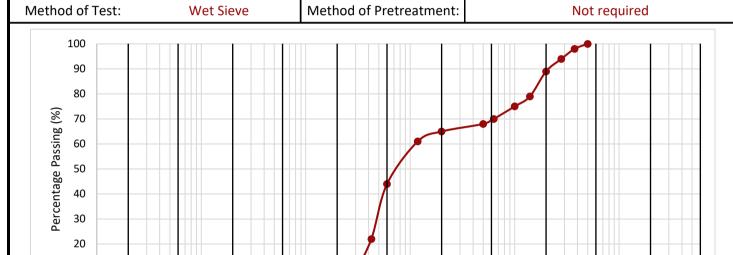
20

Method of Preparation: BS1377: Part 1: 2016: 8.3 & 8.4.5

Method of test: BS1377: Part 2: 1990: 9.2

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:


ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

naag

Contract	P4301 - Sheldon House, Teddington
Serial No.	41057_1

CLAV	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOULDERS
CLAY		SILT			SAND			GRAVEL		COBBLES	DOOLDERS

0.6

Particle Size (mm)

Н	Particle Size (mm)	Passing (%)	Silt by Dry Mass (%)
y d			
r			
0			
m			Clay by
е			Dry Mass
t			(%)
e r			
1			

S	Sieve Size (mm)	Passing (%)	Sand By Dry Mass (%)
	2.00	65	
	1.18	61	
	0.600	44	
	0.425	22	63
	0.300	10	03
	0.212	5	
	0.150	3	
	0.063	2	

Fines By Dry Mas	ss (%)
<0.063mm	2

Sieve Size (mm)	Passing (%)	2mm+ By Dry Mass (%)
300		
125		
90		
63		
50	100	
37.5	98	35
28	94	33
20	89	
14	79	
10	75	
6.3	70	
5	68	

200

600

20

Method of Preparation: BS1377: Part 1: 2016: 8.3 & 8.4.5

Method of test: BS1377: Part 2: 1990: 9.2

Type of Sample Key: U=Undisturbed, B=Bulk, D=Disturbed, J=Jar, W=Water, SPT=Split Spoon Sample, C=Core Cutter

Comments:

10

0.002

0.006

0.02

0.06

0.2

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

Contract P4301 - Sheldon House, Teddington

Serial No. 41057_1

DETERMINATION OF DENSITY, WATER CONTENT AND UNDRAINED SHEAR STRENGTH IN TRIAXIAL

'	COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE												
Borehole /Pit No.	Depth (m)	Туре	Reference	Water Content (%)	Bulk Density (Mg/m³)	Dry Density (Mg/m³)	Lateral Pressure (kPa)	Deviator Stress (kPa)	Shear Stress (kPa)	Mohrs Ana	Circle	Description	
CP01	10.50	U	1	27.1	2.01	1.58	206	241	121			Stiff (high strength) fissured dark grey CLAY	
CP01	14.04	U	2	28.8	1.98	1.54	280	284	142			Stiff (high strength) fissured dark grey CLAY	
CP01	17.03	U	3	29.8	1.99	1.53	340	297	149			Stiff (high strength) fissured dark grey CLAY	
CP01	21.06	U	4	25.4	2.04	1.63	420	474	237			Very stiff (very high strength) fissured dark grey CLAY	

Method of Preparation: BS 1377: Part 1: 1990: 7.4.2 & 8, Part 2: 1990: 7.2, Part 7: 1990: 8.3

Method of Test: BS 1377: Part 2: 1990:3 Determination of Moisture Content, Part2: 1990:7 Determination of Density, Part 7: 1990: 8 Undrained Shear

Strength, 9 Multistage Loading

Type of Sample Key:

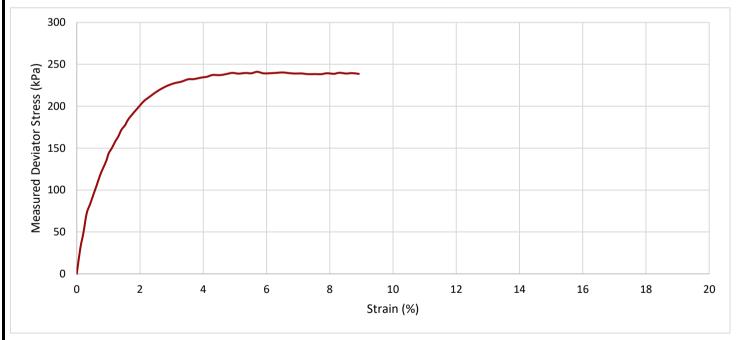
Comments:

U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Remarks to Include: Sample disturbance, loss of moisture, variation from test procedure, location and origin of test specimen within original sample, oven

drying temperature if not 105-110°C

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022


0998

Contract P43	P4301 - Sheldon House, Teddington					
Serial No. 410	1057_1					

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

	OF PORE PRESSURE										
Borehole /Pit No.	Depth (m)	Type	Referen	ice	Descriptio	R	Remarks				
CP01	10.50	U	1	Stiff (high streng	iff (high strength) fissured dark grey CLAY						
Initial S	pecimen	He	ight	Diameter	Weight	Water Content	Bulk Density	Dry Density			
	Depth of	(m	ım)	(mm)	(g)	(%)	(Mg/m³)	(Mg/m³)			
	Top of Specimen (m) 10.50		4.8	102.6	3074	27.1	2.01	1.58			
TECT INIE			D - 1 C C	1	0/	D. I. I N.A I	This is a second	0.2			

TEST INFORMATION Rate of Strain 1.0 % per Min Rubber Membrane Thickness 0.3 mm

Specimen at failure	Measured Cell	Strain at Failure (%)	Stress Corrections (kPa)		Corrected Max.	Shear Stress Cu,	Mohrs Circle Analysis	
	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction	Deviator Stress, (σ1-σ3)f (kPa)	½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)
	206	5.7	0.5	\	241	121		

Method of Preparation: BS 1377: Part 1: 1990

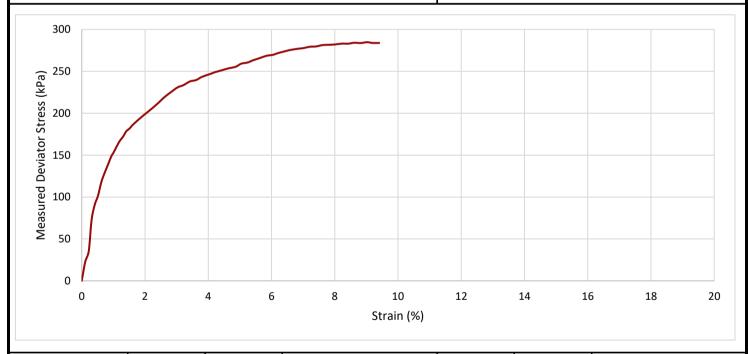
Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying



ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

Contract P4301 - Sheldon House, Teddington
Serial No. 41057_1

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT **OF PORE PRESSURE Borehole** Depth (m) Type Reference Description Remarks /Pit No. CP01 14.00 U 2 Stiff (high strength) fissured dark grey CLAY **Initial Specimen** Height Diameter Weight Water Content **Bulk Density Dry Density** Depth of (mm) (%) (Mg/m³)(Mg/m³)(mm) (g) Top of Specimen 199.3 102.4 3256 28.8 1.98 1.54 (m) 14.04 TEST INFORMATION Rate of Strain 1.0 % per Min **Rubber Membrane Thickness** 0.3 mm

Specimen at failure	Measured Cell	Strain at Failure (%)	Stress Corre	ections (kPa)	Corrected Max. Deviator Stress, (σ1-σ3)f (kPa)	Shear Stress Cu, ½(σ1-σ3)f (kPa)	Mohrs Circle Analysis	
Specimen at failure	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction			Cu (kPa)	PHI (degrees)
	280	9.0	0.6	_	284	142		

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying



ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022

Contract P4301 - Sheldon House, Teddington
Serial No. 41057 1

Serial No. 41057_1 DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT **OF PORE PRESSURE Borehole** Depth (m) Type Reference Description Remarks /Pit No. CP01 17.00 U 3 Stiff (high strength) fissured dark grey CLAY Premature failure at 3.3% strain. **Initial Specimen** Height Diameter Weight Water Content **Bulk Density Dry Density** Depth of (%) (Mg/m³)(Mg/m³)(mm) (mm) (g) Top of Specimen 199.4 102.8 3298 29.8 1.99 1.53 (m) 17.03 TEST INFORMATION Rate of Strain 1.0 % per Min **Rubber Membrane Thickness** 0.3 mm

Specimen at failure	Measured Cell	Strain at Failure (%)		ections (kPa)	Corrected Max. Deviator Stress, (σ1-σ3)f (kPa)	Shear Stress Cu, ½(σ1-σ3)f (kPa)	Mohrs Circle Analysis	
	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction			Cu (kPa)	PHI (degrees)
	340	3.3	0.3	\	297	149		

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

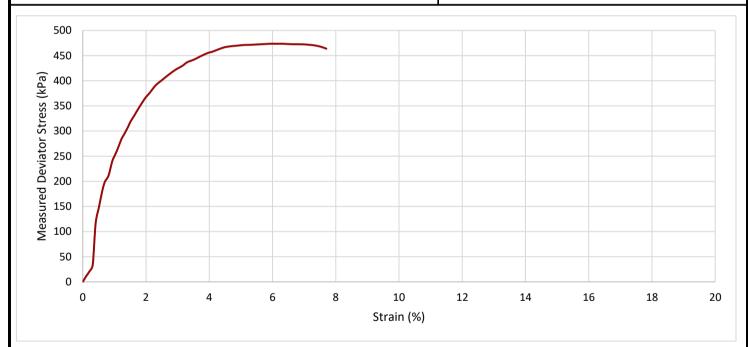
Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

ISSUED BY SOIL PROPERTY TESTING LTD DATE ISSUED: 19/07/2022


0998

Contract	P4301 - Sheldon House, Teddington
Serial No.	41057_1

DETERMINATION OF UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

	OF FORE PRESSORE									
Borehole /Pit No.	Depth (m)	Type	Referer	nce	Descriptio	R	Remarks			
CP01	21.00	U	4	Very stiff (very hi	ery stiff (very high strength) fissured dark grey CLAY					
Initial S	pecimen	He	ight	Diameter	Weight	Water Content	Bulk Density	Dry Density		
	Depth of	(m	nm)	(mm)	(g)	(%)	(Mg/m³)	(Mg/m³)		
	Top of Specimen (m) 21.06	19	9.3	102.4	3346	25.4	2.04	1.63		
TECT INIE			Pata of	Strain 10	% por Min	Pubbor Mombra	no Thicknoss	0.2 mm		

TEST INFORMATION Rate of Strain 1.0 % per Min Rubber Membrane Thickness 0.3 mm

Specimen at failure	Measured Cell	Strain at Failure (%)	Stress Corrections (kPa)		Corrected Max.	Shear Stress Cu,	Mohrs Circle Analysis	
Specimen at failure	Pressure, σ3 (kPa)		Rubber Membrane	Piston Friction	Deviator Stress, (σ1-σ3)f (kPa)	½(σ1-σ3)f (kPa)	Cu (kPa)	PHI (degrees)
	420	6.3	0.5	\	474	237		

Method of Preparation: BS 1377: Part 1: 1990

Method of Test: BS 1377: Part 7: 1990: 8 Definitive Method, 1990: 9 Multi-stage loading

Type of Sample Key: U = Undisturbed, B = Bulk, D = Disturbed, J = Jar, W = Water, SPT = Split Spoon Sample, C = Core Cutter

Comments: Tested in Vertical Condition

UKAS Calibration - loads from 0.2 to 10kN

Remarks to Include: Sample disturbance, loss of moisture, variation form test procedure, location and origin of test specimen within original sample, oven drying

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

LIOERS-AVY IV-3F3F

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

P4301.3

Description/Comments

Project Site

Sheldon House, Cromwell Road, Teddington, TW11 9EJ

Classified by

Name: Company:

Simon Pike AGB Environmental Ltd

Date: 341 Exning Road

03 Aug 2022 09:35 GMT Newmarket
Telephone: CB8 0AT

01638 663 226

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

Course

Hazardous Waste Classification 3 year Refresher overdue

Date 17 Sep 2015

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01	0.30	Non Hazardous		2
2	WS02	1.00	Non Hazardous		4
3	WS03	0.30	Non Hazardous		7
4	WS04	0.50	Non Hazardous		10
5	TP01	0.20	Non Hazardous		12
6	CP01	0.30	Non Hazardous		14

Related documents

# Name	Description
1 Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created by: Simon Pike Created date: 03 Aug 2022 09:35 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	16
Appendix B: Rationale for selection of metal species	17
Appendix C: Version	17

Classification of sample: WS01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS01 Chapter: Sample Depth: Entry:

Chapter: 17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05

Moisture content:

4.6%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 4.6% No Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number		CLP Note			Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used		
1	æ	number arsenic { arsenic tr	r <mark>ioxide</mark> }			13	malka	1.32	17.164	malka	0.00172.9/		
'	Ĭ	033-003-00-0	215-481-4	1327-53-3		13	mg/kg	1.32	17.104	mg/kg	0.00172 %		
2	4	cadmium { cadmium oxide }				<0.2	mg/kg	1 1 1 2	12 <0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
Ĺ	Ĭ	048-002-00-0	215-146-2	1306-19-0		~0.2	ilig/kg	1.142	<0.220	ilig/kg	<0.0000220 /6		LOD
3	4	oxide (worst case) }				14	mg/kg	1.462	20.462	mg/kg	0.00205 %		
4	4	215-160-9 1308-38-9 chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }				<2	mg/kg	2.27	<4.54	mg/kg	<0.000454 %		<lod< th=""></lod<>
5	æ		L <mark>oxide; copper (I) oxi</mark> 215-270-7	de } 1317-39-1		18	mg/kg	1.126	20.266	mg/kg	0.00203 %		
6	æ				1	77	mg/kg	1.56	120.106	mg/kg	0.0077 %		
		mercury { mercury dichloride }			+								
7	W.	080-010-00-X	231-299-8	7487-94-7	-	<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
8	æ	nickel { nickel chromate }			П	4.4	//	2.076	41.668	4.000	0.00447.0/	T	
°	_	028-035-00-7	238-766-5	14721-18-7		14	mg/kg	2.976	41.000	mg/kg	0.00417 %		
9	æ	selenium { nickel selenate }				<3	ma/ka	2.554	54 <7.662	mg/kg	<0.000766 %		<lod< td=""></lod<>
L		028-031-00-5	239-125-2	15060-62-5				2.001	17.002	mg/ng	10.000700 70		1200
1,0	a Ç	zinc { zinc sulphate }				40		0.400	00 770				
10		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		40	mg/kg	2.469	98.772	mg/kg	0.00988 %		
11	0	TPH (C6 to C40) p	etroleum group	TPH		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>
12		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane				<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
13		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
14		toluene				<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
Ľ		601-021-00-3	203-625-9	108-88-3		73	mg/kg			mg/kg	20.0005 %		LOD
15	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		00.020.00 4	EUE UTU T	100 71 7	_								L

Page 2 of 18 UOERS-AVYJY-3F3FY www.hazwasteonline.com

#		Determinand EU CLP index number		CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used	
16		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
17	9	pH		PH		8.4	рН		8.4	рН	8.4 pH		
18		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26		benzo[a]anthracer 601-033-00-9	ne 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[b]fluoranthe	1	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		benzo[k]fluoranthe	ene 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[a]pyrene; b		50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31	0	indeno[123-cd]pyr		193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		dibenz[a,h]anthrac			\vdash	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	benzo[ghi]perylen	1	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			kna-009-9	131-24-2						Total:	0.0349 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound o**i**

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS02

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS02 Chapter:

Sample Depth: Entry:

Moisture content: 5.5%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 5.5% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number	20110111201	0710114111201	ರ							Ž	
1	æ	arsenic { arsenic tr		4007.50.0		12	mg/kg	1.32	15.844	mg/kg	0.00158 %		
	æ	033-003-00-0 cadmium { cadmiu	215-481-4 m oxide }	1327-53-3								+	
2	u.	,	215-146-2	1306-19-0		0.3	mg/kg	1.142	0.343	mg/kg	0.0000343 %		
3	4	chromium in chromoxide (worst case)	•			13	mg/kg	1.462	19	mg/kg	0.0019 %		
	æ£.	chromium in chrom	215-160-9 nium(VI) compounds	1308-38-9	H	,							
4	e#	compounds, with the	ne exception of bari cified elsewhere in t	um chromate and		<2	mg/kg	2.27	<4.54	mg/kg	<0.000454 %		<lod< td=""></lod<>
	_	024-017-00-8										-	
5	æ		oxide; copper (I) oxide; coppe	de } 1317-39-1		23	mg/kg	1.126	25.895	mg/kg	0.00259 %		
6	æ	lead { lead chroma		1017 00 1	1	407		4.50	040.005		0.0407.0/		
6	_	082-004-00-2	231-846-0	7758-97-6	1	137	mg/kg	1.56	213.695	mg/kg	0.0137 %		
7	æ\$	mercury { mercury				<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
_	_		231-299-8	7487-94-7									
8	64	nickel { nickel chroi 028-035-00-7	238-766-5	14721-18-7	-	11	mg/kg	2.976	32.739	mg/kg	0.00327 %		
9	æ	selenium { nickel se		12		2	//	0.554	7,000		0.000700.0/		1.00
	_	028-031-00-5	239-125-2	15060-62-5		<3	mg/kg	2.554	<7.662	mg/kg	<0.000766 %		<lod< td=""></lod<>
1	æ\$	zinc { zinc sulphate	-			70		0.400	470.054		0.0470.0/		
10		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		70	mg/kg	2.469	172.851	mg/kg	0.0173 %		
11	0	TPH (C6 to C40) p	etroleum group			171	mg/kg		171	mg/kg	0.0171 %		
		tert-butyl methyl et	hor: MTDE:	TPH								-	
12		2-methoxy-2-methy	, ,			<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4									
13		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
14		toluene		1		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
L		601-021-00-3	203-625-9	108-88-3		ζ.,			ζ3	ilig/kg	<0.0003 / ₀		LOD
15		ethylbenzene	1000001	1.00		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									

Page 4 of 18 UOERS-AVYJY-3F3FY www.hazwasteonline.com

#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor	·		value	MC A	Used
		xylene											
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17	0	рН		PH		7.9	рН		7.9	рН	7.9 pH		
	\vdash	naphthalene		PH								-	
18		601-052-00-2	202-049-5	91-20-3	-	0.12	mg/kg		0.12	mg/kg	0.000012 %		
		acenaphthylene	202-049-5	91-20-3								+	
19	0	acenaphinylene	205-917-1	208-96-8	-	1.15	mg/kg		1.15	mg/kg	0.000115 %		
20	0	acenaphthene	1		Ì	0.25	malka		0.25	ma/ka	0.000035 %		
20			201-469-6	83-32-9	1	0.35	mg/kg		0.35	mg/kg	0.000035 %		
21	0	fluorene		•		1.65	mg/kg		1.65	mg/kg	0.000165 %		
			201-695-5	86-73-7			9/119			9,9			
22	0	phenanthrene				18	mg/kg		18	mg/kg	0.0018 %		
			201-581-5	85-01-8						3. 3			
23	0	anthracene				4.44	mg/kg		4.44	mg/kg	0.000444 %		
			204-371-1	120-12-7	_							-	
24	0	fluoranthene				28.7	mg/kg		28.7	mg/kg	0.00287 %		
			205-912-4	206-44-0	-							-	
25	0	pyrene				25.1	mg/kg		25.1	mg/kg	0.00251 %		
			204-927-3	129-00-0	-								
26		benzo[a]anthracen				13.3	mg/kg		13.3	mg/kg	0.00133 %		
		601-033-00-9	200-280-6	56-55-3									
27		chrysene	hor 000 4	040.04.0	_	11	mg/kg		11	mg/kg	0.0011 %		
		601-048-00-0	205-923-4	218-01-9								-	
28		benzo[b]fluoranthe	205-911-9	205-99-2	_	11.5	mg/kg		11.5	mg/kg	0.00115 %		
		benzo[k]fluoranthe		203-99-2								+	
29		601-036-00-5	205-916-6	207-08-9	-	4.24	mg/kg		4.24	mg/kg	0.000424 %		
	\vdash	benzo[a]pyrene; be	1	201-00-3	\vdash								
30		601-032-00-3	200-028-5	50-32-8	-	12.6	mg/kg		12.6	mg/kg	0.00126 %		
	0	indeno[123-cd]pyro	1	<u></u>	t							\vdash	
31	,	- 1 - 1-1p)	205-893-2	193-39-5	-	7.38	mg/kg		7.38	mg/kg	0.000738 %		
20		dibenz[a,h]anthrac			T	0.07	()		0.07	(1	0.000007.01		
32		601-041-00-2	200-181-8	53-70-3	1	2.07	mg/kg		2.07	mg/kg	0.000207 %		
33	0	benzo[ghi]perylene	e	*		6.27	malle		6 27	ma/ka	0.000637 %		
33			205-883-8	191-24-2	1	6.37	mg/kg		6.37	mg/kg	0.000037 %		
				`						Total:	0.0752 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Soil matrix no free phase product

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

www.hazwasteonline.com UOERS-AVYJY-3F3FY Page 5 of 18

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0171%)

Page 6 of 18 UOERS-AVYJY-3F3FY www.hazwasteonline.com

Classification of sample: WS03

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS03 Chapter:

Sample Depth:

0.30 m Entry:

Moisture content:

6.4% (no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 6.4% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv		Classification value	MC Applied	Conc. Not Used
1	æ	arsenic { arsenic tr	ioxide }	1327-53-3		26 mg/k	g 1.32	34.328 mg/kg	0.00343 %		
2	ď		1	1306-19-0		0.5 mg/k	g 1.142	2 0.571 mg/kg	0.0000571 %		
3	4		nium(III) compounds			14 mg/k	g 1.462	2 20.462 mg/kg	0.00205 %		
4	4	compounds, with the	nium(VI) compounds ne exception of baric cified elsewhere in t	um chromate and		<2 mg/k	g 2.27	<4.54 mg/kg	<0.000454 %		<lod< th=""></lod<>
5	ď		l <mark>oxide; copper (I) oxid</mark> 215-270-7	l <mark>de</mark> } 1317-39-1		63 mg/k	g 1.126	5 70.931 mg/kg	0.00709 %		
6	ď	lead { lead chroma 082-004-00-2		7758-97-6	1	635 mg/k	g 1.56	990.483 mg/kg	0.0635 %		
7	e#	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		<1 mg/k	g 1.353	3 <1.353 mg/kg	<0.000135 %		<lod< td=""></lod<>
8	e#	nickel { nickel chro	mate } 238-766-5	14721-18-7		16 mg/k	2.976	6 47.62 mg/kg	0.00476 %		
9	ď	selenium { nickel s	elenate } 239-125-2	15060-62-5		<3 mg/k	g 2.554	<7.662 mg/kg	<0.000766 %		<lod< td=""></lod<>
10	4	zinc { zinc sulphate 030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		589 mg/k	g 2.469	0 1454.416 mg/kg	0.145 %		
11	0	TPH (C6 to C40) p	etroleum group	ТРН		42 mg/k	g	42 mg/kg	0.0042 %		
12		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	, ,	1634-04-4		<5 mg/k	g	<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
13		benzene 601-020-00-8	200-753-7	71-43-2		<2 mg/k	g	<2 mg/kg	<0.0002 %		<lod< td=""></lod<>
14		toluene 601-021-00-3	203-625-9	108-88-3		<5 mg/k	g	<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
15	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2 mg/k	g	<2 mg/kg	<0.0002 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entere	ed data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CF							MC	
		xylene											
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
17	0	рН		PH		6.7	рН		6.7	рН	6.7 pH		
		nanhthalana		РП	+								
18		naphthalene 601-052-00-2	202-049-5	91-20-3	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthylene	202-049-5	91-20-3	+				·				
19	0	acenaphinylene	205-917-1	208-96-8	-	0.2	mg/kg		0.2	mg/kg	0.00002 %		
20	0	acenaphthene	004 400 0	00.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
04	0	fluorene	201-469-6	83-32-9		0.40			0.40		0.000040.0/		
21			201-695-5	86-73-7		0.12	mg/kg		0.12	mg/kg	0.000012 %		
22	0	phenanthrene	201-581-5	85-01-8		2.39	mg/kg		2.39	mg/kg	0.000239 %		
		anthracene	201-301-3	03-01-0	+							+	
23		animacono —	204-371-1	120-12-7	-	0.48	mg/kg		0.48	mg/kg	0.000048 %		
٠.		fluoranthene				0.00						\dagger	
24			205-912-4	206-44-0	1	6.38	mg/kg		6.38	mg/kg	0.000638 %		
25	0	pyrene				6.04	mg/kg		6.04	mg/kg	0.000604 %		
			204-927-3	129-00-0		0.01			0.01		0.00000170		
26		benzo[a]anthracer	ne			3.63	mg/kg		3.63	mg/kg	0.000363 %		
		601-033-00-9	200-280-6	56-55-3									
27		chrysene				2.37	mg/kg		2.37	mg/kg	0.000237 %		
		601-048-00-0	205-923-4	218-01-9								1	
28		benzo[b]fluoranthe		hor oo o	4	3.28	mg/kg		3.28	mg/kg	0.000328 %		
		benzo[k]fluoranthe	205-911-9	205-99-2	+							+	
29		601-036-00-5	205-916-6	207-08-9	_	1.1	mg/kg		1.1	mg/kg	0.00011 %		
30		1	enzo[def]chrysene		\dagger	2.2	m = /l		2.2	m c /l -	0.00033.0/		
3 U		601-032-00-3	200-028-5	50-32-8	1	3.3	mg/kg		3.3	mg/kg	0.00033 %		
31	0	indeno[123-cd]pyr		·		2	mg/kg		2	mg/kg	0.0002 %		
-			205-893-2	193-39-5	1				_			\perp	
32		dibenz[a,h]anthrac			_	0.44	mg/kg		0.44	mg/kg	0.000044 %		
		601-041-00-2	200-181-8	53-70-3	\perp							\perp	
33	0	benzo[ghi]perylene	e 205-883-8	191-24-2		1.71	mg/kg		1.71	mg/kg	0.000171 %		
	_		_00 000-0	101272						Total:	0.237 %	+	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) ď,

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Soil matrix no free phase product

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Page 8 of 18 UOERS-AVYJY-3F3FY www.hazwasteonline.com

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0042%)

Classification of sample: WS04

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS04 Chapter:

Sample Depth: 0.50 m Entry:

Moisture content:

(no correction)

4.9%

17: Construction and Demolition Wastes (including excavated soil

from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 4.9% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound con	IC.	Classification value	MC Applied	Conc. Not Used
1	_	arsenic { arsenic tr				9	mg/kg	1.32	11.883 m	ng/kg	0.00119 %		
-	1 -	033-003-00-0 cadmium { cadmium	215-481-4	1327-53-3									
2	4		215-146-2	1306-19-0		<0.2	mg/kg	1.142	<0.228 m	ng/kg	<0.0000228 %		<lod< td=""></lod<>
3	4		nium(III) compounds			15	mg/kg	1.462	21.923 m	ng/kg	0.00219 %		
4	4	compounds, with the	nium(VI) compounds ne exception of baric cified elsewhere in t	s { chromium (VI) um chromate and		<2	mg/kg	2.27	<4.54 m	ng/kg	<0.000454 %		<lod< td=""></lod<>
5	4	copper { dicopper o	L <mark>oxide; copper (I) oxid</mark> 215-270-7	de }		7	mg/kg	1.126	7.881 m	ng/kg	0.000788 %		
6	4	lead { lead chroma		7758-97-6	1	16	mg/kg	1.56	24.957 m	ng/kg	0.0016 %		
7	4	mercury { mercury		7487-94-7		<1	mg/kg	1.353	<1.353 m	ng/kg	<0.000135 %		<lod< td=""></lod<>
8	4	nickel { nickel chro		14721-18-7		11	mg/kg	2.976	32.739 m	ng/kg	0.00327 %		
9	4	selenium { nickel selenium 1028-031-00-5		15060-62-5		<3	mg/kg	2.554	<7.662 m	ng/kg	<0.000766 %		<lod< td=""></lod<>
10	4	zinc { zinc sulphate	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		40	mg/kg	2.469	98.772 m	ng/kg	0.00988 %		
11	0	TPH (C6 to C40) p	etroleum group	TPH		<42	mg/kg		<42 m	ng/kg	<0.0042 %		<lod< td=""></lod<>
12		tert-butyl methyl et 2-methoxy-2-methy		1634-04-4		<5	mg/kg		<5 m	ng/kg	<0.0005 %		<lod< th=""></lod<>
13		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2 m	ng/kg	<0.0002 %		<lod< td=""></lod<>
14		toluene	200 100-1	1 1 70-2		-E	ma/l:~		4E	na/ka	-0.000E 9/		4 OD
14		601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5 m	ng/kg	<0.0005 %		<lod< td=""></lod<>
15		ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2 m	ng/kg	<0.0002 %		<lod< td=""></lod<>

		COMMENTAL			_							7
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not
		number			10						_	
		xylene										
16		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2 mg/l	g <0.0002 %		<lod< td=""></lod<>
17	0	pН	1	PH		7.6	рН		7.6 pH	7.6 pH		
		naphthalene		гп	\vdash							
18		601-052-00-2	202-049-5	91-20-3	-	<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
	_	acenaphthylene	202-049-3	91-20-3	-							
19		acenaphinylene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
20	0	acenaphthene				<0.1			<0.1 mg/l	~ .0.00001.0/		<lod< td=""></lod<>
20			201-469-6	83-32-9		<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lud< td=""></lud<>
21	0	fluorene				<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7		νο.1				9 <0.00001 70		LOD
22	0	phenanthrene				<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
			201-581-5	85-01-8		30.1				9 10.00001 70		1205
23	0	anthracene				<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
			204-371-1	120-12-7		10				9 10:0000. 70		1202
24	0	fluoranthene				<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
			205-912-4	206-44-0								
25	0	pyrene				<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
			204-927-3	129-00-0								
26		benzo[a]anthracer				<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3								
27		chrysene	hor ooo 4	040.04.0		<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	-							
28		benzo[b]fluoranthe	205-911-9	205-99-2	-	<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe		205-99-2								
29		601-036-00-5	205-916-6	207-08-9	-	<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
			enzo[def]chrysene	_0,000	\vdash							
30		601-032-00-3	200-028-5	50-32-8		<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
2.4	0	indeno[123-cd]pyr		1	t	2.4	"		0.4	- 0.00004.00		100
31			205-893-2	193-39-5		<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
32		dibenz[a,h]anthrad	cene	·		-O 1	ma/ka		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
32		601-041-00-2	200-181-8	53-70-3	1	<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lud< td=""></lud<>
33	0	benzo[ghi]perylen	e	,		<0.1	mg/kg		<0.1 mg/l	g <0.00001 %		<lod< td=""></lod<>
			205-883-8	191-24-2		νο. 1	mg/kg		Co.1 mg/l	9 10.00001 70		100
					_			· <u> </u>	Tota	l: 0.0263 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound a**g** concentration

<LOD

Below limit of detection ND

Not detected

CLP: Note 1 Only the metal concentration has been used for classification

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: TP01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: TP01 Chapter:

Sample Depth: 0.20 m

Moisture content:

4.9% (no correction)

from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05 Entry:

Hazard properties

None identified

Determinands

Moisture content: 4.9% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
1	ď	arsenic { arsenic to 033-003-00-0	rioxide }	1327-53-3		11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
2	ď			1306-19-0		0.2	mg/kg	1.142	0.228	mg/kg	0.0000228 %		
3	ď	chromium in chroroxide (worst case)	mium(III) compounds } 215-160-9	6 (chromium(III)		16	mg/kg	1.462	23.385	mg/kg	0.00234 %		
4	ď	compounds, with t	nium(VI) compounds the exception of bari ecified elsewhere in t	um chromate and		<2	mg/kg	2.27	<4.54	mg/kg	<0.000454 %		<lod< td=""></lod<>
5	ď	1	oxide; copper (I) oxide; coppe	de } 1317-39-1		25	mg/kg	1.126	28.147	mg/kg	0.00281 %		
6	ď	lead { lead chroma 082-004-00-2		7758-97-6	1	214	mg/kg	1.56	333.8	mg/kg	0.0214 %		
7	ď	mercury { mercury 080-010-00-X	<mark>/ dichloride</mark> } 231-299-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
8	ď	nickel { nickel chro	omate }	14721-18-7		12	mg/kg	2.976	35.715	mg/kg	0.00357 %		
9	ď	selenium { nickel s	1	15060-62-5		<3	mg/kg	2.554	<7.662	mg/kg	<0.000766 %		<lod< td=""></lod<>
10		zinc { zinc sulphat 030-006-00-9	e } 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		106	mg/kg	2.469	261.745	mg/kg	0.0262 %		
11	0	TPH (C6 to C40) p	petroleum group	TPH		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>
12		tert-butyl methyl e 2-methoxy-2-meth 603-181-00-X	, ,	1634-04-4		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< th=""></lod<>
13		benzene 601-020-00-8	200-753-7	71-43-2		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
14		toluene 601-021-00-3	203-625-9	108-88-3		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< th=""></lod<>
15	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
17	0	рН		PH		8	рН		8	рН	8pH		
18		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	acenaphthylene	205-917-1	208-96-8		0.11	mg/kg		0.11	mg/kg	0.000011 %		
20	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	Θ	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	phenanthrene	201-581-5	85-01-8		1.25	mg/kg		1.25	mg/kg	0.000125 %		
23	0	anthracene	204-371-1	120-12-7		0.26	mg/kg		0.26	mg/kg	0.000026 %		
24	9	fluoranthene	205-912-4	206-44-0		3.23	mg/kg		3.23	mg/kg	0.000323 %		
25	0	pyrene	204-927-3	129-00-0		2.86	mg/kg		2.86	mg/kg	0.000286 %		
26		benzo[a]anthracer 601-033-00-9	ne 200-280-6	56-55-3		1.67	mg/kg		1.67	mg/kg	0.000167 %		
27		chrysene 601-048-00-0	205-923-4	218-01-9		1.37	mg/kg		1.37	mg/kg	0.000137 %		
28		benzo[b]fluoranthe	1	205-99-2		1.7	mg/kg		1.7	mg/kg	0.00017 %		
29		benzo[k]fluoranthe		207-08-9		0.52	mg/kg		0.52	mg/kg	0.000052 %		
30			enzo[def]chrysene	50-32-8		1.6	mg/kg		1.6	mg/kg	0.00016 %		
31	0	indeno[123-cd]pyr		193-39-5		1.04	mg/kg		1.04	mg/kg	0.000104 %		
32		dibenz[a,h]anthrad				0.28	mg/kg		0.28	mg/kg	0.000028 %		
33	0	benzo[ghi]perylen	e	53-70-3		0.93	mg/kg		0.93	mg/kg	0.000093 %		
			205-883-8	191-24-2						Total:	0.0666 %	+	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: CP01

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: CP01 Chapter:

Sample Depth: 0.30 m Entry:

Moisture content: 8.9%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 8.9% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	4	number arsenic { arsenic tr	i <mark>oxide</mark> }			11	mg/kg	1.32	14.524	mg/kg	0.00145 %		
Ľ.		033-003-00-0	215-481-4	1327-53-3				1.02	11.021	mg/ng	0.0011070		
2	ď	cadmium { cadmiu				<0.2	ma/ka	1.142	<0.228	mg/kg	<0.0000228 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0						99			
3	4	chromium in chromoxide (worst case)	•			19	mg/kg	1.462	27.77	mg/kg	0.00278 %		
_	_		215-160-9	1308-38-9								-	
4	4	compounds, with the of compounds special	nium(VI) compounds ne exception of bari cified elsewhere in t	um chromate and		<2	mg/kg	2.27	<4.54	mg/kg	<0.000454 %		<lod< td=""></lod<>
		024-017-00-8		<u> </u>									
5	æ 🎖		oxide; copper (I) oxi			36	mg/kg	1.126	40.532	mg/kg	0.00405 %		
_	_		215-270-7	1317-39-1								+	
6	_	lead { lead chroma 082-004-00-2	te } 231-846-0	7750 07 6	1	241	mg/kg	1.56	375.915	mg/kg	0.0241 %		
	 	mercury { mercury		7758-97-6									
7	~	080-010-00-X	231-299-8	7487-94-7		<1	mg/kg	1.353	<1.353	mg/kg	<0.000135 %		<lod< td=""></lod<>
	-	nickel { nickel chro		7 107 017									
8	_		238-766-5	14721-18-7		13	mg/kg	2.976	38.691	mg/kg	0.00387 %		
9	æ	selenium { nickel se	elenate }	1		<3		2 5 5 4	<7.662	m a/l.a	-0.000766.0/		<lod< td=""></lod<>
9	_	028-031-00-5	239-125-2	15060-62-5		<3	mg/kg	2.554	<7.002	mg/kg	<0.000766 %		<lod td="" <=""></lod>
	ď	zinc { zinc sulphate	}										
10	Ĭ	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		121	mg/kg	2.469	298.785	mg/kg	0.0299 %		
11	0	TPH (C6 to C40) p	etroleum group	TOLL		<42	mg/kg		<42	mg/kg	<0.0042 %		<lod< td=""></lod<>
		tert-butyl methyl et	hor: MTDE:	TPH		,			<u> </u>			-	
12		2-methoxy-2-methy	, ,			<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4			0 0						
13		benzene		1		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2						3 3			
14		toluene				<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
_		601-021-00-3	203-625-9	108-88-3	_							-	
15		ethylbenzene	000 040 4	400 44 4		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound o	onc.	Classification value	MC Applied	Conc. Not Used
16		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<2	mg/kg		<2	mg/kg	<0.0002 %		<lod< th=""></lod<>
17	9	pH		PH		9.7	рН		9.7	рН	9.7 pH		
18		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
19	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	9	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26		benzo[a]anthracer 601-033-00-9	ne 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[b]fluoranthe	ene 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		benzo[k]fluoranthe	ene 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[a]pyrene; b		50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31	0	indeno[123-cd]pyr		193-39-5	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		dibenz[a,h]anthrac			+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	benzo[ghi]perylen	1	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			<u>knn-000-0</u>	131-24-2						Total:	0.0735 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Appendix A: Classifier defined and non GB MCL determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332, Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Resp. Sens. 1; H334, Skin

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226, Asp. Tox. 1; H304, STOT RE 2; H373, Muta. 1B; H340, Carc. 1B; H350, Repr. 2; H361d, Aquatic Chronic 2;

H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

 ${\bf Data\ source:\ http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2;

H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Page 16 of 18 UOERS-AVYJY-3F3FY www.hazwasteonline.com

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc sulphate}

Insufficient chromium for Zinc Chromate

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021
HazWasteOnline Classification Engine Version: 2022.192.5237.9831 (11 Jul 2022)

HazWasteOnline Database: 2022.192.5237.9831 (11 Jul 2022)

www.hazwasteonline.com UOERS-AVYJY-3F3FY Page 17 of 18

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

Page 18 of 18 UOERS-AVYJY-3F3FY www.hazwasteonline.com

Appendix 5 CSM Risk Evaluation Methodology

Classification of Consequence

The classifications of consequence (severity) are taken from R&D Publication 66 (NHBC and Environment Agency, 2008). agb Environmental has chosen to apply the classifications to a broad range of development scenarios.

It should be noted that the categories of pollution incident have no relation to the categories of significant possibility of significant harm to human health or significant possibility of significant pollution of controlled waters in respect of the Part 2A Statutory Guidance.

Classification	Definition
	Highly elevated concentrations likely to result in "significant harm" to human health as defined by the EPA 1990, Part 2A, if exposure occurs.
Severe	Equivalent to EA Category 1 pollution incident including persistent and/or extensive effects on water quality; leading to closure of a potable abstraction point; major impact on amenity value or major damage to agriculture or commerce.
	Major damage to aquatic or other ecosystems, which is likely to result in a substantial adverse change in its functioning or harm to a species of special interest that endangers the long-term maintenance of the population.
	Catastrophic damage to crops, buildings or property.
	Elevated concentrations which could result in "significant harm" to human health as defined by the EPA 1990, Part 2A if exposure occurs.
Medium	Equivalent to EA Category 2 pollution incident including significant effect on water quality; notification required to abstractors; reduction in amenity value or significant damage to agriculture or commerce.
	Significant damage to aquatic or other ecosystems, which may result in a substantial adverse change in its functioning or harm to a species of special interest that may endanger the long-term maintenance of the population.
	Significant damage to crops, buildings or property.
	Exposure to human health unlikely to lead to "significant harm".
	Equivalent to EA Category 3 pollution incident including minimal or short lived effect on water quality; marginal effect on amenity value, agriculture or commerce.
Mild	Minor or short lived damage to aquatic or other ecosystems, which is unlikely to result in a substantial adverse change in its functioning or harm to a species of special interest that would endanger the long-term maintenance of the population.
	Minor damage to crops, buildings or property.
	No measurable effect on humans.
Minor	Equivalent to insubstantial pollution incident with no observed effect on water quality or ecosystems.
	Repairable effects of damage to buildings, structure and services.

Classification of Probability

The classifications of probability are taken from R&D Publication 66 (NHBC and Environment Agency, 2008). agb Environmental has chosen to apply the classifications to a broad range of development scenarios.

It should be noted that the categories of pollution incident have no relation to the categories of significant possibility of significant harm to human health or significant possibility of significant pollution of controlled waters in respect of the Part 2A Statutory Guidance. Also, in the Part 2A Statutory Guidance "pollutant linkage" is now termed "contaminant linkage", although it is noted that the terms are effectively synonymous.

Category	Definition
High Likelihood	There is pollutant linkage and an event would appear very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is pollutant linkage and all the elements are present and in the right place which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low likelihood	There is pollutant linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a long period such an event would take place, and is less likely in the shorter term.
Unlikely	There is pollutant linkage but circumstances are such that it is improbably that an event would occur even in the very long-term.

Categorisation of Risk

		Consequence (Severity)			
		Severe	Medium	Mild	Minor
Probability (Likelihood)	High Likelihood	Very high risk	High risk	Moderate risk	Moderate/low risk
	Likely	High risk	Moderate risk	Moderate/low risk	Low risk
	Low Likelihood	Moderate risk	Moderate/low risk	Low risk	Very low risk
P (L	Unlikely	Moderate/low risk	Low risk	Very low risk	Very low risk

Description of Risk Levels and Likely Action Required

Term	Description
Very high risk	There is a high probability that severe harm could arise to a designated receptor from an identified hazard at the site without appropriate remediation action <u>or</u> there is evidence that severe harm to a designated receptor is already occurring. Realisation of that risk is likely to present a substantial liability to be site owner or occupier. Investigation is required as a matter of urgency and remediation works likely to follow in the short-term.
High risk	Harm is likely to arise to a designated receptor from an identified hazard at the site without appropriate remediation action. Realisation of the risk is likely to present a substantial liability to the site owner or occupier. Investigation is required as a matter of urgency to clarify the risk. Remediation works may be necessary in the short-term and are likely over the longer term.
Moderate risk	It is possible that without appropriate remediation action, harm would arise to a designated receptor. It is relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely that the harm would be relatively mild. Further investigative work is normally required to clarify the risk and to determine the potential liability to site owner/occupier. Some remediation works may be required in the longer term.
Low risk	It is possible that harm could arise to a designated receptor from identified hazard. It is likely that, at worst, if any harm was realised any effects would be mild. It is unlikely that the site owner/or occupier would face substantial liabilities from such a risk. Further investigative work (which is likely to be limited) to clarify the risk may be required. Any subsequent remediation works are likely to be relatively limited.
Very low risk	It is a low possibility that harm could arise to a designated receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.

Summary of Definitions

Term	Description
Hazard	A property or situation which in certain circumstances could lead to harm. (The properties of different hazards must be assessed in relation to their potential to affect the various different receptors).
Consequences	The adverse effects (or harm) arising from a defined hazard which impairs the quality of the environment or human health in the short or longer term.
Probability	The mathematical expression of the chance of a particular event in a given period of time (e.g. probability of 0.2 is equivalent to 20% or a 1 in 5 chance).
Likelihood	Probability; the state of face of being likely.
Risk	A combination of the probability or frequency of the occurrences of a defined hazard AND the magnitude of the consequences of that occurrence.
Contaminant linkage	An identified pathway is capable of exposing a receptor to a contaminant and that contaminant is capable of harming the receptor. In the Part 2A Statutory Guidance the terms "contaminant", "pollutant" and "substance" have the same meaning, and some non-statutory technical guidance relevant to land contamination uses alternative terms such as "pollutant", "substance" and associated terms in effect to mean the same thing.