

Sean Whelan

Default

1.52

1.29

3.49

4.84

5.67

Greenfield runoff rates

Q_{BAR} (l/s):

1 in 1 year (l/s):

1 in 30 years (l/s):

1 in 100 year (l/s):

1 in 200 years (l/s):

Edited

2.42

2.06

5.57

7.73

9.06

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Site name:	Stag E	Brewery					Latitude:	51.47029° N
							Longitude:	0.26635° W
Site location:		Brewery	"		<u>.</u>			
in line with Environmer	nt Agency	/ guidance	e "Rainfa	all runoff man	agement for de		Reference:	922927723
SC030219 (2013), the (Defra, 2015). This info the drainage of surface	ormation o	on greenfi	eld runc				Date:	Jul 12 2022 09:19
Runoff estimation	on appr	roach	IH124	1				
Site characterist	tics					Notes		
Total site area (ha):	1					(1) Is Q _{BAR} < 2	0 I/s/ha?	
Methodology						(1) 13 GBAR < 2	.U 1/3/11a:	
Q _{BAR} estimation m	ethod:	Calcu	ılate fro	om SPR ar	id SAAR	When Q _{BAR} is	< 2.0 l/s/ha the	en limiting discharge rates are set
SPR estimation me	ethod:	Calcu	ılate fro	om SOIL ty	pe	at 2.0 l/s/ha.		
Soil characterist	tics	Defaul	lt	Edited				
SOIL type:	2	2		3		(2) Are flow rat	tes < 5.0 l/s?	
HOST class:	1	N/A		N/A		\A ()		501/
SPR/SPRHOST:	(0.3		0.37				n 5.0 l/s consent for discharge is ge from vegetation and other
Hydrological cha	aracter	ristics	De	efault	Edited			consent flow rates may be set Idressed by using appropriate
SAAR (mm):			598		605	drainage elem	_	idiessed by using appropriate
Hydrological region	n:		6		6	(0) In ODD (0DD	NIOCT - 0.00	
Growth curve facto	or 1 year	r: [0.85	5	0.85	(3) Is SPR/SPF	3HUS1 ≤ 0.3	
Growth curve facto	or 30 yea	ars:	2.3		2.3			e low enough the use of
Growth curve factor	or 100 y	ears:	3.19		3.19	- I	-	e offsite would normally be ace water runoff.
Growth curve factor	or 200 y	ears:	3.74		3.74			

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Company: WIE Office: London

Sheet No: 1 of 9 Project No: WIE18671

 By
 S Whelan
 Date
 29/07/2022

 Checked:
 B McCarthy
 Date
 29/07/2022

Project Title Former Stag Brewery, Mortlake

Calculations Title Existing Discharge Rate - Modified Rational Method

LOCATION	CALCULATIONS												OPTI	ONS		
	Calculation	s based	on: Desig	n and	Analys	is of urb	an storm c	Irainag	e. Th	ne W	allingfo	rd Pr	ocedure,			
	Volume 1 I	Principles	s methods	and p	ractice	-										
	User Inpu	t Data														
	Total site a											5.69	ha			
	SAAR (Fro	m FEH)										605				
	Rainfall Int		rom FEH)								5	1.80				
	PIMP (% ir	• `										100	%			
	Soil Type	1									(0.40				
	Very Low F	Runoff (w	ell draine	d sand	ly, loan	ny or ear	thy peat s	oils)	0.15							
	Low Runof				-	•					(0.30				
	Moderate ((0.40				
	High Runo										(0.45				
	Very High		•)					(0.50				
ig. 9.7	UCWI (Fro	m Figure	9.7 of W	allingfo	ord Me	thod)						52				
Eqn. 13	Qp (peak o	lischarge	e) = 2.78 (Cv CR	i A											
	Where:	Qp (Pe	ak Discha	rge)	i =	rainfall	intensity			A =	Total A	rea				
From FEH	Average rainfall Intensity (i)															
	M1	00_60 is	s:	51.80	mm											
Eqn 7.20	Cv = PR/1	00														
Eqn 7.3	PR = (0.829 PII	MP) + (25	.0 SOI	L) + (0	.078 UC	WI) - 20.7									
	PII	MP (Perc	entage of	catchi	ment w	hich is i	mpervious)		100	%					
Page 52		Note: P	IMP can i	not be	less th	an 40%				40	%					
		Thus va	alue of PII	MP to b	oe use	k				100	%					
		Soil:	0.40		UCWI	: 52										
	PR =										76.26					
	Thus Cv =										0.76					
Sec 7.10	CR (Recor	nmended	d for simu	ation a	and des	sign)					1.3					
	Qp for 1 in	100 yea	ır 60 minu	ıte dur	ation :	•		812.3	l/s	or	14	12.8	l/s/ha			
	50% of the	existing	runoff rat	e=			405.0	l/s			71.3	l/s/h	na			
									-	+		-				

Company: WIE Office: London

Sheet No: 2 of 9 Project No: WIE18671

 By
 S Whelan
 Date
 29/07/2022

 Checked:
 B McCarthy
 Date
 29/07/2022

Project Title Former Stag Brewery, Mortlake

Calculations Title Surface water attenuation volume, IH124 Greenfield Runoff Rate

LOCATION			CAL	CULATIONS		OPTIONS
	In order to calculate the volume of s Control module, Quick Storage Estir				ndes Microdrainage version 2016.1, Source or which are shown below;	
	IH124 Greenfield Runoff Rate - Q10	0				
	7.7	l/s/ha				
Summary	Attenuation volumes required by	Drainage C	atchment			
	Catchment	Area (ha)	Allowable runoff Rate (l/s)	Required attenuation (m ³)		
	East - 1	0.30	2.4	251		
	East - 2	0.25	1.9	210		
	East - 3	0.18	1.4	150		
	West - school	1.31	10.1	1095		
	West - 4	1.07	8.3	893		
	West - 5	0.92	7.1	769		
	West - 6	0.79	6.1	319		
	Total	4.84	37.4	3686		

Company: WIE Office:

Sheet No: 3 of 9 Project No: WIE18671

London

 By
 S Whelan
 Date
 29/07/2022

 Checked:
 B McCarthy
 Date
 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS												
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;												
	Drainage Catchment - East 1												
	Area 0.30 ha												
	IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha												
	Maximum allowable discharge 2.35 l/s												
	// Quick Storage Estimate												
	Variables FEH Rainfall Variables FEH Rainfall Variables FEH Rainfall Variables FEH Rainfall Variables Vari	Results											
	Analyse OK Cancel Help Enter Climate Change between -100 and 600	Analyse OK Cancel Help Enter Climate Change between -100 and 600											
		Lisa umae ura ge eureer - rou ano oud											
	50% attenuation volume (m³) 140 Greenfield attenuation volume (m³) 251												

Company: WIE Office: London

Sheet No: 4 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS											
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;											
	Drainage Catchment - East 2											
	Area 0.25 ha IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha		+									
	Maximum allowable discharge 1.94 I/s		_									
	Variables Results Design Overview 2D Overview 3D Vt Variables Variables Variables Variables Variables Results Design Overview 2D Overview 3D Vt Variables Variables Variables Variables Variables Results Cv (Summer) 0.750 0.840 Variables Results Cv (Summer) 0.750 0.840 Variables Results Cv (Summer) 0.840 Variables Results Colobal Variables Results Global Variables Results Colobal Variables Results Colobal Variables Results Colobal Variables Results Design D1 (1km) 0.322 E (1km) 0.306 Safety Factor Overview 3D Vt Variables Coverview 3D Vt	3										
	Analyse OK Cancel Help Enter Infiltration Coefficient between 0.00000 and 100000.00000 Enter Infiltration Coefficient between 0.00000 and 100000.00000											
	50% attenuation volume (m³) Greenfield attenuation volume (m³) 210		<u> </u>									

Company: WIE Office: London

Sheet No: 5 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS										
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;										
	Drainage Catchment - East 3										
	Area 0.18 ha										
	IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha Maximum allowable discharge 1.39 l/s										
	Variables Results Pesign D1 (1km) 0.322 E (1km) 0.365 Overview 2D Overview 2D Overview 3D Vt										
	Analyse OK Cancel Help Enter Infiltration Coefficient between 0.00000 and 100000.00000 Enter Infiltration Coefficient between 0.00000 and 100000.00000										
	50% attenuation volume (m³) 84 Greenfield attenuation volume (m³) 150										

Company: WIE Office: London

Sheet No: 6 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS										
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;										
	Drainage Catchment - School										
	Area 1.31										
		I/s/ha									
	Maximum allowable discharge 10.14	I/s									
	Variables FEH Rainfall Version 1999 Impermeable Area (ha)	0.750 0.840 1.310 10.1 0.00000 2.0 40	Quick Storage Estimate Results Global Variables require approximate storage of between 951 m³ and 1239 m³. These values are estimates only and should not be used for design purposes. Variables Results Design Overview 2D Overview 3D Vt	3							
	Analyse 0	K Cancel Help	Analyse OK Cancel Help								
	Enter Maximum Allowable Discharge between 0.0 and 999999	0	Enter Maximum Allowable Discharge between 0.0 and 999999.0								
	50% attenuation volume (m³) NA										
	Greenfield attenuation volume (m ³) 1095										

Company: WIE Office: London

Sheet No: 7 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;												
	Drainage Catchment - West 4												
	Area	1.07 ha											
	IH124 Greenfield Runoff Rate - Q10	7.73 l/s/ha											
	Maximum allowable discharge	8.30 l/s											
	Results Ste GB 520450 176000 TQ 20450 76000 Maxim, C (1km) 0.024 D3 (1km) 0.219 Infiltrati Design D1 (1km) 0.322 E (1km) 0.306 Safety Overview 2D D2 (1km) 0.762 F (1km) 2.539	nter) 0.840	Quick Storage Estimate										
		Analyse OK Cancel Help	Analyse OK Cancel Help										
	Enter Infiltration Coefficient between 0.00	000 and 100000.00000	Enter Infiltration Coefficient between 0.00000 and 100000.00000										
	50% attenuation volume (m ³)	499											
	Greenfield attenuation volume (m ³)	893											

Company: WIE Office: London

Sheet No: 8 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS										
	In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage ve Control module, Quick Storage Estimate has been used. The input and output data for which are shown below.										
	Drainage Catchment - West 5 Area 0.92 ha IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha										
	Maximum allowable discharge 7.14 I/s										
	Quick Storage Estimate	ot be used for design purposes.									
	Analyse OK Cancel Help Enter Infiltration Coefficient between 0.00000 and 100000.00000 Enter Infiltration Coefficient between 0.00000 and 100000.00000	Analyse OK Cancel Help 0000 and 100000.00000									
	50% attenuation volume (m³) NA Greenfield attenuation volume (m³) 769										

Company: WIE Office: London

Sheet No: 9 of 9 Project No: WIE18671

By S Whelan Date 29/07/2022

Checked: B McCarthy Date 29/07/2022

Project Title Former Stag Brewery, Mortlake

LOCATION	CALCULATIONS In order to calculate the volume of surface water attenuation required for the Site, Windes Microdrainage version 2016.1, Source Control module, Quick Storage Estimate has been used. The input and output data for which are shown below;										
	Drainage Catchment - West 6 Area 0.79 ha										
	IH124 Greenfield Runoff Rate - Q10 7.73 l/s/ha										
	Maximum allowable discharge 6.11 I/s										
	✓ Quick Storage Estimate ✓ Quick Storage Estimate ✓ Quick Storage Estimate										
	Variables FEH Rainfall Version 100 Cv (Winter) 0.840 Version 1999 Impermeable Area (ha) 0.790 Variables Cv (lkm) 0.024 D3 (lkm) 0.219 D1 (lkm) 0.322 E (lkm) 0.306 Safety Factor 2.0 Overview 3D Vt Maximum Allowable (%) Cv (lkm) 0.262 F (lkm) 2.539 Climate Change (%) Cv (lkm) Cv (
	Analyse OK Cancel Help Enter Maximum Allowable Discharge between 0.0 and 999999.0 Enter Maximum Allowable Discharge between 0.0 and 999999.0										
	50% attenuation volume (m³) 177										
	Greenfield attenuation volume (m³) 318.5										