

SOLD-Thames Young Mariners

Drainage Strategy

Surrey County Council

22 June 2023

PR-200-ATK-ZZ-00-RP-C-00001

Notice

This document and its contents have been prepared and are intended solely as information for Surrey County Council and use in relation to SOLD - Thames Young Mariners

SNC-Lavalin assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

This document has 38 pages including the cover.

Document history

Document title: Drainage Strategy

Document reference: PR-200-ATK-XX-XX-RP-C-00001

Revision	Purpose description	Originated	Checked	Reviewed	Authorised	Date
1.0	Issued for Planning	AG	RW	PB	СН	13/10/2022
2.0	Issued for Planning	AR	AG	MH	СН	22/06/2023

Client signoff

Client	Surrey County Council
Project	SOLD-Thames Young Mariners
Job number	5210336
Client signature/date	

Contents

1.	Introduction	5
1.1.	Proposed Development	5
1.2.	Background Information	5
2.	Existing Site Features	6
2.1.	Existing Layout	6
2.2.	Topography and Site Features	6
2.3.	Existing Drainage	6
2.4.	Ground Investigations	7
2.4.1.	Geology	8
2.4.2.	Groundwater	8
3.	Drainage Strategy	9
3.1.	Policies, Regulations and Legislation	9
3.2.	Design Criteria	9
3.2.1.	9	9
3.2.2.	Hydraulic Design Criteria	9
3.3.	Surface Water Strategy	10
3.3.1.	Outfall Options	10
3.3.2.	Proposed Site Runoff	11
3.3.3.	• •	12
	Interception Strategy	14
3.3.5. 3.3.6.	Water Quality Proposed Outfall	14 15
3.3.7.	•	15
3.3.8.	Amenity and Biodiversity	15
3.4.	Foul Water Strategy	16
3.4.1.	Flow Generation	16
3.4.2.	Foul Water Outfall	16
4.	Operation and Maintenance	17
5 .	Conclusion	18
6.	Appendices	19

Tables

Table 2-1 - Ground Conditions	8	
Table 3-1 – Drainage Hierarchy Evaluation	10	
Table 3-2 - Restriction rate summary	12	
Table 3-3 - SuDS Evaluation Summary	13	
Table 3-4 - Pollution Hazard Indices (CIRIA C753 Table 26.2 excerpt)	14	
Table 3-5 - SuDS pollution mitigation for discharge to surface waters (CIRIA C753 Table 26.3	excerpt)	14
Table 3-6 - Amenity and biodiversity summary	15	

Figures

Figure 1-1 – Proposed development layout	5
Figure 2-1 - Site location plan	6
Figure 2-2 - Ground investigation locations	7
Figure 3-1 - Catchment Distribution	12

Introduction

Atkins has been commissioned by Surrey County Council (SCC) to prepare a drainage strategy to support a full planning application for the Surrey Outdoor Learning and Development (SOLD) project on the Thames Young Mariners (TYM) site.

This report presents the surface and foul water drainage strategy for the proposed development. It provides details on the proposed surface and foul water networks, demonstrating how the use of Sustainable Urban Drainage System (SuDS) have been adopted to reduce flood risk and promote biodiversity benefits as well as improve water quality and amenity value.

The Design Assessment Checklist in the Richmond Planning Guidance – Delivering SUDS in Richmond¹ (Appendix 1) document is completed and included in Appendix A.1 of this report.

1.1. Proposed Development

The TYM scheme involves redevelopment of the site to provide modern, fit for purpose facilities that meet current health and safety standards which will allow SOLD to increase its service capacity and strengthen its commercial operation with SCC.

The proposed scheme is to demolish the existing buildings and re-build new structures comprising a main building, three guest residential building and one changing block. All buildings are single-storey except for the main building which is a two-storey structure. The proposed development layout extracted from the landscape masterplan prepared by Pick Everard (drawing ref: PR-200-PEV-XX-XX-DR-L-00200) is included in Figure 1-1 below and Appendix C.1 of the report.

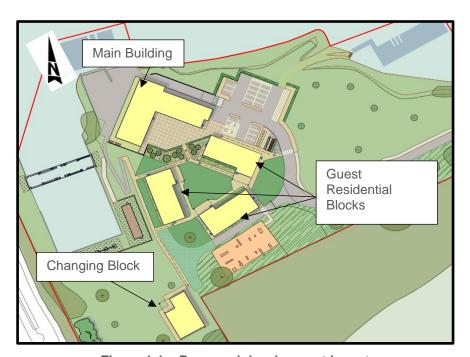


Figure 1-1 – Proposed development layout

1.2. Background Information

This drainage strategy has been informed by the following documents and drawings:

- Topographical survey Greenhatch Group, (Ref: 43456_T; April 2022)
- Landscape Masterplan Pick Everard (Ref: PR-200-PEV-XX-XX-DR-L-00200; September 2022)
- Public sewer records Thames Water (Ref: ALS/ALS Standard/2022 4597733; March 2022)
- Arboriculture survey Middlemarch (Ref: C157100-01-01; March 2022)
- On-site existing drainage CCTV survey Greenhatch Group (Ref: 43456_CCTV; July 2022)

- Flood Risk Assessment Soils limited (Ref: 20295/FRA Rev 1.0; September 2022)
- Scoping Investigation Report (Ground investigation) Soils Limited (Ref: 20295/SIR Rev 1.0; September 2022)
- Historical Drainage Drawings March 1961

Existing Site Features

2.1. Existing Layout

Total area of the site is 3.72 ha with the area proposed for redevelopment occupying approximately 0.67 ha. The site is located between Richmond and Kingston and is surrounded by Ham Lands. The River Thames is located to the west with Riverside Drive to the east. In addition to the existing buildings, the site contains open green spaces and access to an artificial lake which connects to the River Thames. The site is surrounded by approximately 80 ha of public open space, which has been designated as a Local Nature Reserve. The site is accessed via Riverside Drive.

A site location plan is shown in Figure 2-1.

Figure 2-1 - Site location plan

2.2. Topography and Site Features

The topographical survey undertaken by Greenhatch Group (as given in Appendix C.4) shows that the site elevations vary between 5m and 9m AOD (Above Ordnance Datum). It indicates that the overall high point of the site is at the location of existing development and the field area falls away to the lake. For the developed area the highest ground elevation is at the west of the site whilst the lowest ground elevation is at the north.

The present site access road from Riverside Drive is retained in both alignment and level, except for a small section on the west side of the existing buildings.

2.3. Existing Drainage

Historic drainage drawings (see Appendix C.6) suggest that when constructed, the surface water for the site from the existing buildings was discharged into several soakaways, in addition to a positive outfall connection to the lake. However, recent survey information indicates that, some of the surface water has been diverted into a combined sewer.

Thames Water (TW) sewer records (Appendix C.77) as given in show that there is an existing 150mm diameter foul water sewer running along the Riverside Drive. It also shows a 900mm diameter surface water sewer running along Riverside Drive, branching off in a westerly direction south of the site discharging most likely into the River Thames.

A drainage CCTV survey undertaken by Greenhatch Group in July 2022 (see Appendix C.5) indicated that the site in its current condition drains via an existing combined private drainage system. A 150mm diameter combined drain runs through the site collecting both surface and foul water flows. The drainage survey was abandoned at MH15 (for location see Appendix C.4) with no connection shown to the public sewerage network. This manhole is situated at the southeast extent of the development in proposed enhanced vegetation area. It is assumed that the combined drain will connect into the public Thames Water foul network along Riverside Drive as referred to above.

The lake to the north of the site is connected to the River Thames via a channel with lock gates that isolates the lake from the tidal river to maintain water levels.

.

2.4. Ground Investigations

An intrusive ground investigation was carried out by Soils Limited in September 2022. The investigation results provided in the Scoping Investigation report (Ref: 20295/SIR Rev 1.0- September 2022) show that the ground conditions vary across the site extents. Refer to for trial pit and borehole locations from the investigations.

Infiltration testing was undertaken in trial pits TPSK1 and TPSK2 (see Figure 2-3) within the Worked Ground and Kempton Park Gravel Member respectively (see section 2.4.1 for details). The testing was undertaken in accordance with BRE Digest 365 Soakaway Design. A single test was carried in TPSK1, which observed insufficient soakage to allow the calculation of an infiltration rate. Three complete tests were carried out in TPSK2 within the Kempton Park Gravel Member, with a base depth of 2.40m bgl (below ground level). An infiltration rate was calculated as 1.99×10^{-3} m/sec (7.164 m/hr). The test results and trial pit logs from the Scoping Investigations report can be found in Appendix D.

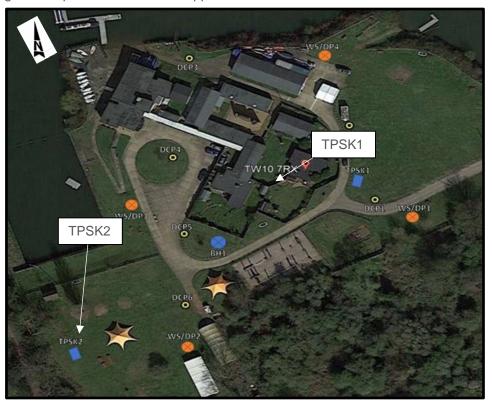


Figure 2-2 - Ground investigation locations

2.4.1. Geology

The British Geological Survey (BGS) map (scale 1:50,000) showed the site to be located upon Artificial Deposits, with superficial deposits of Kempton Park Gravel Member and bedrock of the London Clay Formation.

Artificial Deposits refer to made ground and worked ground as classified below:

- **Made Ground**: Deposits that have been disturbed and placed by human activity and include anthropogenic material (brick, concrete fragments etc.).
- Worked Ground: Deposits that contain no anthropogenic material but exhibit signs of disturbance or appear to be fill material.

Table 2-1 - Ground Conditions

Strata	Depth ence	ountered (m bgl)	Typical	Description
	Тор	Bottom	Thickness	
Made Ground	Ground level	2.1 to 4.5	3.4	Orangish brown/ dark brown slightly clayey/ clayey gravelly SAND.
				Soft to stiff orangish brown/ brown mottled dark brown slightly gravelly/ gravelly CLAY.
				Dark greyish brown mottled orangish brown, light brown clayey very sandy GRAVEL.
Worked Ground	ed Ground 1.1 to 4.5 1.1 to >7.5		Not proven	Soft to firm yellowish brown slightly gravelly sandy CLAY. The gravel was subangular, fine to medium flint.
Kempton Park Gravel Member	2.1 to 4.5	9.7	6.2	Yellowish brown slightly clayey gravelly fine to coarse SAND / sandy GRAVEL.
London Clay Formation	9.7	20.0	>11.3	Firm to stiff grey silty CLAY.

(Key: TPSK- Trial Holes, BH- Bore Holes, WS- Windowless sampler boreholes, DP- DCP-TRL Probes)

2.4.2. Groundwater

Groundwater investigation was conducted in August 2022 in a 6m deep borehole within a groundwater monitoring well. At this time of year, groundwater levels are typically reaching their annual minimum, with maximum levels expected in March. The recorded groundwater depths as referenced in the Scoping Investigations report, indicate a depth of 4.0m bgl (~5m AOD).

Groundwater equilibrium conditions may be established if a series of investigations are made via groundwater monitoring wells and maximum groundwater levels need to be established for appropriate performance of infiltration systems.

The aquifer designations for the site show the superficial drift as secondary A; which suggests low vulnerability to groundwater pollution. The bedrock is designated as unproductive suggesting the rock layers have negligible significance for water supply or river base flow.

3. Drainage Strategy

3.1. Policies, Regulations and Legislation

The following regulations, standards, policies, and guidance have been reviewed and considered within the proposed drainage strategy.

- Sewerage Sector Guidance, Water UK Appendix C, Version 2.2 2022.
- The Building Regulations 2010 Drainage and Waste Disposal Approved Document H
- CIRIA C753 The SUDS Manual
- CIRIA C697 The SuDS Manual
- BS EN 752:2017 Drain and sewer systems outside buildings. Sewer system management
- BS EN 1295-1 Structural design of buried pipelines under various conditions of loading Part 1: General requirements
- BS EN 1610 Construction and testing of drains and sewers
- Surrey County Council Sustainable Drainage System Design Guidance¹
- London Sustainable Drainage Action Plan.
- Planning Guidance Document- Delivering SuDS in Richmond

It is assumed that the drainage systems (surface and foul) will remain private.

3.2. Design Criteria

3.2.1. Climate Change

The Environment Agency's (EA) Flood Risk Assessments: Climate Change Allowances Guidance has been used to select an appropriate climate change allowance for the scheme. A climate change adjustment of 40% for the 1 in 100-year storm event has been used to develop the proposed surface water drainage strategy.

3.2.2. Hydraulic Design Criteria

3.2.2.1. Surface Water

The surface water drainage strategy has been designed based on the following hydraulic criteria and parameters:

- Surface water discharge from the proposed development shall be restricted to a flow rate as close as practicably possible to the average annual greenfield equivalent run-off rate for the site or a flow control with a lower limit of 1l/s to minimise the blockage risk and the associated maintenance liability. This flow rate will apply to all rainfall events up to and including the 1 in 100-year plus climate change event.
- The system shall be designed not to flood any part of the site during the 1 in 30-year rainfall event. Any flooding that occurs for more extreme rainfall events, up to and including the 1 in 100-year plus climate change event, will be contained within the site in locations that do not create a risk to people or property.
- Sustainable drainage solutions shall be used.
- The following impermeability factors (PIMP) shall be used:
 - Access roads, hardstanding, parking and roofs: 100%
 - Landscaped areas: 25%
- For simulations, Cv value of 0.75 shall be used for summer and 0.84 for winter rainfall events.

The following network design criteria have been used to develop the surface water network with reference to the standards listed in section 3.1 above, where applicable:

- Minimum velocity for self-cleansing is 1m/s. (BS EN 752:2017)
- Maximum allowed distance between manholes is 90m. (BS EN 752:2017, Table NA.4)
- No surcharge in the network during a 1 in 2-year storm.

¹ Sustainable Drainage System Design Guidance - Surrey County Council (surreycc.gov.uk)

3.2.2.2. Foul Water

The foul water drainage strategy has been designed based on the following criteria and parameters:

- Flow rates have been calculated using discharge units.
- Frequency factor 0.5 for residential blocks and 1 for main building and changing block have been considered.
- Minimum gradients associated with pipe sizes as defined in the Building Regulations (Part H).

The following network design criteria has been used to develop the foul water network with reference to the standards listed in section 5.1 above, where applicable.

- Pipe gradient to be provided as per The Building Regulations 2010.
- Maximum allowed distance between manholes is 90m. (BS EN 752:2017, Table NA.4)
- Maximum allowed distance from rodding point to an inspection chamber is 22m. (BS EN 752:2017, Table NA.4).

3.2.2.3. Physical Criteria

The proposed drainage systems outside of buildings will be designed based on the following physical criteria and parameters:

- Pipework with less than 1.2m cover within access roads and carparks, and 0.9m cover in other areas, shall be assessed, considering the pipe material, to determine the necessary pipe bedding to ensure structural integrity.
- Pipework adjacent to any building must be positioned outside the 45° influence zone of the footings or have concrete bed and surround extending up to at least the base level of the adjacent footings.
- A minimum cover depth of 0.5m over any geo-cellular storage tanks.
- Structures with the potential for allowing infiltration located at least 5m away from any building structure.

3.3. Surface Water Strategy

3.3.1. Outfall Options

The surface water discharge for the site will be via both a below ground infiltration system and a positive outfall to the lake. The roof run-off and flows from some footpaths is collected and infiltrated into the ground at the southwestern side of the site, where the infiltration characteristics of the soil (as outlined in Section 2.4) were suitable. Surface run-off from the remaining roofs, roads and car park will be attenuated in a pond before discharging into the lake.

In accordance with CIRIA C753 SuDS Manual and Richmond SuDS Guidance, a hierarchical evaluation of the outfall options has been undertaken for the site. The results are presented in the Table 3-1.

Table 3-1 – Drainage Hierarchy Evaluation

Option	Discharge Location	Evaluation
1	At source reductions and reuse	Viable solution — The green roofs are proposed to intercept runoff from the roofs of the residential block and changing block. Porous asphalt paving parking bays to mimic natural drainage route.
2	Infiltration to ground	Viable solution Infiltration has been selected as a potential suitable method for disposal of runoff from roofs for the main building, two residential buildings, the changing block, and footpaths.
3	Attenuated discharge to a surface water body	Viable solution – Runoff from the roofs, roads and car park is stored in a pond and discharged to the lake at a controlled rate of 1l/s.
4	To a public surface water sewer	Not Required

	5	To highway drain, or other private drainage system	Not Required
•	6	To a combined sewer where there are no other options, and only where agreed in advance with the relevant sewage undertaker	Not Required

3.3.2. Proposed Site Runoff

To establish compliance with SCC requirements and limit flow rates as close to greenfield rates as practically possible, the greenfield equivalent run-off rates have been calculated using Interim Code of Practice for Sustainable Drainage Design variant of IH124, as the site has an area of less than 50ha. Micro-Drainage Source Control was used to undertake the calculations (included in Appendix B) using the following parameters:

Gross area: 0.67 ha
Standard Average Annual Rainfall (SAAR): 600 mm
Soil: 0.3
Region: 6

The run-off rates calculated are:

Q1 1.3 l/s/ha

• QBAR 1.5 l/s/ha (average annual run-off rate)

Q30 3.4 l/s/haQ100 4.8 l/s/ha

The greenfield runoff rates (QBAR) for Catchment B for an area of approximately 0.25ha proposed to be discharged into the lake are 0.37 l/s. However, the proposed runoff rates from are limited to a maximum of 1l/s based on minimum size of control structure to reduce the risk of blockage.

The total redevelopment area has been divided into two parts Catchment A and B. Within these catchments, Figure 3-2 indicates the percentage of impervious area factors (PIMP) which have been assumed (been taken as 100% for blue marked areas and 25% for pink areas).

The brownfield runoff rates for existing development area are 20.7 l/s, calculated as per the network modelled from CCTV Survey (refer appendix C.5) is 20.7 l/s. Please refer to appendix E.2 for microdrainage calculations of existing network. Assumptions on invert levels, pipe slopes and chamber size for existing drainage network have been made due to gaps identified in survey information.

Figure 3-1 - Catchment Distribution

The runoff from catchment A is drained to an infiltration tank with no discharge into the lake whereas the surface water runoff from catchment B is discharged into the lake at a rate of 1l/s via a raingarden and detention pond.

The catchment distribution in shown in figure 3-2.

Table 3-2 - Restriction rate summary

Catchment	Gross Area (ha)	Proposed Discharge rate N/A (Infiltration only)	
Catchment A	0.407	N/A (Infiltration only)	
Catchment B	0.257	1l/s	

3.3.3. SuDS Appraisal

The LLFA (Lead Local Flood Authority) requires SuDS to be considered for inclusion within the drainage strategy for the Proposed Development. The SuDS techniques suitable for this development have been identified using the selection process defined in CIRIA C697.

The Proposed Development is brownfield and therefore, according to CIRIA C697, Table 5.2 (reproduced in Appendix B.1), all SuDS techniques are considered acceptable. Site specific parameters for the initial selection of SuDS components for this site have used CIRIA C697, Table 5.4 (Appendix B2 and B.3) to identify SUDS techniques suitable for two areas of the site. These are summarised below:

• Catchment A – The south-western section of the site with high permeability ground conditions:

- Soils: Permeable
- Area draining to a single SuDS component: 0-2ha
- Minimum depth to water table: >1m
- Site slope: 0-5%
- Available head: 0-1m
- Available space: High

Catchment B

— The north-eastern section of the site with low permeability ground conditions:

- Soils: Impermeable

- Area draining to a single SuDS component: 0-2ha
- Minimum depth to water table: >1m
- Site slope: 0-5%
- Available head: 1-2m
- Available space: High

The evaluation considered the following:

- Attenuation, amenity, biodiversity, and treatment properties of each SuDS element.
- Site spatial constraints.

The results of the evaluation and proposed solution are summarised in Table 3-3.

Table 3-3 - SuDS Evaluation Summary

SuDS group	Technique	Catchment B (Impermeable): Evaluation Comments	Catchment A (Permeable): Evaluation Comments	Conclusion	
Retention	Retention Pond	The majority of the surface water storage for the proposed development is to be provided by infiltration and open structures. Retention pond is not provided for health and safety reasons		Suitable Not provided	
	Subsurface storage		Subsurface storage on the site is provided in the form of permeable paving beneath car parks and access road.		
Wetland	Wetlands/ponds	high groundwater levels. As th	Wetlands require either a continuous through-flow of water or high groundwater levels. As there is currently no evidence of consistently high groundwater this cannot be confirmed as a		
Infiltration	Infiltration tank, trench, basin or soakaway	Not suitable	Based on the infiltration test results, infiltration systems are suitable for the area. An infiltration tank is proposed for the development, integrated within the landscaping scheme to provide both run off interception and infiltration via below ground geo-cellular units.	Suitable - provided	
Filtration	Filter trench	Filtration trenches can be incorporated into the landscaping scheme to intercept run-off from hardstanding areas and landscaped areas. They will provide flow conveyance and a small amount of supplementary storage.	Not suitable	Suitable - provided	
Detention	Detention Basin	A detention basin is proposed to provide attenuation for surface water in order to discharge it at	Not suitable	Suitable - provided	

		controlled rate into the outfall.		
Open Channels	Conveyance, dry and wet swales	Not suitable	Levels of the site do not provide adequate space for	
Source control	Green roof	Green roofs are viable to inte	Suitable - provided	
	Rainwater harvesting	Provided the yield could justify could be incorporated into the been included as part of the dr	Suitable – not provided	
	Permeable paving	Permeable paving is suitable development on parking bays a its use will be considered durprimarily proposed to delivery it will also provide a small amonthe drainage system	Suitable - provided	

3.3.4. Interception Strategy

In addition to controlled discharge rates and provision of storage, the strategy has considered how the first 5 mm of runoff can be intercepted and is disposed of via an alternative route usually into the ground, so it does not contribute to flows in watercourses or sewers.

The roof and footway areas within Catchment A drain to an infiltration tank; therefore, the first 5mm of rainfall onto these areas will be intercepted and not leave the site. Catchment B contains low permeability or impermeable ground conditions hence it is not possible to prevent the 5mm of rainfall from leaving the site as there is no alternative outfall other than the lake to the north.

3.3.5. Water Quality

Impacts to water quality can be mitigated with source control measures and a SuDS treatment train. The CIRIA C753 approach has been followed which demonstrates potential configurations of the SuDS techniques identified that will achieve the required degree of pollution mitigation for each of the different land uses.

Impacts to water quality is be mitigated by creating a treatment train of different SuDS techniques. The following measures are proposed to be adopted on the site. The SUDS Manual index approach has been followed (Chapter 26). It is summarised below for the site.

Table 3-4 - Pollution Hazard Indices (CIRIA C753 Table 26.2 excerpt)

Land use	Pollution hazard level	TSS	Metals	Hydrocarbons
Other roofs	Low	0.3	0.2	0.05
Low traffic roads/ residential car parks/ Schools	Low	0.5	0.4	0.4

Table 3-5 - SuDS pollution mitigation for discharge to surface waters (CIRIA C753 Table 26.3 excerpt)

SuDS component	Runoff Source	TSS	Metals	Hydrocarbons
Permeable pavement	Access Road/ Car park	0.7	0.6	0.7
Detention Basin (Pond)	Roof/ Access Road/ Car park	0.5	0.5	0.6
Filter Drain	Landscape areas	0.4	0.4	0.4
Bioretention system (Rain Garden)	Roof	0.8	0.8	0.8

The above table shows that the provided SuDS features are sufficient to mitigate the pollutants from the sources on site.

3.3.6. Proposed Outfall

The site is designed to ensure that no overland flooding from the site occurs during the 1 in 100 year + 40% CC storm event. This is achieved using a below ground infiltration tank to the south-west of the site, and an attenuation pond to the east. The tank is kept at least 5m away from the building.

The runoff from the parking areas, access road, footways and roof area passes through a rain garden, permeable paving and an attenuation pond before discharging into the lake.

3.3.7. Attenuation Volume Assessment

The proposed surface water drainage strategy has been designed using MicroDrainage. A network model was constructed, including flow controls. Refer to Appendix E.1 for storm water calculation from Microdrainage.

The surface water drainage has been divided in two parts to avoid risk of effluents from vehicles polluting the river water. The proposed storm water network has a pipe network collecting rainwater from designated catchment areas of varied permeability. The pipe sizes range from 150mm up to 450mm across the network.

Runoff from the roof and footpath is discharged into an infiltration tank. The calculated storage required to accommodate the 1 in 100-year storm event + 40% CC is 73 m³. The runoff from roof of main building, two residential blocks, changing block and footpath discharges into the infiltration tank having half drain time of 58 mins provides complete infiltration into the ground.

The parking area to the north-east of the site, the landscaped area between the proposed development and the lake, one of the residential block discharges into a pond/detention basin before discharging into the lake to the north of the site. The proposed drainage system also comprises of a bio-retention area (rain garden) with a volume of 19 m³. The pond has attenuation capacity of 187 m³ from which the water is ultimately discharged to the lake at a rate of 1l/s.

The collection system proposed comprises several gullies, slot drains and linear channels for the paved surfaces. Filter drains are proposed in the green area to the west. Permeable paving is proposed at parking spaces and carriageways.

3.3.8. Amenity and Biodiversity

Amenity and biodiversity benefits can also be enhanced by the implementation of SuDS, the below table highlights, which SuDS technique selected as part of this drainage strategy will provide amenity and biodiversity benefits.

Table 3-6 - Amenity and biodiversity summary

SuDs Technique	Amenity Benefit	Biodiversity Benefit
Infiltration tank	Yes – Facilitates the multifunctional use of space by allowing the surface above the tank to be used for recreation or other activities.	No
Green Roofs	Yes – Makes roof areas more attractive.	Yes – Planting creates habitats.
Pond	Yes – Natural appearance with soft edges that blend with surrounding areas.	Yes – Habitat creation.
Bioretention System (Rain Garden)	Yes – Aesthetic benefits by incorporating vegetation. Provide water efficient landscaping.	Yes – Habitat creation.
Filter Drains	Yes – Inconspicuous feature providing drainage within landscaped areas where a hard feature is not appropriate.	No
Permeable/Porous Paving	Yes – Provide useful space for various activities that is uninterrupted by specific drainage features.	No

3.4. Foul Water Strategy

Foul water drainage will be provided a conventional gravity pipework.

3.4.1. Flow Generation

Foul water loading has been provided as discharge units (DU) (BS EN 752:2017) from the building by the Public Health design team. A total of 11.4l/s is expected to be generated by the site as per the calculations and has been used for the network design.

3.4.2. Foul Water Outfall

Based on the information received from the MEP team, a foul water gravity system has been designed using discharge unit loading from the buildings. Foul water flows will be conveyed by gravity via the existing on-site drainage system to the existing public foul water sewer within Riverside Drive (subject to approval with Thames Water).

Refer Appendix C.2 for details of proposed foul water drainage network.

4. Operation and Maintenance

The maintenance of the proposed drainage systems is summarised below:

- Pipework System Litter, debris removal and periodic jetting. The surface water drainage will be designed for a self-cleansing velocity of 1 m/s and foul pipework in accordance will the minimum falls in BS EN 752, allowing for the appliances connected.
- Infiltration Tanks (Table in CIRIA C753) it is recommended to have monthly inspections to check for compaction and ponding, inspect inlets and outlets for blockages and any areas which are not operating properly. Annual monitoring to reseed areas for poor vegetation growth. Remedial actions will be required where necessary to relevel irregular surfaces, rehabilitate inlets, outlets and overflows.
- Permeable Paving (Table 20.15 in CIRIA C753) periodic biannual/annual maintenance will be required to prevent or address clogging this would be in the form of brushing and /or vacuuming. Remedial actions will be required where necessary to rectify any depressions, rutting or broken blocks.
- Green Roofs (Table 12.5 in CIRIA C753) this will require biannual or annual maintenance, except in the establishment stage (first 12 to 15 months) where more regular maintenance will be required. All maintenance at roof level will comply with strict health and safety requirements.
- Tree pits (Table 19.3 in CIRIA C753) it is recommended regular inspections are carried out to check the operation of underdrains and inlets and outlets for blockages, regular maintenance should remove litter, surface debris and weeds. Annually check tree health and manage the tree appropriately.
- Pond (Table 23.1 in CIRIA C753) these will require monthly regular maintenance at first to remove litter and debris, cut grass, and inspect inlets, outlets and overflows. Occasional maintenance and remedial actions should be carried out as required.
- Filter Drains (Table 16.1 in CIRIA C753)- these will require regular monthly maintenance involving inspection of filter drain surface, inlet/outlet pipework and control system for blockages, clogging standing water and structural damage.
- Bioretention Systems (Table 18.3 in CIRIA C753) these will require quarterly inspection to check for silting
 and ponding, plant diseases and insect inlet and outlets for blockages. Regular maintenance will be required
 to remove sediments, litter, and surface debris.
- Hydro-brake flow control it is recommended to conduct inspections on a quarterly or semi-annual basis to
 detect any indications of damage, blockages, or wear, as well as to clean the hydro-brake monthly or quarterly
 to ensure unobstructed flow paths. Additionally, annual lubrication is recommended, along with annual testing
 and calibration, or alternatively, every few years.

Conclusion

The proposed drainage strategy provides details of management of surface water and foul water from the proposed development.

The redevelopment area is divided into two catchments: A and B. Catchment A has a gross area of 0.4ha comprising of roof area, footways, green areas and access roads. Surface water run-off is discharged into the ground via an infiltration tank hence there is no discharge to the lake.

Catchment B has a gross area of 0.25ha comprising of the roof area from one residential block, a parking area, access road and landscaped areas. The surface water run-off is discharged to the lake at a controlled rate of 1l/s. SuDS features, including permeable paving, a rain garden and detention pond are used to provide storage and water quality benefits.

The foul water from the proposed development is conveyed via a gravity network to connect to the existing combined sewer within the site at MH15. This conveys flows to the existing Thames Water foul water sewer running with Riverside Drive. The proposed discharge rate for foul water is 11.4l/s.

At the next stage of the project, the following actions/surveys will be required to develop the design:

- Environment Assessment Form to be undertaken to analyse the impact of discharging water from site on the ecology of the lake.
- Maximum groundwater levels to be confirmed for site to check proper functionality of infiltration system.

Appendix A. Design Assessment Checklist

A.1. Delivering SuDS in Richmond

	SuDS Manual Page Ref*	Y	N	Summary of details	Comments / Remedial actions
PRINCIPLES					
Is the runoff managed at or close to its source, wherever possible? If not, give reasons.	3	Y		Green roofs and permeable paving are used to manage runoff to its source.	
Is the runoff managed at or close to the surface, wherever possible? If not, give reasons e.g., infiltration systems are being used to manage the runoff.	3	Y		Runoff from Catchment A is completely infiltrated through underground tank.	
Where the drainage system serves more than one property, is public space used and integrated with the drainage system in an appropriate and beneficial way? If not, give reasons.			N	Serves only one property. Public space is not used.	
Have the opportunities afforded by the drainage system in terms of green infrastructure, biodiversity, urban design, climate adaptation and amenity provision been maximised?	3	Y		Green roof, rain garden, permeable paving, filter drain, and detention pond provide amenity and biodiversity. (See Section 3.3.8)	Infiltration tank is provided to promote the multifunctional use of space, by allowing the surface about the tank to be amenity facilities.
Has an appropriate SuDS Management train been provided	18	Y		Water quality has been assessed by considering a sequence of water travelling through permeable paving before entering a detention basin to mitigate (See Table 4.4)	
Are the operating and maintenance requirements of the drainage system adequately defined?	3	Y		Provided in the strategy (see section -4.0)	
Is operation and maintenance achievable at an acceptable cost?	3	Y		Conventional SuDS components have been proposed, where possible using open structures to avoid cost implications. Refer to section 4 for operation and maintenance details.	
POINT OF DISCHARGE					
Does the design meet the following discharge hierarchy 1. Infiltration is preferred where it is safe and acceptable to do so; 2. If infiltration is not possible discharge to water course; 3. Discharge to sewer as last resort.	16	Y		Runoff from Catchment A is completely infiltrated. Catchment B discharge into water course is provided as infiltration is not possible. See Section – 3.3.1 for details	Infiltration is not suitable on the east of the site as per trial hole results
If infiltration is used: Confirm that an acceptable infiltration assessment has been undertaken and submitted?	16	Y		Infiltration testing completed as a part of ground investigation in accordance BRE365. Refer to section 2.4.1	

ischarge is to sewer, rather than a	16		N	Surface water is not proposed to	
face water body, provide justification.			. •	discharge into the sewer	
discharge to a sewerage asset is posed, has evidence been provided the the design criteria have been eed with the sewerage undertaker I that an appropriate connection all has been agreed?	12		N	Surface water is not proposed to discharge into the sewer	
ve adequate and appropriate eedance routes been provided and they protected from future relopment?	9,11	Υ		Any exceedance from the site would flow away from the buildings, following the topography of the land, until flowing into the existing lake.	
ERCEPTION					
es the scheme design demonstrate site retention of approximately the 5mm of runoff from impermeable faces for most events? How is proception to be delivered (e.g., tration, green roofs, permeable tements, vegetated surfaces, poke design - provide details)?	12	Υ		For the areas where we are using infiltration, this can be achieved. For the surrounding areas this cannot be achieved as the ground conditions are not suitable.	
AK FLOW RATE CONTROL					
es the design demonstrate control of 1-year, critical duration site event to equivalent 1-year greenfield peak v rate or below?	17		N	(See section 3.3.2)	
es the design demonstrate control of 100-year, critical duration site event the equivalent 100year greenfield lk flow rate or below?	17		N	(See section 3.3.2)	
the design calculations take account uture development (urban creep) and nate change?	16	Υ		Climate change allowance of 40% is used. A 10% urban creep considered for design.	
				(See Section 3.2.1)	
LUMETRIC CONTROL (FOR THE YEAR, 6 HOUR EVENT)					
es the design demonstrate that, for 100-year 6-hour event: The	17		N	Maximum discharge rate of 1l/s proposed from site.	
charged site runoff volume is not ater than the equivalent greenfield off volume? Or: The discharged site off volume over and above the tivalent greenfield runoff volume (i.e. Long Term Storage Volume) is charged at a rate < 2 l/s/ha (or other rate that is considered eptable in not negatively impacting d risk of the receiving water body) Peak flow rates from the site are tricted to 2 l/s/ ha or Qbar, whichever the greater ha (or another rate that is sidered acceptable in not negatively acting flood risk of the receiving				Qbar for catchment B is 0.37l/s. The discharge rate is a close as practical for the requirements, at 1l/s. Designing for compliance would result in maintenance issues in terms of blockage etc. Refer to Section 3.3.2.	
er body).					

Is the receiving water body (surface or groundwater) environmentally sensitive (E.g., Groundwater Source Protection Zone? What is its designation? Are any implications for drainage design clearly defined	6	Y		No groundwater source protection zone identified for site area. Please refer to Section 2.4.2	
Does the design include an appropriate treatment strategy that ensures: 1. Sediment is trapped and retained on site in accessible and maintainable areas? 2. Has a sufficient number of drainage components been provided in series prior to discharge? 3. Suitable pollution removal capability e.g., % TSS removal (where this is a requirement of the SAB)	6	Υ		See Section 3.3.5	
FUNCTIONALITY					
Are the design features sufficiently durable to ensure structural integrity over the system design life (residential 100 years and commercial 60 years), with reasonable maintenance requirements?	13	Y		A minimum cover depth of 0.6m has been provided for non-traffic areas with casing and appropriate bedding to be provided to pipes. See Section 3.2.2.3	
Are all parts of the SuDS system outside any areas of flood risk? If not, provide justification and evidence that performance will not be adversely affected.	13	Y		All SuDS features are outside flood risk areas.	
Is pumping a requirement for operation of the system? If yes, provide justification and set out operation and maintenance/adoption arrangements.	20		N	N/A	
Has runoff and flooding from all sources (both on and off site) been considered and taken into account in the design?	13	Y		Surrounding areas fall away from the site due to the topography so this does not need to be considered.	
Are 1 in 30-year flows fully conveyed within the SuD system?	12	Υ		See Section 3.2.2	
Are 1 in 100-year flows contained or stored on-site within safe exceedance storage areas and flow paths? Note some approving authorities may require greater return periods.	12	Y		See Section 3.2.2	
CONSTRUCTABILITY					
Has an acceptable construction method statement been submitted and approved?			N	This will be provided at a later stage of design process.	
MAINTAINABILITY					
Has an acceptable Maintenance Plan been submitted and approved?	3		N	This will be provided at a later stage of design process.	
INFORMATION PROVISION					
Do the design proposals include sufficient provision for community engagement and awareness raising?		Y		The site is secure and private so limited opportunity to engage with community. Information/signage can be provided to improve awareness of SuDS.	

Appendix B. CIRIA C697 The SuDS Manual

B.1. CIRIA C697 Table 5.2 Land Use Selection Matrix

SuDS group	Technique	ensity	ential	roads	nercial	ots	Construction Site	field	Contaminated land
		Low density	Residential	Local roads	Commercial	Hotspots	Constr	Brownfield	Contar
Retention	Retention pond	Υ	Υ	Y ₁	Y ₂	Y ₂	Y ₃	Υ	Y ₂
	Subsurface storage	Υ	Υ	Υ	Υ	Υ	Y ₃	Y	Υ
Wetland	Shallow wetland	Υ	Υ	Y ₁	Y ₂	Y ₂	N	Y	Y ₂
	Extended detention wetland	Υ	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
	Pond/wetland	Υ	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
	Pocket wetland	Υ	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
	Submerged gravel wetland	Υ	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
	Wetland channel	Υ	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
Infiltration	Infiltration trench	Υ	Υ	Y ₁	Y ₂	N	N	Υ	Y ₄
	Infiltration basin	Υ	Υ	Y ₁	Y ₂	N	N	Υ	Y ₄
	Soakaway	Υ	Υ	Y ₁	Y ₂	Ν	N	Υ	Y ₄
Filtration	Surface sand filter	N	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
	Sub-surface sand filter	N	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
	Perimeter sand filter	N	N	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
	Bioretention/filter strip	Υ	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
	Filter trench	Υ	Υ	Y ₁	Y ₂	Y ₂	N	Υ	Y ₂
Detention	Detention basin	Υ	Υ	Y ₁	Y ₂	Y _{1,}	Y ₃	Υ	Y ₂
Open	Conveyance swale	Υ	Υ	Y ₁	Y ₂	Y ₂	Y ₃	Υ	Y ₂
channels	Enhanced dry swale	Υ	Υ	Y ₁	Y ₂	Y ₂	Y ₃	Υ	Y ₂
	Enhanced wet swale	Υ	Υ	Y ₁	Y ₂	Y ₁	Y ₃	Υ	Y ₂
Source	Green roof	Υ	Υ	N	Y ₂	Υ	N	Υ	Υ
control	Rainwater harvesting	Υ	Υ	N	Y ₂	N	N	Υ	Υ
	Permeable paving	Υ	Υ	N	Y ₂	Y ₁	N	Υ	Y ₂

Y: Yes N: No

¹ May require two treatment train stages, depending on type and intensity of road use and receiving water sensitivity.

 $^{^{2}\,}$ May require three treatment train stages, depending on receiving watercourse sensitivity.

³ Will require draw-down and rehabilitation following construction activities, prior to use as a permanent drainage system.

⁴ Providing designs prevent mobilisation of contamination.

CIRIA C697, Table 5.4 Site Characteristics Selection Matrix -B.2. Catchment B

SuDS group	Technique		SIOO	Area draining to a	single Subs component	Minimum depth to	water table		edols elios	-	Available nead	-	Available space
		Impermeable	Permeable	0 - 2ha	>2ha	0 - 1m	>1m	%9 - 0	>5%	0 - 1m	1 - 2m	Low	High
Retention	Retention pond	Υ	Y ₁	Υ	Y ₅	Υ	Υ	Υ	Υ	Υ	Υ	N	Υ
	Subsurface storage	Υ	Υ	Υ	Y ₅	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Wetland	Shallow wetland	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Y	N	Υ	Υ	N	Υ
	Extended detention wetland	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Υ	N	Υ	Υ	N	Υ
	Pond/wetland	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Y	N	Υ	Υ	N	Υ
	Pocket wetland	Y ₂	Y ₄	Y ₄	N	Y ₂	Y ₂	Y	N	Υ	Υ	Υ	Υ
	Submerged gravel wetland	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Y	N	Υ	Υ	N	Υ
	Wetland channel	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Y	N	Υ	Υ	N	Υ
Infiltration	Infiltration trench	N	Y	Y	N	N	Y	Y	Y	Υ	N	Y	Y
	Infiltration basin	N	Y	Υ	Y ₅	N	Y	Y	Y	Υ	N	N	Υ
	Soakaway	N	Y	Y	N	N	Y	Y	Y	Y	N	Y	Y
Filtration	Surface sand filter	Y	Y	Y	Y ₅	N	Y	Y	N	N	Υ	N	Y
	Sub-surface sand filter	Y	Y	Y	N	N	Y	Y	N	N	Y	Y	Y
	Perimeter sand filter	Y	Y	Y	N	N	Y	Y	N	Y	Y	Y	Y Y
	Bio-retention/filter strip	Y			N	N			N	Y	Y	N	· .
Detection	Filter trench	Y	Y ₁	Y	N	N N	Y	Y	N Y	Y N	Y Y	Y N	Y
Detention	Detention basin	-	Y ₁		Y ₅		·		·	1			<u> </u>
Open channels	Conveyance swale	Υ	Y	Y	N	N	Y	Y	N ₃	Y	N	N	Y
onamiois	Enhanced dry swale	Υ	Y	Υ	N	N	Y	Y	N ₃	Y	N	N	Y
	Enhanced wet swale	Y ₂	Y ₄	Y	N	Y	Y	Y	N ₃	Y	N	N	Y
Source control	Green roof	Y	Y	Y	N	Y	Y	Y	Y	Y	Υ	Υ	Υ
33	Rainwater harvesting	Υ	Υ	Υ	N	Y	Y	Y	Y	Y	.,	.,	
	Permeable paving	Υ	Υ	Υ	Υ	N	Υ	Υ	N	Υ	Υ	Υ	Υ

Y: Yes N: No

- 1. With liner
- With surface baseflow
- 3. Unless follows contours
- With liner and constant surface baseflow, or high ground water table Possible, but not recommended (implies appropriate management train not in place) Where high flows are diverted around SuDS component.

CIRIA C697, Table 5.4 Site Characteristics Selection Matrix -B.3. Catchment A

	Calcriffe A												
SuDS group	Technique		SIIOS	Area draining to a	single subsident component	Minimum depth to	water table	0 c c c c c c c c c c c c c c c c c c c	Site slope		Available nead	:	Available space
		Impermeable	Permeable	0 - 2ha	>2ha	. 0 - 1m	, >1m	, 0 - 5%	>5%	0 - 1m	1 - 2m	Low	High
Retention	Retention pond	Υ	Y ₁	Υ	Y ₅	Y	Y	Υ	Υ	Υ	Υ	N	Y
	Subsurface storage	Υ	Y	Υ	Y ₅	Y	Y	Υ	Υ	Υ	Υ	Υ	Υ
Wetland	Shallow wetland	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Υ	N	Υ	Υ	N	Υ
	Extended detention wetland	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Y	N	Υ	Υ	N	Υ
	Pond/wetland	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Y	N	Y Y	Y	N Y	Y
	Pocket wetland	Y ₂	Y ₄	Y ₄	N	Y ₂	Y ₂	Y	N		Y Y		Y
	Submerged gravel wetland Wetland channel	Y ₂	Y ₄	Y ₄	Y ₆	Y ₂	Y ₂	Y	N	Y Y	Υ Υ	N N	Y
Infiltration	Infiltration trench	Y ₂	Y ₄	Y 4	Y ₆	N N	Y ₂	Υ	N Y	Υ	r N	Y	Y
militation	Infiltration trench	N	Υ	Y	Y ₅	N	Υ	Υ	Y	Υ	N	Y N	Y
	Soakaway	N	Y	Y	N	N	Y	Y	Y	Y	N	Y	Y
Filtration	Surface sand filter	Y	Y	Y	Y ₅	N	Y	Y	N	N	Y	N	Y
Tilliation	Sub-surface sand filter	Y	Y	Y	N	N	Y	Y	N	N	Υ	Y	Y
	Perimeter sand filter	Y	Y	Y	N	N	Y	Y	N	Y	Y	Y	Y
	Bio-retention/filter strip	Y	Υ	Υ	N	N	Y	Y	N	Y	Y	N	Y
	Filter trench	Υ	Y ₁	Υ	N	N	Y	Υ	N	Y	Y	Y	Y
Detention	Detention basin	Υ	Y ₁	Υ	Y ₅	N	Y	Υ	Y	N	Υ	N	Υ
Open	Conveyance swale	Υ	Υ	Υ	N	N	Υ	Υ	Nз	Y	N	N	Υ
channels	Enhanced dry swale	Υ	Υ	Υ	N	N	Y	Υ	Nз	Y	N	N	Υ
	Enhanced wet swale	Y ₂	Y ₄	Υ	N	Y	Y	Υ	Nз	Y	N	N	Y
Source	Green roof	Υ	Υ	Υ	N	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ
control	Rainwater harvesting	Υ	Υ	Υ	N	Υ	Y	Υ	Υ	Y			
	Permeable paving	Υ	Υ	Υ	Υ	N	Υ	Υ	N	Υ	Υ	Υ	Υ

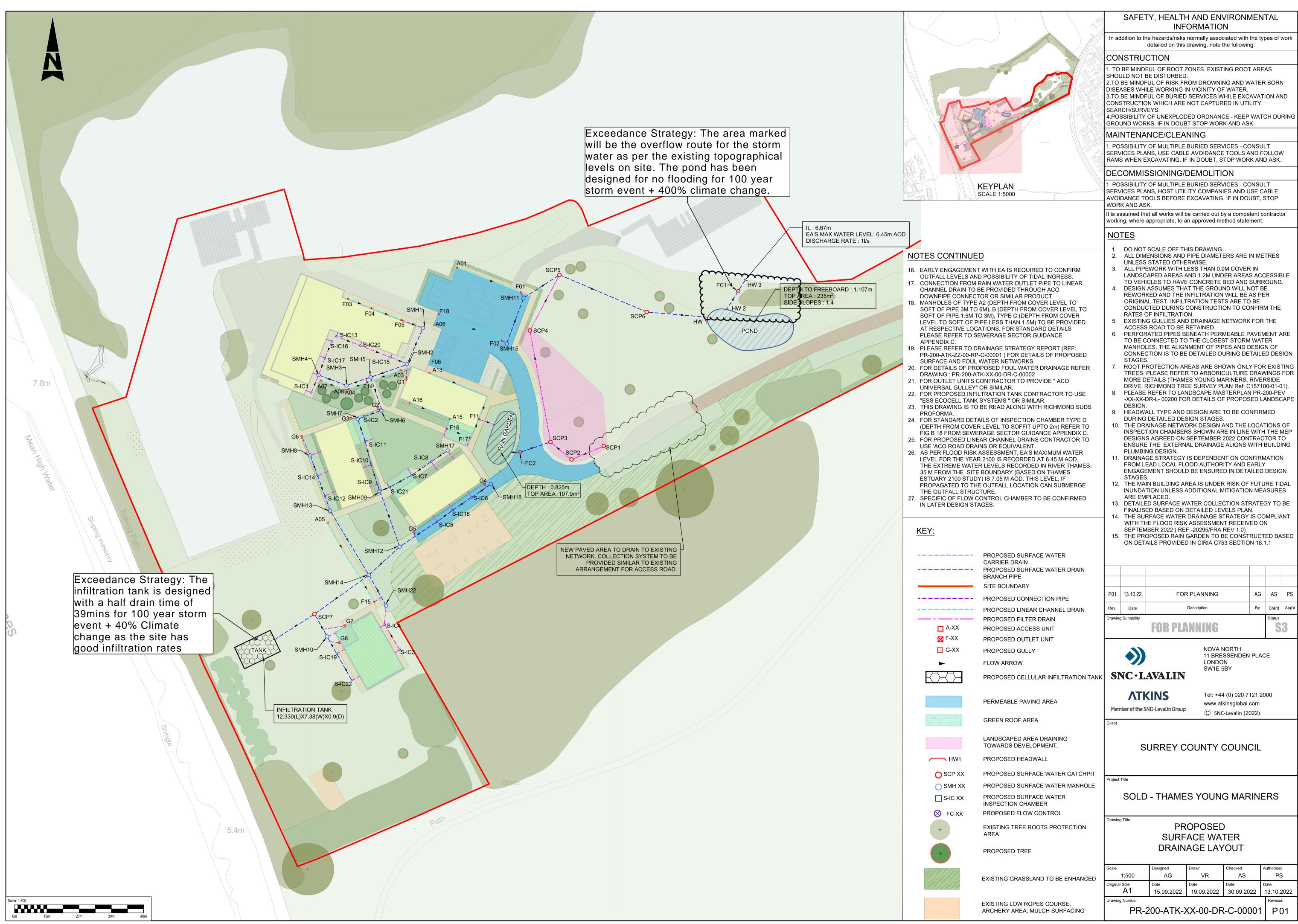
Y: Yes N: No

^{7.} With liner

With surface baseflow

Unless follows contours

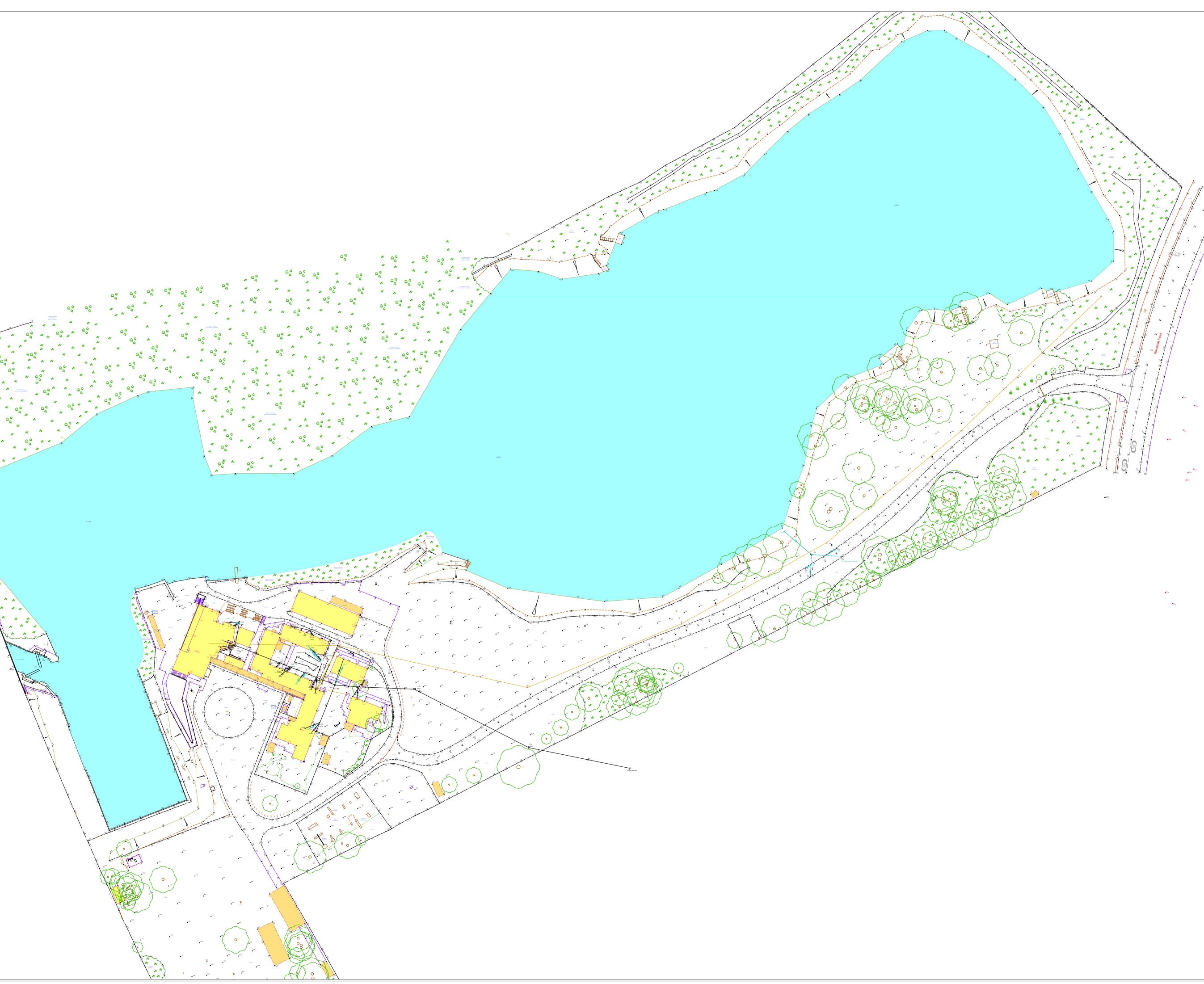
<sup>With liner and constant surface baseflow, or high ground water table
Possible, but not recommended (implies appropriate management train not in place)
Where high flows are diverted around SuDS component.</sup>


Appendix C. Drawings and Layouts

C.1. Proposed Landscape Masterplan (Pick Everard)

C.2. Proposed Surface Water Drainage Layout

nternal Project Number: 5210336




C.3. Proposed Foul Water Drainage Layout

C.4. Topographical Survey

Station Information:

Station	Easting (m)	Northing (m)	Level (m)
GH1	516323.615	172308.979	6.360
GH2	516352.078	172260.305	8.303
GH3	516425.021	172284.705	8.359
GH4	516516.759	172336.271	7.770
GH5	516418.365	172364.921	8.348
GH6	516407.847	172319.057	8.433
GH7	516324.417	172347.029	6.000

This survey has been orientated to the Ordnance Survey (O.S) National Grid OSGB36(15) via Global Navigation Satellite Systems (GNSS) and the O.S. Active Network (OS Net).

172383.899

172537.845

172361.551

172320.016 8.074

A true OSGB36 coordinate has been established near to the site centre via a transformation using the OSTN15GB & OSGM15GB transformation models.

The survey has been correlated to this point and a further one or more OSGB36 (15) points established to create a true O.S. bearing for angle orientation.

No scale factor has been applied to the survey therefore the coordinates shown are arbitrary & not true O.S. Coordinates which have a scale factor applied.

Please refer to Survey Station Table to enable establishment of the on-site grid and datum.

Buildings	Overhead Cable	IC	Inspection chamber	Во	Bollard
Wall	Concrete edge	Plnv	Pipe invert	IB	Illuminated bollard
Kerb line	Tarmac edge	Gy	Gully	Bin	Rubbish bin
Line marking	Grass verge	Bg	Back gully	Vp	Vent pipe
Drop kerb	Canopy/Overhang	Dp	Down pipe	Grl	Ground light
Centre line	Verge	Pipe	Pipe above ground	Lbox	Letter box
Top of bank	Bottom of bank	MH	Manhole	Stmp	Tree Stump
1	Station and Name	WL	Water level	Sty	Stile
100.000	Station Level	FI	Flood light	IFL	Internal floor level
→ ± 25		Lp	Lamp post	THL	Threshold level
<i>•</i>)⊙*	Tree / Bush / Sapling	Тр	Telegraph post	Sp	Sign post
	Area of Undergrowth	Ep	Electricity post	TH	Trialhole
* " *		TI	Traffic light	вн	Borehole
^ω ς σ ^μ	Woodland	Bus	Bus stop	ELC	Electric
R: F	Ridge Level	Sv	Stop valve	ВТ	British Telecom
E: E	Eaves Level	St	Stop tap	C'box	Control box
F: F	lat Roof Level	Er	Earth rod	TT	Tactile
\sim	Gate	Wm	Water meter	BP	Brick paved
ence types		Gas	Gas valve	CPS	Concrete paving s
I/R	Interwoven	Av	Air valve	CVR	Cover
	Iron Railings	ICU	Unidentified inspection	R/wall	Retaining wall
W/M	Wire Mesh	Wo	Wash out	TWL	Top of Wall Level
P\R	Post & Rail	Re	Rodding eye	TCL	Tree canopy level
P\W	Post & Wire	ВВ	Belisha beacon	G:	Girth
C/L	Chain Link	CTV	Cable tv	MG	Multi girth
WP	Wooden Panels	Mkr	Marker post	IC	Inspection chamb
		Gmkr	Gas marker post	CL:	Cover level
C\B	Close Boarded	So	Soffit	IL:	Invert level
S\P	Steel Palisade	Fh	Fire hydrant	UTR	Unable to raise

Topographical Surveys
Site Engineering
Utility / CCTV Surveys Measured Building Surveys3D Laser ScanningRevit & BIM Models

The Courtyard ban Park t Albans tfordshire NL4 OLA	24 Riverside Studios Amethyst Road Newcastle Bus. Park Newcastle-U-Tyne NE4 7YL	27, Cornwall Ten Regents P London NW1 5L
727) 854481	t. (01912) 736391	t. (02072) 2

Pick Everard

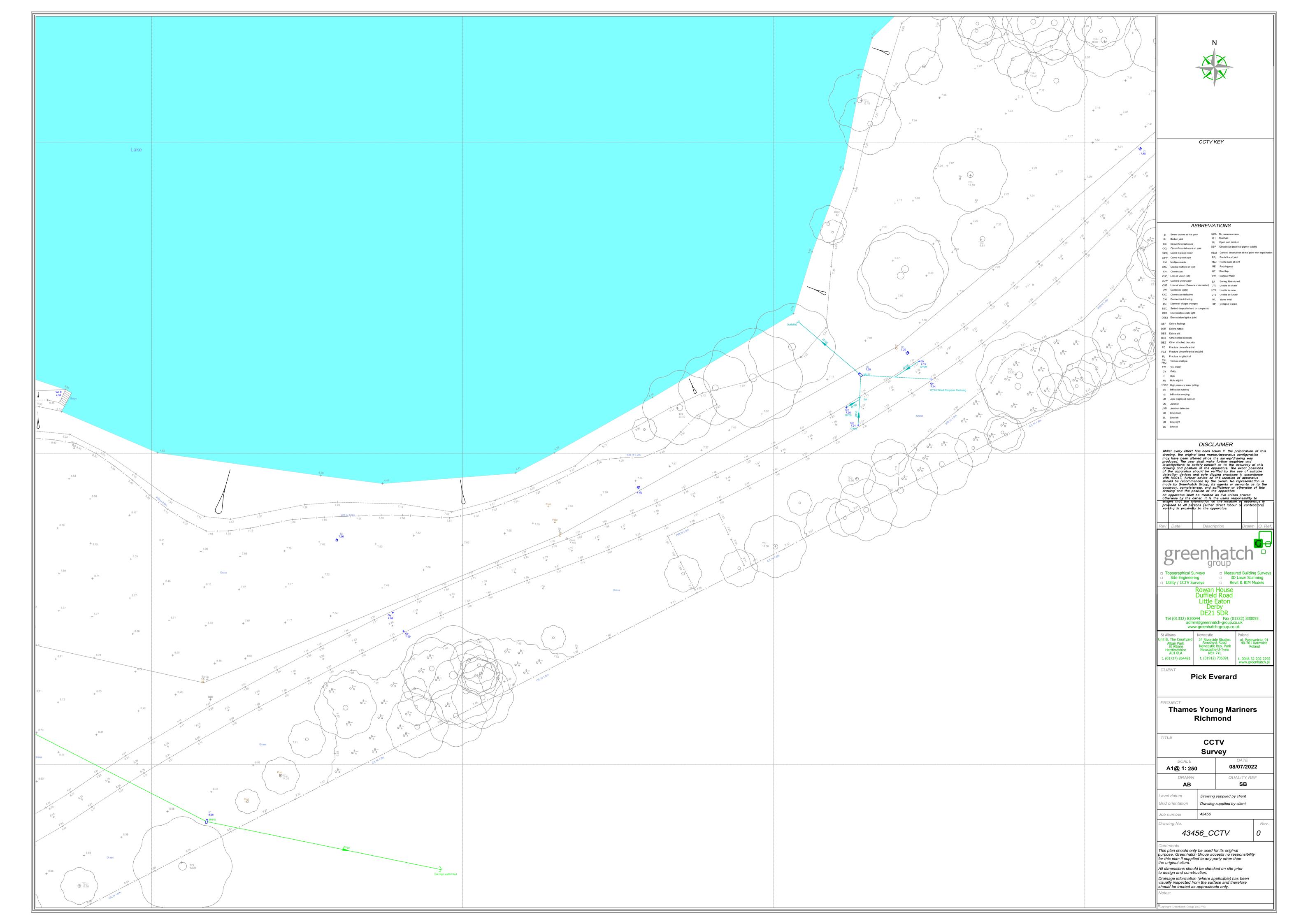
Thames Young Mariners, Surrey Outdoor Learning Centre Riverside Drive, TW10 7RX

Topographical Survey

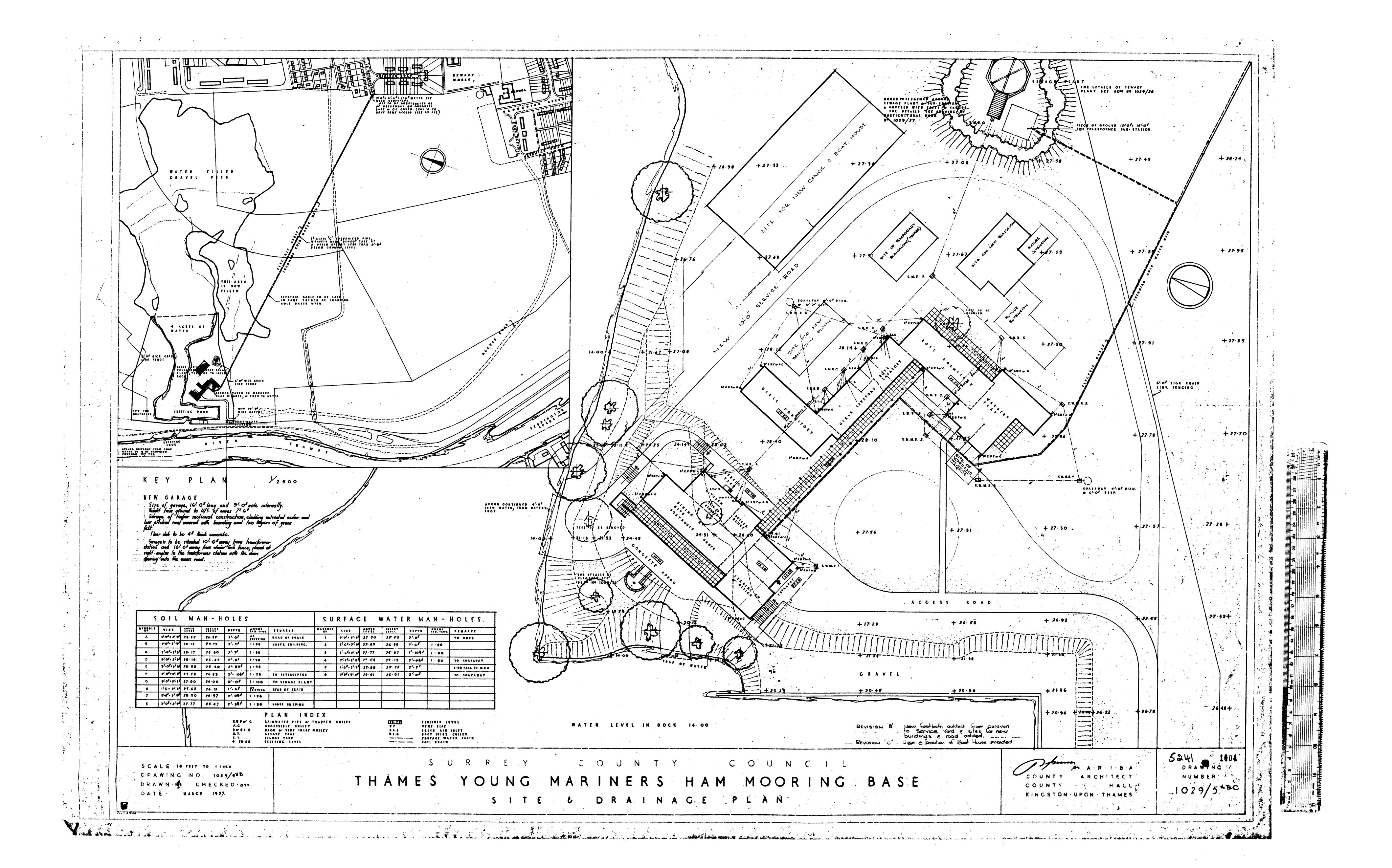
SCALE		DATE
A1@ 1: 1000		06.04.22
DRAWN		QUALITY REF
SA		GH13549
Level datum	See note	9
Grid orientation	See note	

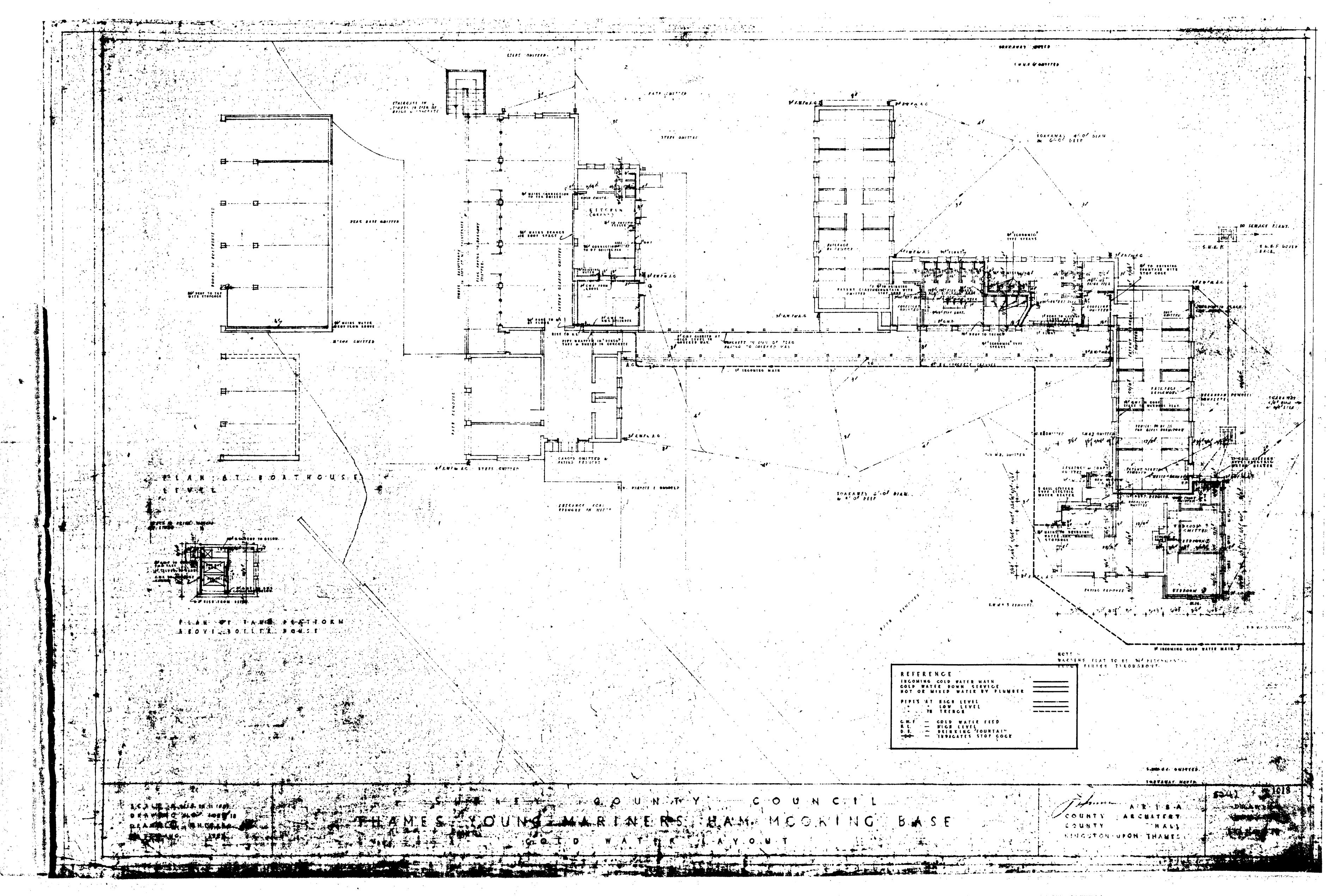
43456

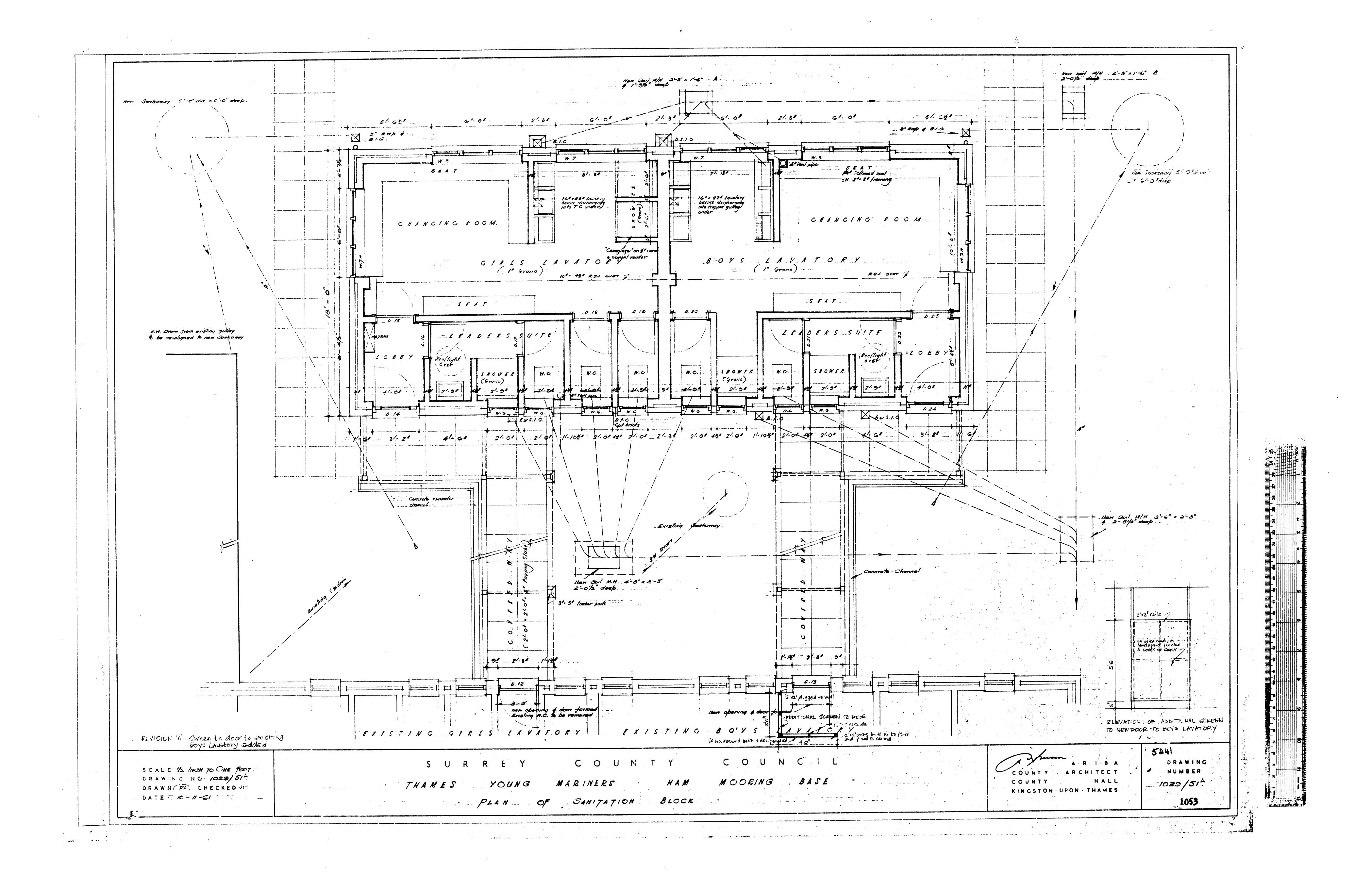
ob number rawing No.

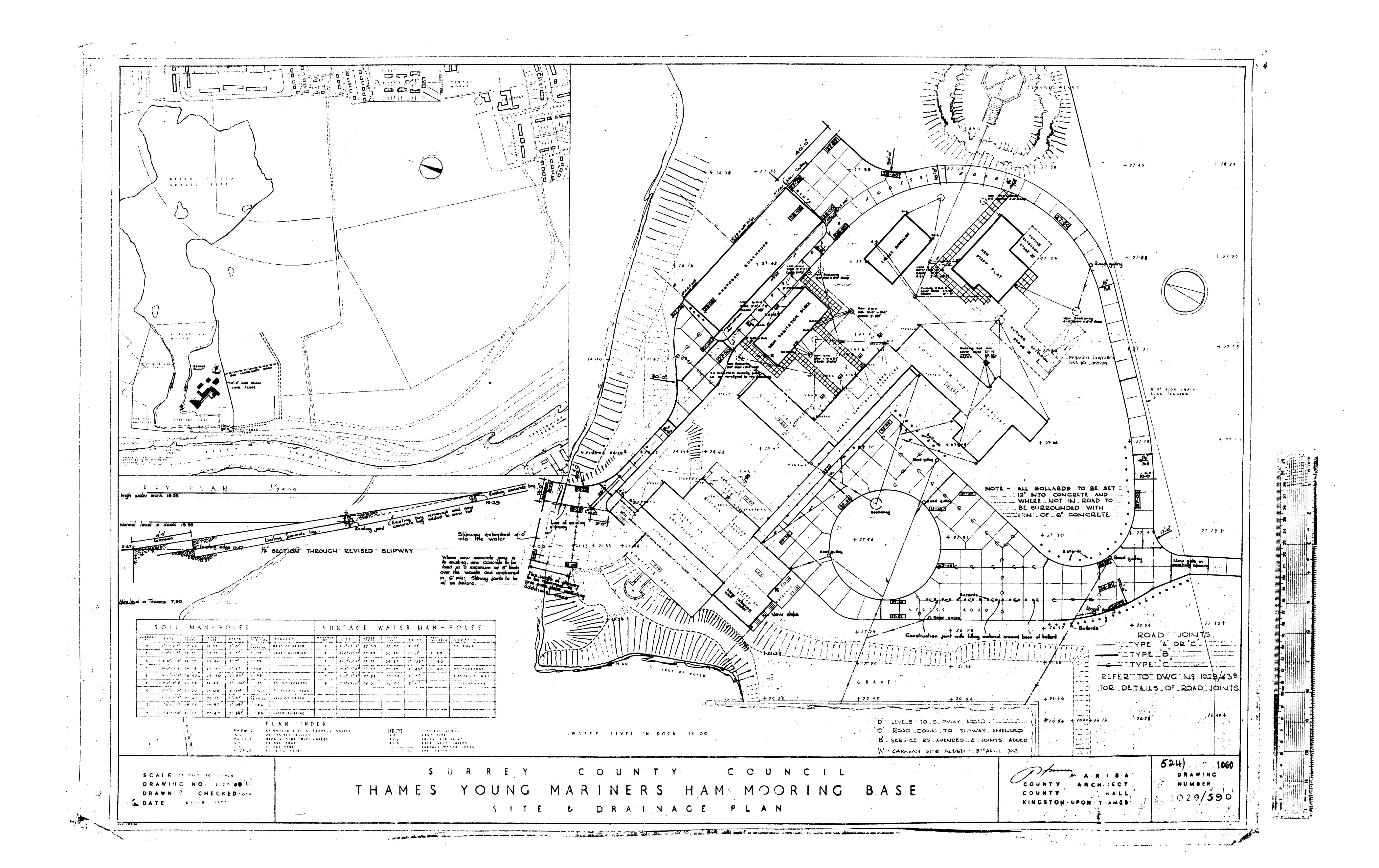

43456_T

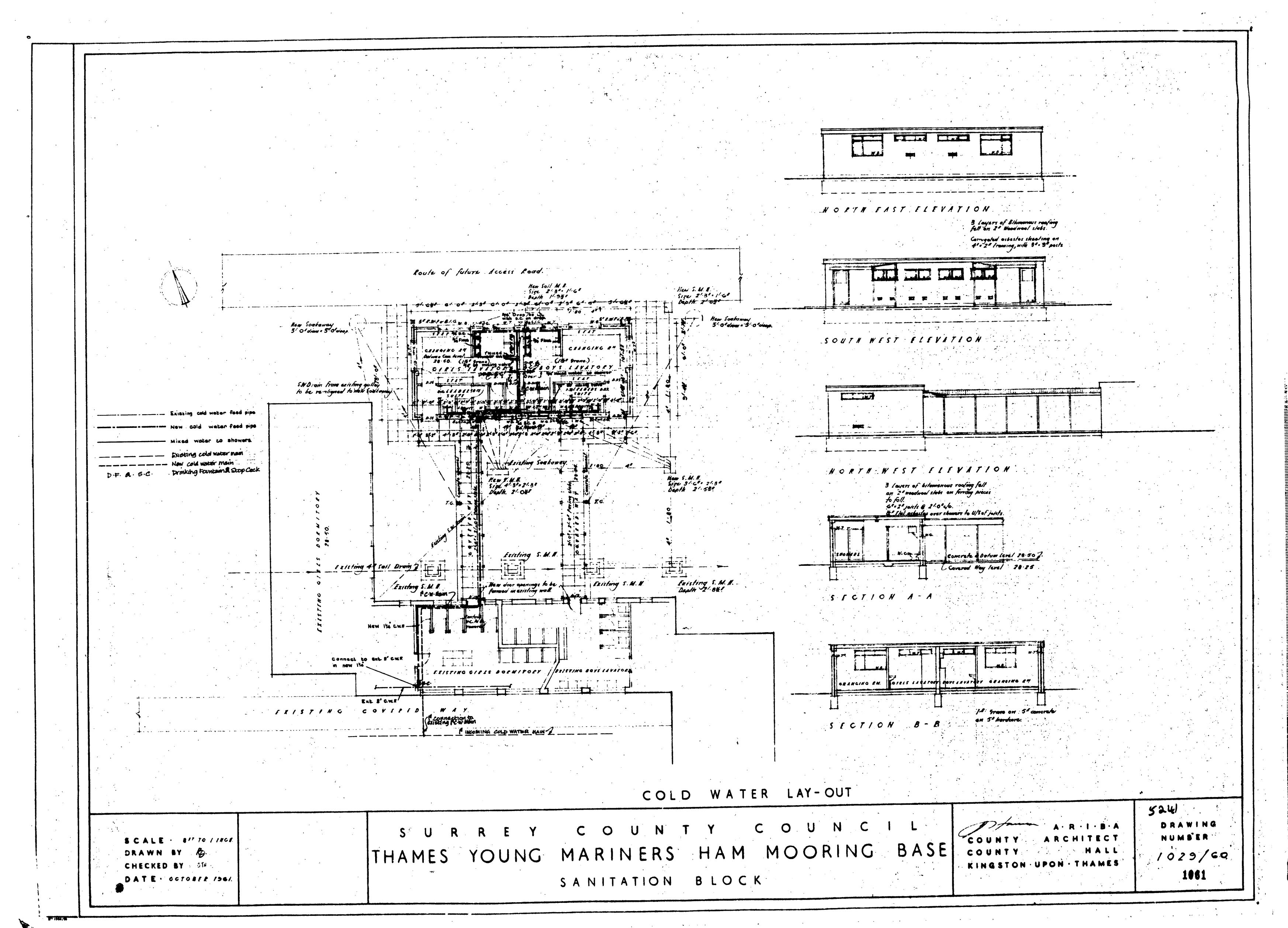
This plan should only be used for its original purpose. Greenhatch Group accepts no responsibility for this plan if supplied to any party other than the original client. All dimensions should be checked on site prior to design and construction. Drainage information (where applicable) has been visually inspected from the surface and therefore should be treated as approximate only.

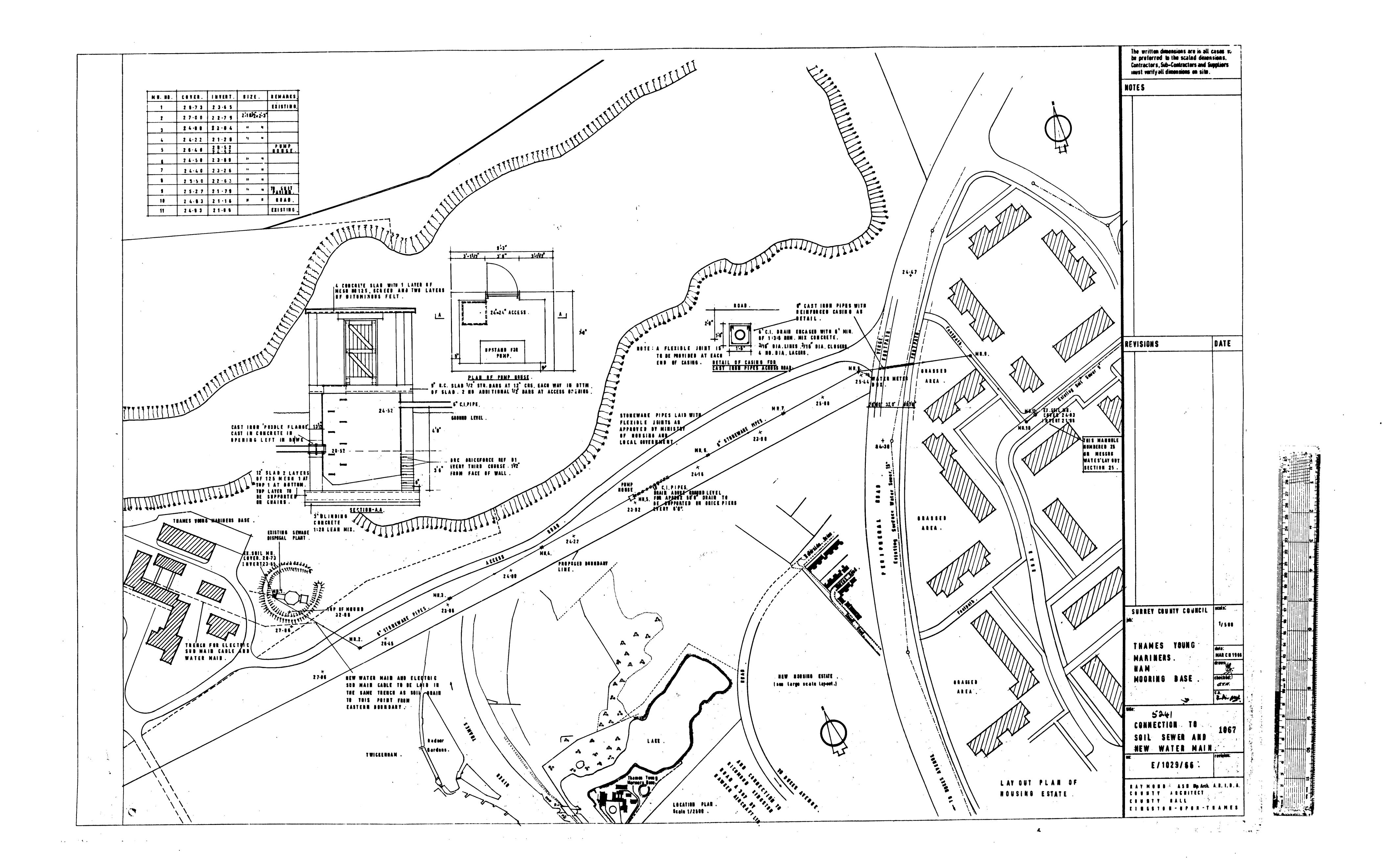

C.5. CCTV Survey Drawings



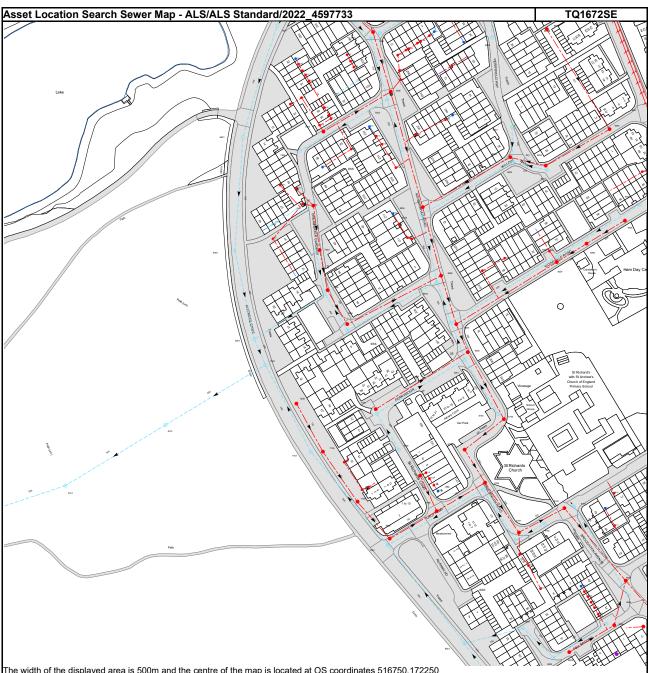





C.6. Historical Drainage Drawings



AND REPORT OF THE PROPERTY OF



THE PROPERTY OF THE PROPERTY O

C7	The	amae M	later [Drainage	Litility	Sparch
U. / .	. 1110	ATTICS VI	alti	Diamage	Othitty	Scarcii

The width of the displayed area is 500m and the centre of the map is located at OS coordinates 516750,172250

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Based on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Appendix D. Infiltration Data from Scoping Investigation Report (20295/SIR Rev 1.0)

D.1. Trial Pit Logs

Soils Limited Trial Pit Log Newton House, Cross Road, Tadworth KT20 5SR Tel: 01737 814221 Email: admin@soilslimited.co.uk Method: Project Name: Thames Young Mariners Project Project No.: 20295 Plant: JCB Thames Young Mariners Project, TW10 7RX Location: Support: Client: SCC Trial Pit Length: Trial Pit Width: Co-ords: Dates: 10/08/2022 Level:

Trial Pit No.

TPSK1
Sheet 1 of 1

Hole Type

TP

Scale 1:25

Logged By

Dates:	:	10/0	08/2022	Level:				Co-ords:	JC
Water Strike			Situ Testing	Depth	Level	Legend		Stratum Description	
W _k	Depth 0.20	Type D	Results	(m) 0.10	(mAOD)	Legend	fi ∖ <u>ro</u> B	Grass over grey, gravelly SILT. Gravel is angular to well ne to coarse flint. Occasional fine angular brick. roots a potlets. MADE GROUND Brown silty gravelly CLAY. Gravel is angular, fine to bou	and Ider brick,
	0.50	D					fl G	int, tarmac, concrete and metal. roots and rootlets. MA GROUND	DE
	1.00	D		0.80			W	Brown and orange gravelly sandy CLAY. Gravel is sub a vell rounded, fine to coarse flint, metal sheeting and gla ydrocarbon type smell. Roots and rootlets. MADE GRO	iss. Slight 📙
	1.50	D							- - - - - - - - - - - - - - - - - - -
	2.50	D		2.00			B R	Brown, slightly gravelly sandy CLAY. Gravel is sub-angu Roots and rootlets. WORKED GROUND	ular flint 2
	2.30	D							- 3
				3.20		XXXXXX		End of Pit at 3.200m	- - - - - - - - - - - - - - - - - - -
									- 4
									- 5
	I Ramarks:							ı	Sample Type

General Remarks:

Sample Type

D: Disturbed
B: Bulk
J: Jar

Groundwater Remarks:

W: Water

SOIL I M I T E D

Groundwater Remarks:

Soils Limited

Newton House, Cross Road, Tadworth KT20 5SR Tel: 01737 814221 Email: admin@soilslimited.co.uk

Trial Pit Log

Trial Pit No.

TPSK2

Project Name: Thames Young Mariners Project Proj

Location: Thames Young Mariners Project, TW10 7RX

Project No.: 20295

Plant: JCB Support:

Method:

Sheet 1 of 1 Hole Type TP

Scale

D: Disturbed B: Bulk J: Jar W: Water

 Client:
 SCC
 Trial Pit Length:
 m
 Trial Pit Width:
 m
 1:25

 Dates:
 10/08/2022
 Level:
 Co-ords:
 Logged By

Dates	• •	10/0	08/2022	Level:			Co-ords:	JC	
Water Strike			Situ Testing	Depth	Level	Legend	Stratum Description		
Str	Depth	Туре	Results	(m)	(mAOD)	xxxxxxxx			
	0.20	D		0.10			Grass over grey, gravelly SILT. Gravel is angular to well r fine to coarse flint. Occasional fine angular brick. roots ar rootlets. MADE GROUND Brown silty GRAVEL. Gravel is angular, fine to cobble bri tarmac, concrete. roots and rootlets. MADE GROUND	rounded, nd ick, flint,	-
	0.50	D		0.50			Brown and grey, gravelly very silty SAND. Gravel is sub a well rounded, fine to coarse flint. Roots and rootlets. WO GROUND	angular to PRKDED	- - - - - - -
	1.00	D		1.10			Brown SAND AND GRAVEL. Gravel is sub-angular flint. rootlets. KEMPTON PARK GRAVEL MEMBER	roots and	- 1 - - - - - -
	1.50	D							- - - - - -
	2.00	D		2.40					_ 2 - - - - - - - -
							End of Pit at 2.400m		= - - - - - - - -
									- 3 - - - - - - -
									- - - - - - - - - - - - - - - - - - -
									- - - - - - -
									- 5
Genera	ıl Remarks:						s	Sample Type	- - -

D.2. Infiltration Test Data

Job No.:	20295	Location ID:	TP1			
Job Name:	TYM	Test Number:	1			
Trial Pit Dimens	ions (m)	Final Depth:	3.20			
	4 00					
Width Top:	1.00	Width Base:	0.60			

Elapsed Time	Water Depth
(minutes)	(m bgl)
0.00	2.38
2.00	2.38
6.00	2.39
14.00	2.39
24.00	2.39
37.00	2.40
57.00	2.41
84.00	2.43
119.00	2.44
170.00	2.47
210.00	2.49
240.00	2.50
270.00	2.52

Job No.:	20295	Location ID:	TP2
Job Name:	TYM	Test Number:	1
Trial Pit Dimens	ions (m)	Final Depth:	2.50
Width Top:	1.20	Width Base:	0.60
Length Top:	2.20	Length Base:	2.00
Elapsed Time	Water Depth		
(minutes)	(m bgl)		
0.00	2.20		

2.30

2.40*

*Dry - TP base at 2.40m bgl

1.00

2.00

Job No.:	20295	Location ID:	TP2			
Job Name:	TYM	Test Number:	2			
Trial Pit Dimen	sions (m)	Final Depth:	2.40			
Width Top	: 1.20	Width Base:	0.60			
Length Top	: 2.20	Length Base:	2.00			

Elapsed Time	Water Depth
(minutes)	(m bgl)
0.00	2.25
1.00	2.30
2.00	2.40

Job No.:	20295	Location ID:	TP2			
Job Name:	TYM	Test Number:	3			
Trial Pit Dimens	sions (m)	Final Depth:	2.40			
Width Top:	1.20	Width Base:	0.60			
Length Top:	2.20	Length Base:	2.00			

Elapsed Time	Water Depth
(minutes)	(m bgl)
0.00	2.20
1.00	2.30
2.00	2.40

Appendix E. Calculation

E.1. Proposed Storm Water Calculations

Atkins Global		Page 1
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	D = = 1	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 100 PIMP (%) 100

M5-60 (mm) 20.000 Add Flow / Climate Change (%) 0

Ratio R 0.400 Minimum Backdrop Height (m) 0.500

Maximum Rainfall (mm/hr) 250 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 0.900

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00

Volumetric Runoff Coeff. 1.000 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
2.000	12.310	0.082	150.0	0.031	5.00	0.0	0.600	0	225	Pipe/Conduit	€
2.001	12.013	0.310	38.8	0.054	0.00	0.0	0.600	0	225	Pipe/Conduit	•
3.000	0 235	0.102	90.2	0.032	5.00	0 0	0.600	0	150	Pipe/Conduit	•
3.001		0.102		0.000	0.00		0.600	0		Pipe/Conduit	o r o r
2.002	10.886	0.185	59.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	₩
2.003	7.824	0.280	27.9	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	₩
2.004	23.295	0.535	43.5	0.031	0.00	0.0	0.600	0	300	Pipe/Conduit	ď
4.000	13.524	0.113	120.0	0.025	5.00	0.0	0.600	0	150	Pipe/Conduit	₫*
4.001	11.248	0.174	64.5	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ĕ

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
2.000	161.66 160.58		8.630 8.548	0.031 0.085	0.0	0.0	0.0	1.07 2.11	42.4 83.8	18.0 49.2	
3.000 3.001	162.21 160.47		8.450 8.273	0.032 0.032	0.0	0.0	0.0	1.06	18.7 34.5	18.7 18.7	
2.002 2.003 2.004	159.29 158.71 156.95	5.46	8.238 8.053 7.698	0.117 0.117 0.147	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.71 2.48 2.39	67.8 98.8 168.9	67.1 67.1 83.5	
4.000 4.001	161.05 159.37		7.600 7.487	0.025 0.025	0.0	0.0	0.0	0.92 1.25	16.2 22.2	14.5 14.5	

Atkins Global		Page 2
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Dogiosod by VADAEOO1	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
VD Collins	N-1 - 1 0000 1 0	

XP Solutions Network 2020.1.3 Network Design Table for Storm Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto PN (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design (m) 2.005 18.340 0.082 222.8 0.008 0.00 0.0 0.600 o 375 Pipe/Conduit 8 5.000 34.249 0.228 150.0 0.014 5.00 0.0 0.600 o 150 Pipe/Conduit ♂ 2.006 12.959 0.058 225.0 0.015 0.00 0.0 0.600 o 375 Pipe/Conduit 6.000 18.263 0.122 150.0 0.025 5.00 0.0 0.600 o 150 Pipe/Conduit ₽ 0.0 0.600 6.001 23.241 0.155 149.9 0.000 0.00 o 150 Pipe/Conduit • 5.00 7.000 10.976 0.127 86.4 0.018 0.0 0.600 o 150 Pipe/Conduit 2.007 20.821 0.059 350.0 0.017 0.00 0.0 0.600 o 450 Pipe/Conduit ♂ 0.0 0.600 8.000 15.666 0.104 150.0 0.014 5.00 o 150 Pipe/Conduit 6 8.001 7.947 0.232 34.3 0.002 0.00 0.0 0.600 o 150 Pipe/Conduit ₽ 2.008 20.017 0.057 350.0 0.038 0.0 0.600 0.00 o 450 Pipe/Conduit ♂ 2.009 10.985 0.022 499.3 0.000 0.00 0.0 0.600 o 525 Pipe/Conduit € 9.000 21.529 0.256 84.0 0.049 5.00 0.0 0.600 o 225 Pipe/Conduit ₽ 10.000 14.892 0.066 225.0 0.041 5.00 0.0 0.600 o 225 Pipe/Conduit Network Results Table DN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)2.005 154.32 5.87 7.088 0.181 0.0 0.0 0.0 1.21 133.6 100.8 5.000 156.11 5.70 7.459 0.014 0.0 0.0 0.0 0.82 14.5 8.1 2.006 152.51 0.0 1.20 133.0 115.9 6.05 7.006 0.210 0.0 0.0 5.37 7.450 6.000 159.63 0.025 0.0 0.0 0.0 0.82 14.5 14.4 6.001 154.58 5.85 7.328 0.025 0.0 0.0 0.0 0.82 14.5 14.4 7.000 161.93 5.17 7.300 0.018 0.0 0.0 0.0 1.08 19.1 10.3 2.007 149.41 6.37 6.873 0.270 0.0 0.0 0.0 1.08 171.9 145.9 0.0 8.1 8.000 160.23 5.32 7.450 0.014 0.0 0.0 0.82 14.5 8.001 159.37 0.0 1.73 30.5 5.40 7.346 0.016 0.0 0.0 9.4 6.68 6.814 2.008 146.58 0.325 0.0 0.0 0.0 1.08 171.9 171.8 6.86 6.681 0.0 1.00 215.5 171.8 2.009 144.96 0.325 0.0 0.0 9.000 160.99 5.25 7.595 0.049 0.0 0.0 0.0 1.43 56.8 28.8 5.29 7.405 0.0 0.87 34.5 23.9 10.000 160.60 0.041 0.0 0.0

Atkins Global		Page 3
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	IDagianad br. VADAEA01	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
9.001	13.360	0.223	60.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	♂
11.000	10.793	0.072	150.0	0.008	5.00	0.0	1.500	0	150	Pipe/Conduit	₩
11.001	6.950	0.066	105.9	0.000	0.00	0.0	1.500	0	150	Pipe/Conduit	ŏ
											_
12.000	13.136	0.058	225.0	0.046	5.00	0.0	0.600	0	225	Pipe/Conduit	₩
12.001	5.582	0.037	150.0	0.000	0.00	0.0	0.600	0	225	Pipe/Conduit	₩
12.002	9.285	0.062	149.8	0.037	0.00	0.0	0.600	0	300	Pipe/Conduit	ĕ
11.002	37.706	0.198	190.0	0.007	0.00	0.0	1.500	0	300	Pipe/Conduit	₩
11.003	18.955	0.103	184.4	0.002	0.00	0.0	1.500	0	300	Pipe/Conduit	ď
9.002	29.292	0.098	300.0	0.021	0.00	0.0	0.600	0	375	Pipe/Conduit	₩
9.003	19.030	0.076	252.0	0.000	0.00	0.0	1.500	0	375	Pipe/Conduit	ĕ
9.004	8.694	0.063	138.0	0.000	0.00	0.0	1.500	0		Pipe/Conduit	•
9.005		0.063		0.000	0.00		1.500	0		Pipe/Conduit	8
2.003	0.004	0.005	100.1	0.000	0.00	0.0	1.500	O	100	ripe/conduit	•

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
9.001	159.13	5.42	7.339	0.091	0.0	0.0	0.0	1.69	67.3	52.1
11.000 11.001	160.98 159.46		7.630 7.558	0.008	0.0	0.0	0.0	0.71	12.6 15.0	4.7 4.7
12.000 12.001 12.002	160.98 159.99 158.66	5.34	7.575 7.517 7.404	0.046 0.046 0.083	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.87 1.07 1.28	34.5 42.4 90.7	26.9 26.9 47.6
11.002 11.003	152.16 149.19		7.342 7.144	0.098 0.100	0.0	0.0	0.0	1.00	71.0 72.1	54.1 54.1
9.002 9.003 9.004 9.005	144.95 142.28 161.64 159.44	7.18 5.19	6.966 6.869 6.793 6.730	0.212 0.212 0.000 0.000	0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	1.04 1.01 0.74 0.74	115.0 111.4 13.2 13.1	111.2 111.2 1.0 1.0

Atkins Global		Page 4	
18th Fl, Tower C, Cyber Gree			
DLF Cyber City, DLF Phase - III			
Gurgaon, Haryanan - 122 002,		Micro	
Date 12/10/2022 17:10	Designed by KARA5291	Drainage	
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade	
XP Solutions	Network 2020.1.3	•	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
2.000	0	225	SMH1	9.630	8.630	0 775	Open Manhole	1200
2.001	0						Open Manhole	
3.000	0	150	SMH4	9.300	8.450	0 700	Open Manhole	1200
3.000	0						Open Manhole	
3.001	0	225	Driiio	3.100	0.275	0.002	open namore	1200
2.002	0	225	SMH5	9.500	8.238	1.037	Open Manhole	1200
2.003	0	225	SMH6	8.880	8.053	0.602	Open Manhole	1200
2.004	0	300	SMH7	8.600	7.698	0.602	Open Manhole	1200
4 000		1.50	~	0 500	- coo	0 550		1000
4.000	0			8.500			Open Manhole	
4.001	0	150	SIC7	8.500	7.487	0.863	Open Manhole	1200
2.005	0	375	SMH09	8.500	7.088	1.037	Open Manhole	1350
							-	
5.000	0	150	SMH18	8.400	7.459	0.791	Open Manhole	1200
0 006		0.55	~	0 500				1050
2.006	0	3/5	SMH12	8.500	7.006	1.119	Open Manhole	1350
6.000	0	150	SMH08	8.500	7.450	0.900	Open Manhole	1200
6.001	0	150	SMH13	8.495	7.328		Open Manhole	

<u>Downstream Manhole</u>

PN	_	Slope (1:X)				-	MH Connection	MH DIAM., L*W (mm)
2.000	12.310	150.0	SMH2	9.470	8.548	0.697	Open Manhole	1200
2.001	12.013	38.8	SMH5		8.238		Open Manhole	
3.000	9.235	90.2	SMH3	9.100	8.348	0.602	Open Manhole	1200
3.001	7.896	225.0	SMH5	9.500	8.238	1.037	Open Manhole	1200
	10.886						Open Manhole	
2.003	7.824	27.9	SMH7	8.600	7.773	0.602	Open Manhole	1200
2.004	23.295	43.5	SMH09	8.500	7.163	1.037	Open Manhole	1350
							Open Manhole	
4.001	11.248	64.5	SMH09	8.500	7.313	1.037	Open Manhole	1350
2.005	18.340	222.8	SMH12	8.500	7.006	1.119	Open Manhole	1350
5.000	34.249	150.0	SMH12	8.500	7.231	1.119	Open Manhole	1350
2.006	12.959	225.0	SMH14	8.490	6.948	1.167	Open Manhole	1350
6.000	18.263	150.0	SMH13	8.495	7.328	1.017	Open Manhole	1200
6.001	23.241	149.9	SMH14	8.490	7.173	1.167	Open Manhole	1350
				©1982-	-2020 I	nnovyze		

Atkins Global		Page 5
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	_	Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
7.000	0	150	SH22	8.450	7.300	1.000	Open Manhole	1200
2.007	0	450	SMH14	8.490	6.873	1.167	Open Manhole	1350
8.000	0	150	14	8.500	7.450	0.900	Open Manhole	1200
8.001	0	150	SMH10	8.500	7.346	1.004	Open Manhole	1200
2.008	0	450	SCP7	8.300	6.814	1.036	Open Manhole	1350
2.009	0	525	17	8.300	6.681		Open Manhole	
9.000	0	225	A01	8.720	7.595	0.900	Open Manhole	1200
10.000	0	225	SMH15	8.530	7.405	0.900	Open Manhole	1200
9.001	0	225	SMH11	8.400	7.339	0.836	Open Manhole	1200
11.000	0	150	SCP1	8.380	7.630	0.600	Open Manhole	1200
11.001	0	150	SCP2	8.300	7.558		Open Manhole	1200
12.000	0	225	Dummy-BR	8.400	7.575	0.600	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length (m)	Slope (1:X)		C.Level (m)	I.Level (m)	D.Depth (m)		MH DIAM., L*W (mm)				
7.000	10.976	86.4	SMH14	8.490	7.173	1.167	Open Manhole	1350				
2.007	20.821	350.0	SCP7	8.300	6.814	1.036	Open Manhole	1350				
8.000	15.666	150.0	SMH10	8.500	7.346	1.004	Open Manhole	1200				
8.001	7.947	34.3	SCP7	8.300	7.114	1.036	Open Manhole	1350				
2.008	20.017	350.0	17	8.300	6.756	1.094	Open Manhole	1500				
2.009	10.985	499.3	18	8.300	6.659	1.116	Open Manhole	1500				
9.000	21.529	84.0	SMH11	8.400	7.339	0.836	Open Manhole	1200				
10.000	14.892	225.0	SMH11	8.400	7.339	0.836	Open Manhole	1200				
			_									
9.001	13.360	60.0	SCP5	8.475	7.116	1.134	Open Manhole	1500				
11 000	10 702	150 0	CCD2	0 200	7 550	0 500	Open Manhole	1200				
							-					
11.001	6.950	105.9	SCP3	8.360	7.492	0.718	Open Manhole	1500				
12 000	13 136	225 0	DIIMMV	8.400	7 517	0 659	Open Manhole	1200				
12.000	13.130	223.0	DOMMI	0.400	1.311	0.030	open mannore	1200				
	©1982-2020 Innovyze											

Atkins Global		Page 6
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilads
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
12.001 12.002	0	225 300	DUMMY FC2	8.400 8.300	7.517 7.404		Open Manhole Open Manhole	1200 1200
11.002 11.003	0	300 300	SCP3 SCP4	8.360 8.410	7.342 7.144		Open Manhole Open Manhole	1500 1500
9.002	0	375 375	SCP5 SCP6	8.475 8.580	6.966	1.336	Open Manhole Open Manhole	1500 1350
9.004 9.005	0	150 150	HW1 HW2	7.900 7.600	6.793 6.730		Open Manhole Open Manhole	1350 1200

<u>Downstream Manhole</u>

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
12.001	5.582	150.0	FC2	8.300	7.479	0.596	Open Manhole	1200
12.002	9.285	149.8	SCP3	8.360	7.342	0.718	Open Manhole	1500
11 002	37.706	190 0	SCP4	8.410	7.144	n 966	Open Manhole	1500
	18.955			8.475	7.144		Open Manhole	1500
9.002	29.292	300.0	SCP6	8.580	6.869	1.336	Open Manhole	1350
9.003	19.030	252.0	HW1	7.900	6.793	0.732	Open Manhole	1350
9.004	8.694	138.0	HW2	7.600	6.730	0.720	Open Manhole	1200
9.005	8.694	139.1	HW3	7.300	6.667	0.483	Open Manhole	1350

Atkins Global		Page 7
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	D = = la = E = 0.1	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

Online Controls for Storm

Orifice Manhole: 17, DS/PN: 2.009, Volume (m3): 5.8

Diameter (m) 0.001 Discharge Coefficient 0.600 Invert Level (m) 6.756

Hydro-Brake® Optimum Manhole: DUMMY, DS/PN: 12.001, Volume (m3): 1.5

Unit Reference MD-SHE-0077-2600-1000-2600 Design Head (m) 1.000 Design Flow (1/s) 2.6 Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 77 Invert Level (m) 7.517 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s)

Desig	n Poi	int (0	Calcul	Lated)	1.000	2.6
			Flush	n-Flo™	0.300	2.6
			Kicl	c-Flo®	0.622	2.1
Mean	Flow	over	Head	Range	-	2.3

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m) Flo	ow (1/s)	Depth (m) F	low (1/s)	Depth (m) Flo	w (1/s)	Depth (m)	Flow (1/s)
0.100	2.2	1.200	2.8	3.000	4.3	7.000	6.4
0.200	2.5	1.400	3.0	3.500	4.6	7.500	6.6
0.300	2.6	1.600	3.2	4.000	4.9	8.000	6.8
0.400	2.6	1.800	3.4	4.500	5.2	8.500	7.0
0.500	2.5	2.000	3.6	5.000	5.5	9.000	7.2
0.600	2.2	2.200	3.7	5.500	5.7	9.500	7.4
0.800	2.3	2.400	3.9	6.000	6.0		
1.000	2.6	2.600	4.0	6.500	6.2		

Hydro-Brake® Optimum Manhole: HW1, DS/PN: 9.004, Volume (m³): 3.5

Unit Reference MD-SHE-0044-9000-1000-9000
Design Head (m) 1.000
Design Flow (1/s) 0.9
Flush-Flo™ Calculated
Objective Minimise upstream storage
Application Surface
Sump Available Yes
Diameter (mm) 44

Atkins Global		Page 8
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

Hydro-Brake® Optimum Manhole: HW1, DS/PN: 9.004, Volume (m3): 3.5

Invert Level (m) 6.793
Minimum Outlet Pipe Diameter (mm) 75
Suggested Manhole Diameter (mm) 1200

Control Points Head (m) Flow (1/s) Design Point (Calculated) 1.000 0.9 Flush-Flo $^{\text{m}}$ 0.194 0.7 Kick-Flo $^{\text{m}}$ 0.394 0.6 Mean Flow over Head Range - 0.7

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m) F	flow (1/s)	Depth (m) Flow	(1/s)	Depth (m)	Flow (1/s)
0.100	0.7	1.200	1.0	3.000	1.5	7.000	2.2
0.200	0.7	1.400	1.0	3.500	1.6	7.500	2.2
0.300	0.7	1.600	1.1	4.000	1.7	8.000	2.3
0.400	0.6	1.800	1.2	4.500	1.8	8.500	2.4
0.500	0.7	2.000	1.2	5.000	1.9	9.000	2.4
0.600	0.7	2.200	1.3	5.500	1.9	9.500	2.5
0.800	0.8	2.400	1.3	6.000	2.0		
1.000	0.9	2.600	1.4	6.500	2.1		

[At]	kins Global		Page 9
181	th Fl, Tower C, Cyber Gree		
DLI	F Cyber City, DLF Phase - III		
Gu	rgaon, Haryanan - 122 002,		Micro
Dat	te 12/10/2022 17:10	Designed by KARA5291	Drainage
Fil	le COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP	Solutions	Network 2020.1.3	

Storage Structures for Storm

Cellular Storage Manhole: 17, DS/PN: 2.009

Invert Level (m) 6.800 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 7.16400

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 85.0 85.0 0.901 0.0 118.2

Porous Car Park Manhole: A01, DS/PN: 9.000

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	14.0
Membrane Percolation (mm/hr)	4700	Length (m)	24.0
Max Percolation $(1/s)$	438.7	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	8.370	Membrane Depth (mm)	350

Porous Car Park Manhole: SMH15, DS/PN: 10.000

15.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
17.0	Length (m)	4700	Membrane Percolation (mm/hr)
500.0	Slope (1:X)	332.9	Max Percolation (1/s)
5	Depression Storage (mm)	2.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
350	Membrane Depth (mm)	8.180	Invert Level (m)

Bio-Retention Area Manhole: Dummy-BR, DS/PN: 12.000

Invert Level (m) 7.575 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.30 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000

Depth (m)	Area (m²)	Perimeter (m)	Depth (m)	Area (m²)	Perimeter (m)
0.000	36.0 107.9	36.000 47.000		108.0	47.000

Porous Car Park Manhole: FC2, DS/PN: 12.002

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	30.0
Membrane Percolation (mm/hr)	4700	Length (m)	10.4
Max Percolation $(1/s)$	407.3	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	5
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	7.950	Membrane Depth (mm)	350

Atkins Global		Page 10
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

Tank or Pond Manhole: HW1, DS/PN: 9.004

Invert Level (m) 6.793

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 56.0 1.107 235.1

Atkins Global		Page 11	
18th Fl, Tower C, Cyber Gree			
DLF Cyber City, DLF Phase - III			
Gurgaon, Haryanan - 122 002,		Micro	
Date 12/10/2022 17:10	Designed by KARA5291	Drainage	
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade	
XP Solutions	Network 2020.1.3	1	

2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 516397 172304 TQ 16397 72304
Data Type Point
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 0, 40

									Water	Surcharged	${\tt Flooded}$		
	US/MH							US/CL	Level	Depth	Volume	Flow /	Overflow
PN	Name			I	Event			(m)	(m)	(m)	(m³)	Cap.	(1/s)
2.000	SMH1	15	minute	2		Winton	TIOS	0 630	8.685	-0.170	0.000	0.13	
2.000	SMH1		minute		-					-0.170		0.13	
					-								
3.000	SMH4		minute		-					-0.093		0.30	
3.001	SMH3	15	minute	2	year	Winter	I+0%	9.100	8.342	-0.155	0.000	0.18	
2.002	SMH5	15	minute	2	year	Winter	I+0%	9.500	8.322	-0.140	0.000	0.30	
2.003	SMH6	15	minute	2	year	Winter	I+0%	8.880	8.126	-0.152	0.000	0.23	
2.004	SMH7	15	minute	2	year	Winter	I+0%	8.600	7.773	-0.225	0.000	0.14	
4.000	SMH17	15	minute	2	year	Winter	I+0%	8.500	7.653	-0.097	0.000	0.27	
4.001	SIC7	15	minute	2	year	Winter	I+0%	8.500	7.533	-0.104	0.000	0.20	
2.005	SMH09	15	minute	2	year	Winter	I+0%	8.500	7.211	-0.252	0.000	0.24	
5.000	SMH18	15	minute	2	year	Winter	I+0%	8.400	7.500	-0.109	0.000	0.16	
2.006	SMH12	15	minute	2	year	Winter	I+0%	8.500	7.144	-0.236	0.000	0.29	
6.000	SMH08	15	minute	2	year	Winter	I+0%	8.500	7.506	-0.094	0.000	0.29	
6.001	SMH13	15	minute	2	year	Winter	I+0%	8.495	7.383	-0.096	0.000	0.28	
7.000	SH22	15	minute	2	year	Winter	I+0%	8.450	7.341	-0.109	0.000	0.16	
2.007	SMH14	120	minute	2	year	Winter	I+0%	8.490	7.066	-0.257	0.000	0.11	
						©19	982-2	020 I	nnovyz	е			

Atkins Global		Page 12
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Mirro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

		Pipe	
	US/MH	Flow	
PN	Name	(1/s)	Status
2.000	SMH1	4.8	OK
2.001	SMH2	12.0	OK
3.000	SMH4	5.0	OK
3.001	SMH3	5.0	OK
2.002	SMH5	17.2	OK
2.003	SMH6	17.2	OK
2.004	SMH7	21.3	OK
4.000	SMH17	3.9	OK
4.001	SIC7	3.9	OK
2.005	SMH09	26.1	OK
5.000	SMH18	2.3	OK
2.006	SMH12	30.2	OK
6.000	SMH08	3.9	OK
6.001	SMH13	3.9	OK
7.000	SH22	2.8	OK
2.007	SMH14	15.1	OK

Atkins Global		Page 13
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	'

PN	US/MH Name			E	vent			US/CL (m)	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.
8.000	14	15	minute	2	year	Winter	I+0%	8.500	7.491	-0.109	0.000	0.16
8.001	SMH10	15	minute	2	year	Winter	I+0%	8.500	7.377	-0.119	0.000	0.10
2.008	SCP7	120	minute	2	year	Winter	I+0%	8.300	7.062	-0.201	0.000	0.12
2.009	17	120	minute	2	year	Winter	I+0%	8.300	7.059	-0.148	0.000	0.00
9.000	A01	15	minute	2	year	Winter	I+0%	8.720	7.653	-0.167	0.000	0.14
10.000	SMH15	15	minute	2	year	Winter	I+0%	8.530	7.476	-0.154	0.000	0.21
9.001	SMH11	15	minute	2	year	Winter	I+0%	8.400	7.412	-0.152	0.000	0.22
11.000	SCP1	15	minute	2	year	Winter	I+0%	8.380	7.663	-0.117	0.000	0.11
11.001	SCP2	15	minute	2	year	Winter	I+0%	8.300	7.589	-0.119	0.000	0.10
12.000	Dummy-BR	15	minute	2	year	Winter	I+0%	8.400	7.690	-0.110	0.000	0.12
12.001	DUMMY	15	minute	2	year	Winter	I+0%	8.400	7.685	-0.056	0.000	0.08
12.002	FC2	15	minute	2	year	Winter	I+0%	8.300	7.471	-0.234	0.000	0.10
11.002	SCP3	15	minute	2	year	Winter	I+0%	8.360	7.414	-0.228	0.000	0.12
11.003	SCP4	15	minute	2	year	Winter	I+0%	8.410	7.214	-0.229	0.000	0.12
9.002	SCP5	480	minute	2	year	Winter	I+0%	8.475	7.190	-0.152	0.000	0.05
9.003	SCP6	480	minute	2	year	Winter	I+0%	8.580	7.190	-0.054	0.000	0.05
9.004	HW1	480	minute	2	year	Winter	I+0%	7.900	7.190	0.247	0.000	0.06
9.005	HW2	2880	minute	2	year	Winter	I+0%	7.600	6.754	-0.126	0.000	0.06

PN	US/MH Name	Overflow (1/s)		Status
8.000	14		2.2	OK
8.001	SMH10		2.5	OK
2.008	SCP7		17.2	OK
2.009	17		0.0	OK
9.000	A01		7.5	OK
10.000	SMH15		6.3	OK
9.001	SMH11		13.1	OK
11.000	SCP1		1.3	OK
11.001	SCP2		1.3	OK
12.000	Dummy-BR		3.7	OK
12.001	DUMMY		2.5	OK
12.002	FC2		6.5	OK
11.002	SCP3		7.9	OK
11.003	SCP4		8.0	OK
9.002	SCP5		4.8	OK
9.003	SCP6		4.4	OK
9.004	HW1		0.7	SURCHARGED
9.005	HW2		0.7	OK

Atkins Global		Page 14
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 516397 172304 TQ 16397 72304
Data Type Point
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 0, 40

									Water	Surcharged	Flooded		
	US/MH							US/CL	Level	Depth	Volume	Flow /	Overflow
PN	Name			1	Event			(m)	(m)	(m)	(m³)	Cap.	(1/s)
2.000	оми1	15	minute	30	waar	Winter	T±0%	9 630	8.718	-0.137	0.000	0.32	
2.001			minute		-					-0.116		0.47	
3.000	SMH4	15	minute	30	year	Winter	I+0%	9.300	8.547	-0.053	0.000	0.73	
3.001	SMH3	15	minute	30	year	Winter	I+0%	9.100	8.405	-0.092	0.000	0.44	
2.002	SMH5	15	minute	30	year	Winter	I+0%	9.500	8.392	-0.071	0.000	0.79	
2.003	SMH6	15	minute	30	year	Winter	I+0%	8.880	8.181	-0.097	0.000	0.61	
2.004	SMH7	15	minute	30	year	Winter	I+0%	8.600	7.828	-0.170	0.000	0.38	
4.000	SMH17	15	minute	30	year	Winter	I+0%	8.500	7.689	-0.061	0.000	0.64	
4.001	SIC7	15	minute	30	year	Winter	I+0%	8.500	7.561	-0.076	0.000	0.48	
2.005	SMH09	60	minute	30	year	Winter	I+0%	8.500	7.377	-0.086	0.000	0.31	
5.000	SMH18	15	minute	30	year	Winter	I+0%	8.400	7.525	-0.084	0.000	0.39	
2.006	SMH12	60	minute	30	year	Winter	I+0%	8.500	7.369	-0.012	0.000	0.36	
6.000	SMH08	15	minute	30	year	Winter	I+0%	8.500	7.544	-0.056	0.000	0.69	
6.001	SMH13	15	minute	30	year	Winter	I+0%	8.495	7.420	-0.058	0.000	0.69	
7.000	SH22	60	minute	30	year	Winter	I+0%	8.450	7.367	-0.083	0.000	0.19	
2.007	SMH14	60	minute	30	year	Winter	I+0%	8.490	7.363	0.040	0.000	0.33	
						©19	982-2	2020 I	nnovyz	е			

Atkins Global		Page 15
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

	Pipe	
US/MH	Flow	
Name	(1/s)	Status
~1	44 5	
		OK
SMH2	33.7	OK
SMH4	12.1	OK
SMH3	12.3	OK
SMH5	45.0	OK
SMH6	45.5	OK
SMH7	56.8	OK
SMH17	9.5	OK
SIC7	9.5	OK
SMH09	34.0	OK
SMH18	5.4	OK
SMH12	37.2	OK
SMH08	9.4	OK
SMH13	9.5	OK
SH22	3.3	OK
SMH14	45.8	SURCHARGED
	SMH1 SMH2 SMH4 SMH3 SMH5 SMH6 SMH7 SMH17 SIC7 SMH09 SMH18 SMH12 SMH08 SMH13 SH22	US/MH Flow Name (1/s) SMH1 11.7 SMH2 33.7 SMH4 12.1 SMH3 45.0 SMH5 45.5 SMH7 56.8 SMH17 9.5 SSMC7 9.5 SMH09 34.0 SMH18 5.4 SMH12 37.2 SMH08 9.4 SMH13 9.5 SH22 3.3

Atkins Global		Page 16
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

PN	US/MH Name		Event						Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.
8.000	14	15	minute	30	year	Winter	I+0%	8.500	7.516	-0.084	0.000	0.39
8.001	SMH10	15	minute	30	year	Winter	I+0%	8.500	7.395	-0.100	0.000	0.23
2.008	SCP7	60	minute	30	year	Winter	I+0%	8.300	7.356	0.093	0.000	0.37
2.009	17	60	minute	30	year	Winter	I+0%	8.300	7.348	0.142	0.000	0.00
9.000	A01	15	minute	30	year	Winter	I+0%	8.720	7.690	-0.130	0.000	0.36
10.000	SMH15	15	minute	30	year	Winter	I+0%	8.530	7.521	-0.109	0.000	0.51
9.001	SMH11	480	minute	30	year	Winter	I+0%	8.400	7.498	-0.066	0.000	0.07
11.000	SCP1	15	minute	30	year	Winter	I+0%	8.380	7.683	-0.097	0.000	0.27
11.001	SCP2	15	minute	30	year	Winter	I+0%	8.300	7.607	-0.101	0.000	0.23
12.000	Dummy-BR	30	minute	30	year	Winter	I+0%	8.400	7.937	0.137	0.000	0.14
12.001	DUMMY	120	minute	30	year	Summer	I+0%	8.400	7.982	0.241	0.000	0.09
12.002	FC2	15	minute	30	year	Winter	I+0%	8.300	7.513	-0.192	0.000	0.28
11.002	SCP3	480	minute	30	year	Winter	I+0%	8.360	7.498	-0.145	0.000	0.06
11.003	SCP4	480	minute	30	year	Winter	I+0%	8.410	7.498	0.054	0.000	0.07
9.002	SCP5	480	minute	30	year	Winter	I+0%	8.475	7.497	0.156	0.000	0.08
9.003	SCP6	480	minute	30	year	Winter	I+0%	8.580	7.496	0.253	0.000	0.08
9.004	HW1	480	minute	30	year	Winter	I+0%	7.900	7.496	0.553	0.000	0.06
9.005	HW2	480	minute	30	year	Winter	I+0%	7.600	6.755	-0.125	0.000	0.06

PN	US/MH Name	Overflow (1/s)	Pipe Flow (1/s)	Status
8.000	14		5.3	OK
8.001	SMH10		6.2	OK
2.008	SCP7		51.5	SURCHARGED
2.009	17		0.0	SURCHARGED
9.000	A01		18.7	OK
10.000	SMH15		15.5	OK
9.001	SMH11		4.0	OK
11.000	SCP1		3.1	OK
11.001	SCP2		3.1	OK
12.000	Dummy-BR		4.1	SURCHARGED
12.001	DUMMY		2.6	SURCHARGED
12.002	FC2		17.6	OK
11.002	SCP3		4.3	OK
11.003	SCP4		4.2	SURCHARGED
9.002	SCP5		8.6	SURCHARGED
9.003	SCP6		8.0	SURCHARGED
9.004	HW1		0.8	SURCHARGED
9.005	HW2		0.8	OK

Atkins Global		Page 17
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 6 Number of Online Controls 3 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 516397 172304 TQ 16397 72304
Data Type Point
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 0, 40

									Water	Surcharged	Flooded		
	US/MH							US/CL	Level	Depth	Volume	Flow /	
PN	Name			I	Event			(m)	(m)	(m)	(m³)	Cap.	
	~	4.5		100				0 600	0 000	0.000		0 55	
2.000					-	Winter			8.823	-0.032	0.000	0.57	
2.001	SMH2	15	minute	100	year	Winter	I+40%	9.470	8.791	0.018	0.000	0.79	
3.000	SMH4	15	minute	100	year	Winter	I+40%	9.300	8.788	0.188	0.000	1.26	
3.001	SMH3	15	minute	100	year	Winter	I+40%	9.100	8.621	0.123	0.000	0.79	
2.002	SMH5	15	minute	100	year	Winter	I+40%	9.500	8.598	0.135	0.000	1.33	
2.003	SMH6	60	minute	100	year	Winter	I+40%	8.880	8.338	0.060	0.000	0.55	
2.004	SMH7	60	minute	100	year	Winter	I+40%	8.600	8.326	0.328	0.000	0.35	
4.000	SMH17	60	minute	100	year	Winter	I+40%	8.500	8.331	0.581	0.000	0.59	
4.001	SIC7	60	minute	100	year	Winter	I+40%	8.500	8.319	0.682	0.000	0.43	
2.005	SMH09	60	minute	100	year	Winter	I+40%	8.500	8.311	0.848	0.000	0.52	
5.000	SMH18	60	minute	100	year	Winter	I+40%	8.400	8.314	0.705	0.000	0.35	
2.006	SMH12	60	minute	100	year	Winter	I+40%	8.500	8.303	0.922	0.000	0.63	
6.000	SMH08	60	minute	100	year	Winter	I+40%	8.500	8.318	0.718	0.000	0.64	
6.001	SMH13	60	minute	100	year	Winter	I+40%	8.495	8.303	0.825	0.000	0.56	
7.000	SH22	60	minute	100	year	Winter	I+40%	8.450	8.304	0.854	0.000	0.32	
2.007	SMH14	60	minute	100	year	Winter	I+40%	8.490	8.296	0.973	0.000	0.57	
©1982-2020 Innovyze												_	

Atkins Global		Page 18
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	niailiade
XP Solutions	Network 2020.1.3	'

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

			Pipe	
	US/MH	Overflow	Flow	
PN	Name	(1/s)	(1/s)	Status
2.000	SMH1		20.7	OK
2.001	SMH2		56.3	SURCHARGED
3.000	SMH4		20.8	SURCHARGED
3.001	SMH3		21.8	SURCHARGED
2.002	SMH5		76.1	SURCHARGED
2.003	SMH6		40.9	SURCHARGED
2.004	SMH7		51.7	FLOOD RISK
4.000	SMH17		8.7	FLOOD RISK
4.001	SIC7		8.5	FLOOD RISK
2.005	SMH09		57.7	FLOOD RISK
5.000	SMH18		4.9	FLOOD RISK
2.006	SMH12		64.8	FLOOD RISK
6.000	SMH08		8.6	FLOOD RISK
6.001	SMH13		7.7	FLOOD RISK
7.000	SH22		5.5	FLOOD RISK
2.007	SMH14		80.2	FLOOD RISK

Atkins Global		Page 19
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Mirro
Date 12/10/2022 17:10	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

									Water	Surcharged	Flooded	
	US/MH							US/CL	Level	Depth	Volume	Flow /
PN	Name			E	vent			(m)	(m)	(m)	(m³)	Cap.
8.000	14	60	minute	100	vear	Winter	I+40%	8.500	8.295	0.695	0.000	0.36
8.001	SMH10		minute		-				8.286	0.791	0.000	0.20
2.008	SCP7	60	minute	100	year	Winter	I+40%	8.300	8.290	1.026	0.000	0.68
2.009	17	60	minute	100	year	Winter	I+40%	8.300	8.279	1.072	0.000	0.00
9.000	A01	1440	minute	100	year	Winter	I+40%	8.720	7.891	0.071	0.000	0.03
10.000	SMH15	1440	minute	100	year	Winter	I+40%	8.530	7.891	0.261	0.000	0.04
9.001	SMH11	1440	minute	100	year	Winter	I+40%	8.400	7.891	0.327	0.000	0.04
11.000	SCP1	1440	minute	100	year	Winter	I+40%	8.380	7.894	0.114	0.000	0.02
11.001	SCP2	1440	minute	100	year	Winter	I+40%	8.300	7.894	0.186	0.000	0.02
12.000	Dummy-BR	120	minute	100	year	Winter	I+40%	8.400	8.347	0.547	0.000	0.17
12.001	DUMMY	480	minute	100	year	Summer	I+40%	8.400	8.397	0.656	0.000	0.09
12.002	FC2	1440	minute	100	year	Winter	I+40%	8.300	7.895	0.190	0.000	0.04
11.002	SCP3	1440	minute	100	year	Winter	I+40%	8.360	7.895	0.252	0.000	0.04
11.003	SCP4	1440	minute	100	year	Winter	I+40%	8.410	7.891	0.447	0.000	0.04
9.002	SCP5	1440	minute	100	year	Winter	I+40%	8.475	7.890	0.549	0.000	0.06
9.003	SCP6	1440	minute	100	year	Winter	I+40%	8.580	7.890	0.647	0.000	0.06
9.004	HW1	1440	minute	100	year	Winter	I+40%	7.900	7.890	0.947	0.000	0.08
9.005	HW2	720	minute	100	year	Winter	I+40%	7.600	6.757	-0.123	0.000	0.08

PN	US/MH Name	Overflow (1/s)	Pipe Flow (1/s)	Status
8.000	14		4.9	FLOOD RISK
8.001	SMH10		5.3	FLOOD RISK
2.008	SCP7		94.5	FLOOD RISK
2.009	17		0.0	FLOOD RISK
9.000	A01		1.5	SURCHARGED
10.000	SMH15		1.2	SURCHARGED
9.001	SMH11		2.6	SURCHARGED
11.000	SCP1		0.3	SURCHARGED
11.001	SCP2		0.3	SURCHARGED
12.000	Dummy-BR		5.0	FLOOD RISK
12.001	DUMMY		2.6	FLOOD RISK
12.002	FC2		2.5	SURCHARGED
11.002	SCP3		2.8	SURCHARGED
11.003	SCP4		2.6	SURCHARGED
9.002	SCP5		5.7	SURCHARGED
9.003	SCP6		5.7	SURCHARGED
9.004	HW1		0.9	FLOOD RISK
9.005	HW2		0.9	OK

E.2. Existing Storm Water Calculations

Atkins Global		Page 1
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 22/06/2023 20:20	Designed by REDD1814	Drainage
File TYM EXISTING MODEL.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FEH Rainfall Model Return Period (years) 100 FEH Rainfall Version 2013 Site Location GB 516397 172304 TQ 16397 72304 Data Type Point Maximum Rainfall (mm/hr) 250 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 0.200 Minimum Backdrop Height (m) Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 0.900 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X)500

Designed with Level Soffits

Network Design Table for Storm

« - Indicates pipe capacity < flow</pre>

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s	k s) (mm)	HYD SECT	DIA (mm)	Secti	ion Typ	e Auto Design
S1.000	4.454	0.045	99.0	0.034	5.00	0.	.0 0.600	0	100	Pipe	/Condui	.t 🔒
S1.001	18.038	0.180	100.2	0.015	0.00	0.	0.600	0	100	Pipe/	/Condui	_
S1.002	4.091	0.041	99.8	0.029	0.00	0.	.0 0.600	0	100	Pipe,	/Condui	
S1.003	5.533	0.055	100.6	0.017	0.00	0.	.0 0.600	0	100	Pipe,	/Condui	.t 🧂
S1.004	4.885	0.049	99.7	0.001	0.00	0.	.0 0.600	0	100	Pipe	/Condui	.t 🦺
S2.000	7.032	0.070	100.5	0.049	5.00	0.	.0 0.600	0	100	Pipe	/Condui	t 🔒
				N∈	etwork	Results	Table					
PI	N Ra	in '	T.C. T	JS/IL Σ	I.Area	Σ Base	Foul	Add F	'low	Vel	Cap	Flow
	(mm,	/hr) (1	mins)	(m)	(ha)	Flow (1/s	s) (1/s)	(1/:	s)	(m/s)	(1/s)	(1/s)
S1.0	000 186	5.34	5.10	7.290	0.034	0.	0.0		0.0	0.77	6.1«	17.2
S1.0	001 181	L.48	5.49	7.245	0.049	0.	0.0		0.0	0.77	6.0«	24.0
S1.0	002 180	0.41	5.58	7.065	0.078	0.	0.0		0.0	0.77	6.0«	38.0
S1.0	003 178	3.96	5.70	7.024	0.095	0.	0.0		0.0	0.77	6.0«	46.2
S1.0	004 177	7.71	5.80	6.969	0.096	0.	0.0		0.0	0.77	6.0«	46.2
S2.	000 185	5.63	5.15	7.223	0.049	0.	0.0		0.0	0.77	6.0«	24.9

Atkins Global		Page 2
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 22/06/2023 20:20	I Dog at a mod har DEDD1014	Drainage
File TYM EXISTING MODEL.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S2.001 S2.002	8.516 8.688	0.085 0.087	100.2	0.003	0.00		0.600	0		Pipe/Conduit Pipe/Conduit	0
S2.003		0.061		0.000	0.00		0.600	0		Pipe/Conduit	•
S1.005		0.073		0.000	0.00		0.600	0		Pipe/Conduit	•
\$3.000 \$1.006	15.544 8.506			0.039	5.00		0.600	0		Pipe/Conduit Pipe/Conduit	•
S1.006 S1.007	21.204			0.000	0.00		0.600	0		Pipe/Conduit	0
S1.008	47.671	0.318	149.9	0.000	0.00	0.0	0.600	0		Pipe/Conduit	ĕ
S1.009	38.534	0.257	149.9	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ě

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)	
S2.001	183.32	5.34	7.153	0.052	0.0	0.0	0.0	0.77	6.0«	26.0	
S2.002	181.02	5.53	7.068	0.052	0.0	0.0	0.0	0.77	6.0«	26.0	
S2.003	179.41	5.66	6.981	0.052	0.0	0.0	0.0	0.77	6.0«	26.0	
S1.005	175.85	5.96	6.920	0.148	0.0	0.0	0.0	0.77	6.0«	70.7	
s3.000	183.33	5.34	7.002	0.039	0.0	0.0	0.0	0.77	6.0«	19.5	
S1.006	173.86	6.13	6.797	0.188	0.0	0.0	0.0	0.82	14.5«	88.4	
S1.007	169.05	6.57	6.740	0.200	0.0	0.0	0.0	0.82	14.4«	91.6	
S1.008	159.09	7.54	6.599	0.200	0.0	0.0	0.0	0.82	14.5«	91.6	
S1.009	151.86	8.32	6.281	0.200	0.0	0.0	0.0	0.82	14.5«	91.6	

Atkins Global		Page 3
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 22/06/2023 20:20	Designed by REDD1814	Drainage
File TYM EXISTING MODEL.MDX	Checked by	Drainage
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Storm

<u>Upstream Manhole</u>

PN	Hyd	Diam	МН	C.Level	I.Level	D.Depth		MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	0	100	S1	8.590	7.290	1.200	Open Manhole	1200
S1.001	0	100	S2	8.520	7.245	1.175	Open Manhole	1200
S1.002	0	100	s3	8.430	7.065	1.265	Open Manhole	1200
S1.003	0	100	S4	8.640	7.024	1.516	Open Manhole	1200
S1.004	0	100	S5	8.550	6.969	1.481	Open Manhole	1200
S2.000	0	100	S6	8.390	7.223	1.067	Open Manhole	1200
S2.001	0	100	s7	8.380	7.153	1.127	Open Manhole	1200
S2.002	0	100	S8	8.500	7.068	1.332	Open Manhole	1200
S2.003	0	100	S9	8.400	6.981	1.319	Open Manhole	1200
S1.005	0	100	S6	8.400	6.920	1.380	Open Manhole	1200
S3.000	0	100	s7	8.400	7.002	1.298	Open Manhole	1200
S1.006	0	150	s7	8.410	6.797	1.463	Open Manhole	1200
S1.007	0	150	S8	8.360	6.740	1.470	Open Manhole	1200
S1.008	0	150	S9	8.730	6.599	1.981	Open Manhole	1200
S1.009	0	150	S10	8.650	6.281	2.219	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	4.454	99.0	S2	8.520	7.245	1.175	Open Manhole	1200
S1.001	18.038	100.2	s3	8.430	7.065		Open Manhole	
S1.002	4.091	99.8	S4	8.640	7.024	1.516	Open Manhole	1200
S1.003	5.533	100.6	S5	8.550	6.969	1.481	Open Manhole	1200
S1.004	4.885	99.7	S6	8.400	6.920	1.380	Open Manhole	1200
s2.000	7.032	100.5	s7	8.380	7.153	1.127	Open Manhole	1200
S2.001	8.516	100.2	S8	8.500	7.068	1.332	Open Manhole	1200
S2.002	8.688	99.9	S9	8.400	6.981	1.319	Open Manhole	1200
S2.003	6.135	100.6	S6	8.400	6.920	1.380	Open Manhole	1200
S1.005	7.318	100.2	s7	8.410	6.847	1.463	Open Manhole	1200
s3.000	15.544	100.3	s7	8.410	6.847	1.463	Open Manhole	1200
S1.006	8.506	149.2	S8	8.360	6.740	1.470	Open Manhole	1200
S1.007	21.204	150.4	S9	8.730	6.599	1.981	Open Manhole	1200
S1.008	47.671	149.9	S10	8.650	6.281	2.219	Open Manhole	1200
S1.009	38.534	149.9	S	8.500	6.024	2.326	Open Manhole	0

Atkins Global		Page 4
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 22/06/2023 20:20	Dogiosod by DEDD1014	Drainage
File TYM EXISTING MODEL.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (l/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FSR		Prof	ile Type	Summer
Return Period (years)		100		Cv	(Summer)	0.750
Region	England	and Wales		Cv	(Winter)	0.840
M5-60 (mm)		20.000	Storm	Duratio	on (mins)	30
Ratio R		0.408				

Atkins Global		Page 5
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 22/06/2023 20:20	Designed by REDD1814	Drainage
File TYM EXISTING MODEL.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 516397 172304 TQ 16397 72304
Data Type Point
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,
720, 960, 1440, 2160, 2880, 4320, 5760,
7200, 8640, 10080
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 0, 0

													Water
	US/MH			Return	Climate	Fir	st (X)	Firs	t (Y)	First	(Z)	Overflow	Level
PN	Name	5	Storm	Period	Change	Sur	charge	Fl	.ood	Overf	low	Act.	(m)
S1.000	S1	15	Winter	100	+0%	2/15	Summer	30/15	Winter				8.592
S1.001	S2	30	Winter	100	+0%	2/15	Summer	30/15	Summer				8.524
S1.002	s3	30	Winter	100	+0%	2/15	Summer	30/30	Winter				8.433
S1.003	S4	30	Winter	100	+0%	2/15	Summer						8.403
S1.004	S5	30	Winter	100	+0%	2/15	Summer						8.296
S2.000	S6	30	Winter	100	+0%	2/15	Summer	30/15	Winter				8.393
S2.001	s7	30	Winter	100	+0%	2/15	Summer						8.354
S2.002	S8	30	Winter	100	+0%	2/15	Summer						8.300
S2.003	S9	30	Winter	100	+0%	2/15	Summer						8.246
S1.005	s6	30	Winter	100	+0%	2/15	Summer						8.205
s3.000	s7	15	Winter	100	+0%	2/15	Winter						8.385
S1.006	s7	30	Winter	100	+0%	2/15	Summer						7.885
S1.007	S8	30	Winter	100	+0%	2/15	Summer						7.749
S1.008	s9	30	Winter	100	+0%	2/15	Summer						7.418
S1.009	S10	30	Winter	100	+0%	2/15	Winter						6.732

Atkins Global		Page 6
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Mirro
Date 22/06/2023 20:20	Designed by REDD1814	Drainage
File TYM EXISTING MODEL.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

DM	US/MH	Surcharged Depth	Volume	•	Overflow		Flow	Qhahua.	Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	1.202	1.507	1.25			6.5	FLOOD	8
S1.001	S2	1.179	4.001	1.23			7.1	FLOOD	12
S1.002	s3	1.268	2.722	2.05			10.6	FLOOD	9
S1.003	S4	1.279	0.000	2.50			13.3	FLOOD RISK	
S1.004	S5	1.227	0.000	1.99			10.5	FLOOD RISK	
S2.000	s6	1.070	3.015	2.01			11.0	FLOOD	7
S2.001	s7	1.101	0.000	1.62			9.0	FLOOD RISK	
S2.002	S8	1.132	0.000	1.12			6.3	FLOOD RISK	
S2.003	S9	1.165	0.000	1.19			6.4	FLOOD RISK	
S1.005	s6	1.185	0.000	2.89			15.9	FLOOD RISK	
s3.000	s7	1.283	0.000	2.12			12.2	FLOOD RISK	
S1.006	s7	0.938	0.000	1.61			20.4	SURCHARGED	
S1.007	S8	0.859	0.000	1.61			22.0	SURCHARGED	
S1.008	S9	0.669	0.000	1.50			21.1	SURCHARGED	
S1.009	S10	0.301	0.000	1.48			20.7	SURCHARGED	

E.3. Foul Water Calculations

Ayushi Gupta **Atkins- SNC- Lavalin**

Atkins Global		Page 1
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:16	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

FOUL SEWERAGE DESIGN

Design Criteria for Foul

Pipe Sizes STANDARD Manhole Sizes STANDARD

Industrial Flow (1/s/ha)	0.00	Add Flow / Climate Change (%)	0
Industrial Peak Flow Factor	0.00	Minimum Backdrop Height (m)	0.000
Calculation Method	EN 752	Maximum Backdrop Height (m)	1.500
Frequency Factor	1.00	Min Design Depth for Optimisation (m)	0.600
Domestic (l/s/ha)	0.00	Min Vel for Auto Design only (m/s)	0.99
Domestic Peak Flow Factor	6.00	Min Slope for Optimisation (1:X)	100

Designed with Level Soffits

Network Design Table for Foul

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Freq Factor	Units	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
	11.377 19.812			0.000	1.00	23.9 41.2		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	•
	30.503	0.548	55.7	0.000	1.00 0.50	10.6 17.0	0.0	1.500 1.500	0	150	Pipe/Conduit Pipe/Conduit	966
	16.911			0.000	1.00	0.0		1.500	0		Pipe/Conduit	•
2.001	24.538 14.504	0.097	150.0	0.000	0.50 1.00	17.0	0.0	1.500 1.500	0	150	Pipe/Conduit Pipe/Conduit	9
2.002			150.0		1.00	0.0		1.500	0		Pipe/Conduit	
	17.302				0.50	12.0		1.500	0		Pipe/Conduit	•
2.003	27.809	0.185	150.3	0.000	0.50	12.0	0.0	1.500	0	150	Pipe/Conduit	₩

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Units	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	8.700	0.000	0.0	23.9	0.0	65	0.67	0.71	12.6	4.9
1.001	8.624	0.000	0.0	65.1	0.0	72	0.96	0.98	17.3	8.1
1.002	8.377	0.000	0.0	75.7	0.0	51	1.63	1.96	34.7	8.7
1.003	8.117	0.000	0.0	92.7	0.0	69	1.13	1.18	20.8	8.9
1.004	7.569	0.000	0.0	92.7	0.0	80	0.93	0.90	16.0	8.9
2.000	7.900	0.000	0.0	17.0	0.0	41	0.52	0.72	12.6	2.1
2.001	7.736	0.000	0.0	17.0	0.0	41	0.52	0.71	12.6	2.1
2.002	7.639	0.000	0.0	17.0	0.0	41	0.52	0.71	12.6	2.1
3.000	7.750	0.000	0.0	12.0	0.0	36	0.53	0.78	13.9	1.7
2.003	7.610	0.000	0.0	41.0	0.0	52	0.59	0.71	12.6	3.2
			©1	982-202	0 Innovy	ze				

Atkins Global		Page 2
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:16	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	1

Network Design Table for Foul

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	-	Units	ase (1/s)	k (mm)	HYD SECT		Section Type	Auto Design
4.000	19.763	0.175	112.9	0.000	0.50	12.0	0.0	1.500	0	150	Pipe/Conduit	•
2.004	5.414	0.036	150.0	0.000	1.00	0.0	0.0	1.500	0	150	Pipe/Conduit	•
1.005	13.593	0.091	150.0	0.000	1.00	0.0	0.0	1.500	0	150	Pipe/Conduit	₫
5.000	11.362	0.078	145.7	0.000	1.00	5.3	0.0	1.500	0	150	Pipe/Conduit	₩
6.000	11.731	0.078	150.0	0.000	1.00	26.4	0.0	1.500	0	150	Pipe/Conduit	€
	15.339 40.357				1.00 0.50	0.0 17.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	•
1.006 1.007	7.687 53.703				1.00 1.00	0.0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit	€

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (1/s)	Σ Units	Add Flow (1/s)	-	P.Vel (m/s)		Cap (1/s)	Flow (1/s)	
4.000	7.600	0.000	0.0	12.0	0.0	35	0.55	0.82	14.6	1.7	
2.004	7.425	0.000	0.0	53.0	0.0	55	0.62	0.71	12.6	3.6	
1.005	7.389	0.000	0.0	145.7	0.0	98	0.79	0.71	12.6	9.7	
5.000	7.750	0.000	0.0	5.3	0.0	43	0.55	0.72	12.8	2.3	
6.000	7.750	0.000	0.0	26.4	0.0	67	0.68	0.71	12.6	5.1	
	7.672 7.570	0.000	0.0	31.7 48.7	0.0	70 73	0.69	0.71	12.6 12.7	5.6 6.0	
1.006		0.000	0.0	194.4 194.4	0.0	111 111	0.81	0.71	12.6 12.6	11.4 11.4	

Atkins Global		Page 3
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:16	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Dialilade
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Foul

<u>Upstream Manhole</u>

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1 000		1 - 0	D TO1	0.450	0.700	0 600	O M1-1-	1000
1.000	0		F-IC1	9.450	8.700		Open Manhole	
1.001	0	150	FMH3	9.400	8.624		Open Manhole	
1.002	0	150	FMH4	9.630	8.377	1.103	Open Manhole	1200
1.003	0	150	FMH5	9.200	8.117	0.933	Open Manhole	1200
1.004	0	150	FMH6	8.400	7.569	0.681	Open Manhole	1200
2.000	0	150	FMH7	8.450	7.900	0.400	Open Manhole	1200
2.001	0	150	FMH8	8.450	7.736	0.564	Open Manhole	1200
2.002	0	150	FMH9	8.450	7.639		Open Manhole	
2.002	Ü	100		0.100	, , 003	0.001	opon namoro	1200
3.000	0	150	FMH10	8.450	7.750	0 550	Open Manhole	1200
3.000	O	130	PHILO	0.450	7.750	0.550	open mannore	1200
2.003	0	150	FMH11	8.450	7.610	0 600	Open Manhole	1200
2.003	0	130	LMUTT	0.430	7.010	0.090	Open Mannore	1200
4 000		1.50		0 500		0 750		1000
4.000	0	150	FMH12	8.500	7.600	0.750	Open Manhole	1200
2.004	0	150	FMH13	8.400	7.425	0.825	Open Manhole	1200
1.005	0	150	FMH14	8.400	7.389	0.861	Open Manhole	1200
5.000	0	150	FMH15	8.500	7.750	0.600	Open Manhole	1200

<u>Downstream Manhole</u>

PN	-	Slope (1:X)		C.Level (m)		-	MH Connection		M., L*W nm)
1 000	11 277	150.0		0 400	0 604	0 606	0 11 1	7	1000
	11.377			9.400	8.624		Open Manho		1200
	19.812		FMH4	9.630			Open Manho		1200
	5.190		FMH5	9.200			Open Manho		1200
1.003	30.503	55.7	FMH6	8.400	7.569	0.681	Open Manho	ole	1200
1.004	16.911	94.0	FMH14	8.400	7.389	0.861	Open Manho	ole	1200
2.000	24.538	149.6	FMH8	8.450	7.736	0.564	Open Manho	ole	1200
2.001	14.504	150.0			7.639		Open Manho		1200
2.002	4.363	150.0	FMH11	8.450	7.610	0.690	Open Manho	ole	1200
							1		
3.000	17.302	124.5	FMH11	8.450	7.611	0.689	Open Manho	ole	1200
0.000	17,002	121.0		0.100	,,,,,	0.003	opon nami	,10	1200
2 003	27 809	150 3	FMH13	8.400	7 425	0 825	Open Manho	nle	1200
2.000	27.003	100.0	1111110	0.100	7.120	0.020	open namn	510	1200
4 000	10 763	112 0	EMH13	8 400	7 425	0 825	Open Manho	al e	1200
4.000	13.703	112.7	PMILD	0.400	7.425	0.025	open mann	DIE	1200
2 004	5.414	150 0	EMILI A	8.400	7.389	0 061	Open Manho	-1-	1200
2.004	J.414	130.0	rMn14	0.400	1.309	0.001	Open Manne	ore	1200
1 005	13.593	150 0	EMILO 1	8.100	7.298	0 (5)	Onen Menh	.1.	1200
1.005	13.393	130.0	r MHZI	8.100	1.290	0.652	Open Manho	эте	1200
- 000	11 060	4.5.5		0.650					1000
5.000	11.362	145./	F.WHT 0	8.650	7.672	0.828	Open Manho	эте	1200
				@1002	2020 T	nnovyze			
				@ I 90 Z -		11110 v y 2 e			

Atkins Global		Page 4
18th Fl, Tower C, Cyber Gree		
DLF Cyber City, DLF Phase - III		
Gurgaon, Haryanan - 122 002,		Micro
Date 12/10/2022 17:16	Designed by KARA5291	Drainage
File COMBINED MODEL_TRAIL-1.MDX	Checked by	Drainage
XP Solutions	Network 2020.1.3	

PIPELINE SCHEDULES for Foul

<u>Upstream Manhole</u>

PN	-	Diam		C.Level		-	МН	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
6.000	0	150	FMH17	8.500	7.750	0.600	Open Manhole	1200
F 001		1 = 0		0 (50	7 670	0 000	0 1/ 1 1	1000
5.001	0	150	FMH16	8.650	7.672	0.828	Open Manhole	1200
5.002	0	150	FMH20	8.500	7.570	0.780	Open Manhole	1200
1.006	0	150	FMH21	8.100	7.298	0.652	Open Manhole	1200
1.007	0	150	FMH22	8.650	7.247	1.253	Open Manhole	1200

<u>Downstream Manhole</u>

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
6.0	00 11.731	150.0	FMH16	8.650	7.672	0.828	Open Manhole	1200
5.0	15.339	150.0	FMH20	8.500	7.570	0.780	Open Manhole	1200
5.0	02 40.357	148.9	FMH21	8.100	7.299	0.651	Open Manhole	1200
1.0	06 7.687	150.0	FMH22	8.650	7.247	1.253	Open Manhole	1200
1.0	07 53.703	150.0	ExMH15	8.650	6.889	1.611	Open Manhole	1200

19th Floor DLF Cyber Greens, DLF Phase III Gurugram- 122010 India Ayushi.gupta@atkinsglobal.com

© SNC-Lavalin except where stated otherwise