

Structural Impact Assessment

Reference: E0811-EEE-XX-RP-S-0001 Date: 28.07.2023 Revision: P03 Description: For Information

Prepared by: Matteo Tonici MEng, Senior Engineer Checked by: Mark Williams, CEng MIStructE, Associate Director 7 Ridgmount Street London WC1E 7AE

www.engineeria.com t: 020 7580 4588 e: contact@engineeria.com

Table of Contents

- 1.0 Introduction
- 2.0 The Project
- 3.0 The Site and The Existing Structure
- 4.0 Site Investigation
- 5.0 Proposed Structure
- 6.0 Proposed Construction Sequence
- 7.0 Conclusions

APPENDICES

- APPENDIX A Preliminary Site Investigation Report (by GEA)
- **APPENDIX B Preliminary Structural Scheme**
- APPENDIX C Preliminary Structural Calculations
- APPENDIX D Proposed Construction Sequence

1.0 Introduction

Engineeria have been commissioned by Mr. and Mrs Frost to prepare a Structural Impact Assessment Report and provide preliminary structural design input for the proposed development at 29-31 High Street, Hampton Wick, Kingston Upon Thames, KT14DA.

The site falls within the area of the London Borough of Richmond Upon Thames.

This report has been prepared in accordance with the guidance document "Planning Advice Note-Good Practice Guide on Basement Developments", by the London Borough of Richmond Upon Thames, dated May 2015.

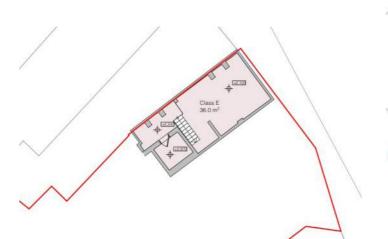
The contents of this report are intended to be used in support of the planning application relating to the proposed works only.

2.0 The Project

The project consists of the demolition of the existing two-storey and three-storey units at 29 and 31 High Street and the construction of a series of new units.

The existing units are as described below:

- units 29 and 31 High Street along the main road comprises a retail and commercial unit on ground floor, and residential units on upper floors.


- unit 29b is located to the rear of units 29 and 31 and comprises two light industrial workshops

- a basement is present below unit 31

- two dilapidated storage units and car parking spaces are located to the back of the site.

The new units comprise three Class E units, two workshops at the rear of the site, and eight residential units.

Furthermore, as part of the proposed development, the existing basement will be extended in footprint and height.

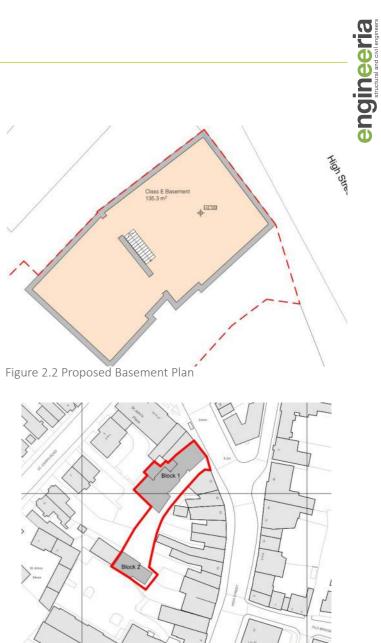


Figure 2.1 Existing Block Plan

Figure 2.3 Existing Building Facade

Figure 2.1 Proposed Block Plan

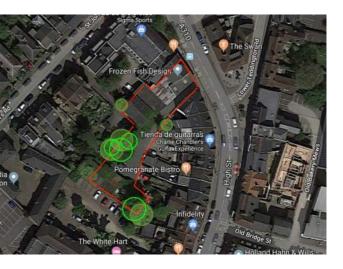


Figure 2.3 Aerial map, red line indicates site boundary, green indicates existing trees

3.1 Site Location

The site is located in Hampton Wick, KT1 4DA, within the London Borough of Richmond Upon Thames. The National Grid reference for the site is 517550, 169500.

The facade of the existing building faces north-east onto High street which is the main point of access for the site.

3.2 Existing Building

The existing buildings are a series of two and three story buildings that appear to consist of traditional timber floors and load bearing masonry wall type construction. The main building (units 29 and 31) appear to be built of traditional brickwork with timber floors. The two back-of-the-house workshops appear to be built of concrete blockwork and lightweight steel structure.

There is a partial basement (cellar) to the front half of the property (below the unit 31).

A walkover survey of the existing building was undertaken in June 2023 (Appendix A).

3.3 Thames Water & Utilities

A Thames Water Asset Location search has been undertaken as part of a Flood Risk Assessment document, produced by others.

An existing Thames Water owned Foul and Surface Water sewer are present on the site. Their position is shown as outside the proposed basement footprint, which also corresponds to a number of inspection chambers noted on the topographical survey drawing provided. However, the exact position of these assets should be verified at a later project stage.

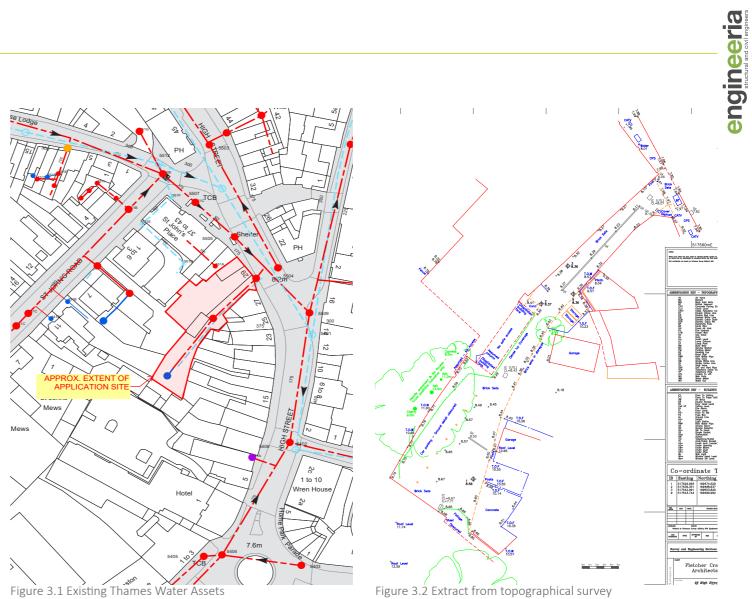
3.4 Adjacent Properties

Number 33a High Street appears to be the mirror copy of the building at 31 High Street. It appears that the boundary line between the two properties is located within the centre of the party wall (i.e. the wall is shared).

The extent of any alteration or extension work (specifically to provide a basement) is unknown, therefore at this stage it is assumed that no full basement extension is present on that side. A similar cellar basement is assumed to be located at the front half of the building, adjacent to 31 High Street.

The site at number 33a High Street appears to be of similar construction to 31 High Street.

For structural design purposes an existing basement has been assumed to be present below number 33a High Street.


3.5 Topography

A topographical survey has been undertaken as part of survey works to the existing structure. The site appears generally sloping downwards from southwest to north-east direction. However, the overall level difference across the site is less than 1m.

3.6 Trees

According to the Screening Assessment Report undertaken by RSK on April 2021, no trees are present on the site; however, a number of trees are present immediately beyond the site boundary.

This information has been verified visually during the site visit undertaken by engineeria.

4.0 Site Investigation

4.1 Ground Investigation Works

Ground Investigation works were undertaken by GEA on 23rd of June 2023. Three boreholes were advanced to a depth varying between 5.45m BGL and 7.10m BGL.

Trial pits to the neighbouring building were not possible due to access constraints.

4.2 Ground Conditions

The ground conditions are generally as follows;

- Made Ground varying in thickness between 1.3m and 1.6m.
- Kempton Park Gravel extending to approximately 7m Below Ground level (approx 6m thick)
- London Clay to depth

Ground water was encountered at depths between 3.55m BGL and 3.7m BGL. This was noted as being below the proposed basement formation level.

4.3 Contamination

The site is not located within a Ground Water source protection zone.

A previous desk study undertaken by RSK did not identify any potential former contaminative uses on the site, and no visual or olfactory signs of contamination were noted during the ground investigation works.

4.4 Ground Movement & Damage Assessment

When considering the loading to be applied and the proposed sequence of construction, engineeria's professional opinion is that any damage to the neighbouring building resulting from the construction would not exceed 'Category 2' as defined by the Burland and Burridge classification, reproduced in CIRIA C580. This is the maximum level of damage considered as acceptable in the borough's basement development guidance document..

The extent of ground movement will be heavily dependent on the level of workmanship and control measures on site, therefore it is assumed that the works would be carried out by a suitably competent and experienced contractor.

It is recommended that during construction a series of monitoring points are established, and regular movement surveys are undertaken. A 'traffic light' system of trigger levels should be agreed with the neighbouring owners, with a level of movement agreed at which works would cease until the cause is established.

Figure 4.1- Borehole locations- Refer to Appendix A for original

G

G	G	ΕA							Geotech	nnical & mental Asso	nciates
Project									1111101	BOREHOL	
29-3	1 High S	treet, Kin	gston l	Јро	n Thar	nes, Su	Irrey KT	1 40	A		-
Job No		Date 1	5-06-23	2	Gr	ound Le	vel (m OD	D)	Co-Ordinates ()	BH2	
J231	151	1	5-06-23	ŝ							
Client					_	En	gineer			Sheet	
Elizabeth	Frost						Enginee	eria		1 of	
SAN	/IPLES &	TESTS							STRATA		ent
Depth	Type No	Tes Resu		Water	leduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrument / Backfill
0.25 0.50 0.75 1.00 1.20-1.65	D1 D2 D3 D4 D5	1,2/1,1 N60 :	,2,2				0.05 0.10 (1.50) 1.60	Ma Ma bri	ade Ground (block paving) ade Ground (sand) ade Ground (dark brown sandy grave ade Ground (dark krown sandy grave ick, ash and concrete fragments)	lly clay with	
-1.85 2.00-2.45	D6 D7	2,2/2,3 N60 =	,3,3			0 0 0		Me	edium dense yellowish brown fine to th fine to coarse subangular to subro		
2.75	D8 D9	2,3/3,4 N60 =	,3,4 15			0 0 0					
3.75	D10 D11	2,2/3,3 N60 =				0 0	(5.50)				
4.75 5.00-5.45	D12 D13	3,3/3,4 N60 =	,4,5 17			0 0 0					
6.00	D14					0 0					
6.50-6.95	D15	3,4/4,4 N60 =	,4,5 18			° 0	7.10		ff fissured bluish grey CLAY		
7.50	D16	0.45					(1.35)		n histored bluish grey cont		
8.00-8.45	D17	3,4/5,5 N60 =	,ь,ь 24			==	8.45	5			
Boring	Progres	s and Wa	ater Ob	ser	vatior	ns I	-		GENERAL		
			Casin epth 10	IP		Vater lepth			REMARKS		
							Groundw	water	monitoring standpipe installed to 4.0	00 m	
All dimensio Scale	ons in met 1:62.5	res Metho Plant								Logged By	

Figure 4.2- Borehole log- Refer to Appendix A for original

5.1 Substructure

The new basement walls are proposed to be formed in reinforced concrete. These are proposed to be constructed in a hit and miss 'underpinning' sequence, in maximum lengths of approximately 1m, to minimise damage to the adjacent party wall, Thames Water assets and public highway present adjacent to the proposed walls. The walls are designed as propped by the ground floor slab in both the temporary and permanent conditions.

Local pad and strip footings are proposed to be formed in the Kempton Park gravel stratum to transfer vertical and horizontal loads to the ground. The ground investigation has confirmed that an allowable net bearing pressure of 150kN/m2 can be considered for the design of these elements.

The proposed basement slab consists of a 250mm thick reinforced concrete slab, to be cast on proprietary collapsible void former (e.g. Cordek Cellcore), to minimise the impact of ground heave. The proposed slab is designed as suspended between foundations due to the provision of anti-heave measures.

The ground floor slab above basement level is proposed as a 250mm thick reinforced concrete suspended slab. In the permanent condition this provides lateral support to the basement walls.

Outside the footprint of the basement, due to the presence of a significant thickness of made ground, a suspended ground floor slab is also proposed.

5.2 Superstructure

The perimeter walls of the new building are assumed to be formed from traditional masonry cavity walls above ground floor level.

Where walls are not continuous through the building (e.g. where shop fronts are proposed at ground floor level, a series of steel beams are proposed to support the masonry above.

The upper floor construction is proposed as timber floor joists (typically 225mm x 50mm at 300 c/c), spanning between either load bearing masonry walls or intermediate steel beams.

Steel columns are proposed to reduce the span of the proposed steel beams. The final position of these is to be co-oridnated with the project architect at a later project stage.

5.3 Stability

To the upper floors of the building, masonry cross walls will provide lateral stability against wind and notional horizontal loads

Where walls are discontinuous, moment resisting connections between steel columns and beams are proposed, in order to compensate for the removal of masonry walls.

Figure 5.1 Proposed Basement Plan

Figure 5.2 Proposed First Floor Plan

6.1 Construction Sequence Stages

The proposed construction sequence is as follows:

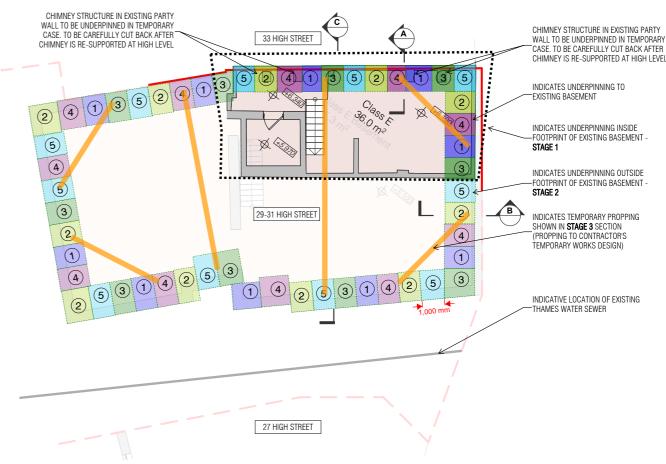
Stage 0:

• Site set up

Stage 1:

- Using hit and miss underpinning sequence (refer to plan), dig down to underside of corbel level in pins marked "1".
- Install mass concrete underpin to 75mm below underside of existing foundation. Provide shear key to adjacent pins.
- Install dry mortar pack with non-shrink additive to underside of existing foundation, well rammed in.
- Cast wall sections and wall toe with continuity rebars for future connection to basement slab.
- Backfill excavation using well compacted granular material or leave excavation support in place.
- Repeat for remaining pins, in sequence indicated.

Stage 2:


- Excavate down using RC underpinning sequence, installing trench sheeting and struts/waling beams to support excavation. Exact size of pins to suit contractor's temporary works design.
- Cast retaining wall sections and wall toe with continuity rebars for future connection to basement slab.

Stage 3:

- Excavate ground level within basement to underside of upper level of horizontal props (to contractor's temporary works design) and install horizontal props.
- Excavate to underside of lower level of horizontal props and install props before excavating to formation level.
- Pull out continuity bars from retaining wall toes and construct remaining basement slab between. This provides permanent lower level horizontal prop.
- Construct ground floor slab to provide permanent horizontal prop to top of retaining walls and remove temporary propping.

For full details, refer to Appendix E.

Detailed design of all temporary works and the final construction sequence are subject to final design at a later project stage.

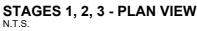


Figure 6.1- Extract from Proposed Construction Sequence

8

- A site investigation has been undertaken, confirming the existing ground conditions present on site, including ground water levels and geotechnical parameters.
- Based on this, a proposed structural design has been produced which demonstrates a feasible manner of constructing the proposed basement development.
- A sequence of works is proposed which will allow the proposed basement to be constructed in a safe manner, subject to detailed design of temporary works by the contractor at a later stage.
- Provided that the works are executed in the manner indicated and by a suitably experienced contractor, it is anticipated that ground movements in adjacent properties will be limited to Damage Class 2 or lower (within the limits deemed acceptable as part of the Borough of Richmond's guidance document).

© 2021 Copyright engineeria. All rights reserved

engineeria Itd Registered in England and Wales Company Number: 09029050 Registered Office: 145-157 St John Street EC1V 4PW, London

Appendix A - Preliminary Site Investigation Report (by GEA)

Ground Investigation Report & Basement Impact Assessment

Ground investigation | Geotechnical consultancy | Contaminated land assessment

29-31 High Street **Hampton Wick Kingston Upon Thames** KT1 4DA

Mrs. Elizabeth Frost

July 2023

J23151 Rev 1

Report prepared by

Alex Taylor BSc MSc FGS Senior Geotechnical Engineer

Report checked by

Matt Legg BSc MSc FGS Senior Geotechnical Engineer

Report approved by

Steve Branch BSc MSc CGeol FGS FRGS Managing Director

Rev No	Status	Revision Details	Date	Approved for Issue
0	Final		14 July 2023	
1	Final		21 July 2023	81

This report has been issued by the GEA office indicated below. Any enquiries regarding the report should be directed to the report project engineer at the office indicated or to Steve Branch in our main Herts office.

~	Hertfordshire	tel 01727 824666
	Nottinghamshire	tel 01509 674888
	Manchester	tel 0161 209 3032

Geotechnical & Environmental Associates Limited (GEA) disclaims any responsibility to the Client and others in respect of any matters outside the scope of this work. This report has been prepared with reasonable skill, care and diligence within the terms of the contract with the Client and taking account of the manpower, resources, investigation and testing devoted to it in agreement with the Client This report is confidential to the Client and GFA accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known, unless formally agreed beforehand. Any such party relies upon the report at their own risk. This report may provide advice based on an interpretation of legislation, guidance notes and codes of practice. GEA does not however provide legal advice and if specific legal advice is required a awyer should be consulted.

© Geotechnical & Environmental Associates Limited 2023

Ref J23151 Rev 1 21 July 2023

Contents

Executive Summary

Part 1: Investigation Report

1.0 Introduction	1.0	Introduction
------------------	-----	--------------

- 2.0 The Site
- 3.0 Screening
- Ground Conditions 4.0

Part 2: Design Basis Report

5	5.0	Introduction
е	5.0	Ground Mode
7	7.0	Advice & Recommendations
F	Part 3:	Basement Impact Assessment
8	3.0	Introduction
5	9.0	Outstanding Rsks & Issues

Appendix

29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

 	 	 	1
 	 	 	2
 	 	 	4
 	 	 	5
			6

•••	•	• •	• •	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•				•••	•	•	`	
	•	•••		•	•	•	•	 	•	•	•	•	•	•	•	•	•		•	•	•	•	•		•		•	•	•	•	•	•		•	•	•	•	•		• •		•		•	•	•	•	•	 			•	6	5
		•			•		•	 	•	•				•	•	•	•		•	•	•		•					•			•	•	•	•	•	•	•	•						•		•	•		 				6	5

 	••••	 	 	8
 	••••	 	 	8

This executive summary contains an overview of the key findings and conclusions. No reliance should be placed on an part of the executive summary until the whole of the report has beer read. Other sections of the report may contain information that puts into context the findings that are summarised in the executive summary.

Brief

This report describes the findings of a ground investigation and basement impact assessment (BIA), carried out by Geotechnical and Environmental Associates Limited (GEA) on the instructions of Mrs Elizabeth Frost, with respect to the redevelopment of the site through the partial demolition of the existing buildings and subsequent construction of new units as well as the deepening and extension of the existing basement.

The purpose of the investigation has been to review the site history, to determine the ground conditions and engineering properties in order to undertake a BIA in support of a planning application for the proposed development. Whilst outline advice for the proposed development is provided, this report does not form a design report and no reliance can be made as such; a subsequent report will be issued, which should be referred to for design aspects of the proposed development.

The site has previously been the subject of a desk study report by Alban SI (report reference 20/11967/KJC, dated November 2023), and a screening assessment undertaken by RSK (report reference 1921843-01 (01), dated April 2023). The findings of these reports have been reviewed and referred to where appropriate.

Site history

The earliest map studied, dated 1865, shows the site to have been occupied by a number of buildings, some falling wthin the curtilage of the site and others extending beyond the site boundaries.

The site remained uncharged until some time between 1913 and 1915, when a number of the buildings in the northeast of the site fronting onto the High Street are shown to have been demolished, along with a number of other buildings on the site. By 1955, the existing buildings are labelled as Nos 29 and 31 and No 29 is detailed to be part of an engineering works, which are no longer shown on the map dated 1969. The site has remained essentially unchanged from that time to the present day.

Ground conditions

The investigation has generally confirmed the expected ground conditions in that, beneath a moderate thickness of made ground, the Kempton Park Gravel was encountered over the London Clay Formation. The made ground extended to depths of between 1.30 m and 1.60 m and comprised a surface covering of block paving over sand, over dark grey and brown sandy gravelly clay with variable inclusions of ash, brick and concrete fragments. The underlying Kempton Park Gravel generally comprised yellowish brown fine to coarse sand and fine to coarse subangular to subrounded gravel, extending to the full depth of Borehole No 1, of 5.45 m, and to a depth of 7.10 m in Borehole No 2. Within Borehole No 3, the Kempton Park Gravel comprised yellowish brown fine to coarse subangular to subrounded gravel, extending to a depth of 3.00 m, whereupon brown silty slightly clayey sand with fine to coarse subangular to subrounded gravel was encountered and extended to the full depth of the borehole of 5.45 m. The underlying London Clay comprised stiff fissured bluish grey clay and extended to the full depth of 5.45 m. The underlying London Clay comprised stiff fissured bluish grey clay and extended to the full depth of full depth of the full dept

Groundwater was ercountered within the Kempton Park Gravel at depths of between 3.60 m and 3.70 m during drillirg and has subsequently been measured within the standpipes at depths of 3.55 m, 3.77 m and 3.87 m, within Borehole Nos 1, 2 and 3, respectively.

Recommendations

The proposed basement will extend to a depth of approximately 3.20 m below street level, such that formation leve is expected to be within the Kempton Park Gravel. Groundwater is not expected to be encountered within the basement excavation, and the use of either traditional mass concrete underpinning or a contiguous bored pile wall is therefore considered suitable for the formation of new retaining walls. However, ongoing monitoring should be carried out to determine the extent of any seasonal variation and confirm this.

On the basis that a dry excavation can be maintained, spread foundations excavated below basement level may be designed to apply a net allowable bearing pressure of 150 kN/m^2 .

Basement Impact Assessment

It has been concluded that the potential impacts identified by the BIA can be mitigated by appropriate design and standard construction practice. Groundwater is unlikely to be encountered within the basement excavation and will still be able to flow around and beneath the basement structure. As the new basement does not close a pathway or create a cut off, it is considered that the groundwater will follow a pathway around and beneath the proposed basement and will not cause a rise in groundwater level on the upstream side such that it is considered that the proposed basement will not have an impact on the local hydrogeological setting.

Ref J23151 Rev 0 14 July 2023 29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

Part 1: Investigation Report

This section of the report details the objectives of the investigation, the work that has been carried out to meet these objectives and the resuts of the investigation. Interpretation of the findings is presented in Part 2.

1.0 Introduction

Geotechnical and Environmental Associates Limited (GEA) has been commissioned by Mrs. Elizabeth Frost, tc carry out a ground investigation at Nos 29-31 High Street, Hampton Wick, Kingston Upon Thames KT1 4DA. This report also forms part of a Basement Impact Assessment (BIA), which has been carried out in accordance with guidelines from the London Borough cf Richmond Upon Thames in support of a planning application. Whilst outline advice for the proposed development is provided, this report does not form a design report and no reliance can be made as such; a subsequent report will be issued, which should be referred to for design aspects of the proposed development.

The site has previously been the subject of a desk study report by Alban SI (report reference 20/11967/KJC, dated November 2023), and a screening assessment undertaken by RSK (report reference 1921843-01 (01), dated April 2023). The findings cf these reports have been reviewed and referred to where appropriate.

Proposed Development 1.1

It is understood that the existing retail units fronting onto the High Street, with commercial and retail space on the ground floor and residential flats on the upper floors, will be partly demolished, along with the workshops forming part of No 29 High Street and the delipidated workshops to the rear of the site. In their place, the following will be constructed;

- G two Class E units located at the ground floors of Nos 29 and 31 High Street with a finished floor level of 8.10 m AOD;
- G a Class E business unit to the rear of Nos 29 and 31 High Street, with a finished floor level of 8.10 m AOD and 8.39 m AOD respectively, and two workshops at the rear of the site beyond the car parking area, with finished floor levels of 8.10 m AOD and 8.71 m AOD respectively;

29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

- S eight residential units comprising six flats located at the first and second floors of Nos 29 and 31 High Street and two further flats located to the rear of the site above the workshops at first and second floor level; and
- G an extension to the existing basement, both laterally and vertically, beneath No 31 High Street, ancillary Class E units, with a finished floor level of 5.10 m AOD. The existing basement floor level will be lowered by 1.24 m, with an increase in area of 99.3 m², from 36.0 m² to 135.3 m².

Outside of the footprint of the basement, the development will effectively maintain existing ground levels.

The existing site access between Nos 27 and 29 High Street will be maintained and within the courtyard there are two proposed pedestrian entrances into the commercial units and upper floor residential flats. The proposed parking layout will be similar to the existing, with four spaces allocated for the residential units and one allocated for the commercial and retail units.

Surface water from the proposed development will be managed by attenuation prior to discharge into the nearby sewer. In order to prevent flooding, both on and off the site, a variety of SuDS will be utilised to control surface water inflows, including an area of permeable paving, a modular storage tank and a green roof.

This report is specific to the proposed development and the advice herein should be reviewed if the development proposals are amended.

1.2 Purpose of Work

The principal technical objectives of the work carried out were as follows:

- to review the previous desk study and screening assessment carried out for the site; S
- G to determine the ground conditions and their engineering properties; and,
- G to assess the Impact of the proposed basement development on the surrounding environment.

Ref J23151 Rev 0 14 July 2023

Scope of Work 1.3

In order to meet the above objectives, the below work was carried out:

- G a review of the previous reports prepared for the site and proposed development;
- S a walkover survey of the site carried out in conjunction with the fieldwork.
- G three boreholes advanced through rotary continuous flight auger (CFA) methods to depths of between 5.45 m and 8.45 m;
- S standard penetration tests (SPTs) carried out at regular intervals within the boreholes to provide quantitative data on the strength of the soils;
- S the installation of three groundwater monitoring standpipes to depths of between 4.00 m and 4.50 m, and a single monitoring visit; and
- G provision of a report presenting and interpreting the above data.

The exploratory methods adopted in this investigation have been selected on the basis of the constraints of the site including but not limited to access and spacelimitations, together with any budgetary or timing constraints. Where it has not been possible to reasonably use an EC7 compliant investigation technique a practical alternative has been adopted to obtain indicative soil parameters and any interpretation is based upon engineering experience, local precedent where applicable and relevant published information.

2.0 The Site

Site Description 2.1

The site is located in the London Borough of Richmond Upon Thames, approximately 250 m southeast of Hampton Wick Railway station. It fronts onto the High Street to the northeast. The site may be additionally located by National Grid Reference 517522, 169449.

The site covers an irregularly shaped area of approximately 921 m² and currently comprises two retail units of Nos 29 and 31 High Street, which make up the site frontage. These units are two and three storeys in height respectively and the upper floors comprise residential units. No 29b is located to the rear and comprises two light incustrial workshops. A small basement is ocated below No 31 High Street with a finished floor level of between 2.23 m below ground level (5.97 m AOD) and 1.86 m below ground level (6.34 m AOD). Two dilapidated storage units and car parking spaces occupy the rear of the site.

The site is essentially level and is formed at a ground level of about 8.20 m AOD and is almost entirely hardcovered with only small areas of soft landscaping around part of the sites perimeter. No trees are present on the site but there are a number of mature deciduous trees present immediately beyond the site boundary to the northwest and southwest.

2.2 Summary of Previous Desk Study Findings

The earliest map studied, dated 1865, shows the site to have been occupied by a number of buildings, some falling within the curtilage of the site and others extending beyond the site boundaries. The site remained unchanged until some time between 1913 and 1915, when a number of the buildings in the northeast of the site fronting onto the High Street are shown to have been demolished, along with a number of other buildings on the site. By 1955, the existing buildings are labelled as Nos 29 and 31 and No 29 is detailed to be part of an engineering works, which are no longer shown on the map dated 1969. The site has remained essentially unchanged since that time to the present day.

There are no reported active or historical landfills or waste sites located within 500 m of the site.

Reference to records compiled by the Health Protection Agency (formerly the National Radiological Protection Board) indicates that the site falls within an area where less than

Ref J23151 Rev 0 14 July 2023 29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

1% of homes are affected by radon emissions and therefore radon protective measures will not be necessary.

The British Geological Survey (BGS) map of the area indicates that the site is underlain by the Kempton Park Gravel, which is underlain by the London Clay Formation.

The closest BGS archive borehole record to the site is located about 50 m south of the site. The borehole record indicates that made ground extended to a depth of 1.37 m, whereupon the Kempton Park Gravel was encountered and initially comprised a horizon of soft grey/brown silty clay extending to a depth of 2.95 m below ground level. Medium to coarse flint gravel was then encountered and extended to a depth of 5.64 m, below which the London Clay initially comprised firm brown clay extending to a depth of 6.10 m, whereupon firm to stiff grey clay was encountered and extended to the full depth of the borehole, of 6.40 m below ground level.

The RSK report details that, because of the brownfield nature of the site and the presence of an existing basement, it is anticipated that made ground and/or reworked natural ground will be present on site.

The Kempton Park Gravel is classified as a Secondary 'A' Aquifer, which refers to permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. The London Clay Formation is classified as an Unproductive Stratum, rather than its former classification as a nonaquifer, referring to rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow. The London Clay cannot support a water table or effectively transmit groundwater flow because of its low permeability and cohesive nature. The permeability will be predominantly secondary, through fissures in the clay. Published data indicates the horizontal permeability of the London Clay to generally range between 1×10^{-11} m/s and 1×10^{-9} m/s.

The site is not located within a groundwater Source Protection Zone.

The nearest surface water feature to the site is the River Thames, located about 130 m to the east of the site. The river flows in a generally south to north direction in the vicinity of the site. Whilst the river has a tidal influence, the tidal influence is limited to areas downstream of Teddington Lock, which is located 2.8 km downstream of the site. Therefore, the river and surrounding groundwater is not considered to be affected by tidal influence.

The site is urderstood to be in an area of moderate risk from flooding from rivers and sea, and groundwater flooding. However, it is at low risk from all other potential flood sources.

Groundwater is likely to be present near the boundary between the relatively high permeability Kempton Park Gravel and the low permeability London Clay and is likely to flow in a generally southerly direction, with the local topography and towards the River Thames. Groundwater was struck within the aforementioned BGS borehole at a depth of 1.37 m below ground level with a standing water level of 1.52 m observed upon completion.

The site is almost entirely covered by the existing building and hardstanding and therefore infiltration of rainwater into the ground beneath the site is limited such that the majority of surface runoff is likely to drain into combined sewers in the road.

3.0 Screening

The Richmord Upon Thames planning guidance suggests that any development proposal that includes a basement should be screened to determine whether or not a full BIA is required.

The previous screening report produced by RSK is included in the appendix, with the report identifying the following potential impacts.

Potential Impact	
The recorded water table potentially extends above the base of the proposed subsurface structure	The dev levels in
Infiltration methods are proposed as part of the site drainage strategy	A chang and the
The proposed basement excavation is likely to extend below the local water table or spring line	flow and
the site is uncerlain by an aquifer and or permeable geology	
The development will increase the depth of foundations with respect to the foundations of the neighbouring structures.	The mov new ba structur
The ground at the site has potentially been previously worked	

Ref J23151 Rev 0 14 July 2023 29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

Potential Consequence

velopment may impact groundwater flow and n the surrounding area.

ge in the amount of water entering the ground rates of percolation could impact groundwater d level

vements assocated with the construction of the asement may result in damage to nearby res.

The proposed subsurface development will potentially Could result in a flood risk around the vicinity of the site impact the flow profile of throughflow groundwater to or at downstream locations downstream areas

The proposed development may result in an increase groundwater risk to neighboring properties.

These potential impacts have been investigated through the ground investigation, as described below.

Exploratory Work 3.1

In order to meet the objectives described in Section 1.2, three boreholes were advanced through rotary percussive methods to depths of between 5.45 m and 8.45 m.

Three groundwater monitoring standpipes were installed to depths of between 4.00 m and 4.50 m to facilitate groundwater monitoring, which has been carried out on a single occasion to date, approximately two weeks after installation.

During boring, disturbed samples were obtained from the boreholes for subsequent laboratory examination and testing. Standard Penetration Tests (SPTs) were carried out at regular intervals to provide additional quantitative data on the strength of soils encountered.

All of the above work was carried out under the supervision of a geotechnical engineer from GEA, with the boreholes positioned to provide general coverage of the site, whilst avoiding known buried services. The borehole records are appended, together with a site plan indicating the exploratory positions.

4.0 Ground Conditions

The investigation has generally confirmed the expected ground conditions in that, beneath a moderate thickness of made ground, the Kempton Park Gravel was encountered, which was underlain by the London Clay Formation.

4.1 Made Ground

Below a surface covering of block paving over sand, the made ground comprised dark grey and brown sandy gravelly clay with variable, gravel, brick, ash and concrete fragment content. The made ground extended to depths of between 1.30 m and 1.60 m.

Apart from the presence of fragments of extraneous material noted above, no visual or olfactory evidence of contamination was observed during the fieldwork.

Kempton Park Gravel 4.2

This stratum generally comprised medium dense yellowish brown fine to coarse sand with fine to coarse subangular to subrounded gravel, extending to the full depth of Borehole No 1, of 5.45 m and to a depth of 7.10 m in Borehole No 2. Within Borehole No 3, the Kempton Park Gravel comprised yellowish brown fine to coarse sand anc fine to coarse subangular to subrounded gravel, extending to a depth of 3.00 m, whereupon brown silty slightly clayey sand with fine to coarse subangular to subrounded gravel was encountered and extended to the full depth of the borehole, of 5.45 m.

4.3 London Clay

The London Clay was encountered in Borehole No 2 only and comprised stiff fissured bluish grey clay and extended to the full depth of the investigation, of 3.45 m.

4.4 Groundwater

Groundwater was encountered at depths of between 3.60 m and 3.70 m during drilling and has subsequently been measured within the standpipes at depths of 3.55 m, 3.77 m and 3.87 m, within Borehole Nos 1, 2 and 3, respectively.

Ref J23151 Rev 0 14 July 2023 29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

Part 2: Design Basis Report

This section of the report provides an interpretation of the findings detailed in Part 1, in the form of a ground model, and then provides advice and recommendations with respect to the proposed development.

5.0 Introduction

It is understood that the existing retail units fronting onto the High Street will be partly demolished, along with the workshops forming part of No 29 High Street, 29 High Street and the dilapidated workshops to the rear of the site. In their place two Class E units will be constructed along the frontage with the High Street with a finished floor level of 8.10 m AOD, along with a class E business unit and two workshops to the rear. Eight residential units will be constructed on the floor above and an extension to the existing basement below No 31 High Street, both laterally and vertically, with a finished floor level of 5.10 m AOD. The existing basement floor level will be lowered by between an additional 1.24 m and 3.20 m, and the basement area will be increased by 99.3 m², from 36.0 m² to 135.3 m².

6.0 Ground Model

The desk study has revealed that the site has not had a potentially contaminative historical use, as it has been developed with the unspecified commercial and residential buildings since prior to 1878. On the basis of the fieldwork, the ground conditions at this site can be characterised as follows:

- S below a moderate thickness of made ground, the Kempton Park Gravel is present, and is underlain by the London Clay which extends to the maximum depth of the investigation, of 8.45 m;
- the made ground comprises dark grey and brown sandy gravely clay with variable G inclusions of ash, brick and concrete fragments and extends to depth of between 1.30 m and 1.60 m;
- G the Kemptor Park Gravel generally comprises medium dense yellowish brown fine to coarse sand and fine to coarse subangular to subrounded gravel, or sandy gravel extending to a depth of 7.10 m;

29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

- the London Clay comprises stiff fissured bluish grey clay ard extends to the full depth S of the investigation, of 8.45 m; and,
- S groundwater is present within the Kempton Park Gravel at a depth of approximately 3.50 m.

7.0 Advice & Recommendations

It is understood that the basement will be lowered to a maximum depth of approximately 3.20 m below existing street level which equates to 1.24 m below the level of the existing basement. Formation level for the proposed basement should therefore be within the medium derse sand of the Kempton Park Gravel. On the basis of the fieldwork and subsequent monitoring, groundwater is not expected to be encountered within the basement excavation.

Basement Construction 7.1

Groundwate⁻ has been measured at depths of between 3.55 m and 3.87 m below ground level within the monitoring standpipes, and therefore inflows of groundwater are not expected to be encountered within the basement excavation, although in line with good practice, ongoing monitoring of the standpipes should be carried out to determine the extent of any seasonal variation. It is however plausible that shallow inflows of perched water may be encountered from within the made ground, although such inflows should be controllable using conventional sump pumping. It is always advisable that where possible, a number of trial excavations are be carried out, to depths as close to the full basement depth as pcssible, to provide an indication of stability and the extent to which the excavation may be affected by any groundwater inflows.

The design of basement support in the temporary and permanent conditions needs to take account of the necessity to maintain the stability of the surrounding structures and the possible requirement to control groundwater inflows.

There are a number of methods by which the sides of the basement excavation could be supported in the temporary and permanent conditions. The choice of wall may be governed to a large extent by whether it is to be incorporated into the permanent works and have a load bearing function. For the ground conditions at this site a bored pile wall could be utilised to support the basement excavation and could have the advantage of being

Ref J23151 Rev 0 14 July 2023

incorporated into the permanent works to provide support for structural loads. A contiguous wall could be feasible at this site, with some localised grouting between piles if instability and minor groundwater inflows are encountered. Alternatively, the use of traditional concrete underpinning could be utilised to construct the retaining walls, although if instability is encountered within thin the Kempton Park Gravel, sacrificial backing boards may be required to allow the concrete to be cast.

The ground movements associated with the basement excavation will depend on the method of excavation and support and the overall stiffness of the basement structure in the temporary cordition. Thus, a suitable amount of propping will be required to provide the necessary rigicity. In this respect the timing of the provision of support to the wall will have an important effect on movements.

7.1.1 Basement Retaining Walls

The following parameters are suggested for the design of the permanent basement retaining walls.

Stratum	Bulk Density (kg/m³)	Effective Cohesion (c' – kN/m²)	Effective Friction Angle $(\phi' - degrees)$
Made ground	1700	Zero	27
Kempton Park Gravel	1800	Zero	34
London Clay	1900	Zero	23

Monitoring of the standpipe should be continued to assess the design water level, but based on the monitoring carried out to date, groundwater may be assumed to be below basement level; the advice in BS8102:2009¹ should also be followed in this respect.

7.1.2 Basement Heave

The 1.24 m to 3.20 m deep excavation of the basement will result in a differential net unloading of between around 25 kN/m² to 65 kN/m², which will result in differential heave of the underlying London Clay. This will comprise immediate elastic movement, which will account for approximately 40 % of the total movement and be expected to be complete during the construction period, and long-term movements, which will theoretically take many years to complete. These movements will, to some extent, be mitigated by the loads applied by the proposed development and the remaining thickness of Kempton Park Gravel

1 BS8102 (2009) Code of practice for protection of below ground structures against water from the ground

29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

between the basement and London Clay. Further analysis shoud be undertaken once the proposed loads are known.

7.2 Spread Foundations

Moderate width strip or pad foundations bearing on the medium dense sand of the Kempton Park Gravel, constructed at basement formation level, may be designed to apply a net allowable bearing pressure of 150 kN/m^2 . This value incorporates an adequate factor of safety against bearing capacity failure and should ensure that settlement remains within normal tolerable limits.

7.3 Shallow Excavations

On the basis of the borehole findings it is considered that it will be generally feasible to form relatively shallow excavations terminating within the Kempton Park Gravel without the requirement for lateral support, although localised instabilities may occur where more granular material or groundwater is encountered.

Significant inflows of groundwater into shallow excavations are not generally anticipated, although miror seepages may be encountered from perched water tables within the made ground, although such inflows do not pose a risk to the surrounding neighbouring structures or significant instability and should be suitably controlled by sump pumping.

If deeper excavations are considered or if excavations are to remain open for prolonged periods it is recommended that provision be made for battered side slopes or lateral support. Where personnel are required to enter excavations, a risk assessment should be carried out and temporary lateral support or battering of the excavation sides considered in order to comply with normal safety requirements.

7.4 Basement Floor Slab

Following the excavation of the basement, formation level will be within the granular soils of the Kempton Park Gravel and it should be possible to adopt a moderately loaded ground bearing floor slab for both the reduced lower ground floor and basement floor slabs. As recommended previously, further analysis will need to be uncertaken to determine the magnitude of heave arising due to the basement excavation, in order to inform the final design of the slab.

Part 3: Basement Impact Assessment

This section of the report evaluates the direct and indirect implications of the proposed project, based on the findings of the previous screening and scoping, site investigation and ground movement assessment.

8.0 Introduction

The screening identified a number of potential impacts. The desk study and ground investigation information has been used below to review the potential impacts, to assess the likelihood of them occurring and the scope for reasonable engineering mitigation.

8.1 Potential Impacts

The table below summarises the previously identified potential impacts and the additional information that is now available from the ground investigation in consideration of each impact.

Po:ential Impact	Potential Consequence
The recorded grouncwater table potentially extends above the base of the proposed subsurface structure	The development may impact groundwater flow and levels in the surrounding area.
Infiltration methods are proposed as part of the site drainage strategy	A change in the amount of water entering the ground and the rates of percolation could impact groundwater
The proposed basement excavation is likely to extend below the local water table or spring line	flow and level
the site is underlain by an aquifer and or permeable geology	
The development will increase the depth of foundations with respect to the foundations of the neighbouring structures.	The movements associated wth the construction of the new basement may result in damage to nearby structures.
The ground at the site has potentially been previously worked	
The proposed subsurface development will potentially impact the flow profile of throughflow groundwater to downstream areas	Could result in a flood risk around the vicinity of the site or at downstream locations
The proposed development may result in an increase groundwater risk to neighboring properties.	

The results of the site investigation have therefore been used below to review the remaining potential impacts, to assess the likelihood of them occurring and the scope for reasonable engineering mitigation.

Recorded groundwater table potentially extends above the base of proposed subsurface structure / proposed basement excavation is likely to extend below the local water table

The results of the investigation have indicated groundwater to be present within the Kempton Park Gravel at a level of about 3.50 m below ground level, which corresponds to a level of 4.70 m AOD. The current ground level at the site is 8.20 m AOD and the new basement extension is to increase the depth of the basement to a level of 5.10 m AOD. Therefore, the basement will not extend below the groundwater table and therefore will not interrupt or obstruct groundwater flow within the Kempton Park Gravel. It will therefore not have an impact on the local hydrogeology.

The development will increase the depth of the foundations with respect to the foundations of the neighbouring structures / the ground at the site has been previously worked

In view of the relatively small scale of the basement deepening and extension, it should be possible to restrict movements caused by the basement works, such that damage to neighbouring properties is limited to a maximum of Category 2 – Slight on the Burland Damage Classification, which is in accordance with London Borough of Richmond requirements.

The ground investigation has indicated the made ground at the site to extend to depths of between 1.30 m and 1.60 m. No evidence of worked ground has been identified below this depth and therefore there is not considered to be an impact.

The site is underlain by an aquifer and or permeable geology / infiltration methods are proposed as part of the site drainage strategy / the proposed development will impact the flow profile of groundwater to downstream areas / the proposed development may result in an increased groundwater risk to neighbouring properties

The proposed development for the site will include the use of permeable paving and other SuDS measures, which may result in a larger proportion of surface water entering the ground than currently takes place. It is understood that attenuation systems will be adopted to mitigate any potential impact on surface water inflows and run-off. As a result, there is not considered to be an increase to the risk of groundwater flooding to neighbouring sites, as

Ref J23151 Rev 0 14 July 2023 29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

the groundwater table is significantly below ground level and the SuES will be designed to discharge water into the ground at a reasonable rate as to minimise the impact of the additional surface water. Therefore, the additional surface water discharge should also not result in a significant change to the flow profile of groundwater to downstream areas. The proposed basement is not considered to have the potential to have impact on the local hydrology.

8.2 **BIA** Conclusions

A Basement Impact Assessment has been carried out following the information and guidance published by the Borough of Richmond Upon Thames. It is concluded that the proposed development is unlikely to result in any specific hydrogeclogical, hydrological, land or slope stability issues. There is nothing about the proposed development that would fall outside of stardard engineering practice and design, such that it is not considered to pose a risk to the immediate surrounding area. Therefore, the potential impacts identified by the BIA can be mitigated by appropriate design and standard construction practice.

Ref J23151 Rev 0 14 July 2023 .

29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

S

29-31 High Street, Hampton Wick Kingston Upon Thames, KT1 4DA Basement Impact Assessment and Ground Investigation Report for Mrs Elizabeth Frost

Appendix

a. Field Work

Site Plan Borehole Records

Ref J23151 Rev 0 14 July 2023

G appendix a

Field Work

Site Plan Borehole Records

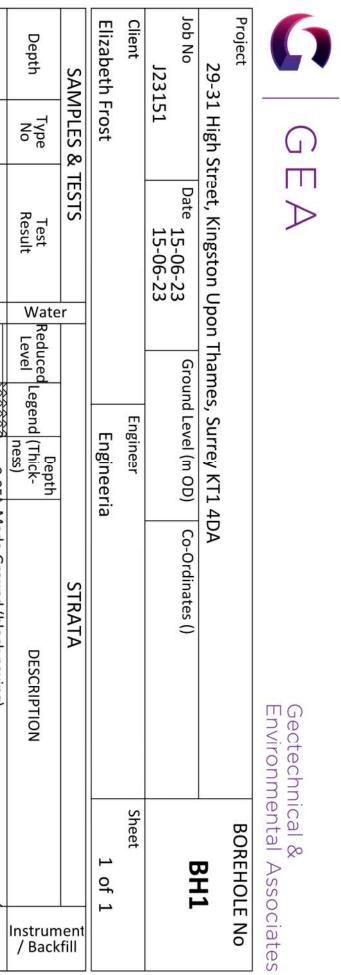
Geotechnical & Environmental Associates

Herts:

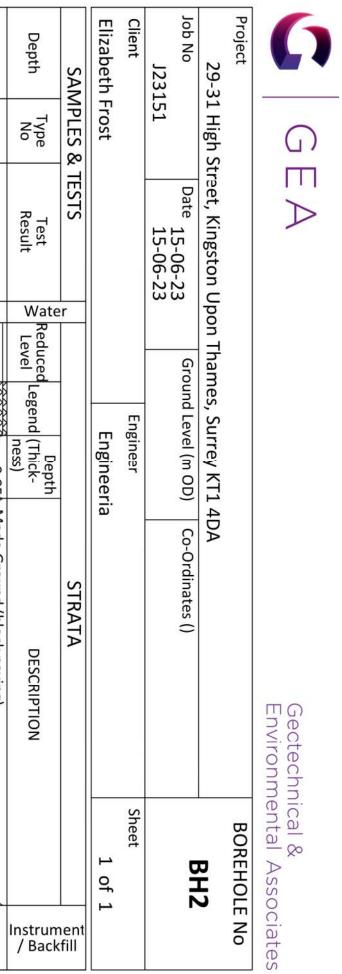
Widbury Barn Widbury Hill Ware Hertfordshire SG12 7QE tel 01727 824666 mail@gea-ltd.co.uk

Notts:

Church Farm Gotham Road Kingston on Scar Notts NG11 ODE tel 01509 674888 midlands@gea-ltd.co.uk


Manchester:

Peter House **Oxford Street** Manchester M1 5AN tel 0161 209 3032 mail @ gea-ltd.co.uk


www.gea-ltd.co.uk

Report ID	CABLE PERCUSSION Project	: J23151	- 29-31 HIGH STREET, KINGSTON UPON THAMES.GPJ Library: GEA LIBRARY	.GLB Date: 1	4 July 2023						
All dimensions in metres Scale 1:62.5		Depth	,	4.75 5.00-5.45	3.75 4.00-4.45	2.75 3.00-3.45	-1.85 2.00-2.45	1.00 1.20-1.65	0.50	0.25	
ons in me 9 1:62.5		pth Date Time		D12 D13	D10 D11	D8 D9	D6 D7	D4	D2 D3	D1	-
				3,4/ N6	3,3/ N6	2,3/ N6	2,2/ N6	1,2/ N6			
Method/ Plant Used		Vater O Casi Depth		3,4/4,5,5,6 N60 = 22	3,3/4,5,4,5 N60 = 19	2,3/3,2,3,2 N60 = 11	2,2/3,3,2,3 N60 = 12	1,2/3,2,2,2 N60 = 10			Negali
		Casing Wa Depth Dia. mm Dep									
		ons Water Depth		· · · · · · · · · · · · · · · · · · ·	·	o o o			***	*	-
	Groundw			5.45	····			1.50	¥ (1.40)	0.10	ness)
Logged By	Groundwater monitoring standpipe installed to 4.50 m	GENERAL REMARKS					with fine to coarse subangular to subrounded gravel		Made Ground (dark grey and brown sandy gravelly clay with brick, ash and concrete fragments)	1	Made Ground (block naving)
											Ins /

Report ID: CABLE PERCUSSION Project: J2315L - 29-31 HIGH STREET, KINGSTON UPON THAMES.GPJ Library: GEA LIBRARY.GLB Date: 14 July 2023													_		
All dimens Scal		Borin Depth		8.00-8.45	7.50	6.50-6.95	6.00	4.75 5.00-5.45	3.75 4.00-4.45	2.75 3.00-3.45	-1.85 2.00-2.45	1.00 1.20-1.65	0.50 0.75	0.25	-
All dimensions in metres Scale 1:62.5		Boring Progress and pth Date Time		D17	D16	D15	D14	D12 D13	D10 D11	D8 D9	D6 D7	D4 D5	D2 D3	D1	Ĩ
				3,4/5 N60		3,4/4 N60		3,3/3 N60	2,2/3 N60	2,3/3 N60	2,2/2 N60	1,2/1 N60			
Method/ Plant Used		Water Obse Casing Depth Dia.		3,4/5,5,6,6 N60 = 24		3,4/4,4,4,5 N60 = 18		3,3/3,4,4,5 N60 = 17	2,2/3,3,3,4 N60 = 14	2,3/3,4,3,4 N60 = 15	2,2/2,3,3,3 N60 = 12	1,2/1,1,2,2 N60 = 6			16301C
		Observations asing Dia. mm Dep													
Logg		ons Water Depth					· • · · •		0	0 · · · 0 · · · · 0 · · · · · · · · · ·	٥ ٥ ٠ ٠		***	*	-
	Groundwater monitoring standpipe installed to 4.00 m					7.10		····		•••••		1.60	(1.50)	0.05	ness)
		GENERAL REMARKS			Stiff fissured bluish grey CLAY						Medium dense yellowish brown fine to coarse SAND with fine to coarse subangular to subrounded gravel		Made Ground (dark brown sandy gravelly clay with brick, ash and concrete fragments)	/	
Logged By											se SAND d gravel		y with		
															In /
			L												

	Boring Depth [9-31 HIGH STREET, KINGSTON UPON THAMES.GPJ Library: GE	4.75 5.00-5.45	3.75 4.00-4.45	2.75 3.00-3.45	-1.85 2.00-2.45	0.25 0.50 0.75 1.00 1.20-1.65	Depth	SA		Job No J23 Client	Project 29-
	g Progra Date		D12 D13	D10 D11	D8 D9	D6 D7	D1 D2 D4 D5	No	 International 	11	3151	31 High
	Progress and Date Time								& TESTS		Date	Stre
	Wate							Result	S		15-06- 15-06-	Kingston Upon
	- Obser							Wa			23	Upor
	r Observations Casing Water h Dia. mm Depth							Level	-0		Gro	
	s ater epth				X X O O O O			Legend			Ground Lev	nes, Su
Groundwater			5.45	(2.45)	3.00	(1.70)	0.10 0.5(0.80) 1.3((Thick- ness)	Depth	Engineeria	Level (m UU)	Surrey KT1
vater monitoring standpipe installed to 4.00 m	GENERAL REMARKS				Medium dense brown silty slightly clayey SAND fine to coarse subangular to subrounded gravel	and fine to coarse subangular to subrounded GRAVEL	Made Gr With bric Made Gr Clay with	DESCRIPTION	STRATA) Co-Ordinates ()	4DA
E					/ SAND with gravel	nded GRAVEL	y clayey sand / sandy gravelly			1 of 1	Sheet	BOREHOLE No BH3

Geotechnical & Environmental Associates

Herts:

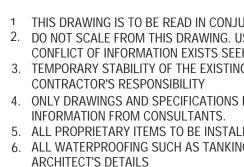
Widbury Barn Widbury Hill Ware Hertfordshire SG12 7QE tel 01727 824666 mail@gea-ltd.co.uk

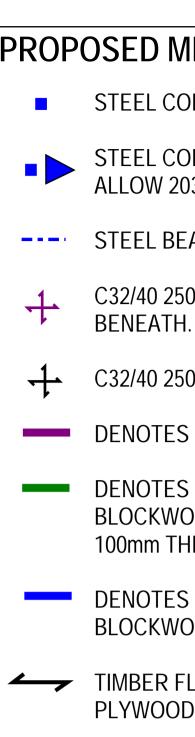
Notts:

Church Farm Gotham Road Kingston on Soar Notts NG11 ODE tel 01509 674888 midlands@gea-ltd.cc.uk

Manchester:

Peter House Oxford Street Manchester M1 5AN tel 0161 209 3032 mail @ gea-ltd.co.uk


Appendix B - Preliminary Structural Scheme



PROPOSED BASEMENT PLAN

EXTRACT FROM ARCHITECTURAL DRAWING TP(10)20 MINOR OPENINGS FOR WINDOWS, DOORS ETC. OMITTED FOR CLARITY, MAKE SUITABLE ALLOWANCE FOR LINTELS N.T.S.

NOTES

MOVEMENT JOINTS TO BE PROVIDED FOR THE MASONRY WALL. MAXIMUM DISTANCE BEETWEN MOVEMENT JOINTS IN BLOCKWORK TO BE 7m AND BRICKWORK TO BE 12m. THIS IS TO BE CONFIRMED BY THE BRICK AND BLOCK MANUFACTURER

BLOCKWORK TO HAVE MINIMUM COMPRESSIVE STRENGTH: 7.3 N/mm²

MORTAR COMPRESSIVE STRENGTH CLASS MIN. M6 FOR EXTERNAL WALLS

ALL STEEL MEMBERS TO BE GRADE S355

ALL REINFORCED CONCRETE TO BE GRADE C32/40

ALL MASS CONCRETE TO BE GRADE C25/30

NOTE - ALL SIZES ARE FOR INITIAL DESIGN PURPOSES ONLY BASED ON THE INFORMATION PROVIDED, AND HAVE NOT BEEN CO-ORDINATED WITH THE ARCHITECTURAL LAYOUTS. MAKE A SUITABLE ALLOWANCE FOR FURTHER SCHEME DEVELOPMENT AT A LATER PROJECT STAGE

CLIENT: MR. & MRS. FROST

2023.07.19

ISSUED FOR INFORMATION

MT

MW checked

PROJECT No: E0811

DRAWN: MT

CHECKED: MW

1 THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ENGINEER'S AND ARCHITECT'S DRAWINGS, SPECIFICATIONS AND RISK REGISTERS 2. DO NOT SCALE FROM THIS DRAWING. USE ONLY DIMENSIONS AS INDICATED. CHECK ALL SITE DIMENSIONS PRIOR TO PLACING ANY ORDER OR FABRICATION. WHERE A CONFLICT OF INFORMATION EXISTS SEEK CONFIRMATION FROM CONSULTANTS PRIOR TO PROCEEDING FURTHER WITH THE WORKS

CONTRACTOR'S RESPONSIBILITY TO SEEK TH

5. ALL PROPRIETARY ITEMS TO BE INSTALLED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S REQUIREMENTS AND SPECIFICATIONS 6. ALL WATERPROOFING SUCH AS TANKING DETAILS, DAMP PROOF MEMBRANES, DAMP PROOF COURSES, CAVITY TRAYS ETC. ARE TO BE INSTALLED AS PER

PROPOSED MEMBER SCHEDULE

STEEL COLUMN - ALLOW 100x100x8 SHS S355

STEEL COLUMN FORMING PART OF MOMENT RESISTING FRAME -ALLOW 203x203x71 UC

---- STEEL BEAM - ALLOW 203x203x 60 UC

C32/40 250mm THK SUSPENDED SLAB WITH COLLAPSIBLE VOID FORMER

C32/40 250mm THK SUSPENDED SLAB

DENOTES 300mm THK REINFORCED CONCRETE BASEMENT WALL

DENOTES MASONRY CAVITY WALL FORMED FROM 140mm THICK BLOCKWORK INTERNAL LEAF, CAVITY (SIZE T.B.C. BY ARCHITECT), AND 100mm THK EXTERNAL LEAF BRICKWORK

DENOTES LOAD BEARING MASONRY WALL (ASSUMED 140mm THK BLOCKWORK, BUILD UP T.B.C.)

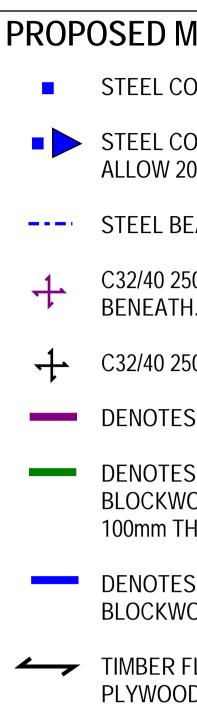
TIMBER FLOOR JOISTS - ALLOW 225x75 C24 JOISTS WITH 18mm THK PLYWOOD GLUED AND SCREWED TO JOISTS

> DRAWING TITLE: PROPOSED BASEMENT PLAN

DRAWING No: E0811-SK-9000 STATUS DESCRIPTION: SUITABLE FOR INFORMATION REV: SCALE: P01 As Indicated @A1

a: 7 Ridgmount Street, WC1E 7AE,

London, United Kingdom e: contact@engineeria.com


t: (+44)207 580 4588

PROPOSED GROUND FLOOR PLAN

EXTRACT FROM ARCHITECTURAL DRAWING TP(10)21 MINOR OPENINGS FOR WINDOWS, DOORS ETC. OMITTED FOR CLARITY, MAKE SUITABLE ALLOWANCE FOR LINTELS N.T.S.

CONTRACTOR'S RESPONSIBILI INFORMATION FROM CONSULTANTS. ARCHITECT'S DETAILS

NOTES

MOVEMENT JOINTS TO BE PROVIDED FOR THE MASONRY WALL. MAXIMUM DISTANCE BEETWEN MOVEMENT JOINTS IN BLOCKWORK TO BE 7m AND BRICKWORK TO BE 12m. THIS IS TO BE CONFIRMED BY THE BRICK AND BLOCK MANUFACTURER

BLOCKWORK TO HAVE MINIMUM COMPRESSIVE STRENGTH: 7.3 N/mm²

MORTAR COMPRESSIVE STRENGTH CLASS MIN. M6 FOR EXTERNAL WALLS

ALL STEEL MEMBERS TO BE GRADE S355

ALL MASS CONCRETE TO BE GRADE C25/30

PROJECT TITLE: 29-31 HIGH STREET, HAMPTON WICK

CLIENT: MR. & MRS. FROST

PROJECT No:

DRAWN:

CHECKED: MW

2023.07.19

ISSUED FOR INFORMATION

MW

E0811

MT

1 THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ENGINEER'S AND ARCHITECT'S DRAWINGS, SPECIFICATIONS AND RISK REGISTERS 2. DO NOT SCALE FROM THIS DRAWING. USE ONLY DIMENSIONS AS INDICATED. CHECK ALL SITE DIMENSIONS PRIOR TO PLACING ANY ORDER OR FABRICATION. WHERE A CONFLICT OF INFORMATION EXISTS SEEK CONFIRMATION FROM CONSULTANTS PRIOR TO PROCEEDING FURTHER WITH THE WORKS 3. TEMPORARY STABILITY OF THE EXISTING STRUCTURE AND ANY NEWLY CONSTRUCTED ELEMENTS OF PE

4. ONLY DRAWINGS AND SPECIFICATIONS ISSUED FOR CONSTRUCTION CAN BE USED FOR THE WORKS. IT IS THE CONTRACTOR'S RESPONSIBILITY TO SEEK THE

5. ALL PROPRIETARY ITEMS TO BE INSTALLED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S REQUIREMENTS AND SPECIFICATIONS 6. ALL WATERPROOFING SUCH AS TANKING DETAILS, DAMP PROOF MEMBRANES, DAMP PROOF COURSES, CAVITY TRAYS ETC. ARE TO BE INSTALLED AS PER

PROPOSED MEMBER SCHEDULE

STEEL COLUMN - ALLOW 100x100x8 SHS S355

STEEL COLUMN FORMING PART OF MOMENT RESISTING FRAME -ALLOW 203x203x71 UC

STEEL BEAM - ALLOW 203x203x60 UC

C32/40 250mm THK SUSPENDED SLAB WITH COLLAPSIBLE VOID FORMER

C32/40 250mm THK SUSPENDED SLAB

DENOTES 300mm THK REINFORCED CONCRETE BASEMENT WALL

DENOTES MASONRY CAVITY WALL FORMED FROM 140mm THICK BLOCKWORK INTERNAL LEAF, CAVITY (SIZE T.B.C. BY ARCHITECT), AND 100mm THK EXTERNAL LEAF BRICKWORK

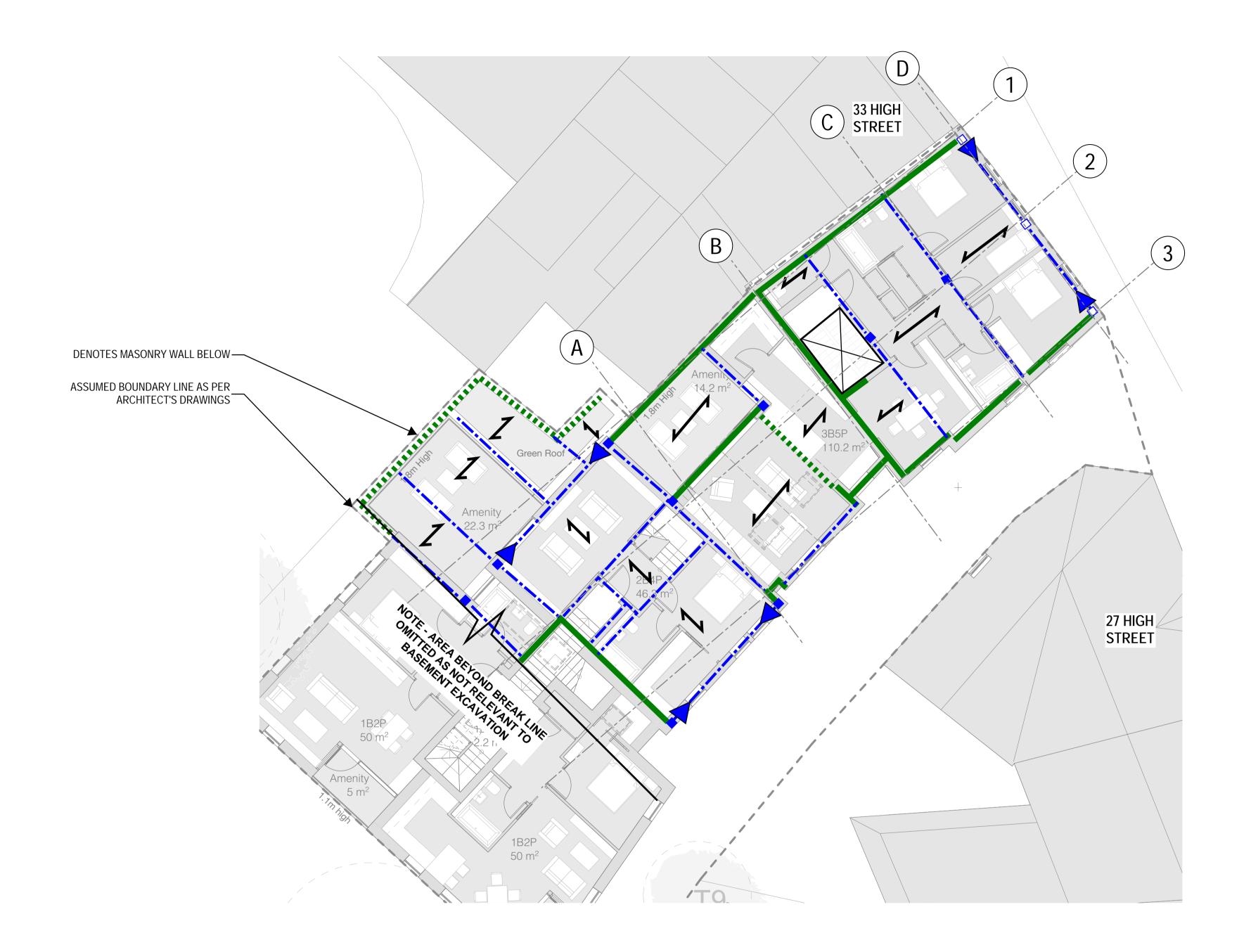
DENOTES LOAD BEARING MASONRY WALL (ASSUMED 140mm THK BLOCKWORK, BUILD UP T.B.C.)

TIMBER FLOOR JOISTS - ALLOW 225x75 C24 JOISTS WITH 18mm THK PLYWOOD GLUED AND SCREWED TO JOISTS

ALL REINFORCED CONCRETE TO BE GRADE C32/40

NOTE - ALL SIZES ARE FOR INITIAL DESIGN PURPOSES ONLY BASED ON THE INFORMATION PROVIDED, AND HAVE NOT BEEN CO-ORDINATED WITH THE ARCHITECTURAL LAYOUTS. MAKE A SUITABLE ALLOWANCE FOR FURTHER SCHEME DEVELOPMENT AT A LATER PROJECT STAGE

DRAWING TITLE: PROPOSED GROUND FLOOR PLAN



DRAWING No: E0811-SK-9001 STATUS DESCRIPTION: SUITABLE FOR INFORMATION REV: SCALE: P01 As Indicated @A1

a: 7 Ridgmount Street, WC1E 7AE,

London, United Kingdom e: contact@engineeria.com

t: (+44)207 580 4588

PROPOSED FIRST FLOOR PLAN

EXTRACT FROM ARCHITECTURAL DRAWING TP(10)22 MINOR OPENINGS FOR WINDOWS, DOORS ETC. OMITTED FOR CLARITY, MAKE SUITABLE ALLOWANCE FOR LINTELS N.T.S.

CONTRACTOR'S RESPONSIBILI INFORMATION FROM CONSULTANTS **ARCHITECT'S DETAILS**

NOTES

MOVEMENT JOINTS TO BE PROVIDED FOR THE MASONRY WALL. MAXIMUM DISTANCE BEETWEN MOVEMENT JOINTS IN BLOCKWORK TO BE 7m AND BRICKWORK TO BE 12m. THIS IS TO BE CONFIRMED BY THE BRICK AND BLOCK MANUFACTURER

BLOCKWORK TO HAVE MINIMUM COMPRESSIVE STRENGTH: 7.3 N/mm²

MORTAR COMPRESSIVE STRENGTH CLASS MIN. M6 FOR EXTERNAL WALLS

ALL STEEL MEMBERS TO BE GRADE S355

ALL REINFORCED CONCRETE TO BE GRADE C32/40

ALL MASS CONCRETE TO BE GRADE C25/30

PROJECT TITLE: 29-31 HIGH STREET, HAMPTON WICK

CLIENT: MR. & MRS. FROST

PROJECT No:

CHECKED: MW

2023.07.19

ISSUED FOR INFORMATION

MW

E0811

DRAWN: MT

1 THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ENGINEER'S AND ARCHITECT'S DRAWINGS, SPECIFICATIONS AND RISK REGISTERS 2. DO NOT SCALE FROM THIS DRAWING. USE ONLY DIMENSIONS AS INDICATED. CHECK ALL SITE DIMENSIONS PRIOR TO PLACING ANY ORDER OR FABRICATION. WHERE A CONFLICT OF INFORMATION EXISTS SEEK CONFIRMATION FROM CONSULTANTS PRIOR TO PROCEEDING FURTHER WITH THE WORKS RKS DURING CONSTRUCTION IS SOLED 3. TEMPORARY STABILITY OF THE EXISTING STRUCTURE AND ANY NEWLY CONSTRUCTED

4. ONLY DRAWINGS AND SPECIFICATIONS ISSUED FOR CONSTRUCTION CAN BE CONTRACTOR'S RESPONSIBILITY TO SEEK THI

5. ALL PROPRIETARY ITEMS TO BE INSTALLED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S REQUIREMENTS AND SPECIFICATIONS 6. ALL WATERPROOFING SUCH AS TANKING DETAILS, DAMP PROOF MEMBRANES, DAMP PROOF COURSES, CAVITY TRAYS ETC. ARE TO BE INSTALLED AS PER

PROPOSED MEMBER SCHEDULE

STEEL COLUMN - ALLOW 100x100x8 SHS S355

STEEL COLUMN FORMING PART OF MOMENT RESISTING FRAME -ALLOW 203x203x71 UC

STEEL BEAM - ALLOW 203x203x60 UC

C32/40 200mm THK SUSPENDED SLAB WITH COLLAPSIBLE VOID FORMER

C32/40 200mm THK SUSPENDED SLAB

DENOTES 300mm THK REINFORCED CONCRETE BASEMENT WALL

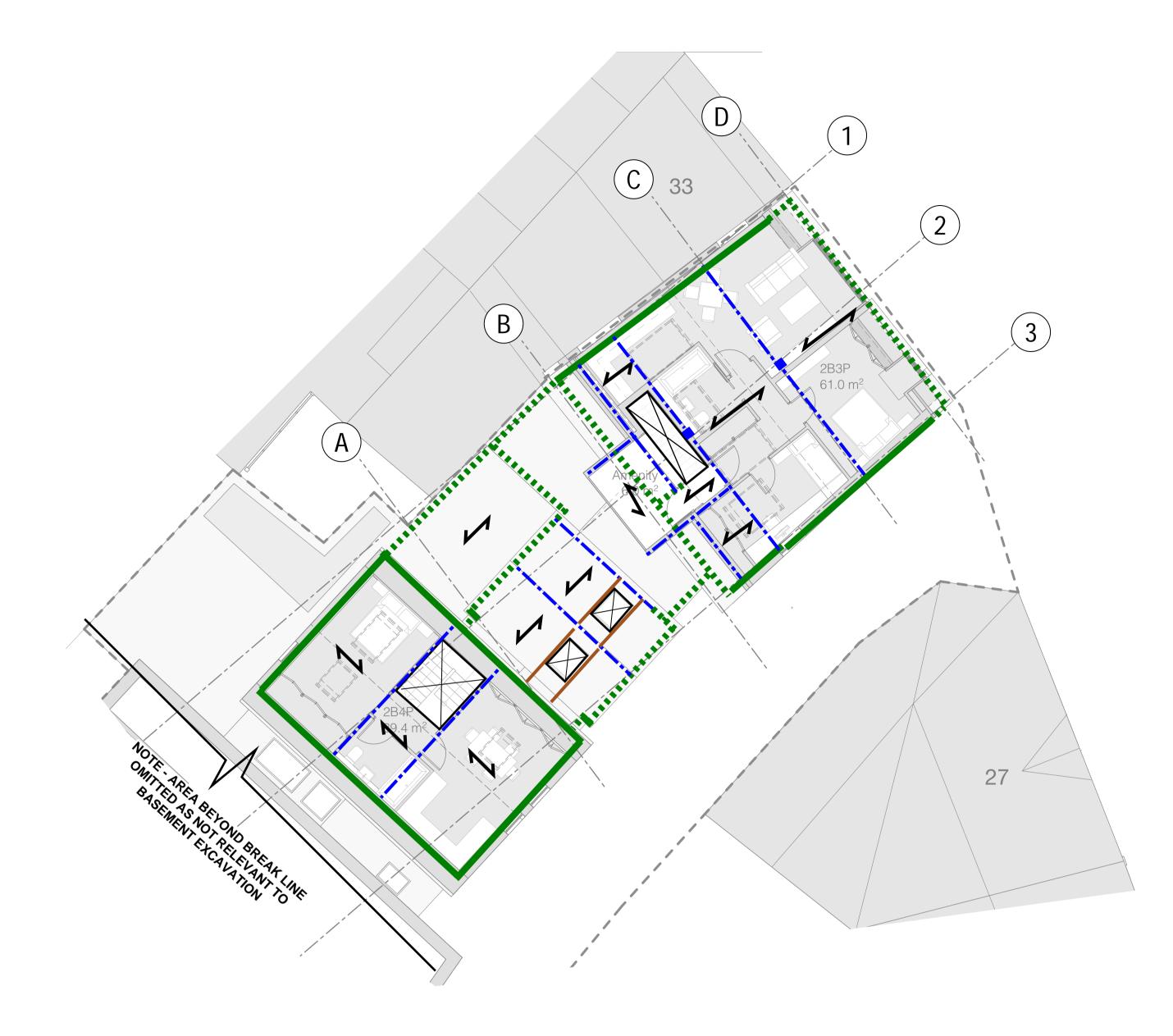
DENOTES MASONRY CAVITY WALL FORMED FROM 140mm THICK BLOCKWORK INTERNAL LEAF, CAVITY (SIZE T.B.C. BY ARCHITECT), AND 100mm THK EXTERNAL LEAF BRICKWORK

DENOTES LOAD BEARING MASONRY WALL (ASSUMED 140mm THK BLOCKWORK, BUILD UP T.B.C.)

TIMBER FLOOR JOISTS - ALLOW 225x75 C24 JOISTS WITH 18mm THK PLYWOOD GLUED AND SCREWED TO JOISTS

NOTE - ALL SIZES ARE FOR INITIAL DESIGN PURPOSES ONLY BASED ON THE INFORMATION PROVIDED, AND HAVE NOT BEEN CO-ORDINATED WITH THE ARCHITECTURAL LAYOUTS. MAKE A SUITABLE ALLOWANCE FOR FURTHER SCHEME DEVELOPMENT AT A LATER PROJECT STAGE

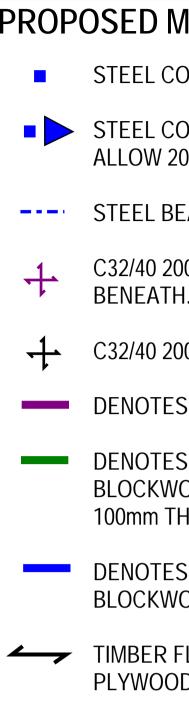
DRAWING TITLE: PROPOSED FIRST FLOOR PLAN



DRAWING No: E0811-SK-9002 STATUS DESCRIPTION: SUITABLE FOR INFORMATION REV: SCALE: P01 As Indicated @A1

a: 7 Ridgmount Street, WC1E 7AE,

London, United Kingdom e: contact@engineeria.com


t: (+44)207 580 4588

PROPOSED SECOND FLOOR PLAN

EXTRACT FROM ARCHITECTURAL DRAWING TP(10)23 MINOR OPENINGS FOR WINDOWS, DOORS ETC. OMITTED FOR CLARITY, MAKE SUITABLE ALLOWANCE FOR LINTELS N.T.S.

CONTRACTOR'S RESPONSIBIL INFORMATION FROM CONSULTANTS ARCHITECT'S DETAILS

NOTES

MOVEMENT JOINTS TO BE PROVIDED FOR THE MASONRY WALL. MAXIMUM DISTANCE BEETWEN MOVEMENT JOINTS IN BLOCKWORK TO BE 7m AND BRICKWORK TO BE 12m. THIS IS TO BE CONFIRMED BY THE BRICK AND BLOCK MANUFACTURER

BLOCKWORK TO HAVE MINIMUM COMPRESSIVE STRENGTH: 7.3 N/mm²

MORTAR COMPRESSIVE STRENGTH CLASS MIN. M6 FOR EXTERNAL WALLS

ALL STEEL MEMBERS TO BE GRADE S355

ALL MASS CONCRETE TO BE GRADE C25/30

NOTE - ALL SIZES ARE FOR INITIAL DESIGN PURPOSES ONLY BASED ON THE INFORMATION PROVIDED, AND HAVE NOT BEEN CO-ORDINATED WITH THE ARCHITECTURAL LAYOUTS. MAKE A SUITABLE ALLOWANCE FOR FURTHER SCHEME DEVELOPMENT AT A LATER PROJECT STAGE

PROJECT TITLE: 29-31 HIGH STREET, HAMPTON WICK

CLIENT: MR. & MRS. FROST

PROJECT No:

DRAWN: MT

CHECKED: MW

2023.07.19

ISSUED FOR INFORMATION

MW checked

MT

E0811

1 THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ENGINEER'S AND ARCHITECT'S DRAWINGS, SPECIFICATIONS AND RISK REGISTERS 2. DO NOT SCALE FROM THIS DRAWING. USE ONLY DIMENSIONS AS INDICATED. CHECK ALL SITE DIMENSIONS PRIOR TO PLACING ANY ORDER OR FABRICATION. WHERE A CONFLICT OF INFORMATION EXISTS SEEK CONFIRMATION FROM CONSULTANTS PRIOR TO PROCEEDING FURTHER WITH THE WORKS 3. TEMPORARY STABILITY OF THE EXISTING STRUCTURE AND ANY NEWLY

4. ONLY DRAWINGS AND SPECIFICATIONS ISSUED FOR CONSTRUCTION CAN BE CONTRACTOR'S RESPONSIBILITY TO SEEK TH

5. ALL PROPRIETARY ITEMS TO BE INSTALLED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S REQUIREMENTS AND SPECIFICATIONS 6. ALL WATERPROOFING SUCH AS TANKING DETAILS, DAMP PROOF MEMBRANES, DAMP PROOF COURSES, CAVITY TRAYS ETC. ARE TO BE INSTALLED AS PER

PROPOSED MEMBER SCHEDULE

STEEL COLUMN - ALLOW 100x100x8 SHS S355

STEEL COLUMN FORMING PART OF MOMENT RESISTING FRAME -ALLOW 203x203x71 UC

STEEL BEAM - ALLOW 203x203x60 UC

C32/40 200mm THK SUSPENDED SLAB WITH COLLAPSIBLE VOID FORMER

C32/40 200mm THK SUSPENDED SLAB

DENOTES 300mm THK REINFORCED CONCRETE BASEMENT WALL

DENOTES MASONRY CAVITY WALL FORMED FROM 140mm THICK BLOCKWORK INTERNAL LEAF, CAVITY (SIZE T.B.C. BY ARCHITECT), AND 100mm THK EXTERNAL LEAF BRICKWORK

DENOTES LOAD BEARING MASONRY WALL (ASSUMED 140mm THK BLOCKWORK, BUILD UP T.B.C.)

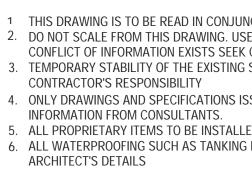
TIMBER FLOOR JOISTS - ALLOW 225x75 C24 JOISTS WITH 18mm THK PLYWOOD GLUED AND SCREWED TO JOISTS

ALL REINFORCED CONCRETE TO BE GRADE C32/40

DRAWING TITLE: PROPOSED SECOND FLOOR PLAN

DRAWING No: E0811-SK-9003 STATUS DESCRIPTION: SUITABLE FOR INFORMATION REV: SCALE: P01 As Indicated @A1

a: 7 Ridgmount Street, WC1E 7AE,


London, United Kingdom e: contact@engineeria.com

t: (+44)207 580 4588

PROPOSED ROOF STRUCTURE

N.T.S.

EXTRACT FROM ARCHITECTURAL DRAWING TP(10)24

NOTES

MOVEMENT JOINTS TO BE PROVIDED FOR THE MASONRY WALL. MAXIMUM DISTANCE BEETWEN MOVEMENT JOINTS IN BLOCKWORK TO BE 7m AND BRICKWORK TO BE 12m. THIS IS TO BE CONFIRMED BY THE BRICK AND BLOCK MANUFACTURER

BLOCKWORK TO HAVE MINIMUM COMPRESSIVE STRENGTH: 7.3 N/mm²

MORTAR COMPRESSIVE STRENGTH CLASS MIN. M6 FOR EXTERNAL WALLS

ALL STEEL MEMBERS TO BE GRADE S355

ALL MASS CONCRETE TO BE GRADE C25/30

PROJECT TITLE: 29-31 HIGH STREET, HAMPTON WICK CLIENT:

MR. & MRS. FROST

PROJECT No: E0811

CHECKED: MW

2023.07.19

ISSUED FOR INFORMATION

MW checked

MT

DRAWN: MT

1 THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ENGINEER'S AND ARCHITECT'S DRAWINGS, SPECIFICATIONS AND RISK REGISTERS 2. DO NOT SCALE FROM THIS DRAWING. USE ONLY DIMENSIONS AS INDICATED. CHECK ALL SITE DIMENSIONS PRIOR TO PLACING ANY ORDER OR FABRICATION. WHERE A CONFLICT OF INFORMATION EXISTS SEEK CONFIRMATION FROM CONSULTANTS PRIOR TO PROCEEDING FURTHER WITH THE WORKS

CONTRACTOR'S RESPONSIBILITY TO SEEK TH

5. ALL PROPRIETARY ITEMS TO BE INSTALLED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S REQUIREMENTS AND SPECIFICATIONS 6. ALL WATERPROOFING SUCH AS TANKING DETAILS, DAMP PROOF MEMBRANES, DAMP PROOF COURSES, CAVITY TRAYS ETC. ARE TO BE INSTALLED AS PER

PROPOSED MEMBER SCHEDULE

STEEL COLUMN - ALLOW 100x100x8 SHS S355

STEEL COLUMN FORMING PART OF MOMENT RESISTING FRAME -ALLOW 203x203x71 UC

STEEL BEAM - ALLOW 203x203x60 UC

C32/40 200mm THK SUSPENDED SLAB WITH COLLAPSIBLE VOID FORMER

C32/40 200mm THK SUSPENDED SLAB

DENOTES 300mm THK REINFORCED CONCRETE BASEMENT WALL

DENOTES MASONRY CAVITY WALL FORMED FROM 140mm THICK BLOCKWORK INTERNAL LEAF, CAVITY (SIZE T.B.C. BY ARCHITECT), AND 100mm THK EXTERNAL LEAF BRICKWORK

DENOTES LOAD BEARING MASONRY WALL (ASSUMED 140mm THK BLOCKWORK, BUILD UP T.B.C.)

TIMBER RAFTERS - ALLOW 225x50 C24 RAFTERS

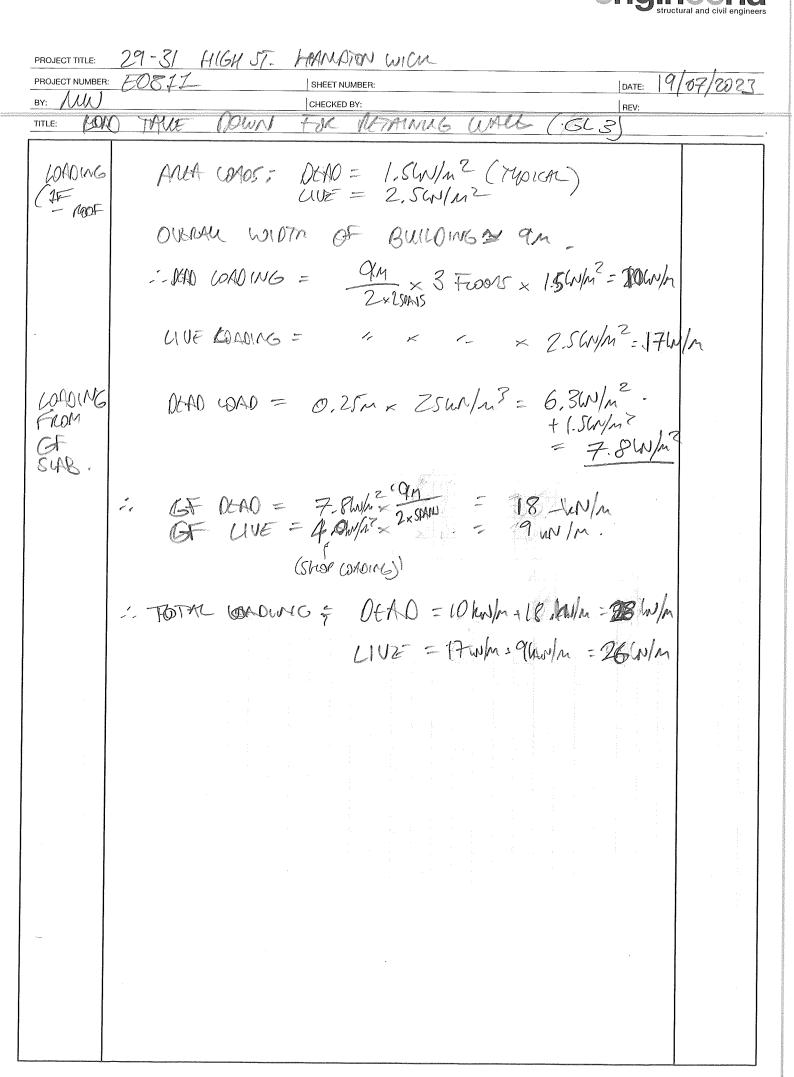
TIMBER ROOF JOISTS - ALLOW 225x75 C24 JOISTS WITH 18mm THK PLYWOOD GLUED AND SCREWED TO JOISTS

ALL REINFORCED CONCRETE TO BE GRADE C32/40

NOTE - ALL SIZES ARE FOR INITIAL DESIGN PURPOSES ONLY BASED ON THE INFORMATION PROVIDED, AND HAVE NOT BEEN CO-ORDINATED WITH THE ARCHITECTURAL LAYOUTS. MAKE A SUITABLE ALLOWANCE FOR FURTHER SCHEME DEVELOPMENT AT A LATER PROJECT STAGE

DRAWING TITLE: PROPOSED ROOF STRUCTURE

DRAWING No: E0811-SK-9004 STATUS DESCRIPTION: SUITABLE FOR INFORMATION REV: SCALE: P01 As Indicated @A1

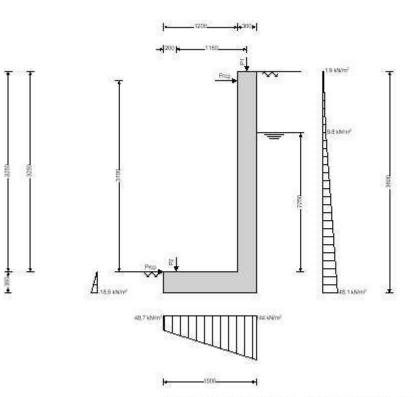

a: 7 Ridgmount Street, WC1E 7AE,

London, United Kingdom e: contact@engineeria.com

t: (+44)207 580 4588

Appendix C - Preliminary Structural Calculations

Engineeria	- ,				Job Ref. E0811	
7 Ridgmount Street, London WC1E 7AE 02075804588 www.engineeria.com	Section Typical Basement retaining wall				Sheet no./rev. CAL 1120 P1	
www.engineena.com	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date


RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.17

Retaining wall details	
Stem type	Propped cantilever pinned at the base
Stem height	hstem = 3250 mm
Prop height	$h_{\text{prop}} = 3100 \text{ mm}$
Stem thickness	tstem = 300 mm
Angle to rear face of stem	$\alpha = 90 \deg$
Stem density	$\gamma_{\text{sterm}} = 25 \text{ kN/m}^3$
Toe length	Ι _{toe} = 1200 mm
Base thickness	t _{base} = 350 mm
Base density	γ _{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 3250 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2250 mm
Water density	$\gamma_{\rm w} = 9.8 \ {\rm kN/m^3}$
Retained soil properties	
Soil type	Medium dense well graded sand
Moist density	$\gamma_{mr} = 21 \text{ kN/m}^3$
Saturated density	$\gamma_{sr} = 23 \text{ kN/m}^3$
Characteristic effective shear resistance angle	∲'r.k = 27 deg
Characteristic wall friction angle	δ _{r.k} = 13.5 deg
Base soil properties	
Soil type	Medium dense well graded sand
Soil density	γь = 18 kN/m ³
Characteristic effective shear resistance angle	∮'ь.k = 30 deg
Characteristic wall friction angle	δ _{b.k} = 15 deg
Characteristic base friction angle	$\delta_{bb,k} = 20 \text{ deg}$
Presumed bearing capacity	P _{bearing} = 150 kN/m ²
Loading details	
Variable surcharge load	Surchargeo = 5 kN/m ²
Vertical line load at 1350 mm	P _{G1} = 28 kN/m
	Pq1 = 26 kN/m
Vertical line load at 200 mm	P _{G2} = 35 kN/m
	P _{Q2} = 18 kN/m

Engineeria					Job Ref. E0811	
7 Ridgmount Street, London WC1E 7AE 02075804588 www.engineeria.com					Sheet no./rev. CAL 1121 P1	
www.engineena.com	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date

General arrangement - sketch pressures relate to bearing check

Calculate retaining wall geometry

Base length Saturated soil height Moist soil height Length of surcharge load - Distance to vertical component Effective height of wall - Distance to horizontal component Area of wall stem - Distance to vertical component Area of wall base - Distance to vertical component **Using Rankine theory** Active pressure coefficient Passive pressure coefficient **Bearing pressure check** Vertical forces on wall

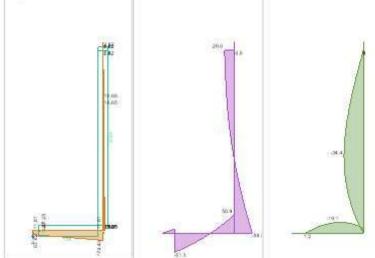
Wall stem Wall base Line loads $l_{base} = l_{toe} + t_{stem} = 1500 \text{ mm}$ $h_{sat} = h_{water} + d_{cover} = 2250 \text{ mm}$ $h_{moist} = h_{ret} - h_{water} = 1000 \text{ mm}$ $l_{sur} = l_{heel} = 0 \text{ mm}$ $x_{sur_v} = l_{base} - l_{heel} / 2 = 1500 \text{ mm}$ $h_{eff} = h_{base} + d_{cover} + h_{ret} = 3600 \text{ mm}$ $x_{sur_h} = h_{eff} / 2 = 1800 \text{ mm}$ $A_{stem} = h_{stem} \times t_{stem} = 0.975 \text{ m}^2$ $x_{stem} = l_{toe} + t_{stem} / 2 = 1350 \text{ mm}$ $A_{base} = l_{base} \times t_{base} = 0.525 \text{ m}^2$ $x_{base} = l_{base} / 2 = 750 \text{ mm}$

 $K_{A} = (1 - \sin(\phi'_{r.k})) / (1 + \sin(\phi'_{r.k})) = 0.376$ $K_{P} = (1 + \sin(\phi'_{b.k})) / (1 - \sin(\phi'_{b.k})) = 3.000$

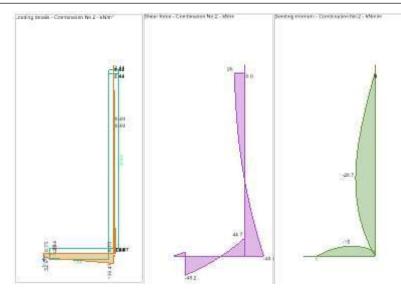
$$\label{eq:Fstem} \begin{split} F_{stem} &= A_{stem} \times \gamma_{stem} = \textbf{24.4 kN/m} \\ F_{base} &= A_{base} \times \gamma_{base} = \textbf{13.1 kN/m} \\ F_{P_v} &= P_{G1} + P_{Q1} + P_{G2} + P_{Q2} = \textbf{107 kN/m} \end{split}$$

Engineeria	Project 29-31 High	Project 29-31 High Street, Hampton Wick				Job Ref. E0811			
7 Ridgmount Street, London WC1E 7AE 02075804588 www.engineeria.com	Section Typical Bas	sement retaining	Sheet no./rev CAL 1122						
	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date			
Total		Ftotal_v = Fsten	n + Fbase + FP_v	+ F _{water_v} = 144	I.5 kN/m				
Horizontal forces on wall									
Surcharge load	urcharge load			$F_{sur_h} = K_A \times Surcharge_Q \times h_{eff} = 6.8 \text{ kN/m}$					
Saturated retained soil		$F_{sat_h} = K_A \times (\gamma_{sr} - \gamma_w) \times (h_{sat} + h_{base})^2 / 2 = 16.7 \text{ kN/m}$							
Water		$F_{water_h} = \gamma_w >$	w × (hwater + dcover + hbase) ² / 2 = 33.2 kN/m						
Moist retained soil		$F_{moist_h} = K_A \times \gamma_{mr} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} + h_{base}))$							
		= 24.4 kN/m							
Base soil		Fpass_h = -KP	$\times \gamma_{b} \times (d_{cover} + $	n _{base}) ² / 2 = -3.	3 kN/m				
Total		Ftotal_h = Fsur_	_h + F sat_h + F wat	er_h + Fmoist_h +	Fpass_h = 77.8 kN	/m			
Moments on wall									
Wall stem		Mstem = Fstem	× Xstem = 32.9	Nm/m					
Wall base	$M_{\text{base}} = F_{\text{base}} \times x_{\text{base}} = 9.8 \text{ kNm/m}$								
Line loads	$M_P = (P_{G1} + P_{Q1}) \times p_1 + (P_{G2} + P_{Q2}) \times p_2 = 83.5 \text{ kNm/m}$								
Total	Mtotal = Mstem + Mbase + Msur + MP = 126.3 kNm/m								

Distance to reaction	$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}} / \mathbf{F}_{\text{total}_{v}} = 874 \text{ mm}$
Eccentricity of reaction	e = x - I _{base} / 2 = 124 mm
Loaded length of base	lioad = Ibase = 1500 mm
Bearing pressure at toe	$q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 48.7 \text{ kN/m}^2$
Bearing pressure at heel	$q_{\text{heel}} = F_{\text{total}_v} / I_{\text{base}} \times (1 + 6 \times e / I_{\text{base}}) = 144 \text{ kN/m}^2$
Factor of safety	$FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 1.042$
	PASS - Allowable bearing pressure exceeds maximum applied bearing pressure


RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1


Tedds calculation version 2.9.17

Concrete details - Table 3.1 - Strength and defo	rmation characteristics for concrete
Concrete strength class	C32/40
Characteristic compressive cylinder strength	f _{ck} = 32 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 40 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 N/mm^2 = 40 N/mm^2$
Mean value of axial tensile strength	$f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 3.0 \text{ N/mm}^2$
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.1 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 33346 \text{ N/mm}^2$
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	$\alpha_{\rm CC} = 0.85$
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 18.1 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = 20 mm
Ultimate strain - Table 3.1	εcu2 = 0.0035
Shortening strain - Table 3.1	εcu3 = 0.0035
Effective compression zone height factor	$\lambda = 0.80$
Effective strength factor	η = 1.00

Engineeria	Project 29-31 High S	Project 29-31 High Street, Hampton Wick			Job Ref. E0811		
7 Ridgmount Street, London WC1E 7AE 02075804588 www.engineeria.com	Section Typical Basement retaining wall				Sheet no./rev. CAL 1123 P1		
	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date	
Bending coefficient k1		K1 = 0.40					
Bending coefficient k2		$K_2 = 1.00 \times 10^{-10}$	(0.6 + 0.0014/ε	cu2) = 1.00			
Bending coefficient k ₃		K3 = 0.40					
Bending coefficient k4		$K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{ccu2}) = 1.00$					
Reinforcement details							
Characteristic yield strength of re	inforcement	f _{yk} = 500 N/r	nm²				
Modulus of elasticity of reinforcer	nent	Es = 200000 N/mm ²					
Partial factor for reinforcing steel - Table 2.1N		γs = 1.15					
Design yield strength of reinforce	ment	$f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$					
Cover to reinforcement							
Front face of stem		csf = 30 mm					
Rear face of stem		csr = 55 mm					
Top face of base		Cbt = 30 mm					
Bottom face of base		Cbb = 75 mm	I				

Engineeria	Project 29-31 High Stre	eet, Hampton W	Job Ref. E0811			
7 Ridgmount Street, London WC1E 7AE 02075804588					Sheet no./rev. CAL 1124 P1	
www.engineeria.com	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date

Check stem design at 1119 mm Depth of section	
Rectangular section in flexure - Section Design bending moment combination 1	n 6
Design bending moment combination i	

h = **300** mm

Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 34.4 kNm/m
Depth to tension reinforcement	d = h - csf - φsr - φsrM / 2 = 254 mm
	$K = M / (d^2 \times f_{ck}) = 0.017$
	$K' = (2 \times \eta \times \alpha_{CC}/\gamma_{C}) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	$z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_c))^{0.5}, 0.95) \times d = \textbf{241} \text{ mm}$
Depth of neutral axis	$x = 2.5 \times (d - z) = 32 \text{ mm}$
Area of tension reinforcement required	$A_{stM.req} = M / (f_{yd} \times z) = 328 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	AsfM.prov = $\pi \times \phi$ sfM ² / (4 × SsfM) = 565 mm ² /m
Minimum area of reinforcement - exp.9.1N	AsfM.min = max($0.26 \times f_{ctm} / f_{yk}, 0.0013$) × d = 399 mm ² /m
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sfM.max} = 0.04 \times h = 12000 \text{ mm}^2/\text{m}$
	max(AsfM.req, AsfM.min) / AsfM.prov = 0.706
PASS - Area	a of reinforcement provided is greater than area of reinforcement required
	Library item: Rectangular single output
Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000} = 0.006$
Required tension reinforcement ratio	$\rho = A_{sfM.req} / d = 0.001$
Required compression reinforcement ratio	$\rho' = A_{sfM.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sfM.req} / A_{sfM.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	$min(K_{s} \times K_{b} \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^{2})} \times \rho_{0} / \rho + 3.2 \times \rho_{0}$
	$(\rho_0 / \rho - 1)^{3/2}], 40 \times K_b) = 40$

hprop / d = **12.2**

Actual span to depth ratio

Engineeria					Job Ref. E0811	
7 Ridgmount Street, London WC1E 7AE 02075804588	Section Typical Baseme	Sheet no./rev. CAL 1125 P1				
www.engineeria.com	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date

	PASS - Span to depth ratio is less than deflection control limit
Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	Ψ2 = 0.6
Serviceability bending moment	M _{sls} = 24.4 kNm/m
Tensile stress in reinforcement	$\sigma_s = M_{sls} / (A_{sfM.prov} \times z) = 178.6 \text{ N/mm}^2$
Load duration	Long term
Load duration factor	$k_{t} = 0.4$
Effective area of concrete in tension	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 89417 mm ² /m
Mean value of concrete tensile strength	fct.eff = fctm = 3.0 N/mm ²
Reinforcement ratio	$\rho_{p.eff} = A_{sfM,prov} / A_{c.eff} = 0.006$
Modular ratio	αe = Es / Ecm = 5.998
Bond property coefficient	k1 = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k3 = 3.4
	k4 = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sf} + k_1 \times k_2 \times k_4 \times \phi_{sfM} \ / \ \rho_{p.eff} = 425 \ mm$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0.227 mm
	Wk / Wmax = 0.758
	PASS - Maximum crack width is less than limiting crack width
Check stem design at base of stem	
Depth of section	h = 300 mm
Rectangular section in shear - Section 6.2	
Design shear force	V = 58.7 kN/m
	$C_{Rd,c} = 0.18 / \gamma c = 0.120$
	k = min(1 + √(200 mm / d), 2) = 1.887
Longitudinal reinforcement ratio	ρι = min(A _{sr.prov} / d, 0.02) = 0.002
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × fck ^{0.5} = 0.513 N/mm ²
Design shear resistance - exp.6.2a & 6.2b	$V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, V_{min}) \times d$
	V _{Rd.c} = 130.4 kN/m
	V / V _{Rd.c} = 0.451
	PASS - Design shear resistance exceeds design shear force
Check stem design at prop	
Depth of section	h = 300 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 0 kNm/m
Depth to tension reinforcement	d = h - c _{sr} - φ _{sr1} / 2 = 239 mm
	$K = M / (d^2 \times f_{ck}) = 0.000$
	$K' = (2 \times \eta \times \alpha_{ccc}/\gamma_{C}) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$
	K' = 0.207
	K' > K - No compression reinforcement is required

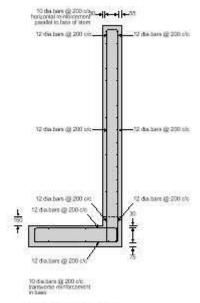
Engineeria 7 Ridgmount Street, London WC1E 7AE 02075804588 www.engineeria.com	Project 29-31 High Stre	eet, Hampton W	Job Ref. E0811			
					Sheet no./rev. CAL 1126 P1	
	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date

Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / (η × α_{cc} / γ_c)) ^{0.5} , 0.95) × d = 227 mm
Depth of neutral axis	$x = 2.5 \times (d - z) = 30 \text{ mm}$
Area of tension reinforcement required	Asr1.req = M / ($f_{yd} \times z$) = 0 mm ² /m
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{sr1.prov} = \pi \times \phi_{sr1^2} / (4 \times s_{sr1}) = 565 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sr1.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 376 mm^2/m$
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sr1.max} = 0.04 \times h = 12000 \text{ mm}^2/\text{m}$
	max(Asr1.req, Asr1.min) / Asr1.prov = 0.665

PASS - Area of reinforcement provided is greater than area of reinforcement required Library item: Rectangular single output

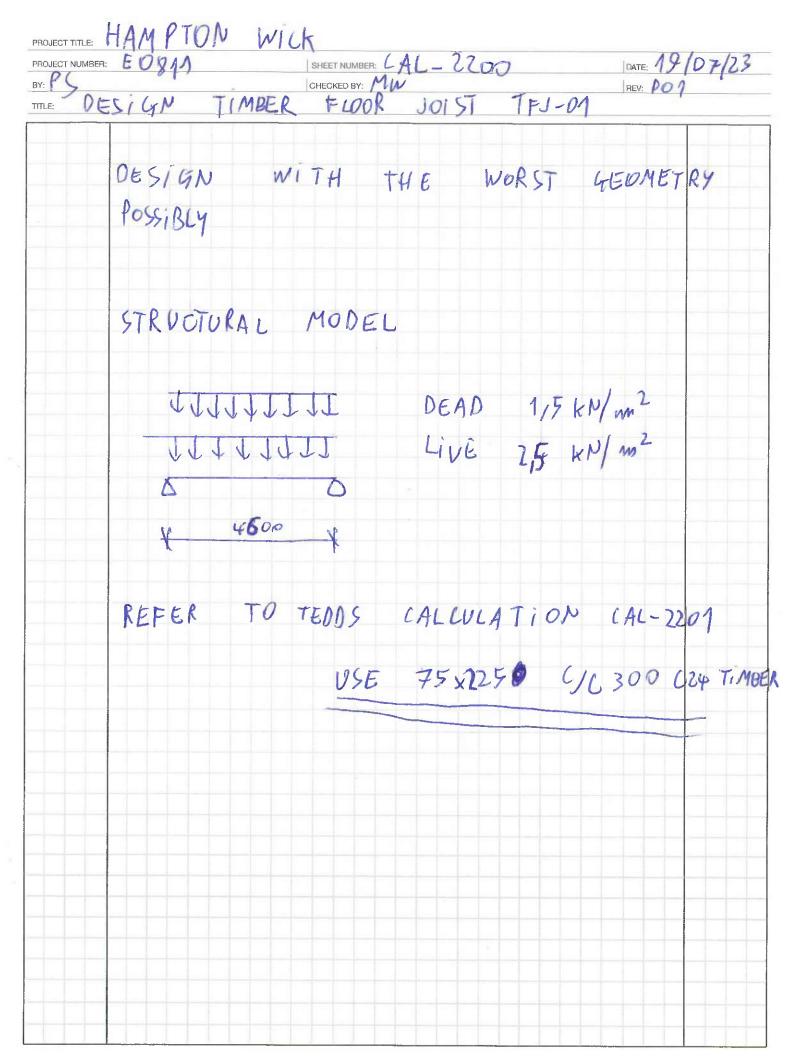
	Library item: Rectangular single output
Deflection control - Section 7.4	
Reference reinforcement ratio	ρ₀ = √(fck / 1 N/mm²) / 1000 = 0.006
Required tension reinforcement ratio	$\rho = A_{sr1.reg} / d = 0.000$
Required compression reinforcement ratio	ρ' = A _{sr1.2.req} / d ₂ = 0.000
Structural system factor - Table 7.4N	K _b = 0.4
Reinforcement factor - exp.7.17	Ks = min(500 N/mm² / (fyk × Asr1.reg / Asr1.prov), 1.5) = 1.5
Limiting span to depth ratio - exp.7.16.a	min(Ks × Kb × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × $ ho_0$ / $ ho$ + 3.2 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ ×
	(ρ ₀ / ρ - 1) ^{3/2}], 40 × K _b) = 16
Actual span to depth ratio	(hstem - hprop) / d = 0.6
	PASS - Span to depth ratio is less than deflection control limit
Crack control - Section 7.3	
Limiting crack width	W _{max} = 0.3 mm
Variable load factor - EN1990 - Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sis} = 0 kNm/m
Tensile stress in reinforcement	$\sigma_{s} = M_{sls} / (A_{sr1,prov} \times z) = 0.1 \ N/mm^{2}$
Load duration	Long term
Load duration factor	$k_{t} = 0.4$
Effective area of concrete in tension	Ac.eff = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 90042 mm ² /m
Mean value of concrete tensile strength	fct.eff = fctm = 3.0 N/mm ²
Reinforcement ratio	$\rho_{p.eff} = A_{sr1.prov} / A_{c.eff} = 0.006$
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 5.998$
Bond property coefficient	k1 = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k4 = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr1} \ / \ \rho_{p.eff} = 512 \ mm$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0 mm
	Wk / Wmax = 0.001
	PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force	V = 29.6 kN/m

Engineeria	Project 29-31 High S	Street, Hampton	Wick	Job Ref. E0811			
7 Ridgmount Street, London WC1E 7AE 02075804588	ement retaining v	wall		Sheet no./rev. CAL 1127 P1			
www.engineeria.com	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date	
		C _{Rd,c} = 0.18	/ γc = 0.120				
			√(200 mm / d),	2) = 1 915			
Longitudinal reinforcement ratio		-	prov / d, 0.02) =	-			
Longitudinal reinforcement ratio			$N^{1/2}/mm \times k^{3/2}$		N/mm ²		
Design shear resistance - exp.6.2	2 8 6 2h		$C_{Rd.c} \times k \times (100)$				
Design shear resistance - exp.o.z	a a 0.20	$V_{Rd.c} = 1123.4$	-	n-/mm·×pi×	1 ck $\beta^{(n)}$, $V \min \beta \times \mathbf{U}$		
		$V_{Rd.c} = 123.4$ V / V _{Rd.c} = 0.					
				shear resistan	ice exceeds des	sion shear fr	
Horizontal reinforcement paralle	el to face of st		0				
Minimum area of reinforcement –			(0.25 × Asr.prov,	0.001 × t _{stem}) =	300 mm²/m		
Maximum spacing of reinforcement		Ssx_max = 400	-				
Transverse reinforcement provide		10 dia.bars					
Area of transverse reinforcement			$\phi_{sx^2} / (4 \times s_{sx}) =$	393 mm²/m			
	-				area of reinford	ement reau	
Check base design at toe			1	5			
Depth of section		h = 350 mm					
-	On all and the	n – 330 mm					
Rectangular section in flexure -			/m				
Design bending moment combina	uon 1	M = 1.2 kNm		~			
Depth to tension reinforcement		$d = h - c_{bb} - \phi_{bb} / 2 = 269 mm$ $K = M / (d^2 \times f_{ck}) = 0.001$					
			-	(a. 14) //-	>> /a /a ====		
		K' = (2 × η × K' = 0.207			2))×(λ × (δ - K1)/(
Lever arm		$z = \min(0) E$			ssion reinforcer)) ^{0.5} , 0.95) × d =		
Depth of neutral axis			-z) = 34 mm		,, , 0.35) × u =		
Area of tension reinforcement req	uired		– 2) = 34 mm (f _{yd} × z) = 11 mm	m²/m			
Tension reinforcement provided		Abb.req = IVI / 12 dia.bars		111 /111			
	vidod		@ 200 C/C φ _{bb} ² / (4 × S _{bb}) =	- 565 mm ^{2/m}			
Area of tension reinforcement pro			,		100 mm ^{2/}		
Minimum area of reinforcement -	-	Abb.min = max($0.26 \times f_{ctm} / f_{yk}$, 0.0013) × d = 423 mm ² /m					
Maximum area of reinforcement -	ci.9.2.1.1(3)		4 × h = 14000 r				
		-	Abb.min) / Abb.prov		aroa of rolafora	omont roger	
	FAJS - Alea		ent provided is	s greater trian	area of reinford Library item: Red		
Crack control - Section 7.3							
Limiting crack width		w _{max} = 0.3 m	im				
Variable load factor - EN1990 - Ta	able A1.1	ψ2 = 0.6					
Serviceability bending moment		Msis = 9.5 kN	lm/m				
Tensile stress in reinforcement		$\sigma_s = M_{sls} / (A$	bb.prov \times Z) = 65.	9 N/mm²			
Load duration		Long term					
Load duration factor		$k_t = 0.4$					
Effective area of concrete in tension	on	-	.5 × (h - d), (h -	· x) / 3, h / 2)			
		Ac.eff = 1054	58 mm ² /m				


Engineeria	Project 29-31 High \$	Street, Hampton	Job Ref. E0811					
7 Ridgmount Street, London WC1E 7AE 02075804588	Section Typical Base	ement retaining v	Sheet no./rev. CAL 1128 I	Sheet no./rev. CAL 1128 P1				
www.engineeria.com	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date		
Reinforcement ratio		ρp.eff = Abb.prov	/ Ac.eff = 0.005	;				
Modular ratio		$\alpha_{e} = E_{s} / E_{cm}$	= 5.998					
Bond property coefficient		k1 = 0.8						
Strain distribution coefficient		k2 = 0.5						
		k3 = 3.4						
		k4 = 0.425						
Maximum crack spacing - exp.7.11		$S_{r.max} = k_3 \times C$	$\mathbf{b}\mathbf{b} + \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}$	$4 \times \phi_{\text{bb}} / \rho_{\text{p.eff}} = 0$	6 35 mm			
Maximum crack width - exp.7.8		$Wk = Sr.max \times I$	$max(\sigma_s - k_t \times (f$	ct.eff / $ ho_{p.eff}$ $ imes$ (1 \cdot	+ $\alpha_{e} \times \rho_{p.eff}$), 0.6 >	< σs) / Es		
		wk = 0.126 m	าทา					
		$W_k / W_{max} = 0$	-					
		PAS	SS - Maximum	i crack width is	s less than limit	ing crack v		
Rectangular section in shear - Se Design shear force	ection 6.2	\/ - 61 3 LNI/	'n					
Design shear loice		V = 61.3 kN/m C _{Rd,c} = 0.18 / γc = 0.120						
				2) - 1 862				
Longitudinal rainforcement ratio		k = min(1 + $\sqrt{200}$ mm / d), 2) = 1.862 ρ I = min(Abb.prov / d, 0.02) = 0.002						
Longitudinal reinforcement ratio		$p_1 = \text{Init}(\text{Abb.prov} / \text{d}, 0.02) = 0.002$ $V_{\text{min}} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{fck}^{0.5} = 0.503 \text{ N}/\text{mm}^2$						
	0.0.0h							
Design shear resistance - exp.6.2a	& 6.20	$V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min}) \times d$ $V_{Rd.c} = 135.3 \text{ kN/m}$						
		$V_{Rd.c} = 135.3$ V / V _{Rd.c} = 0.						
				shear resistan	ce exceeds des	ign shear f		
Check base design at toe			5			0		
Depth of section		h = 350 mm						
Rectangular section in flexure - S	Section 6.1							
Design bending moment combinati	on 1	M = 19.1 kN	m/m					
Depth to tension reinforcement		d = h - c _{bt} - φ _{bt} / 2 = 314 mm						
		$K = M / (d^2 \times$	fck) = 0.006					
			αcc/γc)×(1 - λ ×	(δ - K ₁)/(2 × K ₂)	2))×(λ × (δ - K1)/(2	2 × K2))		
		K' = 0.207	K' > K	(- No compres	sion reinforcen	nent is rea		
Lever arm		z = min(0.5 +)) ^{0.5} , 0.95) × d = 2			
Depth of neutral axis		-	– z) = 39 mm		,, , ,			
Area of tension reinforcement requ	ired		f _{yd} × z) = 147 m	nm²/m				
Tension reinforcement provided		12 dia.bars @ 200 c/c						
Area of tension reinforcement prov	ided	$A_{bt,prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 565 \text{ mm}^2/\text{m}$						
Minimum area of reinforcement - ex				, 0.0013) × d =	494 mm²/m			
Maximum area of reinforcement - c	-		l × h = 14000 n	-				
	\- <i>\</i>		Abt.min) / Abt.prov =					
	PASS - Area	-			area of reinforc			
					Library item: Rec	tangular single		
Crack control - Section 7.3								
Limiting crack width		Wmax = 0.3 m	m					
Variable load factor - EN1990 - Tal	ble A1.1	$\psi_2 = 0.6$						

Engineeria 7 Ridgmount Street, London WC1E 7AE 02075804588 www.engineeria.com					Job Ref. E0811	
	Section Typical Baseme	ent retaining wa	Sheet no./rev. CAL 1129 P1			
	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date

Serviceability bending moment	M _{sis} = 0 kNm/m
Tensile stress in reinforcement	$\sigma_s = M_{sls} / (A_{bt,prov} \times z) = 0 N/mm^2$
Load duration	Long term
Load duration factor	kt = 0.4
Effective area of concrete in tension	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 90000 mm ² /m
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 3.0 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{bt,prov} / A_{c.eff} = 0.006$
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 5.998$
Bond property coefficient	k1 = 0.8
Strain distribution coefficient	k2 = 0.5
	k ₃ = 3.4
	k4 = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{bt} + k_1 \times k_2 \times k_4 \times \phi_{bt} / \rho_{p.eff} = 427 \text{ mm}$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0 mm
	$w_k / w_{max} = 0$
	PASS - Maximum crack width is less than limiting crack width
Secondary transverse reinforcement to base - S	Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2)	$A_{bx.req} = 0.2 \times A_{bb.prov} = 113 \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement - cl.9.3.1.1(3)	Sbx_max = 450 mm
Transverse reinforcement provided	10 dia.bars @ 200 c/c
Area of transverse reinforcement provided	$A_{bx.prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 393 \text{ mm}^2/\text{m}$
DASS Area	of rainforcement provided is greater than area of rainforcement required


PASS - Area of reinforcement provided is greater than area of reinforcement required

Engineeria 7 Ridgmount Street, London WC1E 7AE 02075804588 www.engineeria.com	Project 29-31 High Stre	eet, Hampton W	Job Ref. E0811			
					Sheet no./rev. CAL 1130 P1	
	Calc. by MW	Date 19-Jul-23	Chk'd by	Date	App'd by	Date

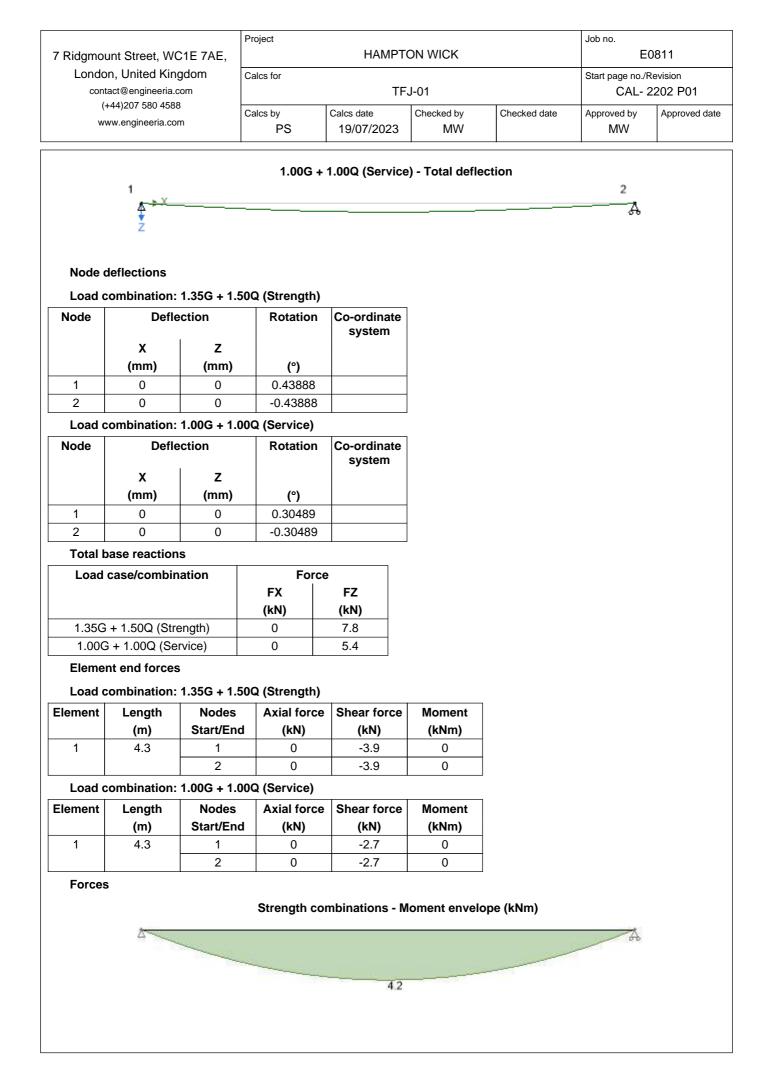
Reinforcement details

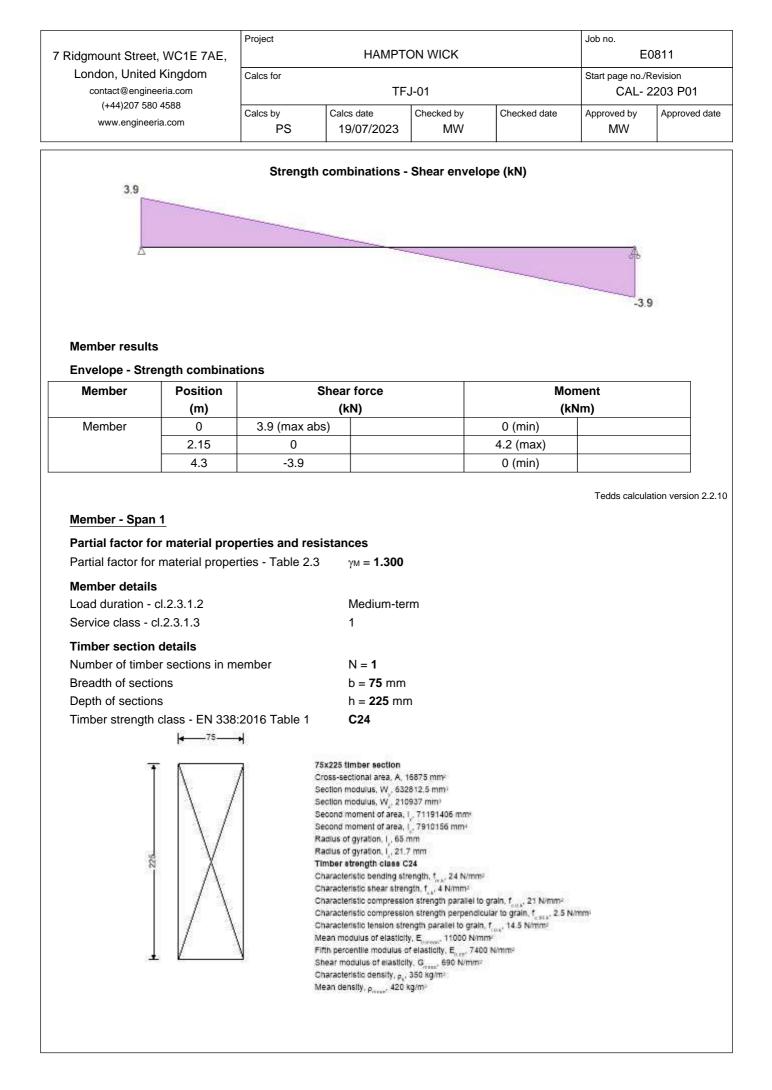
	Project				Job no.	
Ridgmount Street, WC1E 7AE,		HAMPT	E0811			
London, United Kingdom	Calcs for				Start page no./F	
contact@engineeria.com (+44)207 580 4588		TF	J-01	1	CAL-2	2201 P01
www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by MW	Checked date	Approved by MW	Approved date
TIMBER JOIST ANALYSIS &	DESIGN (EN1	995-1-1:2004 <u>)</u>				
In accordance with EN1995-1 values	-1:2004 + A2:	2014 incorporatir	ng corrigendu	ım June 2006 an	d the recomm	ended
values					Tedds calcula	ation version 1.0.0
Joist details						
Description		75 x 225 C	24 timber joist	S		
Joist spacing		SJoist = 300	mm			
1						
		4300				
Forces input on Joist						
Vertical permanent load on jois	st	FG_Joist= 1.5				
Vertical imposed load on joist		Fq_Joist= 2.5	50 kN/m²			
Joist loading details						
Distributed loads						
Vertical permanent load on jois	st	$p_G = F_{G_{Jois}}$	t × SJoist= 0.45	kN/m		
Vertical imposed load on joist		$p_Q = F_{Q_Joist}$	t × SJoist= 0.75	kN/m		
ANALYSIS						
					Tedds calcula	ation version 1.0.
Loading						
Self weight included (Permane	nt x 1)					

Load combination factors

Load combination	Permanent	Imposed	Snow	Wind
1.35G + 1.50Q (Strength)	1.35	1.50	0.00	0.00
1.00G + 1.00Q (Service)	1.00	1.00	0.00	0.00

Member Loads


Member	Load case	Load Type	Orientation	Description
Member	Permanent	UDL	GlobalZ	0.45 kN/m at 0 m to 4.3 m
Member	Imposed	UDL	GlobalZ	0.75 kN/m at 0 m to 4.3 m


Results

Total deflection

1.35G + 1.50Q (Strength) - Total deflection

	Project		Job no.			
7 Ridgmount Street, WC1E 7AE,	HAMPTON WICK				E0811	
London, United Kingdom	Calcs for				Start page no./Revision	
contact@engineeria.com	TFJ-01				CAL- 2204 P01	
(+44)207 580 4588 www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by MW	Checked date	Approved by MW	Approved date

Span details

Bearing length	l	_ь = 75 mm			
Member results summary	Unit	Capacity	Maximum	Utilisation	Result
Bearing stress	N/mm ²	1.7	0.7	0.409	PASS
Bending stress	N/mm ²	16.2	6.6	0.407	PASS
Shear stress	N/mm ²	2.7	0.5	0.191	PASS
Deflection	mm	14	11.9	0.851	PASS

Consider Combination 1 - 1.35G + 1.50Q (Strength)

Modification factors

Duration of load and moisture content - Table 3.1	kmod = 0.8
Deformation factor - Table 3.2	kdef = 0.6
Bending stress re-distribution factor - cl.6.1.6(2)	km = 0.7
Crack factor for shear resistance - cl.6.1.7(2)	kcr = 0.67
System strength factor - cl.6.6	ksys = 1.1

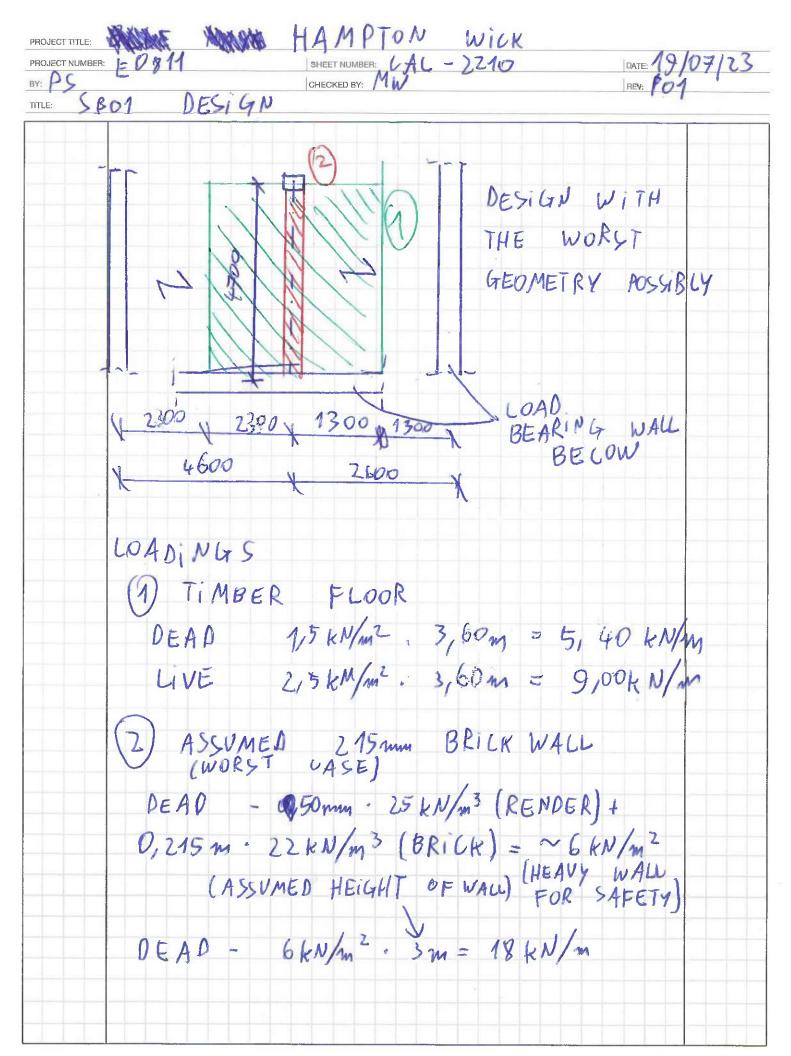
Check design at start of span

$\begin{array}{ll} \mbox{Check compression perpendicular to the grain - cl.6.1.5} \\ \mbox{Design perpendicular compression - major axis} & F_{c,y,90,d} = 3.893 \ kN \\ \mbox{Effective contact length} & L_{b,ef} = L_b = 75 \ mm \\ \mbox{Design perpendicular compressive stress - exp.6.4} & \sigma_{c,y,90,d} = F_{c,y,90,d} / (b \times L_{b,ef}) = 0.692 \ N/mm^2 \\ \mbox{Design perpendicular compressive strength} & f_{c,y,90,d} = k_{mod} \times k_{sys} \times f_{c.90,k} / \gamma_M = 1.692 \ N/mm^2 \\ & \sigma_{c,y,90,d} / (k_{c,90} \times f_{c,y,90,d}) = 0.409 \end{array}$

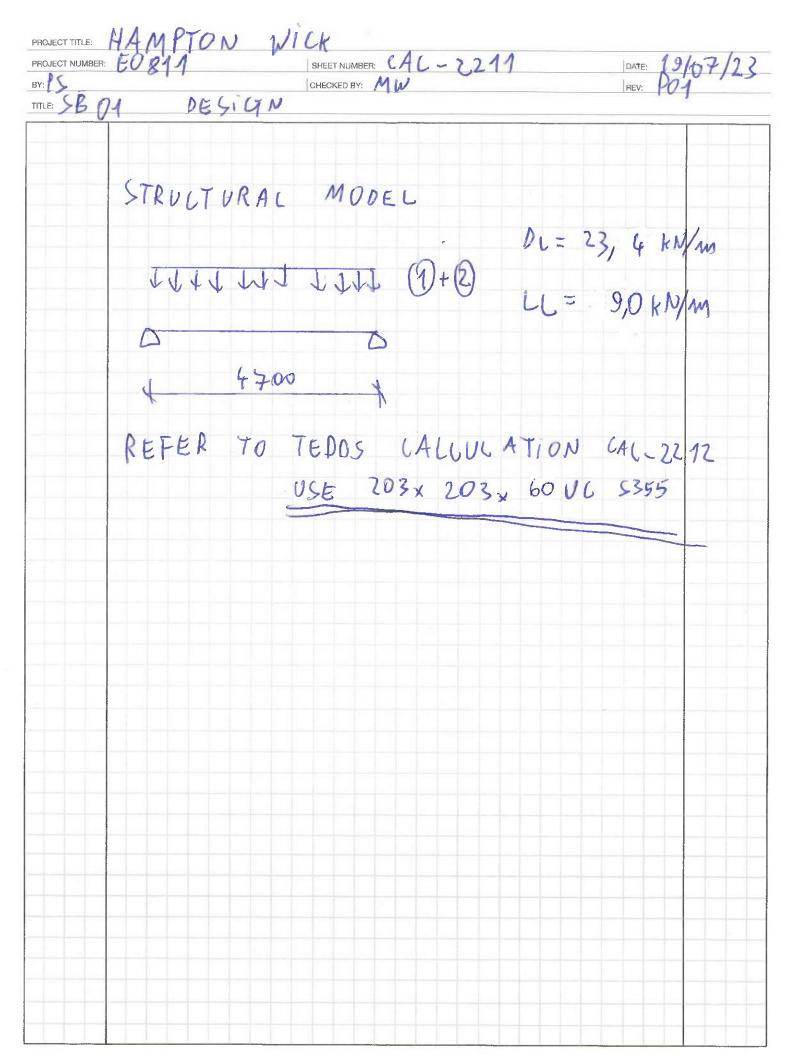
PASS - Design perpendicular compression strength exceeds design perpendicular compression stress

PASS - Design shear strength exceeds design shear stress

Check shear force - Section 6.1.7Design shear force $F_{y,d} = 3.893 \text{ kN}$ Design shear stress - exp.6.60 $\tau_{y,d} = 1.5 \times F_{y,d} / (k_{cr} \times b \times h) = 0.516 \text{ N/mm}^2$ Design shear strength $f_{v,y,d} = k_{mod} \times k_{sys} \times f_{v,k} / \gamma_M = 2.708 \text{ N/mm}^2$ $\tau_{y,d} / f_{v,y,d} = 0.191$


Check design 2150 mm along span

Check bending moment - Section 6.1.6	
Design bending moment	M _{y,d} = 4.185 kNm
Design bending stress	$\sigma_{m,y,d} = M_{y,d} / W_y = 6.613 \text{ N/mm}^2$
Design bending strength	$f_{m,y,d} = k_{mod} \times k_{sys} \times f_{m,k} / \gamma_M = \textbf{16.246} N/mm^2$
	σm,y,d / fm,y,d = 0.407
	PASS - Design bending strength exceeds design bending stress


Check design at end of span

Check compression perpendicular to the grain -	cl.6.1.5
Design perpendicular compression - major axis	F _{c,y,90,d} = 3.893 kN
Effective contact length	$L_{b,ef} = L_b = 75 \text{ mm}$
Design perpendicular compressive stress - exp.6.4	$\sigma_{c,y,90,d} = F_{c,y,90,d} / (b \times L_{b,ef}) = 0.692 \text{ N/mm}^2$
Design perpendicular compressive strength	$f_{c,y,90,d} = k_{mod} \times k_{sys} \times f_{c.90,k} \ / \ \gamma_M = \textbf{1.692} \ N/mm^2$
	$\sigma_{c,y,90,d} / (k_{c,90} \times f_{c,y,90,d}) = 0.409$

	Project				Job no.	
7 Ridgmount Street, WC1E 7AE,	HAMPTON WICK				E0811	
London, United Kingdom	Calcs for				Start page no./Re	vision
contact@engineeria.com	TFJ-01			CAL- 2205 P01		
(+44)207 580 4588 www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by MW	Checked date	Approved by MW	Approved date

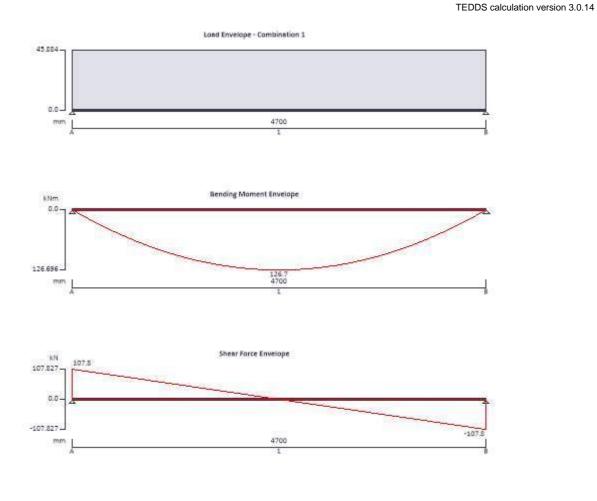
PASS - Design perpendicular compression strength exceeds design perpendicular compression stress

Check shear force - Section 6.1.7 Design shear force Design shear stress - exp.6.60 Design shear strength

$$\begin{split} F_{y,d} &= \textbf{3.893 kN} \\ \tau_{y,d} &= \textbf{1.5} \times F_{y,d} / (k_{cr} \times b \times h) = \textbf{0.516 N} / mm^2 \\ f_{v,y,d} &= k_{mod} \times k_{sys} \times f_{v,k} / \gamma_M = \textbf{2.708 N} / mm^2 \\ \tau_{y,d} / f_{v,y,d} &= \textbf{0.191} \end{split}$$

PASS - Design shear strength exceeds design shear stress

Consider Combination 2 - 1.00G + 1.00Q (Service)


Check design 2150 mm along span	
Check y-y axis deflection - Section 7.2	
Instantaneous deflection	δ _y = 7.5 mm
Quasi-permanent variable load factor	$\psi_2 = 0.3$
Final deflection with creep	$\delta_{y,Final} = \delta_y \times (1 + k_{def}) = 11.9 \text{ mm}$
Allowable deflection	$\delta_{y,Allowable} = Min(L_{m1_s1} / 250, 14 \text{ mm}) = 14 \text{ mm}$
	$\delta_{y,\text{Final}} / \delta_{y,\text{Allowable}} = 0.851$

PASS - Allowable deflection exceeds final deflection

	Project				Job no.	
7 Ridgmount Street, WC1E 7AE,	HAMPTON WICK			E0811		
London, United Kingdom contact@engineeria.com					Start page no./Revision CAL- 2212 P01	
Ũ	SB 01				CAL- 2212 F01	
(+44)207 580 4588 www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by MW	Checked date	Approved by MW	Approved date

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Support conditions

Support A

Support B

Applied loading

Beam loads

Load combinations Load combination 1 Vertically restrained Rotationally free Vertically restrained Rotationally free

Permanent self weight of beam × 1 Permanent full UDL 23.4 kN/m Variable full UDL 9 kN/m

Support A

Support B

Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50

Ridgmount Street, WC1E 7AE,	Project	HAMPTON WICK			Job no. E0811	
London, United Kingdom contact@engineeria.com	Calcs for	SE	3 01		Start page no./Revision CAL- 2213 P01	
(+44)207 580 4588 www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by MW	Checked date	Approved by MW	Approved dat
Analysis results						
Maximum moment		Mmax = 126	.7 kNm	Mmin =	0 kNm	
Maximum shear		Vmax = 107 .	8 kN	Vmin =	-107.8 kN	
Deflection		$\delta_{max} = 16.3$	mm	$\delta min = 0$	0 mm	
Maximum reaction at support A		RA_max = 10	7.8 kN	RA_min	= 107.8 kN	
Unfactored permanent load rea	ction at support A	RA_Permanent	= 56.4 kN			
Unfactored variable load reaction	on at support A	$R_{A_Variable} =$	21.2 kN			
Maximum reaction at support B		R _{B_max} = 10	9 7.8 kN	RB_min	= 107.8 kN	
Unfactored permanent load reaction at support B						
Unfactored variable load reaction	on at support B	$R_{B_Variable} =$	21.1 kN			
Section details						
Section type		UC 203x20	3x60 (BS4-1)			
Steel grade		S355				
EN 10025-2:2004 - Hot rolled	products of strue					
Nominal thickness of element		-	w) = 14.2 mm			
Nominal yield strength		fy = 355 N/r				
Nominal ultimate tensile streng	th	fu = 470 N/i				
Modulus of elasticity	0	E = 21000) N/mm²			
	2	32 37				
	± +]		
		-205.8-] H		
Partial factors - Section 6.1		205.8-]		
Partial factors - Section 6.1 Resistance of cross-sections	± + 112 + 112	205.8- γM0 = 1.00		•		
	± ₇ ∟ ⊮	γM0 = 1.00 γM1 = 1.00) H		
Resistance of cross-sections	± ∓ └── ⊮───	·		-		
Resistance of cross-sections Resistance of members to insta	± ∓ └── ⊮───	γм1 = 1.00]		
Resistance of cross-sections Resistance of members to insta Resistance of tensile members	± ∓ └── ⊮───	γ _{M1} = 1.00 γ _{M2} = 1.10	s lateral restrain] •I t at supports or	ıly	
Resistance of cross-sections Resistance of members to insta Resistance of tensile members	± ∓ └── ⊮───	γ _{M1} = 1.00 γ _{M2} = 1.10	s lateral restrain] •I t at supports or	ly	
Resistance of cross-sections Resistance of members to insta Resistance of tensile members Lateral restraint	to fracture	γ _{M1} = 1.00 γ _{M2} = 1.10	s lateral restrain] ▪I t at supports or	Ily	
Resistance of cross-sections Resistance of members to insta Resistance of tensile members Lateral restraint Effective length factors	to fracture	γм1 = 1.00 γм2 = 1.10 Span 1 has	s lateral restrain	t at supports or	ıly	
Resistance of cross-sections Resistance of members to insta Resistance of tensile members Lateral restraint Effective length factors Effective length factor in major	★ ★ ★ ★ ← ★	γ _{M1} = 1.00 γ _{M2} = 1.10 Span 1 has K _y = 1.000] •I t at supports or	ıly	

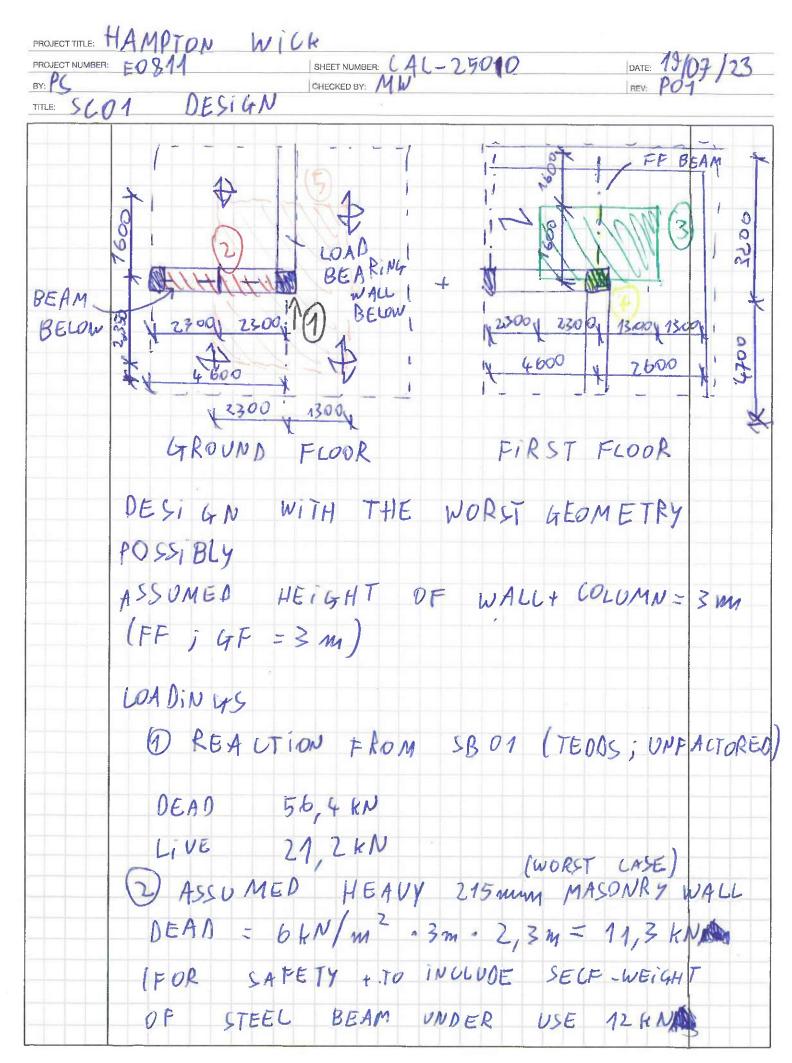
Ridgmount Street, WC1E 7AE,	Project	HAMPT	HAMPTON WICK			0811	
London, United Kingdom	Calcs for				Start page no./F		
contact@engineeria.com (+44)207 580 4588		SE	3 01		CAL- 2	2214 P01	
www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by MW	Checked date	Approved by MW	Approved da	
Classification of cross sectio	ns - Section 5.5		J/mm ² / f _y] = 0. 8	54			
		•)			
Internal compression parts s	ubject to bendir	•	-				
Width of section		c = d = 160	.8 mm) × ε <= 72 × ε	Class 1			
		C / W = 21.0	J × & <= 12 × &	Class			
Outstand flanges - Table 5.2	sheet 2 of 3)	<i>a</i> .					
Width of section			2 × r) / 2 = 88				
		c / tf = 7.6 >	×ε <= 9 ×ε	Class 1		Hon io alao	
					Sec	tion is clas	
Check shear - Section 6.2.6							
Height of web			tf = 181.2 mm				
Shear area factor		η = 1.000					
		h _w / t _w < 72	×ε/η				
Design sheer fares				Shear buckling		an be ignor	
Design shear force		-		Vmin)) = 107.8 kN		6 mm ²	
Shear area - cl 6.2.6(3)				$w + 2 \times r) \times t_f, \eta \times dE 4 d k_h$	-	0 11111-	
Design shear resistance - cl 6.2	2.6(2)		V _{c,Rd} = V _{pl,Rd} = A _v × (f _y / $\sqrt{[3]}$) / γ _{M0} = 454.1 kN PASS - Design shear resistance exceeds design shear force				
			5 - Design sh		ACCEUS UESIY		
Check bending moment majo	r (y-y) axis - Se						
Design bending moment	nont og 6 12			bs(Ms1_min)) = 126 /M0 = 232.9 kNm	D.7 KINITI		
Design bending resistance mor	-	•	$Ra = VV pl.y \times Ty / T$	$\gamma_{\rm M0} = 232.9 kinis$			
Slenderness ratio for lateral t	orsional buckli	•					
Correction factor - Table 6.6		$k_c = 0.94$	4 4 9 9				
Curvature factor		$C_1 = 1 / k_c^2$	= 1.132 (/ ly)] = 0.814				
Poissons ratio			[7 ly] = 0.014				
FUISSUIIS TALIU							
Shoar modulus		v = 0.3	(1 ب بر)) – 207	60 N/mm ²			
Shear modulus		G = E / [2 >	< (1 + v)] = 807	69 N/mm²			
Unrestrained length		G = E / [2 > L = 1.0 × L	s1 = 4700 mm		2 × C × I: / /-?	~ E ~ I \1	
	t	$G = E / [2 > L = 1.0 \times La$ $M_{cr} = C_1 \times a$	$s_1 = 4700 \text{ mm}$ $\pi^2 \times \text{E} \times \text{I}_z / (\text{L}^2)$	69 N/mm² × g) × √[I _w / Iz + L	2 × G × It / (π^{2}	$\times E \times I_z)] =$	
Unrestrained length Elastic critical buckling momen		G = E / [2 > L = 1.0 × L] Mor = C1 × 2 460.4 kNm	$s_1 = 4700 \text{ mm}$ $\pi^2 \times \text{E} \times \text{Iz} / (\text{L}^2)$	× g) × $\sqrt{[I_w / I_z + L]}$	$^2 imes G imes It$ / (π^2	× E × Iz)] =	
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor		$G = E / [2 > L = 1.0 \times Li$ $M_{cr} = C_1 \times i$ 460.4 kNm $\overline{\lambda}_{LT} = \sqrt{(W)}$	s1 = 4700 mm $\pi^2 \times E \times I_z / (L^2)$ pl.y × fy / Mcr) = 0	× g) × $\sqrt{[I_w / I_z + L]}$	$^2 \times \mathbf{G} \times \mathbf{lt} / (\pi^2)$	× E × Iz)] =	
Unrestrained length Elastic critical buckling momen		$G = E / [2 > L = 1.0 \times L]$ $M_{cr} = C_1 \times D$ 460.4 kNm $\overline{\lambda}_{LT} = \sqrt{(W)}$ $\overline{\lambda}_{LT,0} = 0.4$	s1 = 4700 mm $\pi^2 \times E \times I_z / (L^2)$ pl.y × fy / Mcr) = 0	× g) × √[l⊮ / lz + L).711			
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio	sional buckling	$G = E / [2 > L = 1.0 \times Le$ $M_{or} = C_1 \times \pi$ 460.4 kNm $\overline{\lambda}_{LT} = \sqrt{(W)}$ $\overline{\lambda}_{LT,0} = 0.4$	s1 = 4700 mm $\pi^2 \times E \times I_z / (L^2)$ pl.y × fy / Mcr) = 0	× g) × $\sqrt{[I_w / I_z + L]}$			
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio Design resistance for bucklin	sional buckling	$G = E / [2 > L = 1.0 \times L]$ $M_{cr} = C_1 \times D$ 460.4 kNm $\overline{\lambda}_{LT} = \sqrt{(W)}$ $\overline{\lambda}_{LT,0} = 0.4$ 22.1	s1 = 4700 mm $\pi^2 \times E \times I_z / (L^2)$ pl.y × fy / Mcr) = 0	× g) × √[l⊮ / lz + L).711			
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio Design resistance for bucklin Buckling curve - Table 6.5	sional buckling	$G = E / [2 > L = 1.0 × La$ $M_{or} = C_1 × a$ 460.4 kNm $\overline{\lambda}_{LT} = \sqrt{(W)}$ $\overline{\lambda}_{LT,0} = 0.4$ 2.1 b	s1 = 4700 mm $\pi^2 \times E \times I_z / (L^2)$ pl.y × fy / Mcr) = 0	× g) × √[l⊮ / lz + L).711			
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio Design resistance for bucklin Buckling curve - Table 6.5 Imperfection factor - Table 6.3	sional buckling g - Section 6.3.	$G = E / [2 > L = 1.0 \times L]$ $M_{cr} = C_1 \times \alpha$ 460.4 kNm $\overline{\lambda}_{LT} = \sqrt{(W)}$ $\overline{\lambda}_{LT,0} = 0.4$ 2.1 b $\alpha_{LT} = 0.34$	s1 = 4700 mm $\pi^2 \times E \times I_z / (L^2)$ pl.y × fy / Mcr) = 0	× g) × √[l⊮ / lz + L).711			
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio Design resistance for bucklin Buckling curve - Table 6.5 Imperfection factor - Table 6.3 Correction factor for rolled sect	sional buckling g - Section 6.3. ions	$G = E / [2 > L = 1.0 × LiMor = C1 × 2460.4 kNm\overline{\lambda}_{LT} = \sqrt{(W)}\overline{\lambda}_{LT,0} = 0.4b\alpha_{LT} = 0.34\beta = 0.75$	$s_{1} = 4700 \text{ mm}$ $\pi^{2} \times E \times I_{z} / (L^{2}$ $p_{I,y} \times f_{y} / M_{cr}) = 0$ $\overline{u}_{LT} > \overline{\lambda}_{LT,0} - La$	× g) × √[l⊮ / l₂ + L).711 teral torsional b	uckling cann		
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio Design resistance for bucklin Buckling curve - Table 6.5 Imperfection factor - Table 6.3 Correction factor for rolled sect LTB reduction determination fa	sional buckling g - Section 6.3. ions	$G = E / [2 > L = 1.0 × L = 1.0 × L = 1.0 × L = 460.4 kNm$ $\overline{\lambda}LT = \sqrt{(W)}$ $\overline{\lambda}LT = \sqrt{(W)}$ $\overline{\lambda}LT,0 = 0.4$ $\beta = 0.75$ $\phi_{LT} = 0.5 × 0.5 $	s1 = 4700 mm $\pi^2 \times E \times I_z / (L^2)$ pl.y × fy / Mcr) = 0 $\overline{a}_{LT} > \overline{a}_{LT,0} - La$ [1 + αιτ × ($\overline{\lambda}$ ιτ	× g) × $\sqrt{[I_w / I_z + L]}$ 0.711 teral torsional b - $\overline{\lambda}_{LT,0}$ + β × $\overline{\lambda}_{LT}$	uckling cann 2] = 0.743		
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio Design resistance for bucklin Buckling curve - Table 6.5 Imperfection factor - Table 6.3 Correction factor for rolled sect LTB reduction determination fa LTB reduction factor - eq 6.57	sional buckling g - Section 6.3. ions	$G = E / [2 > L = 1.0 × LiMor = C1 × 2460.4 kNm\overline{\lambda}_{LT} = \sqrt{(W)}\overline{\lambda}_{LT,0} = 0.4b\alpha_{LT} = 0.34\beta = 0.75\phi_{LT} = 0.5 × \chi_{LT} = min(1)$	$s_{1} = 4700 \text{ mm}$ $\pi^{2} \times E \times I_{z} / (L^{2})$ $p_{I,y} \times f_{y} / M_{cr} = 0$ $\overline{L}_{LT} > \overline{\lambda}_{LT,0} - La$ $[1 + \alpha_{LT} \times (\overline{\lambda}_{LT})]$ $/ [\phi_{LT} + \sqrt{(\phi_{LT})^{2}}]$	× g) × $\sqrt{[l_w / l_z + L]}$ 7.711 teral torsional b - $\overline{\lambda}_{LT,0}$ + $\beta \times \overline{\lambda}_{LT}$ $\beta \times \overline{\lambda}_{LT^2}$], 1, 1 /	uckling cann ²] = 0.743 λ̃ιτ²) = 0.864	ot be ignor	
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio Design resistance for bucklin Buckling curve - Table 6.5 Imperfection factor - Table 6.3 Correction factor for rolled sect LTB reduction determination fa LTB reduction factor - eq 6.57 Modification factor	sional buckling g - Section 6.3. ions ctor	G = E / [2 > L = 1.0 × L = 0.34 = 0.75 = 0.75 = 0.75 = 0.75 × L = 0.5 × L	s1 = 4700 mm $\pi^{2} \times E \times I_{z} / (L^{2})$ pl.y × fy / Mcr) = 1 $\overline{I}_{LT} > \overline{\lambda}_{LT,0} - La$ [1 + $\alpha_{LT} \times (\overline{\lambda}_{LT})$ / [$\phi_{LT} + \sqrt{(\phi_{LT}^{2} + (\phi_{LT}^{2} + (\phi_{LT}^$	× g) × √[lw / lz + L).711 teral torsional b · β × λιτ.ο) + β × λιτ · β × λιτ²)], 1, 1 / 1 - 2 × (λιτ - 0.8	uckling cann ²] = 0.743 λ̃ιτ²) = 0.864	ot be ignor	
Unrestrained length Elastic critical buckling momen Slenderness ratio for lateral tor Limiting slenderness ratio Design resistance for bucklin Buckling curve - Table 6.5 Imperfection factor - Table 6.3 Correction factor for rolled sect LTB reduction determination fa LTB reduction factor - eq 6.57	sional buckling g - Section 6.3. ions ctor eq 6.58	$G = E / [2 > L = 1.0 × LiMor = C1 × 2460.4 kNm\overline{\lambda}_{LT} = \sqrt{(W)}\overline{\lambda}_{LT,0} = 0.4\beta2.1b\alpha_{LT} = 0.34\beta = 0.75\phi_{LT} = 0.5 × 2\chi_{LT} = min(1 - 1)\chi_{LT,mod} = mi$	$s_{1} = 4700 \text{ mm}$ $\pi^{2} \times E \times I_{z} / (L^{2})$ $p_{I,y} \times f_{y} / M_{cr} = 0$ $\overline{L}_{LT} > \overline{\lambda}_{LT,0} - La$ $[1 + \alpha_{LT} \times (\overline{\lambda}_{LT}) - La]$ $(1 + \alpha_{LT} + \sqrt{(\phi_{LT})^{2} + (\phi_{LT})^{2} + (\phi_{L$	× g) × √[lw / lz + L).711 teral torsional b · β × λιτ.ο) + β × λιτ · β × λιτ²)], 1, 1 / 1 - 2 × (λιτ - 0.8	uckling cann ²] = 0.743 λ̄ _{LT²}) = 0.864) ²], 1) = 0.970	ot be ignor	

	Project		Job no.			
7 Ridgmount Street, WC1E 7AE,	HAMPTON WICK			E0811		
London, United Kingdom	Calcs for				Start page no./Re	evision
contact@engineeria.com	SB 01				CAL- 2215 P01	
(+44)207 580 4588 www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by MW	Checked date	Approved by MW	Approved date

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

Limiting deflection


Maximum deflection span 1

 $\delta_{\text{lim}} = L_{s1} / 250 = 18.8 \text{ mm}$

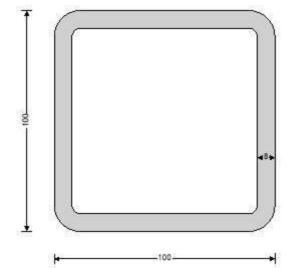
 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 16.297 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

	HAMPTON E0811 01 DEST	WICK SHEET NUMBER: LAL - 2.501 CHECKED BY: MW	DATE: 19107123 REV: P01
	~	ER FLOOR	
	DEAD	1,5 KN/m2 · 3, bm = 5,	40KN/m
	LIVE	2,5 KN/m2. 3,6 m = 9,	00 kN/m
HALF	-> DEAD	5,4 kN/m ~ 1,6 m = 8	3,64 KN
LITEEL BEAM	LIVE	9,0 KN/m . 1,6m = 1	4,4 KN
	~	- WEIGHT OF STEEL C	
	LETS	ASSUME $2kN ((3m+1))$ =~1,	(bin) · ~03 (KN/m) 4KN WEIGHT OF
	5 GROUN	D FLOOR RC SLAB	TEAT
	DEAD	1,5 KN/m2 3,6m 3,95	5 m = 21,33 kN
		4,0 KN/m2 3,6m . 3,95	
	STRUCTUR	AL MODEL UNFACTORE	50)
		$N_{eqk} = 100,4 \text{ kN} (DEAD) + 39, V \cdot 1,35 \\ V ed = 1835 \text{ kN} + 150$	
		Ned = 1\$35kN + 150	2kN = 285 kN
	~3m	BULKLING LENGTH	$\gamma = 1, 0$
		$L_0 = 3m$	
e = max	(Lo 4 . Zom)	LOADINGS NED = 285	KN (FACTORED)
	100, 30, M	$Ed = 0,02m \cdot 285 kN = ~ 6k$ R = SAFETY USE 300H O TEDAS CALCULATION (NM AND LOKNAG
	REFER T	O TEODS CALCULATION (AC-2502
		USE 100 × 100 × 8	

	Project				Job no.	
7 Ridgmount Street, WC1E 7AE,	HAMPTON WICK				E0801	
London, United Kingdom	Calcs for				Start page no./Re	evision
contact@engineeria.com	SC-61 DESIGN			CAL- 2502 P01		
(+44)207 580 4588 www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by DP	Checked date	Approved by DP	Approved date

STEEL COLUMN DESIGN


In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tedds calculation version 1.1.06

Partial factors - Section 6.1

Resistance of cross-sections	γмо = 1
Resistance of members to instability	γм1 = 1

Resistance of cross-sections in tension to fracture $\gamma_{M2} = 1.1$

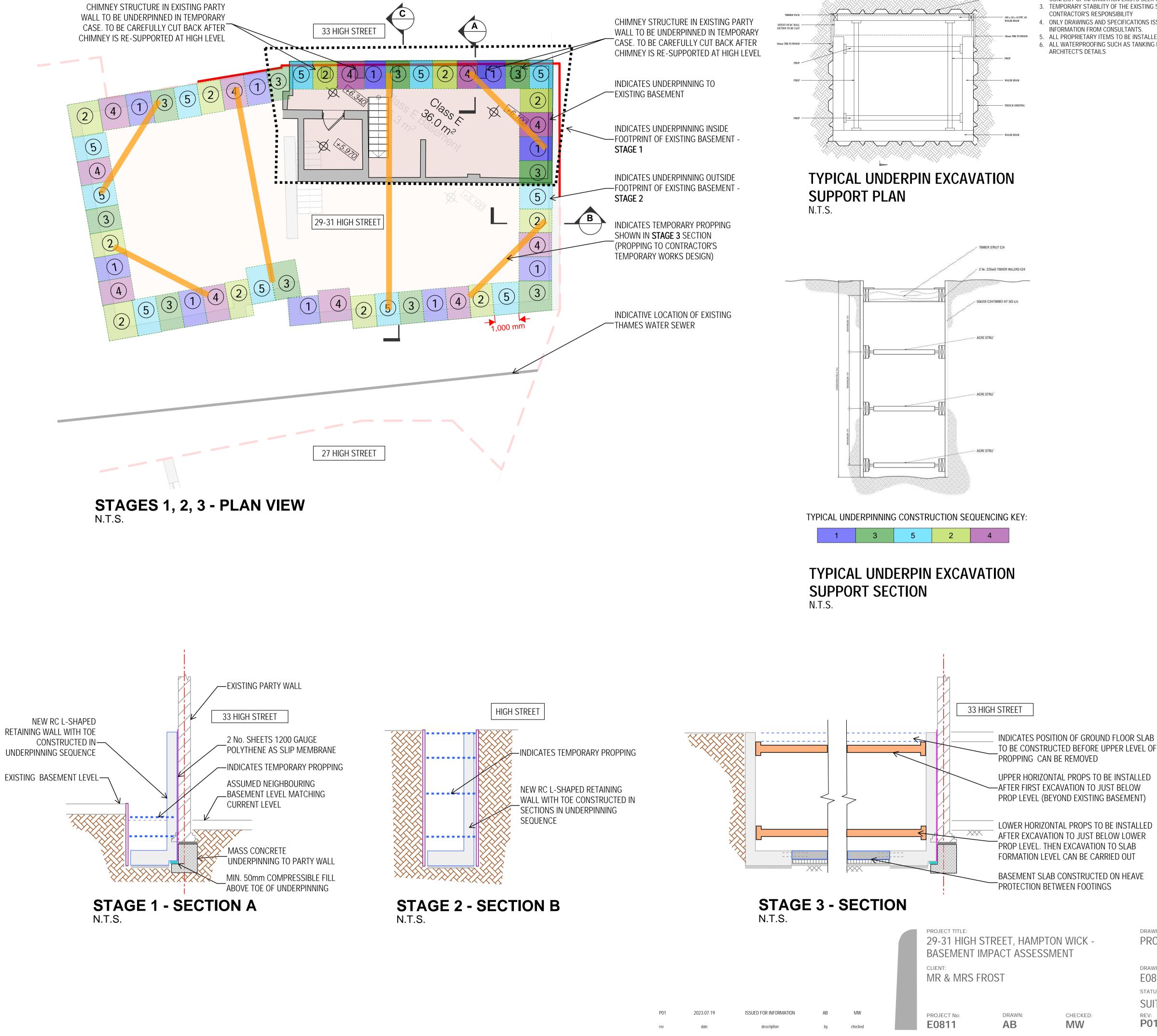
SHS 100x100x8.0 (Tata Steel Celsius (Gr355 Gr420) Section depth, h, 100 mm Section breadth, b, 100 mm Mass of section, Mass, 22.6 kg/m Section thickness, 1, 8 mm Area of section, A, 2875 mm Radius of gyration about y-axis, 1, 37.279 mm Elastic section modulus about y-axis, W_{a,2}, 79919 mm³ Elastic section modulus about y-axis, W_{a,2}, 79919 mm³ Plastic section modulus about y-axis, W_{a,2}, 79919 mm³ Plastic section modulus about y-axis, W_{a,2}, 98184 mm³ Plastic section modulus about y-axis, J, 3995951 mm⁴ Second moment of area about y-axis, 1, 3995951 mm⁴

Column details

Steel grade	S355H				
Yield strength	f _y = 355 N/mm ²				
Ultimate strength	f _u = 470 N/mm ²				
Modulus of elasticity	E = 210 kN/mm ²				
Poisson's ratio	v = 0.3				
Shear modulus	G = E / $[2 \times (1 + v)]$ = 80.8 kN/mm ²				
Column geometry					
System length for buckling - Major axis	L _y = 3000 mm				
System length for buckling - Minor axis	Lz = 3000 mm				
The column is not part of a sway frame in the direction	on of the minor axis				
The column is not part of a sway frame in the direction	on of the major axis				
The column is not part of a sway frame in the direction of the minor axis The column is not part of a sway frame in the direction of the major axis					

Column loading

Axial load	NEd = 300 kN (Compression)
Major axis moment at end 1 - Bottom	M _{y,Ed1} = 0.0 kNm
Major axis moment at end 2 - Top	My,Ed2 = 10.0 kNm
	Major axis bending is single curvature
Minor axis moment at end 1 - Bottom	Mz,Ed1 = 0.0 kNm
Minor axis moment at end 2 - Top	Mz,Ed2 = 10.0 kNm
	Minor axis bending is single curvature


	Project	Намрт			Job no.	0801
7 Ridgmount Street, WC1E 7AE,	HAMPTON WICK		Start page no./Revision CAL- 2503 P01			
London, United Kingdom contact@engineeria.com (+44)207 580 4588	Calcs for SC-61 DESIGN					
www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by DP	Checked date	Approved by DP	Approved date
Major axis shear force		V _{y,Ed} = 0 kN	J			
Minor axis shear force		V _{z,Ed} = 0 kN	1			
Buckling length for flexural b	uckling - Maj	or axis				
End restraint factor		Ky = 1.000				
Buckling length		$L_{cr_y} = L_y \times$	K _y = 3000 mm			
Buckling length for flexural b	uckling - Min	or axis				
End restraint factor		$K_z = 1.000$				
Buckling length			Kz = 3000 mm			
		$LG_2 - L2 \wedge$	102 – 3000 mm			
Web section classification (Ta	able 5.2)					
Coefficient depending on fy		,	$1/mm^2 / f_y) = 0.$	814		
Depth between fillets		c _w = h - 3 ×	t = 76.0 mm			
Ratio of c/t		ratio _w = c _w	/ t = 9.50			
Length of web taken by axial loa	ad	$I_w = min(N_E)$	ad / ($2 \times f_y \times t$), (cw) = 52.8 mm		
For class 1 & 2 proportion in co	mpression	$\alpha = (c_w/2 +$	Iw/2) / cw = 0.8	47		
Limit for class 1 web		Limit _{1w} = (3	96 × ε) / (13 ×	α - 1) = 32.16		
					The	web is class 1
Flange section classification	(Table 5.2)					
Depth between fillets	(,	$C_f = b - 3 \times$	t = 76.0 mm			
Ratio of c/t		ratio _f = c_f / c_f				
Conservatively assume uniform	compression					
Limit for class 1 flange		-	×ε = 26.85			
Limit for class 2 flange			×ε = 30.92			
Limit for class 3 flange			2×ε = 34.17			
Limit for class 5 hange			. ^ 2 – 34.17		The fla	nge is class 1
Overall section classification					The sec	tion is class 1
Resistance of cross section (cl. 6.2)					
Compression (cl. 6.2.4)						
Design force		NEd = 300 k	٨N			
Design resistance		$N_{c,Rd} = N_{Pl,F}$	$Rd = A \times f_y / \gamma_{MO}$	= 1021 kN		
		$N_{Ed} / N_{c,Rd}$				
		PASS - The c	ompression d	lesign resistanc	e exceeds the	e design force
Bending - Major axis (cl. 6.2.5)					
Design bending moment		M _{y,Ed} = max	k(abs(M _{y,Ed1}), a	ubs(M _{y,Ed2})) = 10.0) kNm	
Section modulus			= 98.2 cm ³			
Design resistance		$M_{c,y,Rd} = W_{2}$	у × fy / үмо = 34	.9 kNm		
		My,Ed / Mc,y,I	Rd = 0.287			
		PASS - The	bending desi	gn resistance e	xceeds the de	sign moment
Bending - Major axis(cl. 6.2.5)						
Design bending moment		$M_{z,Ed} = max$	(abs(Mz.Ed1), a	$bs(M_{z,Ed2})) = 10.0$	0 kNm	
Section modulus			= 98.2 cm ³			
Design resistance			_ сс.2 онт z × fy / γмо = 34	. 9 kNm		
		Mz,z,Rd – VV	-			
				gn resistance e	xceeds the de	sian moment

Ridgmount Street, WC1E 7AE,	Project HAMPTON WICK					0801	
London, United Kingdom contact@engineeria.com	Calcs for	lcs for SC-61 DESIGN				Start page no./Revision CAL- 2504 P01	
(+44)207 580 4588 www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by DP	Checked date	Approved by DP	Approved da	
Combined bending and axial	force (cl. 6.2	0)					
Ratio design axial to design pla	-	-	d) / Npl,Rd = 0.2	94			
Ratio web area to gross area				t) / A) = 0.444			
Ratio flange area to gross area			5, (A - 2 × h × i				
Bending - Major axis (cl. 6.2.9	0.1)						
Design bending moment		M _{y,Ed} = max	(abs(M _{y,Ed1}), a	ubs(M _{y,Ed2})) = 10.	0 kNm		
Plastic design resistance		$M_{\text{pl},y,\text{Rd}} = W$	рі.у × fy / үмо = 3	34.9 kNm			
Modified design resistance		$M_{N,y,Rd} = M_{P}$	$_{\text{bl,y,Rd}} \times \min(1, ($	1 - n) / (1 - 0.5 ×	a _w)) = 31.6 kN	m	
		My,Ed / MN,y,	Rd = 0.316				
	PAS	S - Bending resis	tance in pres	ence of axial loa	ad exceeds de	sign mome	
Bending - Minor axis (cl. 6.2.9	0.1)						
Design bending moment		Mz,Ed = max	(abs(M _{z,Ed1}), a	$bs(M_{z,Ed2})) = 10.0$	0 kNm		
Plastic design resistance		$M_{pl,z,Rd} = W$	pl.z × fy / үмо = :	34.9 kNm			
Modified design resistance	$M_{N,z,Rd} = M_{pl,z,Rd} \times min(1, (1 - n) / (1 - 0.5 \times a_f)) = 31.6 \text{ kNm}$						
	Mz,Ed / MN,z,Rd = 0.316						
	PAS	S - Bending resis	tance in pres	ence of axial loa	ad exceeds de	sign mom	
Biaxial bending							
Exponent α		$\alpha = \min(6, 1)$	1.66 / (1 - 1.13	8 × n²)) = 1.84			
Exponent β		$\beta = \min(6, \gamma)$	1.66 / (1 - 1.13	8 × n²)) = 1.84			
Section utilisation at end 1		URcs_1 = [a	bs(M _{y,Ed1}) / Mr	l,y,Rd] α + [abs(M z,	Ed1) / $M_{N,z,Rd}$ =	= 0.000	
Section utilisation at end 2		URcs_2 = [a	bs(M _{y,Ed2}) / Mr	l,y,Rd] α + [abs(M z,	Ed2) / $M_{N,z,Rd}$] $^{\beta}$ =	= 0.241	
			PASS	- The cross-sec	tion resistanc	e is adequ	
Buckling resistance (cl. 6.3)							
Yield strength for buckling resis	tance	f _y = 355 N/r	mm²				
Flexural buckling - Major axis							
Elastic critical buckling force		$N_{cr.v} = \pi^2 \times$	$E \times I_y / L_{cr_y^2} =$	920 kN			
Non-dimensional slenderness			fy / Ncr,y) = 1.0				
Buckling curve (Table 6.2)		a	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Imperfection factor (Table 6.1)		α _y = 0.21					
Parameter Φ			$[1 + \alpha_v \times (\overline{\lambda}_v -$	$(0.2) + \overline{\lambda}y^2 = 1.1$	44		
Reduction factor		· · · ·		$(\bar{\lambda}_y^2 - \bar{\lambda}_y^2)]) = 0.62$			
Design buckling resistance			× A × fy / үм1 =				
<u> </u>		NEd / Nb,y,Rd	-	-			
				g resistance ex	ceeds the des	ign axial Ic	
Flexural buckling - Minor axis	5						
Elastic critical buckling force		$N_{cr,z} = \pi^2 \times$	$E \times I_z / L_{cr_z^2} =$	920 kN			
Non-dimensional slenderness			fy / Ncr,z) = 1.0				
Buckling curve (Table 6.2)		a					
Imperfection factor (Table 6.1)		αz = 0.21					
Parameter Φ		$\Phi_z = 0.5 \times 10^{-10}$	$[1 + \alpha_z \times (\overline{\lambda}_z -$	0.2) + $\bar{\lambda}z^{2}$] = 1.1	44		
Reduction factor		-		$(\overline{\lambda}z^2 - \overline{\lambda}z^2)]) = 0.62$			
Design buckling resistance			× A × fy / үм1 =				
		NEd / Nb,z,Rd	-				
		PASS - The fle	exural bucklin	g resistance ex	ceeds the des	ign axial lo	

Ridgmount Street, WC1E 7AE,	Project HAMPTON WICK Calcs for			Job no. E0801 Start page no./Revision				
London, United Kingdom								
contact@engineeria.com		SC-61 DESIGN			CAL- 2505 P01			
(+44)207 580 4588 www.engineeria.com	Calcs by PS	Calcs date 19/07/2023	Checked by DP	Checked date	Approved by DP	Approved da		
Minimum buckling resistance)							
Minimum buckling resistance		$N_{b,Rd} = min$	$(N_{b,y,Rd}, N_{b,z,Rd})$) = 641.4 kN				
		NEd / Nb,Rd =	= 0.468					
		PASS - The axia	l load bucklin	ng resistance exe	ceeds the des	ign axial lo		
Buckling resistance moment	(cl.6.3.2.1)							
Square hollow section not subj	ect to lateral to	rsional buckling th	nerefore:-					
Reduction factor		χlt = 1.0						
Design buckling resistance mo	ment	$M_{b,Rd} = \chi_{LT}$	imes W y $ imes$ fy / үм1	= 34.9 kNm				
Design bending moment				$abs(M_{y,Ed2})) = 10.0$	0 kNm			
		My,Ed / Mb,Rd						
F	ASS - The des	sign buckling res	sistance mom	nent exceeds the	e maximum de	esign mome		
Combined bending and axial	compression	(cl. 6.3.3)						
Characteristic resistance to not	mal force	$N_{Rk} = A \times f_{y}$	$N_{Rk} = A \times f_y = 1021 \text{ kN}$					
Characteristic moment resistan	$M_{y,Rk} = W_{pl}$	$M_{y,Rk} = W_{pl.y} \times f_y = 34.9 \text{ kNm}$						
Characteristic moment resistan	ce - Minor axis	$M_{z,Rk} = W_{pl}$	$M_{z,Rk} = W_{pl.z} \times f_y = 34.9 \text{ kNm}$					
$\psi_y = if(abs(M_{y,Ed1}) < abs(M_{y,Ed2}))$, $M_{y,Ed1} / if(M_{y,Ed})$	2>=0 kNm,max(M	y,Ed2 ,0.0001 kN	Nm),My,Ed2), My,Ed2	2 / if(My,Ed1>=0			
kNm,max(M _{y,Ed1} ,0.0001 kNm),N	(ly,Ed1)) = 0.000							
Moment distribution factor - Ma	jor axis	-	$/ M_{y,Ed2} = 0.00$					
Moment factor - Major axis		$C_{my} = max($	$C_{my} = max(0.4, 0.6 + 0.4 \times \psi_y) = 0.600$					
Moment distribution factor - Mir	nor axis	-	$\psi_z = M_{z,Ed1} / M_{z,Ed2} = 0.000$					
Moment factor - Minor axis		$C_{mz} = max($	$C_{mz} = max(0.4, 0.6 + 0.4 \times \psi_z) = 0.600$					
Moment distribution factor for L	TB	$\psi_{\text{LT}} = M_{\text{y,Ed1}}$	$\psi_{LT} = M_{y,Ed1} / M_{y,Ed2} = 0.000$					
Moment factor for LTB		$C_{mLT} = max(0.4, 0.6 + 0.4 \times \psi_{LT}) = 0.600$						
Interaction factor kyy		$k_{yy} = C_{my} \times$	$k_{yy} = C_{my} \times [1 + min(0.8, \ \overline{\lambda}_y - 0.2) \times N_{Ed} \ / \ (\chi_y \times N_{Rk} \ / \ \gamma_{M1})] = 0.825$					
Interaction factor kzy		$k_{zy} = 0.6 \times k_{yy} = 0.495$						
Interaction factor kzz		$k_{zz} = C_{mz} \times$	$k_{zz} = C_{mz} \times [1 + min(0.8, \overline{\lambda}_z - 0.2) \times N_{Ed} / (\chi_z \times N_{Rk} / \gamma_{M1})] = 0.825$					
Interaction factor kyz		$k_{yz} = 0.6 \times$	kzz = 0.495					
Section utilisation	$UR_{B_1} = N_{Ed} / I$	(χу × Nrk / γм1) + k	$_{yy} imes M_{y,Ed} / (\chi_{LT})$	т × Му, кк / үм1) + k	$_{yz} imes M_{z,Ed} / (M_{z,H})$	rk / γm1)		
		UR _{B_1} = 0.8						
	$UR_{B_2} = N_{Ed} / I$	(χz × Nrk / γм1) + k URb_2 = 0.8		т × М у,Rk / үм1) + k	$zz \times Mz, Ed / (Mz,$	rk / γm1)		
		C. (5 <u>-</u> 2 – Vit		PASS - The buck	ling resistanc	e is adequa		

Appendix D - Proposed Construction Sequence

A

ONLY DRAWINGS AND SPECIFICATION INFORMATION FROM CONSULTANTS

PLACING ANY ORDER OR FABRICATION. WHERE A RMATION EXISTS SEEK CONFIRMATION FROM CONSULTANTS PRIOR TO PROCEEDING FURTHER WITH THE WORKS

ALL PROPRIETARY ITEMS TO BE INSTALLED STRICTLY IN ACCORDANCE WITH MANUFACTURER'S REQUIREMENTS AND SPECIFICATIONS ALL WATERPROOFING SUCH AS TANKING DETAILS. DAMP PROOF MEMBRANES. DAMP PROOF COURSES. CAVITY TRAYS ETC. ARE TO BE INSTALLED AS PER

PROPOSED CONSTRUCTION SEQUENCE

STAGE 0: SITE SET UP

STAGE 1:

- USING HIT AND MISS UNDERPINNING SEQUENCE (REFER TO PLAN), DIG DOWN TO UNDERSIDE OF CORBEL LEVEL IN PINS MARKED "1".
- INSTALL MASS CONCRETE UNDERPIN TO 75mm BELOW UNDERSIDE OF EXISTING FOUNDATION. PROVIDE SHEAR KEY TO ADJACENT PINS.
- INSTALL DRY MORTAR PACK WITH NON-SHRINK ADDITIVE TO UNDERSIDE OF EXISTING FOUNDATION, WELL RAMMED IN.
- CAST RC WALL SECTIONS AND WALL TOE WITH CONTINUITY REBAR FOR FUTURE CONNECTION TO BASEMENT SLAB AND NEIGHBOURING SECTIONS
- BACKFILL EXCAVATION USING WELL COMPACTED GRANULAR MATERIAL OR LEAVE EXCAVATION SUPPORT IN PLACE
- REPEAT FOR REMAINING PINS, IN SEQUENCE INDICATED

STAGE 2:

- EXCAVATE DOWN USING RC UNDERPINNING SEQUENCE, INSTALLING TRENCH SHEETING AND STRUTS/WALING BEAMS TO SUPPORT EXCAVATION. EXACT SIZE OF PINS TO SUIT CONTRACTOR'S TEMPORARY WORKS DESIGN.
- CAST RETAINING WALL SECTIONS AND WALL TOE WITH CONTINUITY REBARS FOR FUTURE CONNECTION TO BASEMENT SLAB

STAGE 3:

- EXCAVATE GROUND LEVEL WITHIN BASEMENT TO UNDERSIDE OF UPPER LEVEL OF HORIZONTAL PROPS (TO CONTRACTOR'S TEMPORARY WORKS DESIGN) AND INSTALL HORIZONTAL PROPS
- EXCAVATE TO UNDERSIDE OF LOWER LEVEL OF HORIZONTAL PROPS AND INSTALL PROPS BEFORE EXCAVATING TO FORMATION LEVEL
- PULL OUT CONTINUITY BARS FROM RETAININ WALL TOES AND CONSTRUCT REMAINING BASEMENT SLAB BETWEEN. THIS PROVIDES PERMANENT LOWER LEVEL HORIZONTAL PROP
- CONSTRUCT GROUND FLOOR SLAB TO PROVIDE PERMANENT HORIZONTAL PROP TO TOP OF RETAINING WALLS AND REMOVE TEMPORARY PROPPING

NOTE:

ALL UNDERPIN EXCAVATIONS TO BE PROVIDED WITH FULL TEMPORARY SUPPORT IN FORM OF TRENCH SHEETS, WALERS AND STRUTS. INSTALL WALERS AND STRUTS AT EVERY 1m VERTICALLY AND HORIZONTALY. REPEAT UNTIL THE REQUIRED DEPTH IS GAINED.

CONTRACTOR TO CONSIDER WATER TABLE AND ALLOW FOR DE-WATERING OF EXCAVATIONS. WATER TABLE NOTED AS BELOW LEVEL OF BASEMENT, BUT SEASONAL CHANGES MAY CAUSE THIS TO VARY.

DRAWING TITLE: PROPOSED CONSTRUCTION SEQUENCE

DRAWING No: E0811-EEE-00-ZZ-DR-S-9050 STATUS DESCRIPTION: SUITABLE FOR INFORMATION REV: P01 As Indicated

- a: 7 Ridgmount Street, WC1E 7AE,
- London, United Kingdom e: contact@engineeria.com
- t: (+44)207 580 4588
- w: www.engineeria.com