

Proposed development of three maisonettes. Land at junction of Roseleigh Close and Cambridge Park, Twickenham TW1 2JT

Flood Risk, Surface Water, SuDS and Water Storage Assessments

Prepared by:	ed by: Jasmin Duru BSc		
Reviewed by:	Dimitris Linardatos BEng MSc CEng MICE FIHT		
Job Number:	29876		
Date	Revision	Notes/Amendments/Issue Purpose	
3 rd December 2021	1	For Information	
9 th February 2022	2	For Information	
28 th February 2023	3	Minor amendments – issued for Information	
6 th March 2023	4	Minor amendments – issued for Information	
21 st March 2023	5	Minor amendments – issued for Information	

Consulting Engineers 37 Alfred Place London WC1E 7DP 020 7631 5128 mail@pricemyers.com www.pricemyers.com

Contents

1	Introduction	4
2	Site Description and Location	5
2.1	Existing Drainage	
3	Development Proposal	6
4	Flood Risk Assessment	7
5	Surface Water Run-off Assessment	8
5.1	Existing Run-off	
5.2	Climate Change	
5.3	Proposed Run-off	
5.4	Store rainwater for later use	
5.5	Infiltration	
5.6	Attenuation and discharge to a surface water sewer	
5.7	Water Quality	
6	Surface Water Maintenance Strategy	13
7	Conclusions	17
Anno	andicos'	

Appendices:

- Appendix A Greenfield Runoff Calculations
- Appendix B MicroDrainage Calculations
- Appendix C Asset location map
- Appendix D SuDS & Water Storage Strategy

Contains Ordnance Survey material © Crown copyright. All rights reserved. Licence number 0100058197 Contains British Geological Survey materials © NERC 2021 All rights reserved. Page

Acronyms	
AOD	Above Ordnance Datum
BGS	British Geological Survey
CIRIA	Construction Industry Research and Information Association
DEFRA	Department for Environment, Food and Rural Affairs
EA	Environment Agency
FRA	Flood Risk Assessment
LBR	London Borough of Richmond upon Thames
LLFA	Lead Local Flood Authority
NPPF	National Planning Policy Framework
NSTS-SUDS	Non-statutory Technical Standards for SuDS
PPG	Planning Practice Guidance
SUDS	Sustainable Drainage Systems
TW	Thames Water

1 Introduction

Price & Myers have been commissioned to undertake a surface water drainage assessment for the proposed development at the site on the corner of Roseleigh Close and Cambridge Park in East Twickenham. The site falls within the jurisdiction of Richmond Upon Thames Council.

This assessment has been carried out in accordance with DEFRA's Non-statutory Technical Standards for Sustainable Drainage Systems (NSTS-SuDS), the London Plan, National Planning Policy Framework (NPPF) and the London Borough of Richmond (LBR) guidance on SuDS for new developments.

The NPPF states that an appropriate Flood Risk Assessment (FRA) will be required for all development proposals of 1 ha or greater in Flood Zone 1 and for any development within Flood Zones 2 or 3.

The Environment Agency's (EA) indicative floodplain map shows that the site is in Flood Zone 1 and the total site area is less than 1 ha, therefore an FRA is not required. This assessment will focus on available opportunities for surface water drainage from the proposed development, aiming to promote the use of Sustainable Drainage Systems (SuDS).

Figure 1.1: Site Location (Google 2021)

2 Site Description and Location

The site is located on the corner of Roseleigh Close and Cambridge Park in East Twickenham. It is bounded by Roseleigh Close to the west, Cambridge Park to the south, garages to the north and no. 34 Cambridge Park to the East. The site is currently greenfield and occupies an area of 562m² (0.056 Ha). The nearest watercourse is the River Thames, located approximately 0.25km to the east of the site location. The site's grid reference is OS 517703/173996.

Figure 2.1: Aerial View of Site taken from Google Maps, (Google 2021)

2.1 Existing Drainage

The site is currently undeveloped and therefore it has no drainage networks. Greenfield run-off from the site drains towards the road, thus discharges to the public sewers via the road gullies.

3 Development Proposal

The proposals involve the erection of a two-storey building with a loft and basement which will accommodate three maisonettes. Parking spaces for the maisonettes will be accessed from Roseleigh Close. The proposals also include modifications in the landscaped areas, providing for refuse and cycle storage, ASHP's, footpaths, lawns, ponds and planting. Refer to Figure 3.1 below for the proposed site layout.

Figure 3.1: Proposed Ground Floor and Site Layout (Deon Lombard Architects)

4 Flood Risk Assessment

The EA's flood map for planning shows that the site is located in Flood Zone 1 and this is defined as land having a less than 1 in 1,000 annual probability of river or sea flooding. Therefore, the site is at very low risk of flooding from watercourses and/or the sea as shown in Figure 4.1 and a FRA for planning purposes is not required.

Developments in this flood zone do not have any restrictions, provided they do not increase the risk of flooding elsewhere.

Figure 4.1 - Environment Agency Flood Map for Planning (Gov.uk)

The EA's flood risk from surface water maps show that the site is not at risk of flooding from surface water.

The EA's flood risk from reservoir failure map shows that the site is not at risk of flooding from reservoirs. However, the same map shows that the site will be at risk of flooding from reservoirs, if reservoir failure occurs during an extreme storm event with a return period higher than 1 in 100 years. The EA's information states that reservoir flooding is extremely unlikely to happen and there has been no loss of life in the UK from reservoir flooding since 1925. The Reservoir Act of 1975 ensures that reservoirs are inspected regularly and essential safety work is carried out. While there is a risk of flooding from reservoir failure, the risk is extremely low as it will only flood the site if an extreme flood from the River Thames occurs at the same time and the chances of reservoir failure are extremely low.

Engineering techniques such as basement waterproofing and cavity drainage systems will be used to reduce the flood risk from groundwater to low.

5 Surface Water Run-off Assessment

5.1 Existing Run-off

The total site area is approximately 562m² or 0.056 Ha and it is all greenfield. Therefore, the site currently generates greenfield run-off rates. The existing Greenfield run-off rates for storm events of several different return periods were calculated using the Greenfield Runoff Estimator tool from ukSuDS.com as shown below. Supporting documentation is contained in Appendix A. It must be noted that the ukSuDS spreadsheet requires a minimum area of 0.1 ha. Therefore, the peak flow rates for the site have been interpolated.

Q1 _{ex Gr}	= 0.07 l/sec
Q30 _{ex Gr}	= 0.175 l/sec
Q100 _{ex Gr}	= 0.24 l/sec

5.2 Climate Change

The current EA guidance states that for the years 2070 to 2115 there is a 50% chance the peak rainfall intensity will increase by 20% or more and that there is a 10% chance it will increase by 40% or more. For this building/development, which is classed as "More Vulnerable" with a design life of 100 years an allowance of an additional 40% is considered appropriate. The climate change allowance is included in the volume calculations for the design of SuDS measures.

5.3 Proposed Run-off

In accordance with the London Plan, EA guidelines, the SFRA, and CIRIA documents, surface water run-off should be managed as close to its source as possible. The London Plan states that all new developments should aim to reduce run-off to greenfield rates "utilising SuDS unless there are practical reasons for not doing so".

The possibility of implementing SuDS at the site was assessed using the following drainage hierarchy:

- 1. Store rainwater for later use.
- 2. Use infiltration techniques, such as porous surfaces in no-clay areas.
- 3. Attenuate rainwater in open water features, tanks or sealed water features for gradual release.
- 4. Discharge rainwater to a surface water sewer/drain; and
- 5. Discharge rainwater to a combined sewer.

The following paragraphs discuss the various methods in order of that hierarchy and evaluate the site's suitability for each method.

5.4 Store rainwater for later use

Rainwater harvesting is often considered a suitable solution in cities and highly urbanised areas where there is limited space for other SuDS. These systems can reduce surface water run-off from developments, also reducing the water demand by recycling rainwater within the building or for irrigation. However, the capacity of rainwater harvesting systems to attenuate rainwater depends on water use. If there is no water usage and the harvester is full, no attenuation will be provided during a subsequent storm event. In the worst-case scenario, the rainwater harvester will provide no attenuation.

A rainwater harvesting system is proposed for this development with water storage for garden irrigation and possible WC flushing purposes. However, this system has been excluded from the calculations to allow for the worst-cast scenario.

5.5 Infiltration

Infiltrating surface water to the ground is preferable as it mimics existing pre-development conditions and promotes groundwater recharge. Infiltration systems depend greatly on-site specific parameters, mainly the permeability of the ground and other factors such as the groundwater level, presence of made ground and landscaping proposals.

The British Geological Survey (BGS) Maps of the Roseleigh site and its nearing boreholes depict sand and gravel Superficial deposits, with groundwater being encountered at depths of 2.5m as shown in Figures 5.1 and 5.2 respectively. This indicates that infiltration systems would be feasible at shallow depths. Additionally, as the site has not been developed, made ground should not be encountered which could prevent the use of infiltration systems. Therefore, SuDS such as permeable pavement, filter drains, ponds and swales would be suitable for surface water disposal from the proposed development.

Figure 5.1 – British Geological Survey Superficial surface geology

Figure 5.2 – British Geological Survey borehole scans

The proposed development will add approximately 195m² of impermeable areas on site. The proposals include car parking spaces and hardstanding areas for pedestrian traffic. Therefore, permeable pavement or porous asphalt can be used in these areas. Permeable paving can be constructed in close proximity to structures, as they allow dispersed infiltration similar to natural vegetation. Surface water from the roofs will be discharged into a 10,000 litre underground storage tank and used for rainwater harvesting purposes, particularly garden irrigation during dry periods and topping up the formal pond. Any overflow beyond these uses will be transferred to the infiltration area set away from the building.

Preliminary calculations using MicroDrainage software and a conservative ground infiltration rate of 1×10^{-5} m/s, show that a granular sub-base of 464mm in depth, where infiltration is provided, will be able to accommodate the surface water volumes from the proposed development. The sub-base of the permeable areas where no infiltration is proposed can be 250mm deep.

The sub-base will extend up to 0.594m below ground level, suggesting that the 1m minimum unsaturated zone requirement between the base of the infiltration system and the groundwater level can be met as the boreholes in this location suggest. Therefore, surface water drainage using shallow infiltration is a viable option for this development.

Refer to Appendices B for MicroDrainage calculations.

The proposals will also include a small green roof, a pond and bioretention areas. These systems have not been included in the drainage calculations at this stage. However, it is expected that the thickness of the infiltration system will be reduced once these SuDS are taken into consideration in the calculations. Furthermore, these systems will treat surface water further before discharging to the public sewers.

5.6 Attenuation and discharge to a surface water sewer

If further investigation shows that the ground is not suitable for infiltration techniques, SuDS will be used for attenuation. As there are no watercourses in close proximity, discharge to a surface water sewer is the next preferred option. However, the surface water drainage from the site should ensure that the proposals will not increase flood risk elsewhere.

The surface water drainage system should meet DEFRA's Non-statutory technical standards for SuDS requirements which states that *"for greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event.".*

Section 5.1 shows that the site will generate a greenfield run-off rate up to 0.24 l/sec in the 1 in 100 year storm event. The EA's Rainfall Run-off Management for Developments "Report – SC030219" states that "*a practicable minimum limit on the discharge rate from a flow attenuation device is often a compromise between attenuating to a satisfactorily low flow rate while keeping the risk of blockage to an acceptable level*". Building Regulations Part H states that surface water pipes should not be smaller than 75mm to avoid the risk of blockages. Microdrainage calculations confirmed that a 76mm diameter flow control device will be able to restrict the run-off to 2.1 l/sec in storm events up to the 1

in 100 year plus 40% climate change. It is recommended to position the Hydro-Brake in the car park and connect to the surface water sewer located to the west of the site, as depicted in the Thames Water (TW) asset records.

Refer to Appendices B and C for the MicroDrainage calculations and Asset location map respectively. The proposed SuDS strategy drawing can found in Appendix D.

5.7 Water Quality

CIRIA C753 The SuDS Manual, Chapter 26 sets out the 'simple index approach' to water quality risk management.

Step 1 of the simple index approach is to identify the pollution hazard indices for the proposed land use. The proposed residential roofs are considered to have a 'Very Low' pollution hazard level and the car parks a "Low" pollution hazard level. Table 5.1 below shows the associated pollution hazard indices.

Land Use	Pollution Hazard Level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Residential roofs	Very Low	0.2	0.2	0.05
Individual property driveways, residential car parks, low traffic roads and non-residential car parking with infrequent change	Low	0.5	0.4	0.4

Table 5.1 Pollution Hazard Indices (Table 26.2 of the SuDS Manual)

Step 2 of the simple index approach is to select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index. As the principal destination of the runoff is to groundwater, the groundwater pollution mitigation indices should be used as shown in Table 5.2.

The indicative surface water pollution mitigation indices for the proposed SuDS are shown in Table 5.2 below:

Type of SuDS Component	TSS	Metals	Hydrocarbons
Bioretention System	0.8	0.8	0.8
Permeable Pavement	0.7	0.6	0.7
Pond	0.7	0.7	0.5

Table 5.2 Surface Water Pollution Mitigation Indices (Table 26.3 of The SuDS Manual)

Provided that the mitigation indices of the treatment techniques are greater than or equal to the hazard indices for the proposed development then there should be no reduction in the overall water quality within the receiving watercourse or groundwater body. Therefore, the incorporation of permeable paving, bioretention systems and a pond will provide suitable prevention from pollution to groundwater or the surface water sewer.

6 Surface Water Maintenance Strategy

The successful implementation and operation of a SuDS system depends on a robust and clear maintenance strategy being implemented. The following measures should form part of the site's proposed management plan.

It is envisaged that the majority of the site drainage will be maintained by the maisonettes' owners.

SuDS	Maintenance		
Element	Activity	Required Action	Typical Frequency
sting	Regular Maintenance	Inspection of the tank for debris and sediment build-up, inlets/outlets/ withdrawal devices, overflow areas, pumps, filters	Annually and following poor performance
ter Harve		Cleaning of tank, inlets, outlets, gutters, withdrawal devices and roof drain filters of silts and other debris	
ainwat	Occasional Maintenance	Cleaning and/or replacement of any filters	Three monthly, or as required
2 2	Remedial Actions	Repair of overflow erosion damage or damage to tank Pump repairs	As required
	Monitoring / Inspections	Inspect all components including soil substrate, vegetation, drains, irrigation systems, membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually and after severe storms
Roofs		Inspect soil substrate for evidence of erosion channels and identify any sediment sources Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	-
Green	Regular	Inspect underside of roof for evidence of leakage Remove debris and litter to prevent	Half yearly and annually
	Maintenance	clogging of inlet drains and interference with plant growth	or as required
		During establishment i.e. year one, replace dead plants as required	Monthly -but usually responsibility of manufacturer
		Post establishment, replace dead plants where > 5% of coverage	Annually in autumn
		Remove fallen leaves and debris from deciduous plant foliage	Half yearly or as required

SuDS	Maintenance		
Element	Activity	Required Action	Typical Frequency
		Remove nuisance and invasive vegetation,	
		including weeds	
		Mow grasses, prune shrubs and manage	
		other planting (if appropriate) as required –	
		clippings should be removed and not	
		allowed to accumulate	
	Remedial	If erosion channels are evident, these	As required
	Actions	should be stabilised with extra soil	
		substrate similar to the original material,	
		and sources of erosion damage should be	
		identified and controlled	-
		If drain inlet has settled, cracked or moved,	
		investigate and repair as appropriate	-
		Remove sediment from pre-treatment	
		system when 50% full	
		Relevel uneven surfaces and reinstate	
		design levels	
	Monitoring /	Inspect infiltration surfaces for silting and	Quarterly
	Inspections	ponding, record de-watering time of the	
		facility and assess standing water levels in	
		underdrain to determine if maintenance is	
		necessary	
		Assess plants for disease infection, poor	
		growth, invasive species etc. and replace as	
		necessary	
sme		Check operation of underdraine by	Appually
rste		check operation of underdrains by	Annually
S	Poqular	Pemove litter and surface debris and woods	Quartarly
ion	Maintenance	Penlace any plants, to maintain planting	
ent	Maintenance	density	As required
ret		Remove sediment litter and debris build	Quarterly to half yearly
Bio		up from around inlets or from forebays	
	Occasional	Infill any holes or scour in the filter	As required
	Maintenance	medium improve erosion protection if	Astequired
	Mantenance	required	
		Benair minor accumulations of silt by	As required
		raking away surface mulch, scarifying	
		surface of medium and replacing mulch	
	Remedial	Remove and replace filter medium and	As required but likely to
	Actions	vegetation above	be > 20 years
0	Monitoring /	Initial inspection	Monthly for three
g	Inspections		months after installation
vin		Inspect for evidence of poor operation	Three-monthly, 48 hours
Pa		and/or weed growth – if required, take	after large storms in first
₽		remedial action	six months
		·	

SuDS	Maintenance		
Element	Activity	Required Action	Typical Frequency
		Inspect silt accumulation rates and	Annually
		establish appropriate brushing frequencies	
		Monitor inspection chambers	Annually
	Regular	Brushing and vacuuming -standard	Once a year after
	Maintenance	cosmetic sweep over whole surface	autumn leaf fall
		Rubbish and litter removal	As required
	Remedial	Remediate any landscaping which through	As required
	Actions	vegetation maintenance or soil slip, has	
		been raised to within 50mm of the level of	
		the paving.	
		Remedial work to any depressions, rutting	
		and cracked or broken blocks considered	
		detrimental to the structural performance	
		or a hazard to users, and replace lost	
		jointing material	
		Rehabilitation of surface and upper	Every 10 to 15 years or
		substructure by remedial sweeping	as required
		Realignment of rip-rap	
		Repair/rehabilitation of inlets, outlets and	
		overflows	
		Relevel uneven surfaces and reinstate	
		design levels	
	Regular	Remove litter and debris	Monthly, or as required
	Maintenance	Cut the grass – public areas	Monthly during growing
			season
		Cut the meadow grass	Half yearly – before
			nesting season in spring
			and in autumn
		Inspect marginal and bankside vegetation	Monthly, at start, then
S		and remove nuisance plants (for first 3	as required
anc		years)	
/etl		Inspect inlets, outlets, banksides,	Monthly
S F		structures, pipework etc. for evidence of	
and		blockage and/or physical damage	
ds		Inspect water body for signs of poor water	Monthly from May –
on		quality	October
		Inspect silt accumulation rates in any	Half yearly
		forebay and in main body of the pond and	
		establish appropriate removal frequencies;	
		undertake contamination testing once	
		some build-up has occurred, to inform	
		management and disposal options	-
		Check any mechanical devices, e.g.	
		penstocks	

SuDS	Maintenance		
Element	Activity	Required Action	Typical Frequency
		Hand cut submerged and emergent aquatic plants (at minimum of 0.1 m above pond	Annually
		base; include max 25% of pond surface)	
		Remove 25% of bank vegetation from	-
		water's edge to a minimum of 1 m above	
		water level	
		Tidy all dead growth before start of	
		Remove sediment from any forebay.	Every 1–5 years, or as required
		Remove sediment and planting from one quadrant of the main body of ponds without sediment forebays.	Every 5 years, or as required
	Occasional Maintenance	Remove sediment from the main body of big ponds when pool volume is reduced by 20%.	With effective pre- treatment, this will only be required rarely, e.g. every 25–50 years
	Remedial	Repair erosion or other damage	As required
	Actions	Replant, where necessary	-
		Aerate pond when signs of eutrophication are detected	-
		Realign rip-rap or repair other damage	
		Repair / rehabilitate inlets, outlets and overflows.	

Table 6.1 SuDS Maintenance Strategy (CIRIA SuDS Manual)

Effective SuDS design must assess all foreseeable risks during construction and maintenance. These must be mitigated during the detailed design stages where effective design will aim to avoid, reduce and mitigate risks.

This process will also require input from the principal contractor who will ensure the construction of SuDS components are carried out in a safe and sustainable manner.

7 Conclusions

- I. The EA's flood risk from watercourses map shows that the site is at low risk of flooding from rivers and the sea. Furthermore, the site area is smaller than 1 Ha. Therefore, a FRA for planning purposes is not required.
- II. The flood risk from surface water, reservoir failure and groundwater is also considered low.
- III. The BGS maps show that superficial deposits underly the site. Furthermore, boreholes near this location suggest that the groundwater table is approximately 2.5m below ground level. Therefore, shallow infiltration systems should be effective at this location.
- IV. Permeable pavement, a pond, green roof, a rainwater tank and bioretention will be used for surface water drainage.
- V. The drainage system will be designed for the 1 in 100 year plus 40% storm event.
- VI. If further investigation show that the ground conditions are not suitable for infiltration techniques, surface water from the proposed SuDS will discharge to the surface water public sewer in Roseleigh Close. A flow control device will be used for surface water attenuation, aiming to achieve rates as close to greenfield as possible, also ensuring the device is of sufficient size and therefore not prone to blockages. Microdrainage calculations show that surface water can be attenuated to 2.1 l/sec in order to meet these requirements.

Appendix A Greenfield Runoff Calculations

Hydrological characteristics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Calculated by:

Greenfield runoff rate estimation for sites

	www.uksuds.com Greenfield runoff tool
Dimitris Linardatos	Site Details

Site name:	Roseleigh Close	
Site location:	Twickenham	

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Site Details	
Latitude:	51.45273° N
Longitude:	0.30738° W
Reference:	1560698882
Date:	Nov 29 2021 13:02

Runoff estimation ap	proach IH12	24				
Site characteristics				Notes		
Total site area (ha): 0.	1			(1) le Onun < 2 0 l/e/ba2		
Methodology				(1) IS $QBAR < 2.0 1/3/11a$:		
Q _{BAR} estimation method	d: Calculate f	rom SPR and S	SAAR	When Q _{BAR} is < 2.0 l/s/h		
SPR estimation method	SPR estimation method: Calculate f			at 2.0 l/s/ha.		
Soil characteristics	Default	Edited				
SOIL type:	2	2		(2) Are flow rates < 5.0 I		
HOST class:	N/A	N/A				
SPR/SPRHOST:	0.3	0.3		usually set at 5.0 l/s if blo		

Default

599

0.85

2.3

3.19

3.74

6

 Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set l/s/ha.

flow rates < 5.0 l/s?

e flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is SPR/SPRHOST \leq 0.3?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.15	0.15
1 in 1 year (l/s):	0.13	0.13
1 in 30 years (l/s):	0.35	0.35
1 in 100 year (l/s):	0.48	0.48
1 in 200 years (l/s):	0.57	0.57

Edited

599

0.85

2.3

3.19

3.74

6

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-andconditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix B

MicroDrainage Calculations

Infiltration & Attenuation

Price & Myers					Page 1
37 Alfred Place	Roselei	igh Close			
London					
WC1E 7DP					Micro
Date 30/11/2021	Designe	ed by JD			
File permeable paving.SRCX	Checked	d by			Digilight
Innovyze	Source	Control 20	18.1		
Summary of Results	for 100	year Return	Perio	d (+40%)	
Half I	Drain Time :	: 683 minutes			
Storm 1	May May	Maw	Mov	Status	
Event L	evel Depth	Infiltration	Volume	Status	
	(m) (m)	(1/s)	(m³)		
15 min Common 0	240 0 240	0.2	14 0	0 77	
30 min Summer 0	.248 0.248	0.3	14.2	ОК	
60 min Summer 0	.312 0.312	0.3	17.8	ОК	
120 min Summer 0	.341 0.341	0.3	19.5	O K	
180 min Summer O	.355 0.355	0.3	20.2	O K	
240 min Summer 0	.361 0.361	0.3	20.6	ОК	
360 min Summer 0	.304 U.364 358 0 350	0.3	20./ 20.4	O K	
600 min Summer 0	.350 0.350	0.3	20.4 19.9	0 K	
720 min Summer 0	.342 0.342	0.3	19.5	ОК	
960 min Summer O	.330 0.330	0.3	18.8	ОК	
1440 min Summer O	.306 0.306	0.3	17.4	O K	
2160 min Summer O	.270 0.270	0.3	15.4	ОК	
2880 min Summer 0	.23/ 0.23/	0.3	13.5	OK	
5760 min Summer 0	.112 0.112	0.3	9.4 6.4	0 K	
7200 min Summer 0	.076 0.076	0.3	4.3	ОК	
8640 min Summer 0	.055 0.055	0.3	3.1	ОК	
10080 min Summer O	.047 0.047	0.3	2.7	O K	
15 min Winter O	.279 0.279	0.3	15.9	ΟK	
Storm	Rain	Flooded Ti	me-Peak		
Event	(111)	(m ³)	(mins)		
15 min Su	ummer 223.92	28 0.0	19		
30 min Su	ummer 127.10	0.0	34		
60 min Su	ummer 72.14	48 0.0	64		
IZU MIN SU 180 min Su	10.95 1mmer 29 40)4 0.0	182 182		
240 min Su	ımmer 23.24	45 0.0	242		
360 min Su	ummer 16.69	0.0	360		
480 min Su	ummer 13.19	95 0.0	480		
600 min Su	ummer 10.99	96 0.0	536		
/20 min St 960 min St	1000 100 100 100 100 100 100 100 100 10	14 U.U 41 0.0	592 710		
1440 min Su	ummer 5.46	58 0.0	980		
2160 min Su	ummer 3.96	54 0.0	1384		
2880 min Su	ummer 3.15	56 0.0	1788		
4320 min Su	ummer 2.20	0.0	2548		
5760 min Su 7200 min Su	ummer 1.70	13 0.0 13 0.0	3224		
8640 min Su	ummer 1.10	94 0.0	2008 4496		
10080 min Su	ummer 1.04	41 0.0	5144		
15 min Wi	inter 223.92	28 0.0	19		
 ∩1	1982-2018	Innovyze			
		типолдуе			

Price & Myers						Page 2
37 Alfred Place		Roselei	gh Close			
London						
WC1E 7DP						Micco
Date 30/11/2021		Designe	d by JD			
File permeable paving.	SRCX	Checked	by			Digitigh
Innovvze		Source (Control 20	18.1		
Summary of	Results f	for 100 y	ear Return	Period	d (+40응)	
Sto	rm Ma	x Max	Max	Max	Status	
Eve	nt Lev	el Depth I	nfiltration	Volume		
	(m) (m)	(1/s)	(m³)		
30 mir	n Winter 0.3	15 0.315	0.3	17.9	O K	
60 mir	n Winter 0.3	51 0.351	0.3	20.0	O K	
120 mir	n Winter 0.3	86 0.386	0.3	22.0	ОК	
180 mir 240 mir	1 Winter 0.4 Winter 0.4	$03 \ 0.403$ 12 0 412	0.3	23.U 23.5	OK	
360 mir	Ninter 0.4	19 0.419	0.3	23.9	O K	
480 mir	n Winter 0.4	16 0.416	0.3	23.7	O K	
600 mir	n Winter 0.4	09 0.409	0.3	23.3	ОК	
720 mir	Number 0.3	99 U.399	0.3	22.7	O K	
1440 mir	n Winter 0.3	62 0.362 49 0.349	0.3	19.9	0 K	
2160 mir	n Winter 0.2	96 0.296	0.3	16.9	ΟK	
2880 mir	n Winter 0.2	45 0.245	0.3	13.9	O K	
4320 mir	Winter 0.1	40 0.140	0.3	8.0	OK	
5760 mir 7200 mir	n Winter 0.0 N Winter 0.0	/I 0.0/I 47 0 047	0.3	4.1 2.7	OK	
8640 mir	n Winter 0.0	40 0.040	0.2	2.3	0 K	
10080 mir	n Winter 0.0	35 0.035	0.2	2.0	O K	
	Ct a mm	Dein		ma Daah		
	Event	(mm/hr)	Volume	me-reak (mins)		
			(m ³)	· - /		
	30 min Wint	r 127.106	0.0	33		
	120 min Wint	er 40.953	3 0.0	120		
	180 min Wint	er 29.404	1 0.0	180		
	240 min Wint	er 23.245	5 0.0	238		
	360 min Wint	er 16.691	L 0.0	352		
	400 min Wint 600 min Wint	er 10.996	5 0.0 5 0.0	464 572		
	720 min Wint	er 9.474	1 0.0	676		
	960 min Wint	er 7.541	L 0.0	762		
1	440 min Wint	er 5.468	3 0.0	1068		
2	160 min Wint	er 3.964	± 0.0	1512 1932		
2		.CT J.TJ(. 0.0	1952		
2	320 min Wint	er 2.204	1 0.0	2676		
2 4 5	320 min Wint 320 min Wint 760 min Wint	er 2.204 ter 1.709	1 0.0 9 0.0	2676 3240		
2 4 5 7	320 min Wint 760 min Wint 200 min Wint	er 2.204 er 1.709 er 1.403	4 0.0 9 0.0 3 0.0	2676 3240 3744		
245	320 min Wint 320 min Wint 760 min Wint 200 min Wint 640 min Wint	2.204 er 1.709 er 1.403 er 1.194	4 0.0 9 0.0 8 0.0 4 0.0	2676 3240 3744 4416		
2 4 5 7 8 10	320 min Wint 320 min Wint 760 min Wint 200 min Wint 640 min Wint 080 min Wint	2.204 cer 1.705 cer 1.403 cer 1.194 cer 1.041	4 0.0 9 0.0 3 0.0 4 0.0 L 0.0	2676 3240 3744 4416 5144		
2 4 5 7 8 10	320 min Wint 320 min Wint 760 min Wint 200 min Wint 640 min Wint 080 min Wint	ter 2.204 ter 1.709 ter 1.403 ter 1.194 ter 1.041	4 0.0 9 0.0 3 0.0 4 0.0 L 0.0	2676 3240 3744 4416 5144		
2 4 5 7 8 10	320 min Wint 320 min Wint 760 min Wint 200 min Wint 640 min Wint 080 min Wint	eer 2.204 eer 1.709 eer 1.403 eer 1.194 eer 1.041	4 0.0 9 0.0 3 0.0 4 0.0 1 0.0	2676 3240 3744 4416 5144		
2 4 5 7 8 10	320 min Wint 320 min Wint 760 min Wint 200 min Wint 640 min Wint 080 min Wint	er 2.204 er 1.709 er 1.403 er 1.194 er 1.041	4 0.0 9 0.0 3 0.0 4 0.0 L 0.0	2676 3240 3744 4416 5144		
2 4 5 7 8 10	320 min Wint 320 min Wint 760 min Wint 200 min Wint 640 min Wint 080 min Wint	er 2.204 er 1.709 er 1.403 er 1.194 er 1.041	4 0.0 9 0.0 3 0.0 4 0.0 L 0.0	2676 3240 3744 4416 5144		
2 4 5 7 8 10	320 min Wint 320 min Wint 760 min Wint 200 min Wint 640 min Wint 080 min Wint	ter 2.204 ter 1.709 ter 1.403 ter 1.194 ter 1.041	4 0.0 9 0.0 3 0.0 4 0.0 1 0.0	2676 3240 3744 4416 5144		
2 4 5 7 8 10	©19	er 2.204 er 1.709 er 1.403 er 1.194 er 1.041	4 0.0 9 0.0 3 0.0 4 0.0 1 0.0	2676 3240 3744 4416 5144		

Price & Myers		Page 3
37 Alfred Place	Roseleigh Close	
London		
WC1E 7DP		Micco
Date 30/11/2021	Designed by JD	
File permeable paying SRCX	Checked by	Drainage
Innovyze	Source Control 2018 1	
11110 4 9 2 0		
Ra	infall Details	
Rainfall Mod	el FEH	
Return Period (year	s) 100	
FEH Rainfall Versi	on 1999	
C (1k	m) -0.025	
D1 (1kr	m) 0.298	
D2 (1k)	m) 0.322	
D3 (1ki	m) 0.230	
E (1K) F (1k)	m) 0.507	
Summer Store	ms Yes	
Winter Stor	ms Yes	
Cv (Summe:	r) 0.750 r) 0.840	
Shortest Storm (min.	s) 15	
Longest Storm (min	s) 10080	
Climate Change	°8 +40	
Tir	me Area Diagram	
Tot	al Area (ha) 0.035	
T: Fr	ime (mins) Area :om: To: (ha)	
	0 4 0.035	
©198	82-2018 Innovyze	

Price & Myers		Page 4
37 Alfred Place	Roseleigh Close	
London		
WC1E 7DP		Mirro
Date 30/11/2021	Designed by JD	
File permeable paving.SRCX	Checked by	Diginarie
Innovyze	Source Control 2018.1	

Model Details

Storage is Online Cover Level (m) 0.500

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.03600	Width (m)	5.0
Membrane Percolation (mm/hr)	1000	Length (m)	12.0
Max Percolation (l/s)	16.7	Slope (1:X)	0.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.95	Evaporation (mm/day)	3
Invert Level (m)	0.000	Membrane Depth (m)	0

Price & Mye	rs								Page 1
37 Alfred P	lace								
London									
WC1E 7DP									
Data 09/02/	2022 11.20	2		Deci	and h		_		
Dale 00/03/	2023 11:33	9		Desi	gnea b	y istree	-		Drainage
File Permea	ble paving	g.SRCX		Chec	ked by				Brainage
Innovyze				Sour	ce Con	trol 201	8.1		
	Summary o	of Resu	ults f	or 10	0 year	Return	Period	(+40%))
		H	Half Dra	ain Ti	me : 68	minutes.			
	Storm	Max	Max	Ма	x	Max	Max	Max	Status
	Event	Level	Depth 1	Infilt	ration	Control S	Outflow	Volume	
		(m)	(m)	(1/	's)	(l/s)	(1/s)	(m³)	
15	min Summer	0 229	0 229		0 0	2 1	2 1	13 0	O K
30	min Summer	0.244	0.244		0.0	∠•⊥ 2.1	2.1	13.9	O K
60	min Summer	0.244	0.244		0.0	2.1	2.1	13.9	O K
120	min Summer	0.229	0.229		0.0	2.1	2.1	13.1	O K
180	min Summer	0.212	0.212		0.0	2.1	2.1	12.1	O K
240	min Summer	0.194	0.194		0.0	2.1	2.1	11.0	O K
360	min Summer	0.160	0.160		0.0	2.1	2.1	9.1	0 K
480	min Summer	0 133	0 133		0 0	2 1	2 1	76	0 K
600	min Summer	0 113	0 113		0.0	2.1	2 1	6 4	0 K
720	min Summer	0.113	0.113		0.0	2.1	2 0	5.6	0 K
960	min Summer	0.020	0.090		0.0	1 8	1 8	4 7	0 K
1440	min Summor	0.005	0.005		0.0	1 /	1 /	3.0	O K
2160	min Summer	0.000	0.000		0.0	1 1	1 1	3.0	O K
2100	min Summor	0.034	0.034		0.0	1.1	1.1	2.1	O K
4320	min Summor	0.047	0.047		0.0	0.9	0.9	2.1	O K
5760	min Summer	0.03/	0.03/		0.0	0.0	0.0	1 9	O K
7200	min Summer	0.034	0.034		0.0	0.3	0.0	1 7	O K
8640	min Summer	0.030	0.030		0.0	0.4	0.4	1 6	O K
10080	min Summer	0.020	0.020		0.0	0.3	0.3	1 5	O K
15	min Winter	0.020	0.020		0.0	2 1	2 1	14 8	O K
10	MIN WINCOI	0.200	0.200		0.0	2.1	2.1	11.0	0 10
		Storm	I	Rain	Flooded	l Discharge	e Time-P	eak	
		Event	(m	m/hr)	Volume	Volume	(mins	5)	
					(m³)	(m³)			
	1 -	min Cr		2 0 2 0	0.0) 1/	>	10	
	15	min Sur	nmer 22	3.928	0.0	14.	5	18	
	30	min Sur	uner 12	7.100	0.0	, 10.) :	51 51	
	60	min Sur	nmer /	2.148	0.0	18.0		54	
	120	min Sur	uner 4	0.955	0.0	21.	L D	00 110	
	180	min Sur	nner 2	9.404 2.245	0.0) 22.0	5)	150	
	240	min Cur	unier Z	S.24J	0.0) 24.0))	1JZ 01C	
	360	min Sur	uner 1	0.091 3 105	0.0	23. 27.	2	210 276	
	480	min Sur	nmer 1	3.195	0.0	27.	5. 1	276	
	600	min Sur	uner 1	0.390	0.0	28.4	± . 1	332 200	
	120	min Sur	unier.	7 E/1	0.0	∠9.4) 21.4	± .	590 501	
	960	min Sur		1.341 5.400	0.0	, JL.,	<u>.</u>	JU4 746	
	1440	min Sur	uller	2.468	0.0	J 33.9	7	140	
	2160	min Sur	uner	3.964 2.156	0.0	36.9	⁄ ⊥	104	
	2880	min Sur	umer	3.156	0.0	39.	L 1	468 200	
	4320	min Sur	nmer	2.204	0.0	40.8	s 2.	200	
	5/60	min Sur	nmer	1./09	0.0	42.0	J 2	936 C 1 0	
	/200	min Sur	nmer	1.403	0.0	J 43.0	л 3 г	64U	
	8640	min Sur	uner	1 0 4 1	0.0	y 43.	/ 4	3/6 000	
	T0080	min Sur	umer	1.041	0.0	44.	o 5	10	
	15	min Wi	icer 22	3.928	0.0	μ. τρ.	L	TΩ	

©1982-2018 Innovyze

Price & Mye	ers							Page 2	
37 Alfred P	lace								
London									
WC1E 7DP								Micco	
Date 08/03/	2023 11.30	9	Desi	aned by	, rstreet	_			
	2020 II.J.		Char		y isticed	-		Drain	906
File Permea	bie paving	J.SRCX	Cnec	скеа ру					<u>ر</u>
Innovyze			Sour	ce Cont	crol 2018	3.1			
	Summary o	of Result	s for 10	00 year	Return 1	Period	(+40%)	-	
	Storm	Max Ma	IX M	ax	Max	Max	Max	Status	
	Event	Level Dep	th Infilt	ration C	Control Σ	Outflow	Volume		
		(m) (n	i) (I	/s)	(1/5)	(1/S)	(m ³)		
30) min Winter	0.278 0.2	278	0.0	2.1	2.1	15.8	ОК	
60) min Winter	0.280 0.2	280	0.0	2.1	2.1	16.0	ОК	
120) min Winter	0.258 0.2	258	0.0	2.1	2.1	14.7	ОК	
180) min Winter	0.231 0.2	231	0.0	2.1	2.1	13.2	O K	
240) min Winter	0.204 0.2	204	0.0	2.1	2.1	11.6	O K	
360) min Winter	0.153 0.1	.53	0.0	2.1	2.1	8.7	O K	
480) min Winter	0.116 0.1	16	0.0	2.1	2.1	6.6	O K	
600) min Winter	0.094 0.0	94	0.0	2.0	2.0	5.3	O K	
720) min Winter	0.082 0.0	82	0.0	1.8	1.8	4.7	O K	
960) min Winter	0.069 0.0	169	0.0	1.5	1.5	3.9	ОК	
1440) min Winter	0.055 0.0	155	0.0	1.1	1.1	3.1	OK	
2160) min Winter	0.045 0.0	145	0.0	0.8	0.8	2.6	OK	
2000) min Winter) min Winter	0.040 0.0	140	0.0	0.7	0.7	2.3	OK	
5760) min Winter	0.032 0.0	128	0.0	0.5	0.5	1 6	0 K	
72.00) min Winter	0.025 0.0	25	0.0	0.3	0.3	1.4	0 K	
8640) min Winter	0.023 0.0	23	0.0	0.2	0.2	1.3	0 K	
10080) min Winter	0.022 0.0	22	0.0	0.2	0.2	1.2	ОК	
		Storm	Rain	Flooded	Discharge	e Time-Pe	ak		
		Event	(mm/hr)	Volume	Volume	(mins)		
				(m³)	(m³)				
	2.0		107 100	0.0	10.0	<u>,</u>	2.1		
	30	min Winte	r 12/.106	0.0	18.3	3	31		
	120	min Winte	r 12.148	0.0	20.5	י ר	58		
	180	min Winte	r 29404	0.0	25.6	,	32		
	240	min Winte	r 23.245	0.0	27.0)	164		
	360	min Winte	r 16.691	0.0	29.1		228		
	480	min Winte	r 13.195	0.0	30.6	5	286		
	600	min Winte	r 10.996	0.0	31.9)	334		
	720	min Winte	r 9.474	0.0	33.0) (394		
	960	min Winte	r 7.541	0.0	35.0) (510		
	1440	min Winte	r 5.468	0.0	38.0) .	750		
	2160	min Winte	r 3.964	0.0	41.4	1 11	L00		
	2880	min Winte	r 3.156	0.0	43.8	3 14	168		
	4320	min Winte	r 2.204	0.0	45.8	3 22	204		
	5760	min Winte	r 1.709	0.0	47.2	28	396		
	7200	min Winte	r 1.403	0.0	48.3	5 35)))/		
	8640 10020	min Winte	r 1.011	0.0	49.1 10 0	L 4.	>∠⊽)40		
	10000	MILII WIIILE	L 1.041	0.0	49.C	, 30	010		
ĺ		(©1982-20	18 Innc	vyze				

Price & Myers		Page 3
37 Alfred Place		
London		
WC1E 7DP		Micro
Date 08/03/2023 11:39	Designed by rstreet	
File Permeable paving.SRCX	Checked by	Digiliga
Innovyze	Source Control 2018.1	
Ra	infall Details	
Rainfall Mode Return Period (years		F'EH 100
FEH Rainfall Versio	on	1999
Site Locatio	on GB 516400 174850 TQ 16400	74850
C (1kr	n) –	0.025
D1 (IKI D2 (Ikr	n)	0.322
D3 (1kr	n)	0.230
E (1kr	n)	0.307
Summer Storr	"' 1S	Yes
Winter Storm	ns	Yes
Cv (Summer	c)	0.750
Shortest Storm (mins	- / 5)	15
Longest Storm (mins	5)	10080
Climate Change	8	+40
Tin	ne Area Diagram	
Tota	al Area (ba) 0.035	
Fr	om: To: (ha)	
	0 4 0.035	
©198	32-2018 Innovyze	

Price & Myers					Page 4
37 Alfred Place					
London					
WC1E 7DP					Mirm
Date 08/03/2023 11:39	Designed	by rs	treet		Drainago
File Permeable paving.SRCX	Checked b	су			Diamage
Innovyze	Source Co	ontrol	2018.1		
<u>_</u>	lodel Deta	ils			
Storage is Or	nline Cover	Level	(m) 0.500		
			(,		
Porous	Car Park	Struct	ture		
Infiltration Coefficient Base	(m/hr) 0.00	0000		Width (m)	5.0
Membrane Percolation ((mm/hr) 1	1000	c	Length (m)	12.0
Safety	Factor	2.0 De	eression St	orage (mm)	5
Pc	prosity (0.95	Evaporatic	on (mm/day)	3
Invert Lev	7el (m) 0	.000	Membrane	Depth (m)	0
Hydro-Brake®	Optimum	Outflo	w Control	-	
Unit	Reference	MD-SHF-	-0076-2100-0	0500-2100	
Desig	n Head (m)	MD-3IIL-	-0070-2100-	0.500	
Design	Flow (l/s)			2.1	
	Flush-Flo™	Minimi	Ca Lao upatropi	alculated	
А	pplication	MT11T1111	ise upstream	Surface	
Sump	Available			Yes	
Dia	meter (mm)			76	
Invert Minimum Outlet Pipe Dia	Level (m) meter (mm)			100	
Suggested Manhole Dia	meter (mm)			1200	
Control Po	ints 1	Head (m) Flow (l/s	;)	
Design Point (Ca	alculated)	0.50	0 2.	1	
E	flush-Flo™	0.14	9 2.	1	
Mean Flow over H	Kick-Flo® Head Bange	0.34	5 1. - 1	8	
	icaa nange		±•	0	
The hydrological calculations have b	een based c	on the H	Head/Dischar	rge relatio	onship for the
Hydro-Brake® Optimum as specified.	Should anot	her typ	pe of contro puting calcu	ol device c ulations wi	ther than a
invalidated		rage re	Jucing care	aracrono wi	
Depth (m) Flow (1/s) Depth (m) Flow	v (1/s) Dep	th (m)	Flow (1/s)	Depth (m)	Flow (1/s)
	2 1	2 000			7 0
0.200 2.1 1.200	3.1 3.4	3.000 3.500	4.8	7.000	7.4
0.300 2.0 1.600	3.6	4.000	5.5	8.000	7.7
0.400 1.9 1.800	3.8	4.500	5.8	8.500	7.9
0.500 2.1 2.000	4.0	5.000	6.1	9.000	8.2
0.800 2.6 2.400	4.1	5.500 6.000	6.7	9.500	8.4
1.000 2.9 2.600	4.5	6.500	6.9		
©198	32-2018 Ir	novyze	e		

Appendix C Asset location map

Asset location search

Price & Myers LLP 37Alfred Place LONDON WC1E 7DP

Search address supplied TW1 2JT

Your reference

29876

Our reference

ALS/ALS Standard/2021_4549846

Search date

29 November 2021

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: TW1 2JT

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

NB. Levels quoted in metres Ordnance Newlyr	Datum. The value -9999.00 indicates	that no survey information is available
---	-------------------------------------	---

Manhole Reference	Manhole Cover Level	Manhole Invert Level			
611B	n/a	n/a			
61LJ	n/a	n/a			
711B	n/a	n/a			
701F	n/a	n/a			
711C	n/a	n/a			
701E	n/a	n/a			
701G	n/a	n/a			
60MK	n/a	n/a			
6003	7.03	4.57			
6103	7.08	4.94			
61NC	n/a	n/a			
60LF	n/a	n/a			
6904	7.12	4.71			
60LH	n/a	n/a			
60ML	n/a	n/a			
6910	7.72	3.74			
6905	7.17	5.24			
6912	6.97	3.84			
691C	n/a	n/a			
691B	n/a	n/a			
691A	n/a	n/a			
701C	n/a	n/a			
7004	6.05	3.84			
7001B	6.09	4.52			
70NH	n/a	n/a			
80NK	n/a	n/a			
80NL	n/a	n/a			
8011	n/a	n/a			
60MN	n/a	n/a			
60LK	n/a	n/a			
6909	n/a	n/a			
61LC	n/a	n/a			
61NH	n/a	n/a			
61MC	n/a	n/a			
61LM	n/a	n/a			
60MF	n/a	n/a			
60LD	n/a	n/a			
60ND	n/a	n/a			
60N.I	n/a	n/a			
6911	7 74	3 98			
6002	7.86	6.82			
6901	7.74	5			
6902	7.62	n/a			
60NF	n/a	n/a			
60NK	n/a	n/a			
ZONE	n/a	n/a			
7003	7 58	6 41			
7901	7 58	6.21			
7902	7 53	6.16			
7904	76	45			
7014	n/a	n/a			
701B	n/a	n/a			
701D	n/a	n/a			
	100	174			
The nosition of the annaratus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pines are not					
shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position					
of mains and services must be verified and establish	ed on site before any works are undertaken.	•			

Sewer Fittings

Other Symbols

Symbols used on maps which do not fall under other general categories

Change of characteristic indicator (C.O.C.I.) -68 Invert Level < Summit Areas Lines denoting areas of underground surveys, etc. Aareement Operational Site /// Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plans are metric.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.

 Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Searches on 0800 009 4540.

Undefined End

Inlet

A

any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

ALS Water Map Key

Water Pipes (Operated & Maintained by Thames Water)

- Distribution Main: The most common pipe shown on water maps.
 With few exceptions, domestic connections are only made to distribution mains.
- Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
- **Supply Main:** A supply main indicates that the water main is used as a supply for a single property or group of properties.
- STERE
 Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
- **Metered Pipe:** A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
- Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
- **Proposed Main:** A main that is still in the planning stages or in the process of being laid. More details of the proposed main and its reference number are generally included near the main.

PIPE DIAMETER	DEPTH BELOW GROUND	
Up to 300mm (12")	900mm (3')	
300mm - 600mm (12" - 24")	1100mm (3' 8")	
600mm and bigger (24" plus)	1200mm (4')	

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Operational Sites

Other Symbols

Data Logger

Other Water Pipes (Not Operated or Maintained by Thames Water)

Other Water Company Main: Occasionally other water company water pipes may overlap the border of our clean water coverage area. These mains are denoted in purple and in most cases have the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0800 009 4540 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Appendix D SuDS & Water Storage Strategy

ROSELEIGH CLOSE