GLA Carbon Emission Reporting Spreadsheet # BACKGROUND AND PURPOSE The GLA has decided that from <u>January 2019</u> and until central Government updates Part L with the latest carbon emission factors, planning applicants are encouraged to use the SAP 10.0 emission factors for **referable applications** when estimating CO_2 emission performance against London Plan policies. This is a new approach being taken by the GLA to reflect the decarbonisation of the electricity grid, which is not currently taken into account by Part L of Building Regulations. This approach will remain in place until Government adopts new Building Regulations with This GLA Carbon Emission Reporting Spreadsheet facilitates the use of the SAP 10.0 emission factors and ensures a consistent and transparent process for updating Part L 2013 CO 2 emission performance. In particular, the approach has been developed to ensure that SAP 10.0 results can still be validated against supporting Part L 2013 BRUKL and SAP outputs. From January 2019 all GLA referable applications (including refurbishments) are expected to use this spreadsheet to report the anticipated carbon performance of a development. This includes planning applicants who are continuing to use SAP 2012 emission factors; although doing so will need to be supported by sufficient justification in line with the Energy Assessment Guidance. Applicants are required to submit this spreadsheet to the GLA alongside the energy assessment. It should be used for both domestic and non-domestic uses. The GLA will not accept the use of alternative methodologies or tools. This is to ensure consistency and to minimise the need for clarifications during the determination Planning applicants should use Part L 2013 BRUKL and SAP outputs to fill in this spreadsheet which serves as a the final step in reporting the carbon emission performance of the proposed energy strategy. It is solely for the purpose of reporting to the GLA and does not replace Part L calculations submitted for Building Regulations approval. The spreadsheet has been developed to fit as wide a range of policy compliant approaches for referable schemes as possible. Any planning applicants with a policy compliant approach that the spreadsheet does not serve should contact the GLA at: environment@london.gov.uk. Applicants must not amend or alter the spreadsheet to suit non-policy compliant strategies. Any unauthorised amendment to the spreadsheet will invalidate the CO2 emission calculations. Applicants should note that we will update the spreadsheet from time to time to ensure it remains fit for purpose. Applicants are expected to use the latest version at the time of the planning submission. Any feedback on this spreadsheet should be sent to: environment@london.gov.uk. # METHODOLOGY Applicants are required to complete all light blue input cells in the applicable tabs ('Carbon Factors', 'Baseline', 'Be Lean', 'Be Clean', 'Be Green' and 'GLA Summary Tables'). For all applications, the input data required includes: • Bespoke Carbon Factors (if applicable) - Type of units modelled - Area of units modelled (m²) - · Number of units modelled - Total area represented by model (m²) - Regulated energy consumption by end use (kWh p.a. for residential and kWh/m 2 p.a. for non-residential) - Regulated energy consumption by fuel type (kWh/m 2 p.a. for non-residential) TER, DER and BER figures (kgCO $_2$ /m 2 p.a.) - TFEE and DFEE figures for residential (kWh//m² p.a.) - Unregulated figures (tCO₂ p.a.) [In the 'GLA Summary tables' tab only] - Actual and notional building cooling demand (MJ/m²) [In the 'GLA Summary tables' tab only] - Distribution loss factor (if applicable) [In the 'Development information' tab, Table 4] Applicants should update the highlighted cells with the type, area and number of modelled units. The consumption figures (kWh p.a. for domestic and kWh/m² p.a. for non-domestic) from the Part L modelling output reports should be reported and used to estimate the CO 2 emissions for each stage of the Energy Hierarchy. The TER, DER and BER figures from the Part L 2013 modelling output sheets should also be reported for cross-reference purposes. The applicant should ensure that the manually calculated TER, DER and BER figures are equal to the figures reported within the output sheets. TFEE and DFEE information should also be provided as well as unregulated uses consumption figures and cooling demand performance The total carbon emissions figures in the 'GLA Summary tables' tab are now calculated based on the area input for 'Total area represented by model (m²). This input requirement has been added to ensure that the carbon emission figures align with the development area schedule (included within the DAS) rather than the number of representative models. Required Part L Outputs for the GLA spreadsheet For the domestic conversion applicants are required to use the outputs from the SAP TER and DER worksheets. To assist in the conversion process the required SAP worksheet rows have been referenced in each input cell. For Space Heating and Hot Water applicants will be required to manually convert the SAP energy requirements to energy consumption by fuel type, the appropriate SAP rows for this calculation have also been listed. Note. The SAP worksheet rows are based on a communal heating system, which is an expectation for GLA referrable schemes. Applicants proposing individual systems must first seek confirmation from the GLA as to whether the approach will be acceptable The required Part L outputs from non-domestic modelling will be energy consumption by fuel type (e.g. grid electricity, natural gas). The energy consumption by end use (e.g. heating, hot water, cooling etc.) included in the BRUKL documents are no longer used to estimate the CO emission performance with SAP 10.0 emission factors in this spreadsheet. This decision has been taken as the consumption figures provided in the BRUKL may include a mixture of fuel types, for instance heating may include energy consumption from gas boilers and electrically driven heat pumps. The required data can be found in: - SBEM software: the required data is included in the output file ending "*sim.csv" - Government approved software (such as IES and TAS): the required data is included in the output file ending in "*BRUKL.inp" The above output files should be appended to the energy assessment document Regarding the non-domestic uses, the applicant can determine whether each individual unit will be modelled independently and apportioned to the entire scheme or whether a single model will be generated for the entire development. The applicant should, however, include the results from all BRUKL outputs generated for the proposed development under the "NON-DOMESTIC ENERGY CONSUMPTION AND CO 2 ANALYSIS" sections. Applicants are generally encouraged to model each individual typology independently Note: GLA are aware that the Part L outputs for grid supplied electricity consumption does not account for power factor correction. Where power factor correction is present applicants may be required to amend the electricity consumption by the appropriate adjustment factor. The power factor correction is found in Table 1 of the Government's Approved Document L2A (ADL2A). Applicants should note in the appropriate cells where power factor correction has been applied. The carbon factors for SAP 2012 and SAP 10.0 scenarios have been provided in the 'Development Information' tab. The table has been prepopulated with grid electricity and gas factors. Additional space has been included for alternative fuel factors that are included in Table 12 of the SAP 2012 and SAP 10.0 methodology documents. For applications with non-domestic buildings connecting to external heat networks a bespoke carbon factor needs to be introduced, the applicant should provide the full calculation behind the introduced bespoke carbon factor. A validation check is required for each model entered to ensure that the conversion is robust. Applicants must ensure that the calculated TER/DER/BER in this spreadsheet matches the actual values from the Part L 2013 BRUKL and SAP worksheet | TABLE 1. DEVELOPMEN | NT INFORMATION | NOTES | |---|----------------|--| | Date of Application | 04/02/2022 | Please provide the date the application was submitted to the Local Planning Authority. | | Local Planning Authority | Richmond | Please indicate the Local Planning Authority determining the application. | | Confirmed carbon offset price (£/tonne of carbon dioxide) | 95 | Please confirm the agreed carbon offset price for the Local Planning Authority. Evidence of communication on the price is expected to be included in the energy assessment. If no value is entered then the GLA's recommend price of £95 per tonne of carbon dioxide will be used. | | TABLE 2. CARBON (CO ₂ |) FACTORS | | NOTES | |----------------------------------|----------------|-------------------------------|---| | Fuel type | Fuel Carbon Fa | ctor (kgCO ₂ /kWh) | | | | SAP 2012 | SAP 10.0 | | | Natural Gas | 0.216 | 0.210 | SAP 2012 and SAP 10.0 carbon emission factors (Table 12). | | Grid Electricity | 0.519 | 0.233 | | | Enter Carbon Factor 1 | | | These factors should be used where alternative fuel is used to grid gas and electricity. Carbon
emission factors | | Enter Carbon Factor 2 | | | used here must be taken from Table 12 within the SAP 2012 and SAP 10.0 documents. | | Enter Carbon Factor 3 | | | Fuel type should be updated and referenced in Column A when additional carbon factor values have been added. | | Enter Carbon Factor 4 | | | | | Bespoke DH Factor | | | This should only be used for non-domestic buildings that are connecting to District Heating (DH) networks. The network carbon factor should be calculated in line with Part L requirements and separate factors should be provided using SAP 2012 and SAP 10.0 fuel factors. Assumptions and workings should be shown below in Table 4. | | TABLE 3. BESPOKE DH CAR | BON FACTOR CALCULATION METHODOLOGY | |-------------------------|---| | | | | | | | | Please provide below details of the calculation methodology followed to establish the bespoke carbon factor, if applicable. | | | | | | | | TABLE 4. DISTRIBUTIO | N LOSSES | COMMENTS | |------------------------------------|------------------------------|----------| | Primary network (buried pipe) | Total pipe length (m) | | | | Average heat loss rate (W/m) | | | Secondary network
(buried pipe) | Total pipe length (m) | | | | Average heat loss rate (W/m) | | | Total losses (MWh/year) | • | | | Total heat supplied (MWh | n/year) | | | Distribution Loss Factor (| DLF) | | | Calculation included in er | nergy statement (yes/no) | | | DOMESTIC ENERGY CONSUMPTION AND CO.2 ANALYSIS Unit Identifier (e.g. plot multis (mr) units (mr) (mr) (mr) (mr) (mr) (mr) (mr) (mr) | | | | |--|--|--|--| | Unit identifier Model Include Total area (a.g. plots floor area units by model Include (nr) (nr) (pc) (nr) (nr) (pc) (nr) (pc) (nr) (pc) (pc) (nr) (pc) (pc) (pc) (pc) (pc) (pc) (pc) (pc | | | | | (e.g. plot Model total Monther of represented financer as units by model (mr) (mr) (mr) (mr) (mr) (mr) (mr) (mr) | REGULATED | CO₂ EMISSIONS PER UNIT | | | dwelling type (m") (kgCO ₂ / m ²) (kgCO ₂ / m ²) (kgCO ₂ / m ²) Water | Domestic Hot Water Lighting | Auxiliary Cooling SAP 10.0 CO ₂ emissions | TER SAP 10.0 | | | | (kgCO ₂ p.a.) | (kgCO ₂ / m ²) | | TER TER Worksheet TER TER TER TER NIA | | | | | | | | | | 1025 +006-T1-03, 10.05 | 528 94
512 84
473 100 | 17 1,310
17 1,082 | 13.0 | | 1827% 18697*17-01 844 1 844 14.5 14.5 14.6 2225-641997 Natural Gas 2439.4042 Natural Gas 35.5547 75 482 527 187 39 1,234 4488 18277 18697*102, 111.4 1 111.4 15.1 15.1 4/20223774 Natural Gas 2751.1929 Natural Gas 470.8588 75 933 486 224 39 1,882 997 1872 1872 1872 1872 1872 1872 1872 187 | 512 84
473 100
468 95 | 17 1,498
17 1,376
17 1,026 | 12.8
13.4
13.5 | | 10273 (1957-10) 1073 1 1073 1 1 1073 1 1 1073 1 1 1 1073 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 468 95
503 79
434 55
526 93 | 17 1,026
17 877
17 1 106 | 13.1
17.3 | | \$227 \text{\text{\column}}\$\text{\column}\$\co | 541 116
434 54 | 17 1,166
17 831
17 974 | 10.0
16.6 | | 1028 40687-105 60 1 60 18.3 18.3 2001.03546 Natural Gas 2184.5007 Natural Gas 272.2028 75 447 472 141 39 1,089 435 10288 40687-106 80 1 80 15.4 15.4 206.645664 Natural Gas 2.0407.575 Natural Gas 2.0407.575 488 519 179 39 1,235 10288 40687-107 71 1 71 14.5 MS 1407.5709 Natural Gas 2.0407.575 Natural Gas 2.0407.575 10288 40687-107 71 1 71 14.5 MS 1407.5709 Natural Gas 2.0407.575 Natural Gas
2.0407.575 10288 40687-107 71 1 71 14.5 MS 1407.5709 Natural Gas 2.0407.575 Natural Gas 2.0407.575 10288 40687-107 71 1 71 14.5 MS 1407.5709 Natural Gas 2.0407.575 2.0407 | 459 63
504 81 | 17 974
17 1,086 | 16.2
13.6 | | 1922 1968 749 107 1 107 1 108 1 15.3 15.5 7878 Methan Gaz 2511.9987 Natural Gaz 405.5977 75 768 543 212 39 1,561 747 15228 1668 741 109 1 104 15.4 15.4 170.09800 1 1064 125.5997 Natural Gaz 405.5977 75 804 543 215 39 1,561 781 781 781 781 781 781 781 781 781 78 | 468 95 503 79 434 55 526 93 541 116 434 54 459 63 504 81 490 73 528 95 528 96 518 91 | 17 1,082 17 1,1489 17 1,126 17 1,028 17 1,028 17 1,028 17 1,028 17 1,028 17 1,066 17 831 17 831 17 974 17 1,066 17 1,061 17 1,062 17 1,062 17 1,063 17 1,064 | 13.5
13.1
17.3
13.2
10.0
16.6
16.2
13.6
12.6
13.7
12.1 | | 10289 406871-12 85 1 85 13.9 13.9 2001.82002 Method Gas 246.6551 Natural Gas 278.6552 75 450 533 203 39 1.225 438 1229 406871-13 10 1 101 152 152.3 352.77423 Natural Gas 278.8527 Natural Gas 278.852 775 774 640 213 39 1.579 478 478 478 478 478 478 478 478 478 478 | 518 91
528 96 | 17 1,064
17 1,394 | 12.1
13.5 | Sum 1,402 16 1,402 15.1 - 43,214 N/A 37,967 N/A 5,869 1,200 0 9,334 8,201 3,046 623 0 21,204 9,075 NON-DOMESTIC ENERGY CONSUMPTION AND CO., ANALYSIS | 7,973 1,368 | 280 0 18,695 | 13.3 | | Total area VALIDATION CHECK REGULATED ENERGY CONSUMPTION BY END USE (Withinst p.a.) TER - SOURCE: BRUKL OUTPUT REGULATED ENERGY CONSUMPTION BY FUEL TYPE (Withinst p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (Withinst p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (Withinst p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (Withinst p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (Withinst p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY CONSUMPTION BY FUEL TYPE (WITHINST p.a.) TER - SOURCE: BRUKL INP or "SIMCSV FILE REGULATED ENERGY P.A. TO THE SIMCSV S | ED ENERGY CONSUMPTION BY FUEL TY | | CO ₂ EMISSIONS | | Model Area Number of represented Calculated BRUKL Domestic Hot Fuel type | Grid Electricity Unregulated Grid
Electricity | d SAP10.0 CO ₂ emissions (kgCO ₂ p.a.) | | | Building Use (m') units by model TER 2012 20 | 0.233 kgCOvkWh 0.233 kgCOvkWh | | TER SAP10.0 | | (m') units by model TEX.2012 TEX.2012 (Whiter) p.3. Space Heating (Whiter) p.3. Space Heating (Whiter) p.3. Space Heating (Whiter) p.3. Water (Whiter) p.3. | | 26,904 | TER SAP10.0
(kgCO ₂ / m ²)
9.4 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | 35
39
14 | 25,904
21,100
43,230 | TER SAP10.0
(kgCO ₂ / m ²) | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX 2012 TEX 2012 (Whiter p.a.) Space Heating (Whiter p.a.) Space Heating (Whiter p.a.) (White | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TEX.2012 TEX.2012 (Whiter) p.3. Space Heating (Whiter) p.3. Space Heating (Whiter) p.3. Space Heating (Whiter) p.3. Water (Whiter) p.3. | | 26,904
21,100 | TER SAP10.0
(kgCO ₂ / m ²)
9.4
12.1 | | (m') units by model TER 2012 [TER 2012] [TER 2012] [Whiter] p.a. Space Heating (Whiter) (Whiter | | 26,904
21,100 | TER SAP40.0 (egCo, rin) | | TRX 2012 | 39 14 | 76.94.
21.100
43.230 | TER SAP40.0 (egCo, 7m) 94 12-1 27-0 27-0 27-0 27-0 27-0 27-0 27-0 27-0 | | TEX. 9012 | 39 14 | N/A N/A 127,616 | TER SAP40.0 (egCo, 7m) 94 12-1 27-0 27-0 27-0 27-0 27-0 27-0 27-0 27-0 | | Fig. 2012 1 | 39 14 | N/A N/A 127/616 REGULATEE SAP 10 0 CO, | TER SAP-10.0 (egCO ₂ /m ²) 8-4 12:1 37.0 16.1 | | Title 2012 | 39 14 | N/A N/A 727,616 REGULATEE REGUL | TER SAP-10.0 (#GCO, irm) 8-4 1-7 37.0 16.1 20 CO, EMISSIONS R OMT | | | | | | ncluding informa | | an' energy consur | mption figures, the 1 | 'be lean' DER, the Di | FEE and the regula | sted energy demand of the | 'be lean' scenario. | | | | | 8 | SAP 2012 CO ₂ PE | RFORMANCE | | | | SAF | 10.0 CO ₂ PERFORMANCI | | | | FEES | |--|---|------------------------
--|--|---|--|---|--|---|--
---|---|--|---|---|--|---|--|---|--|--|---|--|--
---|---|--| | | | | | 1 | TON CHECK | | | | | PER UNIT (kWh p.a.) - 'BE | | KSHEET | | | | REGULATE | D CO, EMISSION | IS PER UNIT (kgCO _j p.a.) | | | | REGULA | TED CO ₂ EMISSIONS PER | UNIT | | | Fabric Energy
Efficiency
(FEE) | | Unit identifier
(e.g. plot
number,
dwelling type
etc.) | Model tot
floor are
(m²) | al Number o
a units | Total area
f represented
by model
(m²) | Calculated
DER 2012
(kgCO ₂ / m ²) | DER Worksheet
DER 2012
(kgCO ₂ / m ²) | Space Heating | Fuel type
Space Heating | Domestic Hot
Water
(Heat Source 1) | Fuel type
Domestic Hot
Water | Secondary Fuel
Heating system Space H | type Lighting
leating | Auxiliary | Cooling | | Space Heating
CO ₂ emissions
(kgCO ₂ p.a.) | Domestic Hot Wate
CO ₂ emissions
(kgCO ₂ p.a.) | r Lighting
CO ₂ emissions
(kgCO ₂ p.a.) | Auxiliary Cooling CO ₂ emissions CO ₂ emission (kgCO ₂ p.a.) (kgCO ₂ p.a.) | 2012 CO ₂ emissions
is (kgCO ₂ p.a.) | Space Heating
CO ₂ emissions
(kgCO ₂ p.a.) | Domestic Hot Water
CO ₂ emissions
(kgCO ₂ p.a.) | Lighting
CO ₂ emissions
(kgCO ₂ p.a.) | Auxiliary Co
CO ₂ emissions CO ₂ en
(kgCO ₂ p.a.) (kgCO | oling Unregulate
nissions (kgCO ₂ p.a
O ₂ p.a.) | d SAP 10.0 CO ₂
emissions
(kgCO ₂ p.a.) | Calculated
DER SAP 10.0
(kgCO ₂ / m ²) | Dwelling Fabric
Energy
Efficiency
(DFEE)
(KWh/m²) | | | | | | | DER Sheet
(Row 384) | DER Sheet
[(Row 307a) +
(Row 367a x | Select fuel type | DER Sheet
[Row 310b +
(Row 367b x 0.01)] | Select fuel type | DER Sheet Select fi
[Row 309] | uel type DER Sheet
Row 332 | DER Sheet
(Row 313 + 331) | DER Sheet
Row 315 | | | | | | | | | | | | | | | | 1927 4 1985-TV-1927 4 1985-TV-1927 4 1985-TV-1927 4 1985-TV-1927 4 1985-TV-1928 | 6 84.4
6 111.4
6 102.3
6 78.4
50.63
4 99
6 117
6 50
6 60
6 80
6 71
1 102 | | 100.8 84.4 111.4 110.2 1 | 143
154
154
133
154
136
148
148
148
148
148
148
148
148
148
148 | 192
194
194
194
194
194
194
194
194
194
194 | 9.6.51.97 9.11.69479 403.05248 403.05248 155.56479 155.5 | Netural Ges
Natural Ges | JAM J.
ALISO
2018.380974
2010.703844
2010.703846
2018.403974
2018.403974
2018.403974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019.203974
2019. | Natural Gas | | 04.827
39.5467
40.0486
30.4477
34.4553
40.4777
24.4553
40.4777
27.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676
37.2676 | 251,064
284,065
278,279
270,279
270,279
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,289
264,28 | | | 633
477
878
688
688
336
336
247
247
248
248
248
248
248
248
249
249
249
249
249
249
249
249
249
249 | 633
631
476
476
476
476
476
477
477
477
477
477 | 210
187
224
217
11
122
222
222
222
223
220
220
220
220
220
2 | 100
66
644
100
64
64
100
65
66
62
77
71
111
106
112 |
1,002
1,210
1,714
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744
1,744 | 816
606
606
607
609
609
609
609
609
609
609
609
609
609 | 944
496
402
403
403
403
403
403
403
404
404
404
405
406
406
406
407
407
407
407
407
407
407
407
407
407 | 94
94
100
99
96
96
96
96
96
96
96
96
96
96
96
96 | 56
43
65
60
60
24
44
47
12
22
23
25
25
26
26
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 728
660
777
474
724
727
727
737
743
660
660
778 | 1,025
1,029
1,476
1,476
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077
1,077 | 128
122
132
132
132
143
144
144
144
145
142
142
142
143
143
144
144
145
146
147
147
148
148
148
148
148
148
148
148
148
148 | 94.51
93.55
47.36
48.47
48.4
48.4
48.4
48.4
49.4
49.4
49.4
49.4 | | Sum | 1,402 | 16 | | | | 32,457 | N/A | 36,837 | N/A | 0 N/ | A 5,869 | 3,055 | 0 | N/A | 7,011 | 7,957 | 3,046 | 1,586 0 | 19,599 | 6,816 | 7,736 | 1,367 | 712 | 0 10,460 | 16,631 | 11.9 | 40.41 | | NON-DOME | STIC EN | IERGY CO | | ON AND CO: | ANALYSIS | | REGULA | ATED ENERGY CON | SUMPTION BY EN | D USE (kWh/m² p.a.) 'BE L | EAN' BER - SOURCE: B | RUKL OUTPUT | | REGULATED ENE | RGY CONSUMPTION | BY FUEL TYPE (KW | h/m² p.a.) 'BE LE | :AN' BER - SOURCE: BRUKL.I | NP or "SIM.CSV FILE | | | REGULA | TED CO ₂ EMISSIONS PER | UNIT | | | | | Building Use | Model An
(m²) | a Number o
units | Total area
f represented
by model
(m²) | Calculated
BER 2012
(kgCO ₂ / m ²) | BRUKL
BER 2012
(kgCO ₂ / m²) | Space Heating (kWh/m² p.a.) | Fuel type
Space Heating | Domestic Hot
Water
(kWh/m² p.a.) | Fuel type
Domestic Hot
Water | | Lighting
(kWh/m² p.a.) | Auxiliary
(kWh/m² p.a.) | Cooling
(kWh/m² p.a.) | Natural Gas | Grid Electricity | Equipment | | | 2012 CO ₂ emissions
(kgCO ₂ p.a.) | s Natural Gas | Grid Electricity | Equipment | | | SAP 10.0 CO ₂
emissions
(kgCO ₂ p.a.) | BRUKL
BER SAP 10.0
(kgCO ₂ / m ²) | | | Office
Cinema | 2850.73
1740.51
1169.64 | 1 1 | 4547
1606
1765 | 18.8
23.3
40.2 | 18.8
23.3
40.2 | 8.257063655
6.724340933
28.10521659 | Natural Gas
Natural Gas
Natural Gas | 1.83516
9.60755
136.445 | Natural Gas
Natural Gas
Natural Gas | | 7.119411
13.4872725
4.812873 | 16.68381
18.97194
3.748563 | 8.194832362
5.599337167
0.37764786 | 0.216 kgCO _g /kWh
10
16
165 | 0.519 kgCO _g /kWh
32
38
9 | 0.519 kgCOykWh | | | 53,558
40,519
46,998 | 0.210 kgCOykWh
10
16
165 | 0.233 kgCOy/kWh
32
38 | 0.233 kgCOgkWh | | | 27,296
21,404
42.853 | 9.6
12.3
36.6 | - | | Hotel | 7703.04 | | 7700 | 442 | 40.1 | 20.103.103 | National Cod | 1,040 | Nutural Cus | | 4,011,073 | 274000 | 0.37704780 | 103 | • | | | | 40,550 | 100 | • | | | | 42,000 | 34.0 | HIR | | SITE-WIDE | | | 7,918
MPTION AN | 24.5
ND CO2 ANA | LYSIS | 97,950 | N/A | 264,600 | | N/A N/ | | 112,946 | 46,921 | 362,546 | 222,400 | 0 | N/A | N/A N/A | | 362,546 | 222,400 | 0 | | | 127,954 | 16.2 | | | Use | | Total Area (| m ^a) | Calculated
BER 2012 | | | | Domestic Hot | REGULAT | ED ENERGY CONSUMPTI | | | | | | | | | REGULATED CO ₂
EMISSIONS | | | | | | REGULATED | CO ₂ EMISSIONS | | | | | | | (kgCO ₂ / m ²) | | Space Heating
(kWh p.a.) | HIF | Water
(kWh p.a.) | H _b | Heating System
(kWh p.a.) | | Auxiliary
(kWh p.a.) | Cooling
(kWh p.a.) | | | | | | 2012 CO ₂ emissions
(kgCO ₂ p.a.) | | | | | | emissions
(kgCO ₂ p.a.) | BER SAP 10.0
(kgCO ₂ / m ²) | MA | | Sum | | 9,320 | |
(kgCO ₂ 7 m) | | (kWh p.a.) | HIP. | Water
(kWh p.a.)
301,437 | HIP | Heating System
(kWh p.a.) | (kWh p.a.) | (kWh p.a.) | (kWh p.a.)
46,921 | | | | | | | | | | | | emissions
(kgCO ₂ p.a.) | | | | applicant should o | | | | | an' energy consu | mption figures and | the 'be clean' DER. | | | | | | | | | | | | | SAP 2012 CO ₂ PERFO | DRMANCE | | | | | | | SAP 10.0 CO ₃ | PERFORMANCE | | | _ | |--|-------------------------------------|--|---|--|--|--|---|---|--|------------------|---|---|------------------|--|--|--|--|--|---|---|----------------------------------|-------------------------|--------------------------|--|--------------------------|--|-------------------------------------|---------------------------------|-----------------------|----------------------|--|--| | JMESTIC ENE | ERGT CO | NSOMPTION | VALIDATI | | | | | REGULAT | TED ENERGY CONS | UMPTION PER U | NIT (KWh p.s.) - 'BE | CLEAN SAP DER | R WORKSHEET | | | | | | REGULAT | ED CO, EMISSIONS PI | ER UNIT (kgCO ₂ p.s.) | , | | | | | RE | GULATED CO; EMISSI | ONS PER UNIT (kgCC | O ₂ p.s.) | | | | it identifier
(e.g. plot Mode
number, floor
relling type (n | al total Numb
rarea uni
m*) | Total area
per of represented
its by model
(m*) | Calculated
DER 2012
(kgCO ₂ / m ²) | DER Worksheet
DER 2012
(kgCO ₂ / m ²) | Space Heating
(Heat Source 1) | Fuel type
Space Heating | Domestic Hot
Water
(Heat Source 1) | | Space and
Domestic Hot
Water from CHP | | | | | Lighting | Auxiliary | Cooling | Space Heating | Domestic Hot Water | Space Heating and
DHW from CHP | Electricity
generated by CHP | Lighting | Auxiliary | Cooling 2012 | 2 CO ₂ emissions
(kgCO ₂ p.s.) | Space Heating D | Somestic Hot Water | r Space Heating and
DHW from CHP | Electricity
generated by CHP | Lighting | Auxiliary Cools | sg SAP 10.0 Co
emissions
(kgCO ₂ p.s | CO ₂ Calcula
B DER SAI
B.) (kgCO ₂ | | etc.) | | (m-) | | DER Sheet | | | | | if applicable | If applicable | if amplicable | | | | DER Sheet | | | | if applicable | if applicable | | | | | | | if applicable | if applicable | | | | | | | | | | (Row 384) | [Row 307b +
(Row 367b x
0.01)] | Select fuel type | [Row 310b +
(Row 367b x
0.01)]
2647.442105 | | DER Sheet
[(Row 307a +
310a) +
(Row 362 x | Select fuel type | ((Row 307a +
310a) + (Row
361 + 362)) | [Row 309] | Select fuel type | | (Row 313 + 331) | DER Sheet
Row 315 | | | | | | | | | | | | | | | | | | 75 v806-TY4 10
76 v809-TY4 54
77 v809-TY4 11
78 v809-TY4 10 | 00.5 1
4.4 1
11.4 1
32.3 1 | 1 100.5
1 84.4
1 111.4
1 102.3 | 14.9
14.3
15.4
13.9 | 15.2
14.6
15.7
14.1 | 2921.631579
1921.694727
4020.705262
2896.2 | Natural Gas
Natural Gas
Natural Gas
Natural Gas | 2262.589474
2201.073684
2020.178947 | Natural Gas
Natural Gas
Natural Gas
Natural Gas | | | | | | 401.8387
359.5847
430.6888
409.3412
340.1777 | 251.044
184.0552
278.2716
255.5402 | | 633
417
871
626 | 529
511
475
447 | | | 210
187
224
212 | 130
96
144
133 | | 1,502
1,210
1,714
1,418 | 616
405
846
603 | 514
496
462
435
487
424 | | | 34
84
100
35 | 50
43
65 | 1,282
1,029
1,474
1,198 | 12.0
12.0
13.0
11.0 | | 79 v809-TY4 70
80 v810-TY4 50 | 8.4 f
1.63 f
19 f | 78.4
1 50.63
1 29
1 117
1 50
1 60 | 14.6
18.7
13.9 | 14.1
14.9
19.1
14.2 | 2896.2
1757.673684
1555.694727
2486 | Natural Gas
Natural Gas
Natural Gas | 2218.462158
2019.789474
2641.652622 | Natural Gas | | | | | | 234.3855 | 255.5402
170.9708
104.2889
207.5906 | | 380
336
537 | 511
475
447
501
436
527 | | | 177
122
205 | 89
54
108 | | 1,210
1,714
1,415
1,146
946
1,380
1,134 | 369
327
522 | | | | 79
55
93 | 40
24
45 | 975
830
1,177 | 12.4
16.5
11.3
7.7
14.3
14.3
12.3
11.3
11.3
9.2
12.4 | | 3 v808-TY4 5 | | 1 117
1 50
1 60 | 14.6
18.7
13.9
9.7
17.2
16.4
14.4
13.3 | 9.8
17.5
16.7 | 970.5684211
1165.642105
1487.262158 | Natural Gas
Natural Gas
Natural Gas
Natural Gas | 2091.568621
2012.126216
2122.536862 | Natural Gas
Natural Gas
Natural Gas | | | | | | 499.5672
231.8095
272.2928
345.4927
334.2871 | 1763768
104.2889
207.5906
245.2344
99.125
118.95
158.6
148.8781 | | 210
252
321 | 538
435
461 | | | 259
120
141 | 127
51
62 | | 1,134
858
985 | 204
245
312
374 | 523
423
448 | | | 54
63 | 57
23
28 | 744
851 | 7.
14
14 | | v608-TY4 8
v608-TY4 7
v608-TY4 11
v608-TY4 11 | 04 1 | 80
71
1 102
1 104
1 88
1 103 | 13.3
13.8
13.1 | 14.5
14.1
12.3
11.5 | 1782.715789
1007.872684
2571.821052
2320.8
822.9472684 | Natural Gas
Natural Gas
Natural Gas | 2221.284211
2251.694727
2452.894727
2459.631579
2286.831579 | | | | | | | 214.2971
408.5977
412.5022
291.8952 | 148.8781
213.8812
218.075
184.525 | | 385
218
556
503
178
589 | 504
486
530
531 | | | 163
212
215 | 77
111
113 | | 253
985
1,159
944
1,403
1,363
293
1,445 | 212
540 | 423
446
490
473
515
517
501
516 | | | 73
95
96 | 35
50
51 | 975
830
1,177
901
744
851
901
792
1,200
1,153
809
1,235 | 1 | | 608-TY-1 8 | 03 1 | 1 103 | 13.1
11.3
14.0 | 11.5 | 823.9472684
2726.610526 | Natural Gas
Natural Gas | 2286.821579
2456.326216 | Natural Gas
Natural Gas | | | | | | 391.8852
411.0654 | 184.525
215.9781 | | 178
589 | 531
516
531 | | | 203
213 | 96
112 | | 993
1,445 | 489
173
573 | 501
516 | | | 91
96 | 43
50 | 1,235 | 1 | 6 1,402
Y CONSUMP | TION AND C | | SIS | N/A | 36,837 | NA | | | 0 | | NA | | 3,055 | ٠ | 7,011 | 7,957 | 0 | • | 3,046 | 1,586 | | 19,599 | 6,816 | 7,736 | • | 0 | 1,367 | 712 0 | 16,631 | | | a Use Mode | ol Area Numb | Total area
per of represented | Calculated
BER 2012
(kgCO ₂ / m ²) | ON CHECK
BRUKL
BER 2012
(kgCO ₂ / m ²) | Space Heating
(kWh/m² p.s.) | Fuel type
Space Heating | Domestic Hot
Water
(kWh/m² p.s.) | Fuel type
Domestic Hot
Water | ERGY CONSUMPTIO | ON BY END USE (| Electricity
generated by
CHP | LEAN BER - SOUP | RCE: BRUKL OUTF | Lighting
(kWhim' p.a.) | Auxiliary
(kWh/m² p.a.) | Cooling
(kWhim' p.s.) | REG
Natural Gas | Grid Electricity | DISUMPTION BY FUEL
Bespoke DH Factor | TYPE (kWhim*p.a.) 1
Electricity
generated by CHP
(-) | Equipment | OURCE: BRUKLINP | or "SIM.CSV FILE
2012 | 2 CO ₂ emissions
(kgCO ₂ p.a.) | Natural Gas | Grid Electricity | REGU
Bespoke DH Factor | Electricity
generated by CHP | Equipment | | SAP 10.0 C
emissions
(kgCO ₂ p.a | 00,
BE | | | | per of represented
its by model
(m*) | | | | | | | | | (-)
If applicable | | | | | | 0.216 kgCO-kWh | 0.519 kgCO-kWh | 0.000 kgCO-kWh | if applicable | 0.519 kgCOukWh | | | | 0.210 kgCO-kWh | 9.233 kgCO-kWh | 0.000 kgCO-kWh | If applicable
0.233 kgCO-kWh | 0.233 kgCO+kWh | | | | | 285
174
116 | 90.73 1
90.51 1
99.64 1 | 1 4547
1 1606
1 1765 | 18.8
23.3
40.2 | 18.8
23.3
40.2 | 8.257063655
6.724340923
28.10521659 | Natural Gas
Natural Gas
Natural Gas | 1.83516
9.60755
126.465 | Natural Gas
Natural Gas
Natural Gas | | | | | | 7.119411
12.4872725
4.812972 | 16.68281
18.97194
2.768562 | 8 194832362
5 599327167
0.27764786 | 10
16
165 | 32
38
9 | | | | | | 53,558
40,519
46,998 | 10
16
165 | 32
38
9 | | |
| | 27,296
21,404
42,853 | N/P | M ₀ | | ** | ₩. | | | | | | | | | Mag. | Ma | 3 7,918 | | | 97,950 | NA | 264,600 | NA | | | 0 | | | 62,527 | 112,946 | 45,921 | 362,546 | 222,400 | ٠ | 0 | 0 | | | 193,736 | 362,546 | 222,400 | 0 | 0 | 0 | | 127,954 | 1 | | VIDE ENE | ERGY COM | NSUMPTION A | AND CO 2 A | NALYSIS | | | | | | REGULATED EN | ERGY CONSUMPT) | ON | | | | | | | | | | | REGI | SULATED CO; | | | | | | | REGULAT | TED CO, I | | | Total Ar | nea (m²) | Calculated
BER 2012
(kgCO ₁ / m ²) | | Space Heating | | Domestic Hot | | Space and | | Electricity
generated by
CHP | Secondary | | Linhtisa | Austine | Cooling | | | | | | | 2012 | 2 CO- emissions | | | | | | | SAP 10.0 C | | | | | | (g. 5] / m) | | (kWh p.a.) | M. | Water
(kWh p.s.) | 4ª | Domestic Hot
Water from CHP
(kWh p.s.) | 45 | (kWh p.s.)
#applicable | Secondary
Heating System
(kWh p.s.) | M. | (kWh p.s.) | Auxiliary
(kWh p.s.) | (kWh p.s.) | | | | | | | | (kgCO ₂ p.a.) | | | | | | | (kgCO ₁ p.a | a.) (kg/ | | | 9,3 | 120 | 22.9 | | 130,407 | | 301,437 | | | | 0 | 0 | | 68,336 | 116,002 | 46,921 | | | | | | | | 213,334 | | | | | | | 144,585 | | | The applicant should complete all the light blue cell DOMESTIC ENERGY CONSUMPTION | | | e green' energy consumption figu | ures and the 'be green' E | DER. | | | | | | | | | | | | | | | SAP 2012 CQ PE | RFORMANCE | | | | | | | | SAP 10.0 C | Q PERFORMANCE | | | | | |---|--|--|---|--|--|--|--|------------------------------|---|---|---|---------------------------|--|---|----------------------------|--|--------------------------|--------------------------------------|---------------------------------|--|-----------------------------|----------------------------------|---------------------------|--|--------------------------|--------------------------|-------------------------------------|---------------------------------|--|--------------------------|------------------------------------|-------------------------|--|--| | | VALID | TOW CHECK | | | | | REGULATED ENERGY C | CONSUMPTION PER U | UNIT (KWIN p.a.) - Til | GREEN' SAP DER WO | RECHEST | | | | | | | | REGUL | ATED CO, EMISSION | NS PER UNIT (NgCO) | , p.a.) | | | | | | | REGULATED CO |), EMISSIONS PER UN | wit . | | | | | Linit identifier (e.g. pilot Model total Number of represente number, filor area dwelling type (m') units by model etc.) | ed Calculated | DER
Worksheet | Space Heating Fuel type
(Heat Source 1) Space Heating | Domestic Hot II
Water Do | Fuel type Space
smeetic Hot (Heat e | Heating Fuel typ
source 2) Space Heat | e Domestic Hot
sing Water | Fuel type
Domestic Hot II | Space and Fu
Domestic Hot | type CHP Total Elec
generate | tricity Secondary
of by Heating syst | Fuel type
em Secondary | Electricity Light generated by | ing Auditory | Cooling | Space Heating | Domestic Hot Wate | or Space Heating and
DHW from CHP | Electricity
generated by CHP | Electricity
generated by | Lighting | Auxiliary C | oling | 9912 CO, emission
(KoCO, p.a.) | s Space Heating | Domestic Hot Water | r Space Heating and
DHW from CHP | Electricity
generated by CHP | Electricity
generated by | Lighting | Auditory Co. | áng | SAP 16.6 CC
emissions | O, Calculated
DER SAP 10.0
(kgCO ₂ / n²) | | dwelling type (m') units by model (m') | (kgCO ₂ / st | (kgCO ₄ / m ²) | | (Heat Source 1) | Water | | (Heat source 2) | Water W | Vater from CHP | CHP | н | Heating | renewable (-) | | | | | | | moewable | | | | | | | | | renewable | | | | (kg00, p.s. |) (kgCO _s /m²) | | | - | DER Sheet | DER Sheet Select fuel type | DER Sheet Sele | ect fuel type DER | plicable
I Sheet Select fuel | if applicable
type DER Sheet | Select fuel type | l'applicable if
DER Sheet Sel | pplicable If applic
ct fuel type DER Sit | atio
est DER Sheet | Select fuel type | o DER Sheet DER : | heat DER Sheet | DER Sheet | | | if applicable | l'applicable | if applicable | | | _ | _ | | | l'applicable | if applicable | if applicable | | | _ | | | | | | (Row 204) | (Row 307b +
(Row 367b x
0.01()
838.55 Grid Electricity | [Row 310b +
(Row 367b x
0.01]]
771.0233333 GG | (Row 36) | # 207c +
#7c x 0.01() | [Row 310c +
(Row 367c x 0.01) | a . | §Row 207a +
218a) +
(Row 262
x | ((Row 3)
218a) × (
361 + 3 | 17a + Row 309
Row
62 j | | | 332 (Row 313 + 331) | Row 315 | \$227.00 (40-77) \$50.0 \$ 1 \$100.0 | 9.0 | 12.6
9.8
12.4 | 0.512 | 775.0213331 GG
705.07 GG | of Electricity
of Electricity
of Electricity | | | | | | | | -210 401
-210 218 | 807 802.144
807 224.8653
808 884.0726 | | 482
217
602 | 902
389
345
340 | | | -192
-192
-192 | 210
167
224
212 | 157
117
172 | | 1,049
828
1,162
1,064
774
599
968
791
528
634
776
611
992
967
661
1,021 | 216
143
271 | 191
174
195
193 | | | 42
42
42 | 94
94
100 | 70
52
78 | | 400
372
522 | 44
47 | | 10279 v809-TV 98.4 1 84.4
10277 v809-TV 111.4 1 111.4
10279 v809-TV 102.3 1 102.3
10279 v809-TV 78.4 1 78.4
10280 v819-TV 50.62 1 50.63 | 9.8
9.8
9.9
9.9
11.3
9.8
6.8
92.6
9.7
8.6
9.7
8.6
9.7
9.7 | 114
114
115
115
116
116
116
116
117
117
117
117
117
117 | STT.15 Grid Electricity 116.1966687 Grid Electricity | #11.1166667 GG
794.18 GG | id Electricity
id Electricity | | | | | | | | -BIC 688BIC 689BIC 6 | 224,8803 888 814,778 888 814,778 812,728 813,777 201,4808 813 114,4808 813 124,4008 129,124 817 272,124 817 272,124 817 272,124 817 272,484 817 273,484 817 274,485 817 274,485 817 274,485 817 274,485 817 274,485 | | 603
476
299
256
409
160
192
244
293
166
402
203
135
448 | 340
381
332
601 | | | -192
-192 | 212
177
122 | 157 | | 1,004
774 | 214
130
115
183 | 153
171
169
180 | | | -82
-82 | 95
79 | 71
49 | | 272
522
481
247
269
435
255
227
245
248
274
445
439
297 | 44
47
44
44
52
64
20
47
47
44
19
44
41
24 | | 10291 v608-TR 99 1 99
10292 v608-TY 117 1 117 | 9.0 | 13 | 787.2313331 Grid Electricity
327.3464687 Grid Electricity | 775.19 Gid
785.996.0027 Gid | of Electricity
of Electricity | | | | | | | | -200 4021
-200 4991 | 087 254.4008
672 278.2244 | | 409
160 | 401
409 | | | -182
-182 | 200 | 132 | | 968
791 | 193
72 | 180 | | | -82
-82 | 93
116 | 59
65 | | 425
255 | 44 | | 1001 1000 170 50 1 50 1 1001 | 10.6
10.6
9.7 | 12.6
5.7 | AM 12 Grid Electricity EXC NAMES T Grid Electricity 164 324687 Grid Electricity | 637.301333 GG
673.301333 GG | id Electricity
id Electricity
id Electricity | | | | | | | | -100 212.
-200 212.
-200 200. | 001 229.521
828 218.52
807 287.68 | | 192
244
292 | 350
362
370 | | | -182
-182
-182 | 120
141
179 | 67
80
103 | | 528
634
776 | 110
122
74 | 168
157
172
166 | | | -82
-82
-82 | 63
81 | 30
36
66 | | 217
215
249 | 47
47 | | 1028 VB08-TY 71 1 71
10287 VB08-TY 102 1 102 | 9.7 | 8.6
9.7 | SSESS GIVE Electricity SSESS GIVE Electricity | 733.000007 QG
776.75 GG | id Electricity
id Electricity | | | | | | | | -230 224.
-230 408. | 872 179.8481
877 281.6112 | | 166
423 | 270
403
404 | | | -192
-192 | 163
212
215 | 93
136 | | 911
992 | 74
190
172 | 181 | | | 42
42 | 73
95 | 42
61 | | 274
445 | 2.9
4.4 | | 10289 VB08-TY 88 1 88
10290 VB08-TY 102 1 103 | 7.5
9.9 | 7.5
9.9 | 758.086887 Grid Electricity
250.936887 Grid Electricity
858.436887 Grid Electricity | 775.8011111 GG
733.81 GG
777.888887 GG | id Electricity
id Electricity
id Electricity | | | | | | | | -310 4351
-310 4131
-310 3101 | 003 262.003
802 233.023
604 263.2382 | | 135
648 | 292
404 | | | -182
-182
-182 | 203
213 | 112
112 | | 961
1,021 | 61
201 | 176 | | | 42
42 | 91
96 | 60
62 | | 297
458 | 2.4
4.5 | Sum 1,402 16 1,402 | 9.5 | | 10,164 N/A | 11,632 | NIA. | 0 NA | | N/A | | NA 0 | | NA | -5,600 5,8 | 9 2,709 | 0 | 5,275 | 6,027 | | | -2,996 | 2,046 | 1,925 | 0 NA | 13,377 | 2,360 | 2,710 | | | -1,205 | 1,367 | 864 | NA. | 6,005 | 43 | | NON-DOMESTIC ENERGY CONSUMI | IPTION AN | D COANALYS | IS . | PERSON ATTO CO. TW | | | | | | | | NON-DOMESTIC ENERGY CONSUM Total area Use Area per Number of represente unit (m²) units by mote by mote (m²) | a Galculated
BER 2012 | BER 2012 | Space Heating Fuel type
(KWhini' p.a.) Space Heating | Domestic Hot II
Water Do | Fuel type
omestic Hot | | | | | Electri
generate
CHF
(1) | oby
ed by | | Electricity Light
generated by (kWhit
recovable
technology | ing Auxiliary
I [*] P.B.) (White [*] P.B.) | Cooling
(kWh/m² p.a.) | Natural Gas | Grid Electricity | Bespoke DH Factor | Electricity
generated by CHP | Electricity
generated by
renewable
technology | Enter Carbon
Factor 1 | Enter Carbon Ente
Factor 2 Fi | Carbon Equipmen
ctor 3 | (kgCO, p.s.) | Natural Gas | Grid Electricity | Bespoke DH Factor | Electricity generated by CHP | Electricity
generated by
renewable
technology | Enter Carbon
Factor 1 | Enter Carbon Enter
Factor
2 Fac | Carbon Equipme
tor 3 | emissions | DER SAP 10.0 | | unit (m²) units by model (m²) | el (kgCO ₂ /at |) (kgCO ₄ / m²) | | (control p.a.) | Water | | | | | H | | | technology
(1) | | | | | | (1)
Fapplicable | technology
(-) | | 6.600 kgCO ₄ kWh | | | | | | (-)
if applicable | technology
(1 | | 0.000 kgCO ₂ 6Wh | | | (kgCO ₂ / m²) | | Office 2950.72 1 4547
Cinema 1740.51 1 1606
Rotel 1169.64 1 1765 | 19.1
22.1
10.5 | 18.1
22.1
28.8 | 2.275892773 Grid Shirtonly
2.851342789 Grid Shirtonly
28.34428929 Grid Shirtonly | 0.001788223 GV
2.60778273 GV | nd theorety
of theorety | | | | | If applic | abis . | | If applicable 7.11 | 2725 28.07294
2725 28.07294
1021 8.702947 | 8.190832362
3.199837267 | 8.216 kgCQ_AWh | 6.519 kgCO,49811
85 | 0.000 kgCO_WMh | 8.519 kgCO ₂ kWh | 0.519 kgCO _a kWh | 8.800 kgCO ₂ AWh | 6.666 kgCO_AWA | gCQ_WM: 0.519 kgCQ_I | 51,459
38,446
12,244 | | 8.223 kgCO,4Wh
43 | e.eee kgCO_kWh | 0.233 kgCO ₂ KWh | 8.232 kgCO ₂ 498h | e.eee kgcoykwh e | 0.000 kgCO ₂ kWh | CO_AWIN 8.223 kgCO | 23,192
17,260
6,305 | 9.9
5.4 | | Hotel 1169.64 1 1765 | 10.5 | 28.8 | 26.26.00009 Grid Electricity | 129.693 01 | of Electricity | | | | | | | | 7.84 | 021 2.70062 | 0.423796237 | | ii | | | | | | | 12,264 | | 16 | | | | | | | 4,305 | 5.4 | , , | | , | , | 4 | Sum 5,761 2 7,918 | 17.2 | | 59,619 N/A | 235,461 | NA. | | | | | - | | | 0 67/ | 14 112,946 | 44,968 | 18,792 | 257,611 | | | | | 0 | | 136,029 | 10,792 | 257,611 | | 0 | | 0 | | | 62,200 | 7.9 | | SITE-WIDE ENERGY CONSUMPTION | N AND CO. | ANALYSIS | REGULATED EN | NERGY CONSUMPT | ON | | | _ | | | | | | | | | | | REGULATED CO.
EMISSIONS | | | | | | | | | REGUL | LATED CO: | | Use Total Area (m²) | Galculated
BER 2012
(kgCO ₂ / m | | Space Heating | Domestic Hot | Space | Heating | Domestic Hot | | Space and | Electric
generate | city
of by Secondary | | Electricity
generated by | ina Austiany | 0.000 | | | | | | | | | | | | | | | | | | SAP 10.0 CC | O, Calculated | | | (Agoo) / III | | Space Heating
(kWh p.s.) | Water
(kWh p.s.) | F (cm | Heating
source 2)
th p.a.) | Domestic Hot
Water
(Heat source 2)
(kWh p.a.) | A | Space and
Domestic Hot
Vater from CHP
(kWh p.a.) | Electric
generate
Cod
(con) | d by Secondary Heating syst La.) (kWh p.s.) | | Electricity generated by Ligh renewable (kWh p.a.) | pa) (Whpa) | Cooling
(kWh p.s.) | | | | | | | | | 2012 CO, emission | | | | | | | | | emissions | O, Calculated
BER SAP 10.0
(kgCO ₂ / m²) | | Sum 9,320 | 16.0 | | 49,983 | 247,892 | | | | | | * 4440 | | - | -5,600 72, | 82 116,656 | 46,900 | | | | | | | | | | | | | | | | | | 4400 | 7.3 | | | | | 44,463 | 247,892 | | | | | | | | | -0,000 72, | ** 179,656 | 49,911 | | | | | | | | | 769,605 | | | | | | | | | 88,292 | 7.3 | ### SAP 2012 Performance # SAP 10.0 Performance ### Domestic Table 1: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for domestic building | | | ns for domestic buildings
2 per annum) | |--|-----------|---| | | Regulated | Unregulated | | Baseline: Part L 2013 of
the Building Regulations
Compliant Developmen | 21.2 | 659.3 | | After energy demand reduction (be lean) | 19.6 | 659.3 | | After heat network connection (be clean) | 19.6 | 659.3 | | After renewable energy (be green) | 13.4 | 659.3 | Table 2: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for domestic buildin | | Regulated domestic of | arbon dioxide savings | |--|------------------------------------|-----------------------| | | (Tonnes CO ₂ per annum) | (%) | | Be lean: savings from
energy demand reduction | 1.6 | 8% | | Be clean: savings from
heat network | 0.0 | 0% | | Be green: savings from
renewable energy | 6.2 | 29% | | Cumulative on site savings | 7.8 | 37% | | Annual savings from off-
set payment | 13.4 | - | | | (Tonne | s CO ₂) | | Cumulative savings for
off-set payment | 401 | - | | Cash in-lieu
contribution (£) | 38,123 | | **Carbon price is based on GLA recommended price of £95 per tonne of carbon dioxide unless Local Planning Authority price is inputted in the "Development Information" I Non-domestic Table 3: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for non-domestic building | | | s for non-domestic buildings | |--|-----------|------------------------------| | | Regulated | Unregulated | | Baseline: Part L 2013 of
the Building Regulations
Compliant Developmen | 199.8 | 421.0 | | After energy demand
reduction (be lean) | 193.7 | 421.0 | | After heat network connection (be clean) | 193.7 | 421.0 | | After renewable energy
(be green) | 136.0 | 421.0 | Table 4: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for non-domestic buildin | Regulated non-domestic | c carbon dioxide savings | |------------------------------------|--| | (Tonnes CO ₂ per annum) | (%) | | 6.0 | 3% | | 0.0 | 0% | | 57.7 | 29% | | 63.7 | 32% | | 136.0 | - | | (Tonne | s CO ₂) | | 4,081 | - | | 387,684 | | | | (Tonnes CO, per annum) 6.0 0.0 57.7 63.7 136.0 (Tonnes 4,081 | unless Local Planning Authority price is inputted in the 'Development Inform Table 1: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for domestic building | | Carbon Dioxide Emissions for domestic buildings
(Tonnes CO ₂ per annum) | | |--|---|-------------| | Ī | Regulated | Unregulated | | Baseline: Part L 2013 of
the Building Regulations
Compliant Developmen | 18.7 | 296.0 | | After energy demand
reduction (be lean) | 16.6 | 296.0 | | After heat network connection (be clean) | 16.6 | 296.0 | | After renewable energy
(be green) | 6.0 | 296.0 | Table 2: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for domestic buildin | | Regulated domestic carbon dioxide savings | | | |--|---|----------------------|--| | | (Tonnes CO ₂ per annum) | (%) | | | Be lean: Savings from
energy demand reduction | 2.1 | 11% | | | Be clean: Savings from
heat network | 0.0 | 0% | | | Be green: Savings from
renewable energy | 10.6 | 57% | | | Cumulative on site
savings | 12.7 | 68% | | | Annual savings from off-
set payment | 6.0 | - | | | | (Tonne | es CO ₂) | | | Cumulative savings for
off-set payment | 180 | = | | | Cash in-lieu
contribution (£) | 17,115 | | | Table 3: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for non-domestic building | | Carbon Dioxide Emissions for non-domestic buildings
(Tonnes CO ₂ per annum) | | |--|---|-------------| | | Regulated | Unregulated | | Baseline: Part L 2013 of
the Building Regulations
Compliant Developmen | 127.6 | 189.0 | | After energy demand
reduction (be lean) | 128.0 | 189.0 | | After heat network connection (be clean) | 128.0 | 189.0 | | After renewable energy
(be green) | 62.3 | 189.0 | Table 4: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for non-domestic building | | Regulated non-domestic carbon dioxide savings | | |--|---|-----| | | (Tonnes CO ₂ per annum) | (%) | | Be lean: savings from
energy demand reduction | -0.3 | 0% | | Be clean: savings from
heat network | 0.0 | 0% | | Be green: savings from
renewable energy | 65.7 | 51% | | Total Cumulative
Savings | 65.3 | 51% | | Annual savings from off-
set payment | 62.3 | - | | | (Tonnes CO ₂) | | | Cumulative savings for
off-set payment | 1,869 | - | | Cash in-lieu
contribution (£)* | 177,520 | | carbon price is based on GLA recommended price of £95 per tonne of carbon pless Local Planning Authority price is inputted in the 'Development Information' Total regulated emissions (Tonnes CO₂ / year) CO₂ savings (Tonnes CO₂ / year) | Total regula | |--------------| | | Total regulated emissions
(Tonnes CO ₂ / year) | CO ₂ savings
(Tonnes CO ₂ / year) | Percentage
savings
(%) | |----------------------|--|--|------------------------------| | Part L 2013 baseline | 221.0 | | | | Be lean | 213.3 | 7.6 | 3% | | Be clean | 213.3 | 0.0 | 0% | | Be green | 149.4 | 63.9 | 29% | | Total Savings | - | 71.6 | 32% | | | - | CO ₂ savings off-set
(Tonnes CO ₂) | - | | Off-set | - | 4,482.2 | - | | 221.0 | | | | Part L 2013 baseline |
146.3 | | | |-------|--|-----|--|----------------------|-------|--|-----| | 213.3 | 7.6 | 3% | | Be lean | 144.6 | 1.7 | 1% | | 213.3 | 0.0 | 0% | | Be clean | 144.6 | 0.0 | 0% | | 149.4 | 63.9 | 29% | | Be green | 68.3 | 76.3 | 52% | | - | 71.6 | 32% | | Total Savings | - | 78.0 | 53% | | - | CO ₂ savings off-set
(Tonnes CO ₂) | - | | | - | CO ₂ savings off-set
(Tonnes CO ₂) | - | | - | 4,482.2 | - | | Off-set | - | 2,048.8 | - | | | Target Fabric Energy
Efficiency (kWh/m²) | Dwelling Fabric Energy
Efficiency (kWh/m²) | Improvement (%) | |-------------------|---|---|-----------------| | Development total | 40.84 | 40.41 | 1% | | | Area weighted non-domestic cooling demand (MJ/ | Total area weighted non-domestic cooling demand (MJ/year) | |----------|--|---| | Actual | 288.1 | 2281175.8 | | Notional | 267 | 2114106 |