Consulting Engineers

MBP

1 Lancaster Place London WC2E 7ED

т 020 7240 1191

E london@mbp-uk.com

www.mbp-uk.com

MANOR HOUSE, HAM STREET, TW10 7HA

Addendum to Structural Impact Assessment for Planning P03

Status	Revision	Issued For	Date	Author
PRELIMINARY	P01	SIA addendum	29.08.23	LQ
PRELIMINARY	P02	SIA addendum – Statement regarding no further joists to	12.02.24	LQ
		be notched added to section 4.2		
PRELIMINARY	P03	SIA addendum - Statement regarding timber flitches to	13.02.24	LQ
		be used whenever possible & discussion on roof trusses		

CONTENTS

1	INTRODUCTION	3
2	THE EXISTING BUILDING	3
3	OVERVIEW OF THE PROPOSED WORKS	3
4	THE PROPOSED SCHEME	3
4.1	Ground Floor	3
4.2	First Floor	3
4.3	Second Floor	4
5	DESIGN AND PERFORMANCE PARAMETERS	4
5.1	Occupancy Loads	4
5.2	Environmental Loads	5
5.3	Permissible Deflections	5
5.4	Durability	
5.5	Design Code and Standards	
6	CONSTRUCTION HAZARDS	6
7	SPECIFICATION	
8	RECYCLING	7
9	APPENDED DOCUMENTS	7

1 INTRODUCTION

This report presents Michael Barclay Project Ltd.'s ('MBP's') addendum to the existing Structural Impact Assessment in support of the planning application for the refurbishment of the Grade II* listed Manor House, Richmond TW10 7HA.

2 THE EXISTING BUILDING

The existing property is formed by a central three-storey Queen Anne house, extended to the North and the South during the Edwardian period with two wings at ground floor and part of the first floor. The property was extensively refurbished and remodelled in the 1970s. There is an existing basement underneath the original part of the house.

3 OVERVIEW OF THE PROPOSED WORKS

Alterations to the internal layouts are proposed to the existing main house to provide a more workable layout and the loft space to the south of the property is proposed to be converted into an attic bedroom with bathroom. This report focuses on revisions to these internal layouts since the last Structural Impact Assessment was produced.

Other proposed work includes: a single-storey extension to the north of the house, to form a new living room and a loggia. Also, the construction of a new basement pool and spa complex to the south of the existing building. This addendum does not put forward any further revisions to these proposed works already submitted for planning.

4 THE PROPOSED SCHEME

4.1 GROUND FLOOR

The proposed internal re-arrangement of rooms to the rear of the property includes the removal of nonstructural walls that were previously installed as part of past remodelling works. At ground floor a nonstructural wall is demolished that had created a corridor to the rear doors opening onto the garden. Internal doorways in nearby structural walls are moved slightly to create a better layout – precast concrete lintels are proposed for these openings.

4.2 FIRST FLOOR

Heavy masonry partition walls were added during past renovation work, we believe in the 1970s, to create multiple bedrooms and bathrooms. These walls are proposed to be removed to create a better layout with larger rooms at first floor. The heavy partition walls have caused the first-floor timber joist structure in the corridor area to sag excessively and so removing them will lessen the heavy loading on the floor joists and primary oak beams.

The existing timber joists in the corridor area have also been notched excessively for the addition of pipework serving the new bathrooms, adding to the sagging problem with the existing timber joists. It is proposed to add timber or steel flitch plates to these joists to strengthen them to prevent further damage and movement. Some of the existing notching may be re-used for new services. This will need to be carefully coordinated with the M&E consultant and contractor to work through pipe layouts and existing notching so that no further notching will be necessary for the joists.

All new walls proposed to be added to the first floor will be formed in a lightweight construction. Joists below the new walls will be strengthened with timber or steel flitches to support the additional loading.

A new stair is to be added to the first floor to connect to the new attic room at second floor – at the southernmost end of the building. The stair will require partial removal of the existing masonry below the original eaves level.

\\SMBPLON03.mbp-uk.com\Document\Projects\8500 - 8599\8592 - Manor House, Ham Street , Richmond, TW10 7HA\07 Documents\7.1 MBP\MBP-8592- Structural Impact Assessment - Planning Addendum P03.docx New openings in existing structural masonry walls are proposed to be formed using precast concrete lintels.

4.3 SECOND FLOOR

At second floor, the new staircase enters the existing attic space having passed beneath the existing historic timber wallplate and eaves – these bear onto what would have been an original external wall line.

The existing attic timberwork at the southernmost end of the building is of much later construction. The roof shape is formed using 3 large timber trusses and the attic floor is formed using deep timber joists.

The new stair void is proposed to be framed out using small steel beams spanning between structural masonry walls below. The existing attic joists are very deep, but since they span nearly 7m and the area is not used for occupancy or storage, they are not sufficient for domestic occupancy loading. We have therefore proposed to strengthen these joists using flitch plates (timber or steel flitches will be chosen appropriately for the loads, spans and stresses applied, but with a preference for timber flitches wherever possible). Partition walls are also to be added on top of the existing joists to create the perimeter walls of the bedroom and connected bathroom adding further load to the existing joists.

The existing trusses in the attic will need to be modified to enable removal of the diagonal struts that would hinder movement across the room. We have proposed small steel channel sections are added to the horizontals and verticals of the truss to enable the central 'V' to be removed. These channels will be bolted through the existing timber so that the steel and timber work together in unison. The channels are added to the 'back' face of the trusses, i.e., the face that is not visible from the middle of the room – this should reduce their visual impact. Installation, jointing and 'buildability' details are included in the appended calculations.

5 DESIGN AND PERFORMANCE PARAMETERS

5.1 OCCUPANCY LOADS

The new structure elements will be designed in accordance with the Eurocodes and associated National Annexes. The general design imposed loads for the building is as follows (values highlighted in red):

Table 0.2 - Imposed loads on noors, balcomes and starts in buildings							
Categories of loaded areas	$q_{\rm k}$ [kN/m ²]	Q _k [kN]					
Category A - Floors - Stairs - Balconies	1,5 to <u>2.0</u> <u>2.0 to</u> 4,0 <u>2,5 to</u> 4,0	<u>2.0</u> to 3,0 <u>2.0</u> to 4,0 <u>2.0</u> to 3,0					
Category B	2,0 to <u>3.0</u>	1,5 to <u>4,5</u>					
Category C - C1 - C2 - C3 - C4 - C5	2,0 to <u>3,0</u> 3,0 to <u>4,0</u> 3,0 to <u>5,0</u> 4,5 to <u>5,0</u> <u>5,0</u> to 7,5	3,0 to 4,0 2,5 to 7,0 (4,0) 4,0 to 7,0 3,5 to 7,0 3,5 to 4,5					
category D - D1 - D2	<u>4.0</u> to 5,0 4,0 to <u>5,0</u>	3,5 to 7,0 <u>(4.0)</u> 3,5 to <u>7.0</u>					

Table 6.2 - Imposed loads on floors, balconies and stairs in buildings

Category	Specific Use	Example
А	Areas for domestic and residential activities	Rooms in residential buildings and houses; bedrooms and wards in hospitals; bedrooms in hotels and hostels kitchens and toilets.
B	Office areas	
С	Areas where people may congregate (with the exception of areas defined under category A, B, and D ¹¹)	 C1: Areas with tables, etc. e.g. areas in schools, cafés, restaurants, dining halls, reading rooms, receptions. C2: Areas with fixed seats, e.g. areas in churches, theatres or cinemas, conference rooms, lecture halls, assembly halls, waiting rooms, railway waiting rooms. C3: Areas without obstacles for moving people, e.g. areas in museums, exhibition rooms, etc. and access areas in public and administration buildings, hotels, hospitals,
		 railway station forecourts. C4: Areas with possible physical activities, e.g. dance halls, gymnastic rooms, stages. C5: Areas susceptible to large crowds, e.g. in buildings for public events like concert halls, sports halls including stands, terraces and access areas and railway platforms.
D	Shopping areas	D1: Areas in general retail shops
	wn to 6.3.1.1(2), in particular for C	D2: Areas in department stores 4 and C5. See EN 1990 when dynamic effects need to be
considered. For C NOTE 1 Depend as C5 by decision NOTE 2 The Nat	ategory E, see Table 6.3 ing on their anticipated uses, areas a of the client and/or National annex	likely to be categorised as C2, C3, C4 may be categorised

* defined by BS EN 1991-1-1:2002

5.2 ENVIRONMENTAL LOADS

All new structure will be designed to support loads from the wind in combination with the occupancy loads scheduled above in accordance with EN1991-1-4:2005 + A1:2010 and the UK national annex.

5.3 PERMISSIBLE DEFLECTIONS

The design of new constructional steel and reinforced concrete elements will limit deflection and displacement in accordance with the following criteria:

Structural Elements	Limit – under full load	Limit- under full load for	Limit- under full load	
		stone finishes	where supporting walls	
Simple Beams	Span / 360	Span/750	Span/500	
Cantilever Beams	Span / 360	Span/750	Span/500	

The above criteria must be read in conjunction with any performance specifications produced by MBP for individual works packages.

5.4 DURABILITY

The design life of the new building is taken as a minimum period of 60 years. This is in accordance with BS EN 1992-1-1:2002 Section 4 and corresponds to the standard durability used for buildings in this category, which includes new housing and high-quality refurbishment of public buildings.

\\SMBPLON03.mbp-uk.com\Document\Projects\8500 - 8599\8592 - Manor House, Ham Street , Richmond, TW10 7HA\07 Documents\7.1 MBP\MBP-8592- Structural Impact Assessment - Planning Addendum P03.docx

5.5 DESIGN CODE AND STANDARDS

The following design codes will be used for the design of the proposed new dwelling:

- BS EN 1990:2002 + A1:2005, Eurocode 0, Basis of structural design
- BS EN 1991-1-1:2002, Eurocode 1: Actions on structures, Part 1-1; General Actions -Densities, selfweight, imposed load for buildings.
- BS EN 1991-1-3:2003 + A1: 2015 Eurocode1: Actions on structures, Part 1-3: General Actions-Snow loads, including the UK National Annex
- BS EN 1991-1-4:2005 + A1:2010, Eurocode 1: Actions on structures, Part 1-4: General Actions-Wind action, including the UK National Annex
- BS EN 1992-1-1:2004 + A1:2014, Eurocode 2: Design of concrete structures, Part 1-1: General rules and rules for building, including the UK National Annex.
- BS EN 1993-1-1: 2005 + A1:2014, Eurocode 3: design of steel structures, Part 1-1: General rules and rules for buildings, including the UK National Annex
- BS EN 1995-1-1:2004 + A1:2014, Eurocode 5: Design of timber structures, Part 1-1: General Common rules and rules for buildings, including the UK National Annex
- BS EN 1996-1-1:2005 + A1:2012, Eurocode 6: Design of masonry structures, Part 1-1: General rules for reinforced and unreinforced masonry structures, including the UK National Annex
- BS EN 1997-1-1:2004, Eurocode 7: Geotechnical design -Part1: General rules
- The Building Regulations 1991- Approved Documents A, B, C, E, H, K & N

6 CONSTRUCTION HAZARDS

The proposed construction has standard materials and components and is of common form within the construction industry. Nevertheless, MBP will produce a separate document that will be developed as the detailed design proceeds.

7 SPECIFICATION

The proposed construction materials, components, workmanship etc. will be specified using the National Building Specification documents and a separate performance specification. Those sections that MBP will schedule for planning stage are:

Excavating and Filling	D20
Embedded Retaining Walls	D40
Underpinning	D50
In situ concrete construction generally	E05
In situ concrete mixes, casting and curing	E10
Formwork for in situ concrete	E20
Reinforcement for in-situ concrete	E30
Worked finishes to in situ concrete	E41
Brick/block walling	F10
Structural steel framing	G10
Carpentry / timber framing/ first fixing	G20
Intumescent coatings for fire protection of steelwork	M61
Holes/chases/covers/supports for services	P31

It is Michael Barclay Partnership's practice to specify materials and construction-practices that do not cause undue harm to the environment. For example, timber used in temporary and permanent works must be obtained from a certified sustainable source, and be identified as such. The paint specification will avoid red lead, zinc chromate or coal-tar content and have a low solvent (VOC) content and offer manufacturers with an Environmental Policy in operation. The Contractor will be encouraged to use Portland cement replacement materials for the reinforced concrete elements.

8 RECYCLING

MBP would intend to re-use and recycle as much of the existing construction materials as possible, re-using any timber or steel removed as part of the proposed remodelling works. Any new concrete will use cement substitutes and recycled aggregates and reinforcement bars made from recycled steel. Concrete and masonry arisings can be re-used as hardcore fill beneath new slabs.

9 APPENDED DOCUMENTS

- The following documents are appended to this report:
- A Michael Barclay Partnership Drawings
- B Michael Barclay Partnership Roof Truss Calculations & Buildability Details.

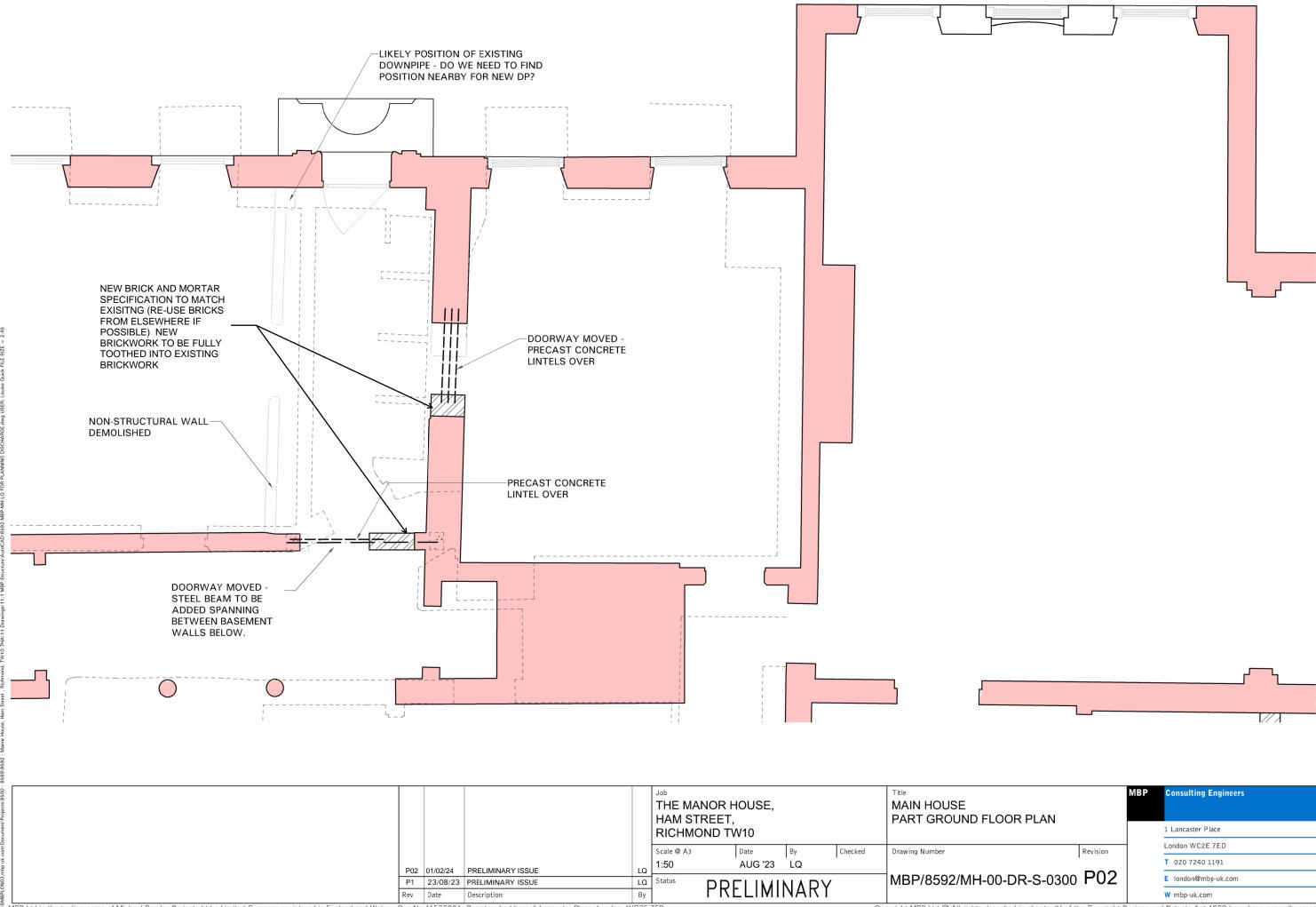
Report Prepared by:

Louise Quick BEng CEng MIStructE (Associate Director) for Michael Barclay Projects Ltd

\\SMBPLON03.mbp-uk.com\Document\Projects\8500 - 8599\8592 - Manor House, Ham Street , Richmond, TW10 7HA\07 Documents\7.1 MBP\MBP-8592- Structural Impact Assessment - Planning Addendum P03.docx

MBP

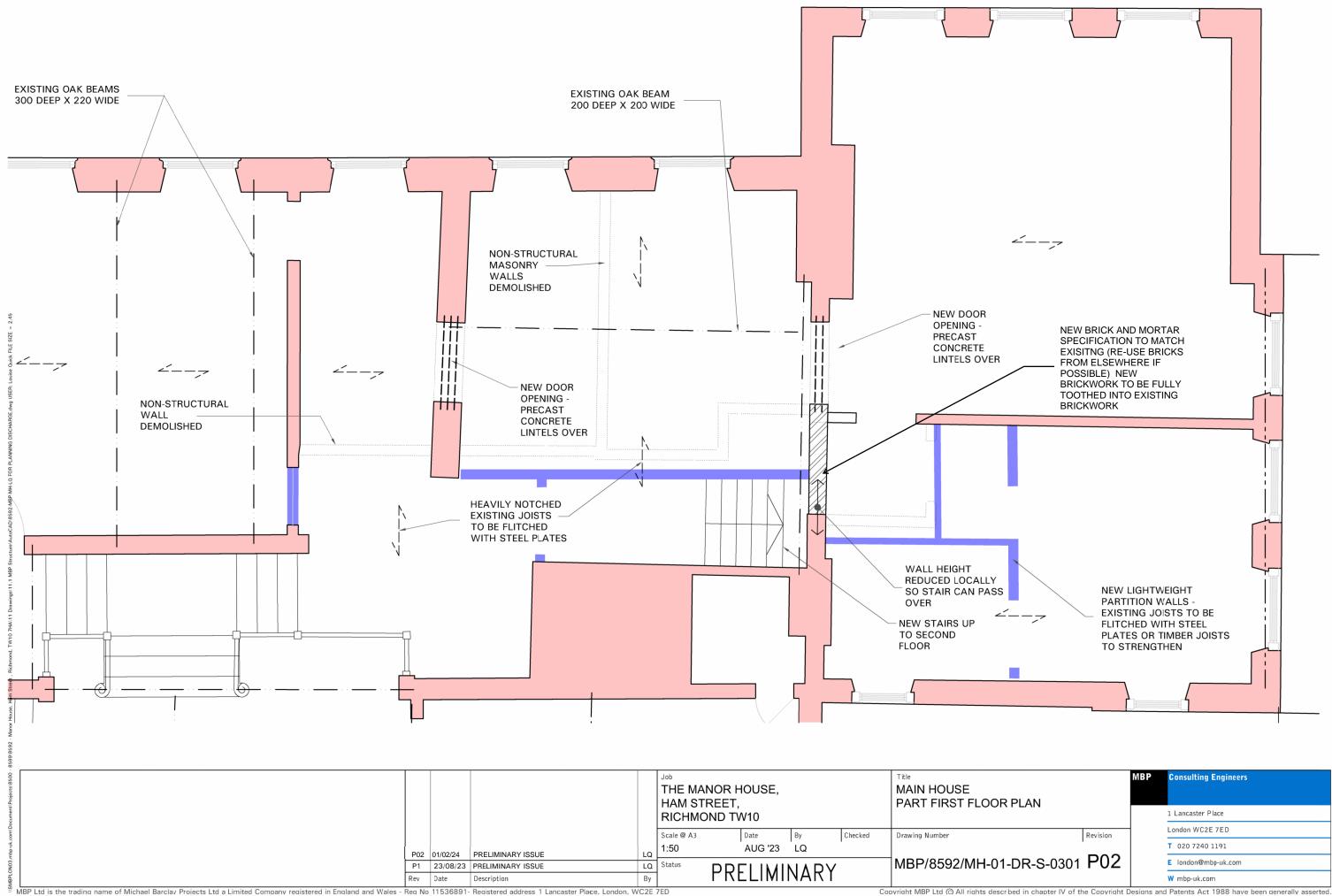
MBP

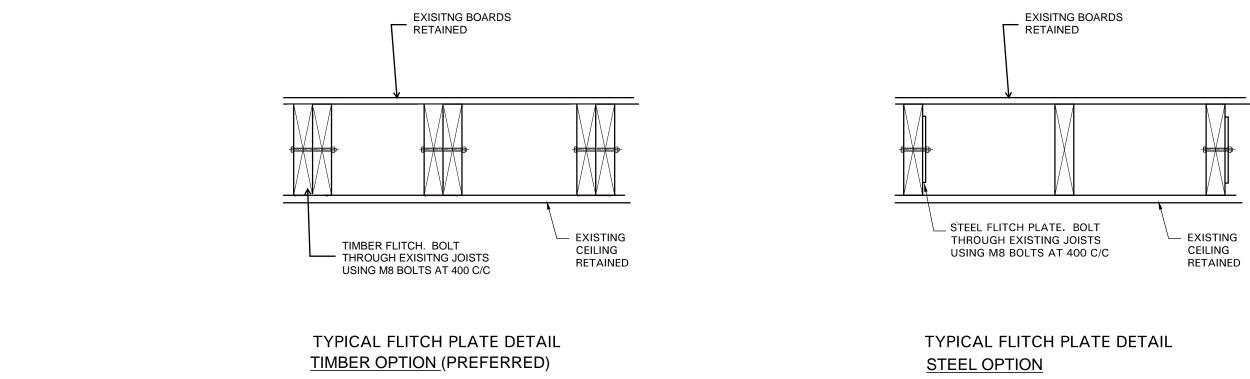

1 Lancaster Place London WC2E 7ED

т 020 7240 1191

E london@mbp-uk.com

www.mbp-uk.com


MANOR HOUSE, HAM STREET, TW10 7HA APPENDIX A - MICHAEL BARCLAY PARTNERSHIP DRAWINGS


MBP Ltd is the trading name of Michael Barclay Projects Ltd a Limited Company registered in England and Wales - Reg No 11536891 - Registered address 1 Lancaster Place, London, WC2E 7ED

		MBP	Consulting Engineers
PLAN			
			1 Lancaster Place
	Revision	-	London WC2E 7ED
			T 020 7240 1191
R-S-0300	P02		E london@mbp-uk.com
			W mbp-uk.com

Copyright MBP Ltd (2) All rights described in chapter IV of the Copyright Designs and Patents Act 1988 have been generally asserted.

		MBP	Consulting Engineers
AN			
			1 Lancaster Place
	Revision	-	London WC2E 7ED
	1		T 020 7240 1191
R-S-0301 P02			E london@mbp-uk.com
			W mbp-uk.com

					THE MANOR HOUSE, HAM STREET, RICHMOND TW10			MAIN HOUSE FLITCH DETAIL	
					Scale @ A3	Date	Ву	Checked	Drawing Number
	P02	13/02/24	PRELIMINARY ISSUE	LQ	1:50	AUG '23	LQ		
	P1	01/02/24	PRELIMINARY ISSUE	LQ	Status DDI				MBP/8592/MH-01-DR
	Rev	Date	Description	Ву	ן דאו		NARY		
IBP Ltd is the trading name of Michael Barclay Projects Ltd a Limited Company registered in England and Wales -	Reg No	11536891	- Registered address 1 Lancaster Place London W	C2E	7ED			Co	pyright MBP I td @ All rights described in

egistered address 1 Lancaster Place, London, WC2E 7ED

_

		MBP	Consulting Engineers			
			1 Lancaster Place			
	Revision	evision London WC2E 7ED				
	1		T 020 7240 1191			
R-S-0320	P02		E london@mbp-uk.com			
			W mbp-uk.com			

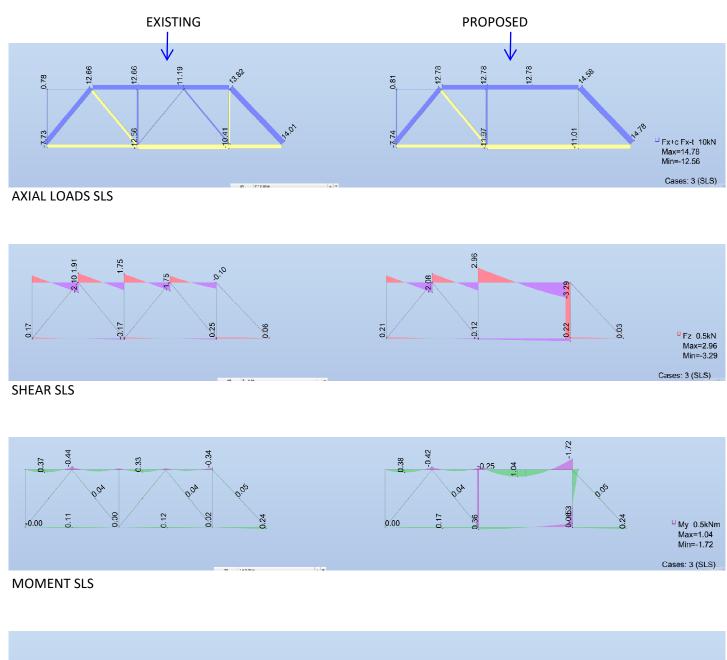
Copyright MBP Ltd (2) All rights described in chapter IV of the Copyright Designs and Patents Act 1988 have been generally asserted.

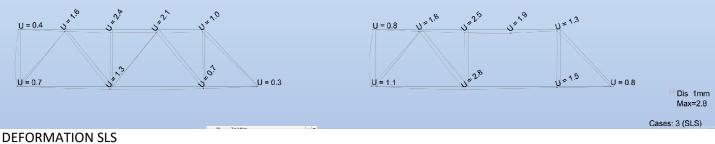
MBP	Consulting Engineers

1 Lancaster Place London WC2E 7ED

т 020 7240 1191

E london@mbp-uk.com


www.mbp-uk.com


MANOR HOUSE, HAM STREET, TW10 7HA

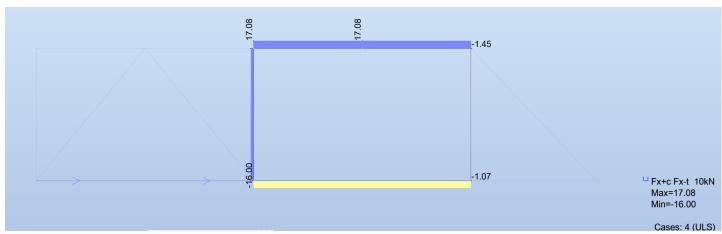
APPENDIX B - MICHAEL BARCLAY PARTNERSHIP ROOF TRUSS CALCULATIONS & BUILDABILITY DETAILS

BP	Consulting Engineers	Job Title	Job Number	Page No	Revision
		MANOR HOUSE (MAIN HOUSE)	8592	1	
	A 1 Lancaster Place, London, WC2E 7ED		0002		
	T 020 7240 1191	Calculation / Sketch Title	Date	Author	Checked
E london@mbp-uk.com	ROOF TRUSS MODIFICATIONS BEDROOM 8	01/02/2024	•	-	
	₩ www.mbp-uk.com	ROOF TRUSS MODIFICATIONS BEDROOM 8	01/02/2024		

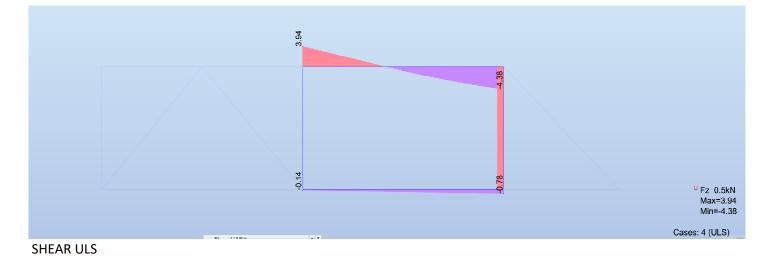
TRUSS X-X EXISTING AND PROPOSED TRUSS FORCES

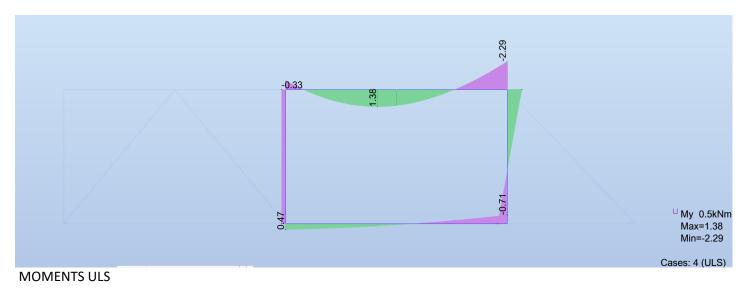
MBP Consulting Engineers

A 1 Lancaster Place, London, WC2E 7ED

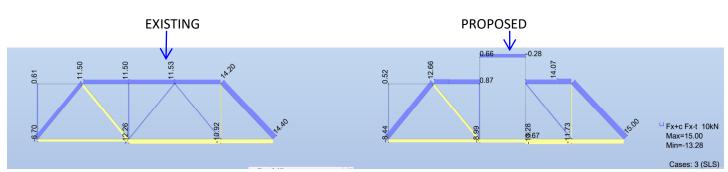

T 020 7240 1191

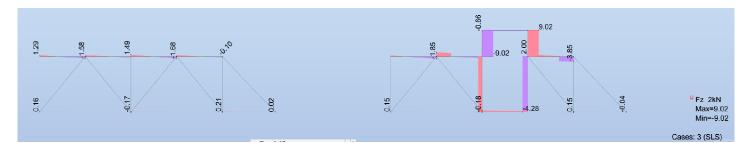
E london@mbp-uk.com


www.mbp-uk.com

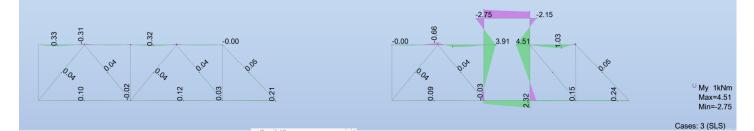

Job Title	Job Number	Page No	Revision
MANOR HOUSE (MAIN HOUSE)	8592	2	
Calculation / Sketch Title	Date	Author	Checked
ROOF TRUSS MODIFICATIONS BEDROOM 8	01/02/2024		1

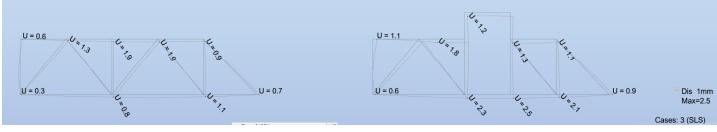
TRUSS X-X PROPOSED BOX FRAME IN ISOLATION


AXIAL ULS



Consulting Engineers	Job Title	Job Number	Page No	Revision
	MANOR HOUSE (MAIN HOUSE)	8592	3	
▲ 1 Lancaster Place, London, WC2E 7ED		0002		
T 020 7240 1191	Calculation / Sketch Title	Date	Author	Checked
E london@mbp-uk.com	ROOF TRUSS MODIFICATIONS BEDROOM 8	01/02/2024	-	-
www.mbp-uk.com	- ROOF TRUSS MODIFICATIONS BEDROOM 8	01/02/2024		

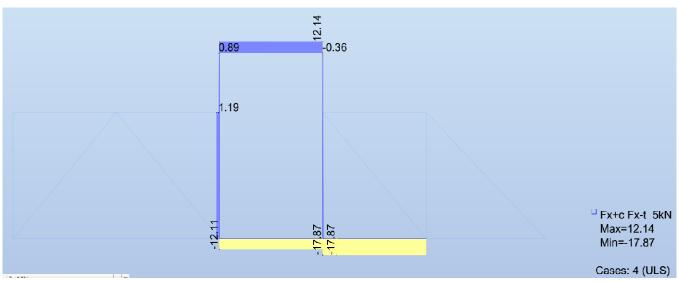

TRUSS Y-Y EXISTING AND PROPOSED TRUSS FORCES


AXIAL LOADS SLS

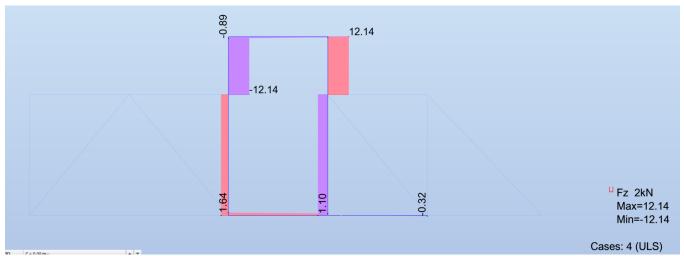
SHEAR SLS

MOMENT SLS

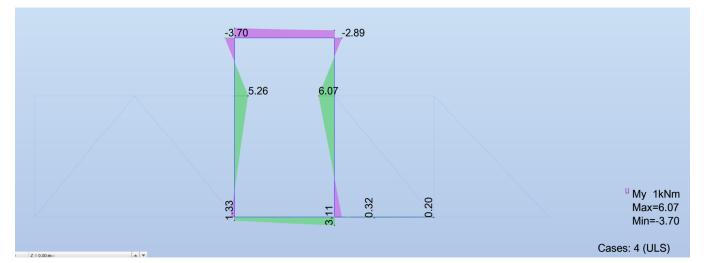
DEFLECTION SLS


MBP Consulting Engineers

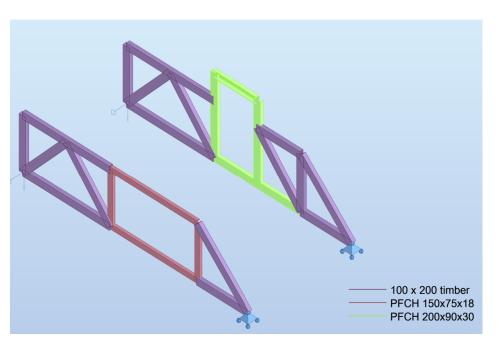
1 Lancaster Place, London, WC2E 7ED


- **T** 020 7240 1191
- E london@mbp-uk.com
- www.mbp-uk.com

Job TitleJob NumberPage NoRevisionMANOR HOUSE (MAIN HOUSE)85924Calculation / Sketch TitleDateAuthorCheckedROOF TRUSS MODIFICATIONS BEDROOM 801/02/202401/02/2024


TRUSS Y-Y PROPOSED BOX FRAME IN ISOLATION

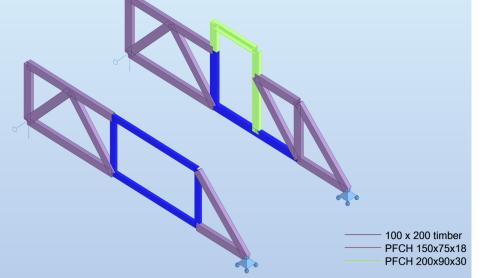
AXIAL ULS


MOMENT ULS

MBP Consulting Engineers

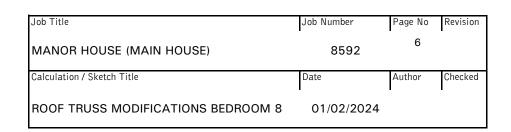
- A 1 Lancaster Place, London, WC2E 7ED
- **T** 020 7240 1191
- E london@mbp-uk.com
- ----
- www.mbp-uk.com

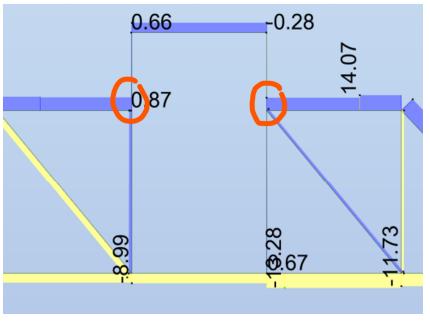
Job Title Job Number Page No Revision MANOR HOUSE (MAIN HOUSE) 8592 5 Calculation / Sketch Title Date Author Checked ROOF TRUSS MODIFICATIONS BEDROOM 8 01/02/2024 1


DESIGN

TIMBER MEMBERS ARE REPLACED WITH STEEL IN THE ANALYSIS MODEL BUT IN REALITY THEY WILL BE RETAINED (AS PER MBP DRAWINGS) AND THE PFC WILL BE ADDED & BOLTED THROUGH THE EXISITNG TIMBER

ONLY THE REMAINING GREEN MEMBERS (200 X 90 PFC) WILL BE WORKING IN ISOLATION



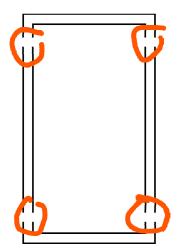

THE APPENDED TEDDS CALCULATION IS FOR A 150 X 75 PFC, 2.6m LONG (i.e., THE LONGEST) WITH MAX MOMENT, SHEAR AND COMPRESSION APPLIED. THE PFC SECTION IS ADEQUATE

MBP	Consulting Engineers
	A 1 Lancaster Place, London, WC2E 7ED
	T 020 7240 1191
	E london@mbp-uk.com

www.mbp-uk.com

TIMBER TO STEEL CONNECTION

MOST CRITICAL IS MARKED.

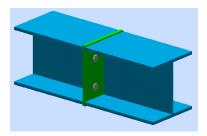

TOP TIMBER BOOM IS IN COMPRESSION & LOAD NEEDS TO BE TRANSFERRED INTO THE PFC FRAME

LONG 10mm THK X 195mm DEEP TAB PLATES TO BE WELDED TO PCF RAME AND BOLTED THROUGH TIMBER USING 4No. M16 **BOLTS - SEE APPENDED TEDDS CALCULATION**

LOADS ARE APPLIED CLOSE TO EH SHEAR CENTRE OF THE PFC SO THAT SECONDARY TORSIONAL EFFECTS ARE NOT A PROBLEM

FRAME BUILDABILITY

STEEL MEMBERS WILL BE BROUGHT IN AS 'STICK' ELEMENTS AND SPLICED INTO A BOX FRAME ON SITE. THE EXISITING TRUSSES WILL NEED TO BE SURVEYED ACCURRATELY SO THAT THE FRAMES CAN BE FABRICATED TO SUIT THE EXISITING SHAPE. WE CAN ALLOW FOR SOME LOOSE SHIM PLATES BETWEEN THE JOINTS. HIGH STRENGTH FRICTION GRIP BOLTS WILL BE SPECIFIED.



TYPICAL SPLICE LOCATIONS ARE MARKED. MAXIMUM FORCES ARE TAKEN FROM WORST LOCATIONS & APPLIED ALL AT ONE SPLICE LOCAITON. THIS IS CONSERVATIVE

MAX MOMENT	3.7 kNm ULS
MAX SHEAR	12.14 kN ULS
MAX AXIAL	17.87 kN ULS

JLS JLS

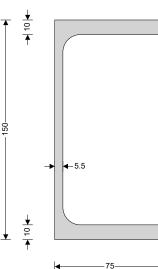
FOR A QUICK CALCULATION ROBOT HAS BEEN USED FOR A SPLICE CONNECTION CHECK. THE SOFTWARE DOESN'T HANDLE PFCs SO WE HAVE DOUBLED UP THE FORCES AND APPLIED TO A 203 UC SECTION. THE BOLT AND PLATE ARRANGEMENT PER SIDE OF UC IS THE SAME AS THAT FOR THE PFC. BOLT, PLATE AND WELD SIZES WILL APPLY TO THE PFC SPLICE.

SEE APPENDED CONNECTION DESIGN OUTPUT.

MBP <mark>Co</mark>	nsulting Engineers	Project				Job no.	
		MANOR HOUSE (MAIN HOUSE)				85	92
	Lancaster Place London WC2E 7ED	Calcs for BEDROOM 8 TRUSSES - WORST CASE PFC				Start page no./Revision 1	
	ondon@mbp-uk.com vw.mbp-uk.com	Calcs by LQ	Calcs date 01/02/2024	Checked by	Checked date	Approved by	Approved date

STEEL MEMBER DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex


Tedds calculation version 4.4.11

Partial factors - Section 6.1	
Resistance of cross-sections	γ _{M0} = 1
Resistance of members to instability	γ _{M1} = 1
Resistance of tensile members to fracture	γ _{M2} = 1.1

Design section 1 - WORST CASE PFC

Section details

Section type Steel grade - EN 10025-2:2004 Nominal thickness of element Nominal yield strength Nominal ultimate tensile strength Modulus of elasticity

UKPFC 150x75x18 (Tata Steel Advance) S355 $t_{nom} = max(t_f, t_w) = 10 \text{ mm}$ $f_y = 355 \text{ N/mm}^2$

- f_u = **470** N/mm²
- E = 210000 N/mm²

 $\label{eq: UKPFC 150x75x18 (Tata Steel Advance)} \\ Section height, h, 150 mm \\ Section breadth, b, 75 mm \\ Mass of section, Mass, 17.9 kg/m \\ Flange thickness, t_{v}, 10 mm \\ Web thickness, t_{v}, 5.5 mm \\ Root Radius, r_{1}, 12 mm \\ Area of section, A, 2277 mm^2 \\ Radius of gyration about y-axis, i_{y}, 61.493 mm \\ Elastic section modulus about y-axis, W_{ely'} 114793 mm^3 \\ Elastic section modulus about y-axis, W_{ely'} 114793 mm^3 \\ Plastic section modulus about y-axis, W_{ely'} 46581 mm^3 \\ Plastic section modulus about y-axis, I_{y}, 809494 mm^4 \\ Second moment of area about z-axis, I_{z}, 1309331 mm^4 \\ \end{array}$

Analysis results

Design bending moment - Major axis	M _{y,Ed} = 6.07 kNm
Design shear force - Major axis	V _{y,Ed} = 12.14 kN
Design axial compression force	N _{Ed} = 17.87 kN
Restraint spacing	
Major axis lateral restraint	L _y = 2500 mm
Minor axis lateral restraint	L _z = 2600 mm
Torsional restraint	L⊤ = 2600 mm

Classification of cross sections - Section 5.5

 $\epsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.81$

P Consulting Engineers	Project	MANOR HOUSI	SE)	Job no. E	3592	
1 Lancaster Place London WC2E 7ED	Calcs for				Start page no./	Revision
т 020 7240 1191	BEDR	OOM 8 TRUSSE	S-WORST C	CASE PFC		2
E london@mbp-uk.com	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved
www.mbp-uk.com	LQ	01/02/2024				
Outstand flanges - Table 5.2 Width of section	(sheet 2 of 3)	c = b - t _w - i	3 = 23.7 × ε <= r ₁ = 57.5 mm = 7.1 × ε <= 9 >	396 × ε / (13 × α	,	s 1
		C/lf - 5.7 -	- 7.1 × 8 <- 9 >		-	tion is cla
Check compression - Section	624				000	
Design compression force	10.2.4	N _{Ed} = 17.9	kN			
Design resistance of section - e	ea 6.10		$A_{d} = A \times f_{y} / \gamma_{M0}$	= 808.3 kN		
		N _{Ed} / N _{c.Rd} =	•			
				n resistance ex	ceeds desian	compres
Slenderness ratio for y-y axis	flexural buckl	-	-			
Critical buckling length		•	: L _{v s1} = 3000 n	nm		
Critical buckling force			$E \times I_y / L_{cr,y^2} =$			
Slenderness ratio for buckling ·	- eg 6.50		$f_v / N_{cr,v}$ = 0.6			
-	-					
Check y-y axis flexural buckl Buckling curve - Table 6.2	ing resistance	- Section 6.3.1.1				
Imperfection factor - Table 6.1		α _y = 0.49				
Buckling reduction determination	on factor	-	$1 + \alpha_{\rm W} \times (\overline{\lambda}_{\rm W} - 1)$	$(0.2) + \overline{\lambda}_{y}^{2}) = 0.8$	244	
Buckling reduction factor - eq 6				, .,	,,,,	
•		$\chi_y = \min(1 / (\phi_y + \sqrt{(\phi_y^2 - \overline{\lambda}_y^2)}), 1) = 0.762$ N _{b,y,Rd} = $\chi_y \times A \times f_y / \gamma_{M1} = 616.2$ kN				
Design buckling resistance - eo	10.47	$N_{b,y,Rd} - \chi_y \times A \times I_y / \gamma_{M1} - 616.2 \text{ kin}$ N _{Ed} / N _{b,y,Rd} = 0.029				
		-		g resistance ex	ceeds desian	compres
Slenderness ratio for z-z axis	flexural buckl		-	y		
Critical buckling length		-	: L _{z_s1} = 3120 n	nm		
Critical buckling force			$E \times I_z / L_{cr,z^2} = 1$			
Slenderness ratio for buckling	eg 6 50		f _y / N _{cr,z}) = 1.7			
-				00		
Check z-z axis flexural buckl Buckling curve - Table 6.2	ing resistance	- Section 6.3.1.1				
Imperfection factor - Table 6.1		α _z = 0.49				
Buckling reduction determination	on factor		$1 + \alpha_{-} \times (\overline{\lambda}_{-})$	$(0.2) + \overline{\lambda}_z^2) = 2.3$	218	
Buckling reduction factor - eq 6				$(\bar{\lambda}_z^2)$, 1) = 0.257	10	
Design buckling resistance - ec	10.47	Nb,z,Rd – Xz NEd / Nb,z,Rd	$\times A \times f_y / \gamma_{M1} =$	207.0 KIN		
				g resistance ex	ceeds desian	compres
Check torsional and torsiona	l-flexural buck		-			
Torsional buckling length		-	= 2600 mm			
Distance from shear centre to o	centroid in v axis			$b^2 \times t_f$) / ((h - 2 ×	$t_{\rm f}$) × t _w + 2 × b	\times t _f) + 3 × 1
			$6 \times b \times t_{\rm f}$) - $t_{\rm f}$ /	,	.,	
Distance from shear centre to o	centroid in z avid					
Radius of gyration			¹¹ z ² + y ₀ ²) = 84.6	mm		
Elastic critical torsional bucklin	a force		• •	$^{2} \times E \times I_{w} / L_{cr,T}^{2}$	= 882 kN	
Torsion factor	9 10100		$(3 \times 10^{\circ} + 10^{\circ})^{2} = 0.608$	$\Delta = \Delta W / Ecr, I)$		
Elastic critical torsional-flexural	buckling force	μ⊤ – I - (λ 0	, 10) - 0.000			
Elactic critical toreional flaviral						

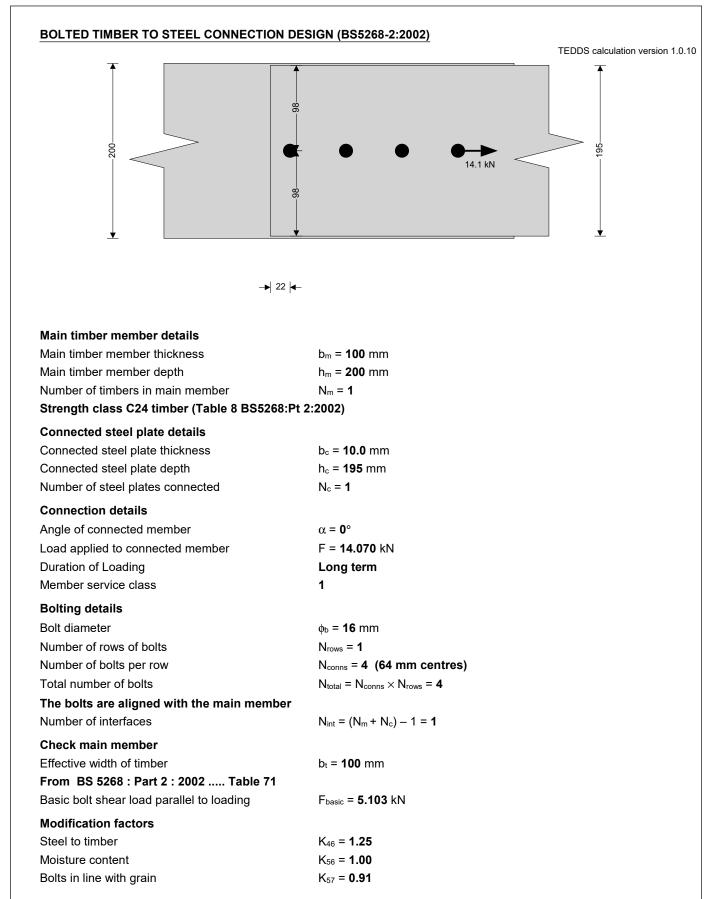
3P Consulting Engineers	Project	MANOR HOUS	IANOR HOUSE (MAIN HOUSE)			3592		
1 Lancaster Place London WC2E 7ED	Calcs for Start page no./Revision		Revision					
т 020 7240 1191	BEDR	ROOM 8 TRUSSE	S - WORST (CASE PFC		3		
E london@mbp-uk.com	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved of		
www.mbp-uk.com	LQ	01/02/2024						
Elastic critical buckling force		N _{cr} = min(f	N _{cr,T} , N _{cr,TF}) = 7 2	20.8 kN				
Slenderness ratio for torsional l	ouckling - eq 6.	.52 $\overline{\lambda}_{T} = \sqrt{[A>]}$	< f _y / N _{cr}] = 1.05	59				
Design resistance for torsion	al and torsion	al-flexural buck	ling - Section	6.3.1.1				
Buckling curve - Table 6.2		с						
Imperfection factor - Table 6.1		α _T = 0.49	_	_				
Buckling reduction determination				$(0.2) + \overline{\lambda}_{T}^{2} = 1.2$	271			
Buckling reduction factor - eq 6	.49			$\overline{\lambda}_{T^2}$)), 1) = 0.507				
Design buckling resistance - ec	i 6.47	$N_{b,T,Rd} = \chi_T$	$\times A \times f_y / \gamma_{M1} =$	409.4 kN				
		$N_{Ed} / N_{b,T,R}$						
		PASS - L	Design bucklir	ng resistance ex	ceeds design	compres		
Check shear - Section 6.2.6		L _ L ^	400		000			
Height of web			< t _f = 130 mm		000			
		$h_w / t_w = 23$	8.6 = 29.1 × ε /		• .			
Design shear force		V 1 2	4 1201	Shear buckling	g resistance c	an be igno		
Design shear force		$V_{y,Ed} = 12.$		$() \times t = 0.52 \text{ mm}^2$	>			
Shear area - cl 6.2.6(3)			$A_v = A - 2 \times b \times t_f + (t_w + r_1) \times t_f = 952 \text{ mm}^2$					
Design shear resistance - cl 6.2		$V_{c,y,Rd} = V_{pl,y,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 195.1 \text{ kN}$						
	V _{y,Ed} / V _{c,y,Rd} = 0.062 PASS - Design shear resistance exceeds design shear for							
		ra.	55 - Design Si	lear resistance	exceeds desig	gii Shear n		
Check bending moment - Sec	tion 6.2.5							
Design bending moment	1 0.40	M _{y,Ed} = 6.1						
Design bending resistance mor	nent - eq 6.13			_y / γ _{M0} = 46.9 kNr	n			
	DAS	M _{y,Ed} / M _{c,y}		momentevee	da daaiga ha	ndina mor		
		S - Design bendi 	ing resistance	inoment excee	us design bei	iung mon		
Slenderness ratio for lateral t		•						
Correction factor - User defined	1	$k_c = 1$) _ 4					
Deine aus natio		C ₁ = 1 / k _c ² v = 0.3	- = 1					
Poissons ratio			. (4)] 00	200 MI/man ²				
Shear modulus		-	× (1 + v)] = 807					
Unrestrained effective length			$z_{s1} + 2 \times h = 3$		-			
Elastic critical buckling moment	Į.		$\pi^2 \times E \times I_z / L^2$	$\times \sqrt{(I_w / I_z + L^2 \times G)}$	×lt/(π [∠] ×E>	< Iz)) = 36.4		
Olemane	alamat bar 1.P	kNm		4 4 9 5				
Slenderness ratio for lateral tor	sional buckling		$f_{pl.y} \times f_y / M_{cr}) =$	1.135				
Limiting slenderness ratio		$\overline{\lambda}_{LT,0} = 0.4$						
			ЛLT > ЛLT,0 - La	ateral torsional	DUCKIING CAN	not be igno		
Check buckling resistance - S	Section 6.3.2.1							
Buckling curve - Table 6.5		d						
Imperfection factor - Table 6.3		α _{LT} = 0.76						
	ions	β = 0.75						
Correction factor for rolled sect	ctor	1		$\tau - \overline{\lambda}_{LT,0}) + \beta \times \overline{\lambda}_{LT,0}$	-			
Correction factor for rolled sect LTB reduction determination fa		$\gamma_{1T} = \min(\gamma_{1T})$	Ι / [φ _{LT} + √(φ _{LT} ²	- $\beta \times \overline{\lambda}_{LT^2}$], 1, 1	,			
						•		
LTB reduction determination fa			0.5 imes (1 - k _c) $ imes$: [1 - 2 × (λ _{LT} - 0	.8) ²], 1) = 1.00	U		
LTB reduction determination fa LTB reduction factor - eq 6.57	eq 6.58	f = min(1 -	0.5 × (1 - k _c) × in(χ _{LT} / f, 1, 1 /		.8)²], 1) = 1.00 0	U		
LTB reduction determination fa LTB reduction factor - eq 6.57 Modification factor	-	f = min(1 - χ _{LT,mod} = m	in(χ _{L⊤} / f, 1, 1 /			U		

3P Consulting Engineers	Project	MANOR HOUSE	(MAIN HOUS	E)	Job no.	3592
1 Lancaster Place London WC2E 7ED	Calcs for		Start page no./Revision			
T 020 7240 1191	BEDRO	OOM 8 TRUSSES	S-WORST C	ASE PFC		4
E london@mbp-uk.com	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved
www.mbp-uk.com	ĹQ	01/02/2024	,			
	PASS	Design bucklir	g resistance	moment excee	ds design ber	nding mor
Resistance of cross-section	- Section 6.2.1					
Interaction formula - eq.6.2			M _{y,Ed} / M _{c,y,Rd} =	= 0.152 ined bending a	nd axial force	is accept
Check combined bending an	d compression	- Section 6.3.3				
Equivalent uniform moment fac	ctors - Table B.3	C _{my} = 1.000				
		C _{mz} = 1.000				
		C _{mLT} = 1.00	0			
Interaction factors k _{ij} for mer	nbers susceptik					
Characteristic moment resistar	nce	$M_{y,Rk} = W_{el.y}$	× f _y = 40.8 kN	m		
Characteristic moment resistar	nce	$M_{z,Rk} = W_{el.z}$	× f _y = 9.4 kNm	ı		
Characteristic resistance to no	rmal force	$N_{Rk} = A \times f_y$	= 808.3 kN			
Interaction factors		$k_{yy} = C_{my} \times 0$	1 + min(0.6 \times	$\overline{\lambda}_{y},0.6)\times N_{\text{Ed}}/$	(χ _y × N _{Rk} / γ _{M1})) = 1.011
		k _{zy} = 1 - 0.0	$5 \times min(1, \overline{\lambda}_z)$	imes N _{Ed} / ((C _{mLT} - 0	$0.25) \times \chi_z \times N_R$	_k / γ _{M1}) = 0 .
Interaction formulae - eq 6.61	& eq 6.62	N_{Ed} / ($\chi_y imes N$	I _{Rk} / γ _{M1}) + k _{yy} ×	$M_{y,Ed}$ / ($\chi_{LT} imes M_{y}$	_{/,Rk} / γ _{M1}) = 0.3	38
				$M_{y,Ed}$ / ($\chi_{LT} imes M_{y}$		
				ing and compr		
Design section 2						
Section details						
Section type		UKPFC 150	x75x18 (Tata	Steel Advance)		
Steel grade - EN 10025-2:2004	4	S355				
Nominal thickness of element		t _{nom} = max(t	_f , t _w) = 10 mm			
Nominal yield strength		f _y = 355 N/n	nm²			
Nominal ultimate tensile streng	jth	f _u = 470 N/r	nm²			
Modulus of elasticity		E = 210000	N/mm ²			
			75x18 (Tata Steel Ad	vance)		
Ŧ		Section heigh				
			on, Mass, 17.9 kg/m ess, t _r , 10 mm			
		Web thicknes	s, t _w , 5.5 mm			
		Root Radius, Area of section	r ₁ , 12 mm n, A, 2277 mm ²			
0			ation about y-axis, i _y , 6 ation about z-axis, i _z , 2			
15		Elastic sectio	n modulus about y-axi	s, W _{el.y} , 114793 mm³		
			n modulus about z-axi n modulus about y-axi			
-+	4 −5.5		n modulus about z-axi ent of area about y-ax			
			ent of area about z-ax			
↓ ↓ ↓ ↓						
Ť						
	◀────75───					
Analysis results						
-						
Restraint spacing						

L_y = **0** mm

L_z = **0** mm

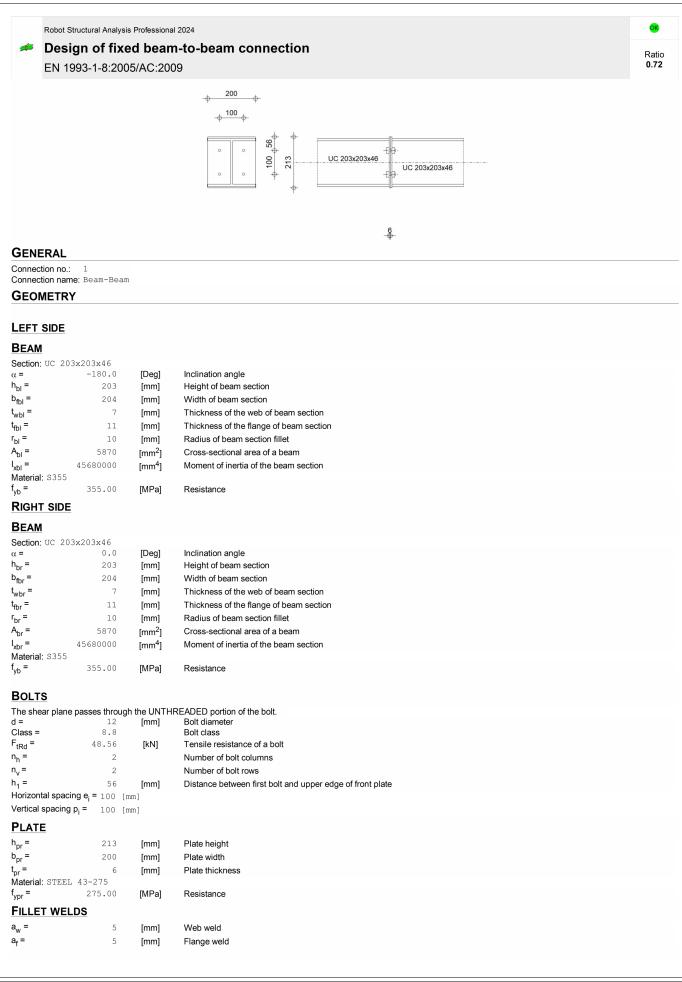
Major axis lateral restraint


Minor axis lateral restraint

MBP Consulting Engineers	F	Project				Job no.	
		MANOR HOUSE (MAIN HOUSE)				85	92
l Lancaster Place Londo τ 020 7240 1191	WC2E 7ED	Calcs for BEDRO	OM 8 TRUSSES	S-WORST CA		Start page no./Re	vision 5
E london@mbp-uk.com www.mbp-uk.com	(Calcs by LQ	Calcs date 01/02/2024	Checked by	Checked date	Approved by	Approved date

Torsional restraint

L_T = **0** mm


MBP Consulting Engineers	Project	MANOR HOUSE	Job no. 8592			
l Lancaster Place London WC2E 7ED T 020 7240 1191	Calcs for	IMBER TO STEE	EL CONNECTIO	DN	Start page no./Re	evision 1
E london@mbp-uk.com www.mbp-uk.com	Calcs by LQ	Calcs date 01/02/2024	Checked by	Checked date	Approved by	Approved date

MBP Consulting Engineers	Project				Job no.	
	1	MANOR HOUSE	85	92		
1 Lancaster Place London WC2E 7ED	Calcs for				Start page no./Re	evision
т 020 7240 1191	Т	IMBER TO STEE	EL CONNECTIO)N	:	2
E london@mbp-uk.com www.mbp-uk.com	Calcs by LQ	Calcs date 01/02/2024	Checked by	Checked date	Approved by	Approved date

Capacity of bolted connection

Capacity of connection	$F_{m} = N_{total} \times F_{basic} \times K_{46} \times K_{56} \times K_{57} \times N_{int} = \textbf{23.220 kN}$
	PASS - Connection capacity exceeds applied load
Minimum bolt spacings	
Loaded end spacing	$S_{end_l} = 7 \times \phi_b = 112 \text{ mm}$
Unloaded end spacing	$S_{end_u} = 4 \times \phi_b = 64 \text{ mm}$
Loaded edge spacing	$S_{edge_l} = 4 \times \phi_b = 64 \text{ mm}$
Unloaded edge spacing	$S_{edge_u} = 1.5 \times \phi_b = 24 \text{ mm}$
Minimum bolt spacing	$S_{bolt} = 4 \times \phi_b = 64 \text{ mm}$
Washer details	
Minimum washer diameter	$\phi_{w} = 3 \times \phi_{b} = 48 \text{ mm}$
Minimum washer thickness	$t_w = 0.25 \times \phi_b = 4.0 \text{ mm}$

Date : 01/02/24

	al Analysis Prof			File: 240201 Project: 2402						
MATERIAL										
_{мо} =	1.00		Partial safety fac	tor						
M1 =	1.00		Partial safety fac	tor						
M2 =	1.25		Partial safety fac	tor						
мз =	1.25		Partial safety fac	tor						
Itimate limit	state calculatior	S								
	curcuración									
b1,Ed =	7.40	[kN*m]	Bending momen	t in the right be	am					
/b1,Ed =	24.28	[kN]	Shear force in th	e right beam						
I _{b1,Ed} =	-35.74	[kN]	Axial force in the	right beam						
RESULTS										
EAM RES	ISTANCES									
OMPRESSIO	DN									
=	5870	[mm ²]	Area							EN1993-1-1:[6
$_{cb,Rd} = A_b f_{yb}$	^{/γ} мο									
cb,Rd =	2083.85	[kN]	Design compres	sive resistance	of the section					EN1993-1-1:[6
IEAR										
, =	1694	[mm ²]	Shear area						EN	1993-1-1:[6.2.6
_{cb,Rd} = A _{vb} (f _y		[]								•
cb,Rd vb vy	347.28	[kN]	Design sectional	resistance for	shear				EN	1993-1-1:[6.2.6
_{01,Ed} / V _{cb,Rd}		[····]			< 1.00		verifie	ed		(0.
	ASTIC MOMEN									
/ _{plb} =	497000	[mm ³]	Plastic section m	nodulus					EN	1993-1-1:[6.2.5
b,pl,Rd = W _{plb}										
b,pl,Rd =	176.44	[kN*m]	Plastic resistanc	e of the section	for bending (without stiffe	ners)		EN	1993-1-1:[6.2.5
ENDING ON	THE CONTACT	SURFACE	WITH PLATE OR	CONNECTED I	ELEMENT					
el =	449606	[mm ³]	Elastic section m	nodulus						EN1993-1-1:[6
_{cb,Rd} = W _{el} f _y	уь ^{/ ү} м0									
cb,Rd =	159.61	[kN*m]	Design resistanc	e of the section	n for bending					EN1993-1-1:[6
CD,Ra										
ENDING WIT		E ON THE					MENT			002 1 1 1 6 2 0 1
ENDING WIT	0.02	E ON THE (CONTACT SURFAC Ratio of the axial				MENT		EN1	993-1-1:[6.2.9.′
ENDING WIT = _{Nb,Rd} = M _{cb,F}	0.02 _{Rd} (1 - n)		Ratio of the axial	force to the se	ctional resista	nce				
ENDING WIT = _{Nb,Rd} = M _{cb,F}	0.02	E ON THE ([kN*m]		force to the se	ctional resista	nce				
ENDING WIT = _{Nb,Rd} = M _{cb,F} _{Nb,Rd} =	0.02 _{Rd} (1 - n) 156.87 WEB - COMPR	[kN*m]	Ratio of the axial Reduced resista	force to the se	ctional resista	nce				•
ENDING WIT = N _{b,Rd} = M _{cb,F} N _{b,Rd} = LANGE AND	0.02 Rd (1-n) 156.87	[kN*m]	Ratio of the axial	force to the se	ctional resista	nce				- 993-1-1:[6.2.9.2
ENDING WIT = Nb,Rd = M _{cb,F} Nb,Rd = _ANGE AND cb,Rd = =	0.02 Rd (1 - n) 156.87 WEB - COMPR 159.61 192	[kN*m] ESSION	Ratio of the axial Reduced resista	force to the se nce (axial force ce of the sectior	ctional resista) of the sectio n for bending	nce				993-1-1:[6.2.9.2 EN1993-1-1:[6
ENDING WIT = Nb,Rd = M _{cb,F} Nb,Rd = LANGE AND cb,Rd = =	0.02 Rd (1 - n) 156.87 WEB - COMPR 159.61 192	[kN*m] ESSION [kN*m]	Ratio of the axial Reduced resista Design resistanc	force to the se nce (axial force ce of the sectior	ctional resista) of the sectio n for bending	nce				993-1-1:[6.2.9.2 EN1993-1-1:[6
ENDING WIT = Nb,Rd = $M_{cb,F}$ Nb,Rd = LANGE AND cb,Rd = = ;fb,Rd = $M_{cb,F}$	0.02 Rd (1 - n) 156.87 WEB - COMPR 159.61 192	[kN*m] ESSION [kN*m]	Ratio of the axial Reduced resista Design resistanc	I force to the se nce (axial force ce of the section on the centroids) of the section of the section of for bending of flanges	nce n for bending				993-1-1:[6.2.9./ EN1993-1-1:[6 [6.2.6.7
ENDING WIT = Nb,Rd = M _{cb} ,F Nb,Rd = LANGE AND cb,Rd = = c,fb,Rd = M _{cb} ,F	0.02 Rd (1 - n) 156.87 WEB - COMPR 159.61 192 Rd / h _f 830.44	[kN*m] ESSION [kN*m] [mm] [kN]	Ratio of the axial Reduced resista Design resistanc Distance betwee Resistance of the	I force to the se nce (axial force the of the section in the centroids e compressed f) of the section of the section of for bending of flanges	nce n for bending				993-1-1:[6.2.9.2 EN1993-1-1:[6 [6.2.6.7
ENDING WIT = Nb,Rd = M _{cb} ,F, Nb,Rd = LANGE AND cb,Rd = ; = c,fb,Rd = M _{cb} ,F, c,fb,Rd = BEOMETRI	0.02 Rd (1 - n) 156.87 WEB - COMPR 159.61 192 Rd / h _f 830.44 CAL PARAM	[kN*m] ESSION [kN*m] [mm] [kN] ETERS O	Ratio of the axial Reduced resistan Design resistanc Distance betwee Resistance of the	I force to the se nce (axial force exe of the sectior in the centroids e compressed f) of the section of the section of for bending of flanges	nce n for bending				993-1-1:[6.2.9.2 EN1993-1-1:[6 [6.2.6.7
ENDING WIT Nb,Rd = Mcb,F Nb,Rd = LANGE AND cb,Rd = c,fb,Rd = Mcb,F c,fb,Rd = SEOMETRI FFECTIVE LE	0.02 Rd (1 - n) 156.87 WEB - COMPR 159.61 192 Rd / h _f 830.44 CAL PARAM ENGTHS AND F	[kN*m] ESSION [kN*m] [mm] [kN] ETERS O PARAMETEI	Ratio of the axial Reduced resista Design resistanc Distance betwee Resistance of the PF A CONNECT RS - FRONT PLATI	I force to the se nce (axial force ee of the sectior in the centroids e compressed f ION E	ctional resista) of the sectio n for bending of flanges lange and we	nce n for bending b	3	loff an c	EN1	993-1-1:[6.2.9.1 993-1-1:[6.2.9.2 EN1993-1-1:[6 [6.2.6.7 [6.2.6.7
ENDING WIT Nb,Rd = M _{cb} ,F Nb,Rd = LANGE AND cb,Rd = cb,Rd =	0.02 Rd (1 - n) 156.87 WEB - COMPR 159.61 192 Rd / h _f 830.44 CAL PARAM	[kN*m] ESSION [kN*m] [mm] [kN] ETERS O PARAMETEI	Ratio of the axial Reduced resista Design resistanc Distance betwee Resistance of the DF A CONNECT RS - FRONT PLATI	I force to the se nce (axial force exe of the sectior in the centroids e compressed f) of the section of the section of for bending of flanges	nce n for bending		leff,nc,g 196		993-1-1:[6.2.9.2 EN1993-1-1:[6 [6.2.6.7

- m_{χ} Bolt distance from the beam flange
- e Bolt distance from the outer edge
- e_x Bolt distance from the horizontal outer edge
- p Distance between bolts
- $\begin{array}{ll} I_{eff,cp} & \mbox{ Effective length for a single bolt row in the circular failure mode} \\ I_{eff,nc} & \mbox{ Effective length for a single bolt row in the non-circular failure mode} \end{array}$
- $e_{\text{eff},1}$ Effective length for a single bolt row for mode 1
- $I_{eff,2}$ Effective length for a single bolt row for mode 2
- $I_{eff,cp,g}$ Effective length for a group of bolts in the circular failure mode
- $I_{\text{eff,nc,g}}$ Effective length for a group of bolts in the non-circular failure mode
- $I_{eff,1,g}$ Effective length for a group of bolts for mode 1
- $I_{eff,2,g}$ Effective length for a group of bolts for mode 2

CONNECTION RESISTANCE FOR COMPRESSION

 $N_{j,Rd}$ = Min ($N_{cb,Rd}$)

N _{j,Rd} = 2083.85 [kN]	Connection resistance for compression
----------------------------------	---------------------------------------

[6.2]

-					0.02 < 1.00		verified			(0.0
CONN	NECTION	RESISTA	NCE FOR	BENDING						
= t,Rd = 3 _{p,Rd} =		48.56 70.03	[kN] [kN]		ce for tension ear resistance of a bolt					[Table 3 [Table 3
		lange resista	ance due to b	endina						
			ce due to ten							
-,			t plate due to							
		ce of the web		0						
	– Min (E	E	-	`						
			_{,Rd} , F _{T,3,fc,R}	d)					[6.2.6.4]	
t,wc,Rc	$f = 0 D_{eff,t,w}$	c ^t wc ^f yc ^{/γ} Μα) _							[6.2.6.3.
			_{ep,Rd} , F _{T,3,ep}	o,Rd)					[6.2.6.5]] , [Tab.
,wb,Rc	d = b _{eff,t,wb} t	wb ^f yb [/] ^γ M0							I	[6.2.6.8
ESIS	TANCE OF	THE BOLT F	ROW NO. 1							
t1,Rd,c	_{comp} - Form	ula				F _{t1,Rd,comp}	Componen	ıt		
t.ep.Rd	(1) = 62.20					62.20	Front plate	- tension		
t.wb.Ro	d(1) = 654.33	3				654.33	Beam web -	- tension		
p.Rd =	140.06					140.06	Bolts due to	shear punching		
	= 830.44					830.44		e - compression		
	= Min (F _{t1.Ro}	(comp				62.20	Bolt row res	•		
		THE BOLT F								
			(01110).2			F	0			
	omp - Form	ula				F _{t2,Rd,comp}	Componen			
	(2) = 54.79	4				54.79	Front plate			
t,wb,Ro	d(2) = 576.3					576.31	Beam web -			
	140.06					140.06		shear punching		
		= 830.44 - 6				768.23	Beam flang	e - compression		
t,ep,Rd	$ _{(2 + 1)} - \Sigma_1^1 $	F _{tj,Rd} = 87.2	0 - 62.20			24.99	Front plate	- tension - group		
t wh Rr	$(2 + 1) - \Sigma_1^{-1}$	F _{tj,Rd} = 917	.25 - 62.20			855.05	Beam web -	- tension - group		
	= Min (F _{t2.Ro}					24.99	Bolt row res	istance		
SUMM		OF FORCE	S							
Nr	h _i	F _{tj,Rd}		F _{t,fc,Rd}	F _{t,wc,Rd}	F _{t,ep,Rd}	F _{t,wb,Rd}	F _{t,Rd}	B _{p,Rd}	
	146	62.2		-	-	62.20	654.33	97.11	140.06	
2	46	24.9	9	-	-	54.79	576.31	97.11	140.06	
ONNE	ECTION RE	SISTANCE	FOR BENDI	NG M _{i.Rd}						
	$\Sigma h_{j} F_{tj,Rd}$									
1 _{j,Rd} =		10.25	[kN*m]	Connection r	esistance for bending					[
1 _{b1,Ed}	/ M _{j,Rd} ≤ 1,0)			0.72 < 1.00		verified			(0.
	NECTION	RESISTA	NCE FOR	SHEAR						
					r colouiotion of E					
		0.60			r calculation of F _{v,Rd}					[Table
/=		43.43	[kN]		ance of a single bolt					[Table
v = v,Rd =			[kN]		tance of a single bolt					[Table
v = v,Rd = t,Rd,ma	ax =	48.56		•	stance of an intermediate bolt					[Table
v = v,Rd = t,Rd,ma b,Rd,in	_{ax} = t =	61.92	[kN]		stance of an outermost bolt					[Table
v = v,Rd = t,Rd,ma p,Rd,in	_{ax} = t =		[kN]	Dearing reak					F _{vj,Rd}	
v = v,Rd = i,Rd,ma o,Rd,in o,Rd,e>	_{ax} = t =	61.92		-	F _{tj,Rd,M}	F _{tj,Ed,M}	F	tj,Ed	•	
v = v,Rd = t,Rd,ma b,Rd,in b,Rd,e>	ax = t = tt =	61.92	[kN]	i,N	F_{tj,Rd,M} 62.20	F_{tj,Ed,M 44.91}		tj,Ed 7 . 0 4	69.58	
v = v,Rd = t,Rd,ma o,Rd,in o,Rd,ex r	ax = t = ct = F _{tj,Rd,N}	61.92	[kN]	1,N 37			2			
, = ,Rd = ,Rd,ma b,Rd,in b,Rd,ex	ax = t	61.92 61.92	[kN]	i,N 37 37	62.20	44.91	2	7.04	69.58	
v = v,Rd = t,Rd,ma b,Rd,in b,Rd,ev r tj,Rd,N	ax = t = ft;,Rd,N 97.11 97.11 - Bolt row t - Force du	61.92 61.92	[kN]	i,N 37 37 sion	62.20	44.91	2	7.04	69.58	
v = v,Rd = t,Rd,mi b,Rd,in b,Rd,ei tj,Rd,N	ax = t = t = Ftj,Rd,N 97.11 97.11 - Bolt row t - Force du - Bolt row t	61.92 61.92 resistance fo e to axial form	[kN]	t,N 87 87 87 87 87 87 87 87 87 87 87 87 87	62.20	44.91	2	7.04	69.58	
v = v.Rd = t.Rd,ma b.Rd,in b,Rd,e 1 1 1 1 1 1 1 1 1 1	Har and the second seco	61.92 61.92 resistance fo e to axial forr resistance fo e to moment	[kN]	t,N 87 87 sion ww ding	62.20	44.91	2	7.04	69.58	
v = t,Rd,mm b,Rd,in b,Rd,in b,Rd,e tj,Rd,N tj,Ed,N tj,Rd,M tj,Ed,M	ax = t = t = Ftj,Rd,N 97.11 97.11 - Bolt row t - Force du - Force du - Force du	61.92 61.92 resistance fo e to axial for resistance fo e to moment n tensile forc	[kN]	t,N 87 87 sion ww ding	62.20	44.91	2	7.04	69.58	
v = t,Rd,mm b,Rd,in b,Rd,in b,Rd,ev Ir tj,Rd,N tj,Ed,N tj,Ed,M tj,Ed,M	ax = t = t = Ftj,Rd,N 97.11 97.11 - Bolt row t - Force du - Force du - Force du	61.92 61.92 resistance fo e to axial forr resistance fo e to moment	[kN]	t,N 87 87 sion ww ding	62.20	44.91	2	7.04	69.58	

$F_{tj,Ed} = F_{tj,E}$	$I_{j,Ed} F_{tj,Rd,M} / M_{j,Rd}$ Ed,N + $F_{tj,Ed,M}$./(14n F	_{,Rd,max})), n _h F _{v,Rd} , n _h F _b	-)				
		j/(1.4 ∩h ^r t	,Rd,max ^{/),}	,Rd ⁷				T 11 0 0
/ _{j,Rd} = n _h ∑ / _{j,Rd} =	-1 ^{'' F} vj,Rd 156.33	[kN]	Connection resistance	for shear				[Table 3.4] [Table 3.4]
b1,Ed / V _{j,R}	_{Rd} ≤ 1,0			0.16 < 1.00		verified		(0.16)
VELD R	ESISTANCE							
w = wy = wz = ⊥max ^{=τ} ⊥ma ⊥ ^{=τ} ⊥ = =	4332 2724 1608 25186718 ax = -26.43 -25.01 15.10 0.85	[mm ²] [mm ²] [mm ⁴] [MPa] [MPa] [MPa]	Area of all welds Area of horizontal weld Area of vertical welds Moment of inertia of th Normal stress in a welk Stress in a vertical wel Tangent stress Correlation coefficient	e weld arrangemer d	nt with respect to the	hor. axis		[4.5.3.2(2) [4.5.3.2(2) [4.5.3.2(2) [4.5.3.2(5) [4.5.3.2(6) [4.5.3.2(5) [4.5.3.2(5) [4.5.3.2(5) [4.5.3.2(7)]
		`		50.05 . 404				
	$3^*(\tau_{\perp max}^2)] \le f_u/(\beta_w^* \tau_{\perp}^2 + \tau_{\parallel}^2)] \le f_u/(\beta_w^* \gamma_{M2}^*)$			52.85 < 404. 56.45 < 404.		verified verified		(0.13)
_ ≤ 0.9*f _u /;		2/		26.43 < 309.		verified		(0.09)
vash = head = nut = b = 10 =	CTION STIFFNES 3 9 12 34 4 SES OF BOLT ROW	[mm] [mm] [mm] [mm]	Washer thickness Bolt head height Bolt nut height Bolt length Stiffness coefficient of t	polts				[6.2.6.3.(2) [6.2.6.3.(2) [6.2.6.3.(2) [6.2.6.3.(2) [6.3.2.(1)
HEFNE33	SES OF BOLT ROW	3				k	k _{eff,j}	
١r	hj	k ₃	k ₄	k ₅	k _{eff,j}	k _{eff,j} h _j	h _j ²	
-	146 46	x x	∞ ∞	1	0	39 10	5630 472	
					Sum	49	6102	
_{eff,j} = 1 / (∑	<u>∑</u> 3 ⁵ (1 / k _{i,j}))							[6.3.3.1.(2)
_{∍q} = ∑ _j k _{eff} _{∍q} =	$_{\rm f,j}{\rm h_j}^2$ / $\sum_j {\rm k_{eff,j}}{\rm h_j}$ 125	[mm]	Equivalent force arm					[6.3.3.1.(3)
_{eq} = ∑ _j k _{eff} _{eq} =	_{f,j} h _j / z _{eq} 0	[mm]	Equivalent stiffness coe	efficient of a bolt ar	rangement			[6.3.3.1.(1)
_{j,ini} = E z _{ec} _{j,ini} =	q ² k _{eq}							[6.3.1.(4)
i,ini [—]		[kN*m]	Initial rotational stiffnes					[6.3.1.(4)
= , = S _{i ini} / µ	1.24 1		Stiffness coefficient of a	a connection				[6.3.1.(6) [6.3.1.(4)
_j = S _{j,ini} / μ _j =	1008.56	[kN*m]	Final rotational stiffness	6				[6.3.1.(4]
	n classification due	to stiffnes	s.					
j,rig = j,pin =	14983.04 936.44	[kN*m] [kN*m]	Stiffness of a rigid conr Stiffness of a pinned co					[5.2.2.5 [5.2.2.5
	_i < S _{j,rig} SEMI-RIGID)						
VEAKES		r.						
	ATE - TENSION	<u> </u>						
REMARI	KS							
	Nວ al spacing is too larg	e . 100 [mm	n] > 84 [mm]					
			the code				Ratio 0	