

			•						Window Sa	mpler	No.
				OWNFIELD				Borehole Log	WS	06	
									Sheet		_
PROJ	ECT NO:	M5478	3				CO-ORD	S:	Hole W		
PROJ	ECT NAN	ΛΕ: OLDFII	ELD RO	AD, HAMPTON			LEVEL:		Sca 1:	ale	
CLIEN	NT:	SHURO	SARD LT	D			DATES:	16/08/23	Logged		cked AT
Well	Water	Sample	and In	Situ Testing	Depth	Level	Legend	Stratum Description			
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m OD)	Legellu		th for a set		
								MADE GROUND: Dark brown gravelly sand wi rootlets and with low cobble content. Sand is Gravel is angular to subrounded fine to coarse and sandstone. Cobbles are subangular of bri	fine to coarse. e of concrete, flin	t,	- - - -
		0.50	ES		0.50	-0.50		MADE GROUND: Soft yellowish brown slightly gravelly silty clay with occasional rootlets. Sar			_
		0.70	ES		0.80	-0.80		medium. Gravel is subangular to subrounded			_
• = •							XX	concrete, flint, and sandstone. Firm yellowish brown slightly gravelly slightly		/	1.0 —
		1.20	SPT	N=8 (1,2/2,1,2,3)			XX XX	rare rootlet. Sand is fine to medium. Gravel is subrounded fine to coarse of flint, and sandst Becoming more sandy from 1.20m bgl to 1.45m bgl.	•		- - -
					1.45	-1.45	<u> </u>	Yellowish brown gravelly SAND. Sand is fine to	coarco Gravelio		_
								subangular to subrounded fine to coarse of fli			- -
											- -
		2.00	SPT	N=26 (4,5/6,6,7,7)							2.0 —
											- -
											_
											-
:H:											_
		3.00	ES SPT	N=17							3.0 —
				(3,3/3,4,6,4)							-
											-
											_
											_
		4.00	ES SPT	N=10	3.90	-3.90	X X X	Soft brownish grey slightly gravelly slightly sar fine. Gravel is subangular to subrounded fine		t	4.0 —
			311	(2,2/2,3,2,3)			<u> </u>	and sandstone.			_
							X - X				- -
							<u> </u>				_ _
							<u> </u>				- -
		5.00	SPT	N=12	5.00	-5.00	× ×	End of Borehole at 5.00m			5.0 —
				(2,2/3,3,3,3)							- -
											- -
											_ _
											- -
											- 6.0 —
											· ·
Rema	irks	2. Hand dug i3. Wet sand e4. Borehole c	nspectic encounte ollapsed	with Radiodetection pit to 1.20m bgered from 3.90m lefrom 5.00m bgl totalled upon comp	;l ogl. o 2.80m b	ogl.		D= B= LB: U= UT pipe. 1.00m to 2.80m bgl slotted pipe.	= Environmental Sample Disturbed Sample Bulk Sample = Large Bulk Sample Undisturbed Sample = Undisturbed Thin Wall Sa = Standard Penetration Tes = Photoionization Detector	t	
								PPN	– Priotolomization betector M = Part Per Million J = Hand Shear Vane	(FP.11)	

									Window Sa	mpler N	lo.
			B F	ROWNFIELD LUTIONS LTD				Borehole Log	WS		
PRO.	JECT NO:	M5478	3				CO-ORD	S:	Sheet Hole	Туре	
PRO	JECT NAN	/F: OLDEI	ELD RO	AD, HAMPTON			LEVEL:		V. Sca	ale	
	, , , , , , , , , , , , , , , , , , , ,	 325111		10,111111111111111					1:: Logged	30 Ched	rkod
CLIE	NT:		SARD LT				DATES:	16/08/23	co	A	
Well	Water Strikes	Sample Depth (m)		Situ Testing Results	Depth (m)	Level (m OD)	Legend	Stratum Description			
								MADE GROUNDL: Dark brown gravelly sand w rootlets and with low cobble content. Sand is Gravel is angular to subrounded fine to coarse and sandstone (Top Soil).	fine to coarse.	Ξ,	1.0 —
					1.20	-1.20	SUIRUIRU.	End of Borehole at 1.20m			2.0 —
											3.0 —
											5.0 —
Rema	arks	2. Hand dug i3. No ground4. Location te	nspectio water er rminate	with Radiodetection of the tool of the too	e to concr	ete obstruc		D = B = LB : U = UT	= Environmental Sample Disturbed Sample Bulk Sample = Large Bulk Sample = Undisturbed Sample = Undisturbed Thin Wall Saf = Standard Penetration Tes = Photoionization Detector W = Part Per Million V = Hand Shear Vane	t	

APPENDIX F

Chemical Testing Results

Chigozie Orafu

Brownfield Solutions Ltd William Smith House 173 - 183 Witton Street Northwich Cheshire CW9 5LP

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

18/08/2023

e: C.Orafu@brownfield-solutions.co.uk

Analytical Report Number: 23-51916

Replaces Analytical Report Number: 23-51916, issue no. 1 Additional analysis undertaken. Asbestos Quantification added as per clients request

Project / Site name: Oldfield Road, Hampton Samples received on: 18/08/2023

Your job number: Samples instructed on/ M5478

Analysis started on:

Your order number: M5478-4495-CO Analysis completed by: 04/09/2023

Report Issue Number: Report issued on: 05/09/2023

Samples Analysed: 12 soil samples

Signed:

Anna Goc

PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting soils

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

0,000	, 5.00	unici oic	iiicia itoaa
Your Or	der No:	M5478-4	1495-CO

Lab Sample Number				2786153	2786154	2786155	2786156	2786157
Sample Reference				BH01	WS04	WS03A	BH01	WS06
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	0.40	0.60	0.50	0.70
Date Sampled				14/08/2023	15/08/2023	15/08/2023	14/08/2023	16/08/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	поло осружения	поло осернос	жене одржа	поло одруга	поле одруга
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	-
Moisture Content	%	0.01	NONE	15	27	15	16	-
Total mass of sample received	kg	0.001	NONE	0.8	0.9	1.1	1	-
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	0.007	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	0.007	-
Asbestos Analyst ID	N/A	N/A	N/A	KSZ	KSZ	KSZ	KSZ	KSZ
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	7.5	7.5	10	_
pri Automateu	F	.,,						
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	190	180	77	1100	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0967	0.0912	0.0386	0.547	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	96.7	91.2	38.6	547	-
Organic Matter (automated)	%	0.1	MCERTS	0.8	8.1	3	4.7	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	0.5	4.7	-	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	0.74	< 0.05	0.25	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.64	0.19	0.47	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.98	< 0.05	0.19	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.92	< 0.05	0.27	-
Phenanthrene	mg/kg	0.05	MCERTS	0.13	16	0.51	2.9	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	4.1	0.16	0.85	-
Fluoranthene	mg/kg	0.05	MCERTS	0.29	39	2.2	7.7	-
Pyrene	mg/kg	0.05	MCERTS	0.28	36	2.1	6.5	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.16	21	1.4	2.8	-
Chrysene	mg/kg	0.05	MCERTS	0.17	20	1.5	3.3	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.24	32	2	4.1	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.09	9.8	0.83	1.3	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.15	25	1.5	2.9	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.09	11	0.93	1.7	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	3.1	0.22	0.48	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.11	12	0.99	2	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	1.71	232	14.4	37.6	_
	5. 5		I.	1./1	<i>-JL</i>	4111	37.10	

Your Order No: M5478-4495-CO

Lab Sample Number				2786153	2786154	2786155	2786156	2786157
Sample Reference				BH01	WS04	WS03A	BH01	WS06
Sample Number				None Supplied				
Depth (m)				1.00	0.40	0.60	0.50	0.70
Date Sampled				14/08/2023	15/08/2023	15/08/2023	14/08/2023	16/08/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	=						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	32	13	14	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	0.9	-
Chromium (hexavalent)	mg/kg	1.2	NONE	< 1.2	< 1.2	< 1.2	< 1.2	-
Chromium (III)	mg/kg	1	NONE	31	22	20	22	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	22	20	23	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	82	36	36	=
Lead (aqua regia extractable)	mg/kg	1	MCERTS	26	890	120	200	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.5	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	38	17	18	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	46	1200	52	230	-
Monoaromatics & Oxygenates Benzene	mg/kg	0.005	MCERTS	< 0.005	-	<u>-</u> .	-	-
Toluene	mg/kg	0.005	MCERTS	< 0.005	-	-	-	-
Ethylbenzene	mg/kg	0.005	MCERTS	< 0.005	-	-	-	-
p & m-xylene	mg/kg	0.005	MCERTS	< 0.005	-	-	-	-
o-xylene#	mg/kg mg/kg	0.005 0.005	MCERTS NONE	< 0.005	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	IIIg/kg	0.003	NONL	< 0.005	-	-	-	
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.1	NONE	< 0.10	-	-	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.1	NONE	< 0.10	-	-	-	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.1	NONE	< 0.10	-	-	-	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	-	-	-
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	< 10	-	-	-	-
TPH-CWG - Aromatic >EC5 - EC7 _{HS_1D_AR}	mg/kg	0.1	NONE	< 0.10	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg	0.1	NONE	< 0.10	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.1	NONE	< 0.10	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 1.0	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg	2	MCERTS	< 2.0	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	16	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	NONE	17	-	-	-	-

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Analytical Report Number: 23-51916 Project / Site name: Oldfield Road, Hampton Your Order No: M5478-4495-CO

Lab Sample Number				2786158	2786159	2786160	2786161	2786162
Sample Reference				WS03B	BH03	WS03A	WS07	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.25	0.70	0.30	0.40	4.00
Date Sampled				15/08/2023	15/08/2023	15/08/2023	16/08/2023	15/08/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	5.2	8.4	6.7	5.6	16
Total mass of sample received	kg	0.001	NONE	0.9	0.8	0.4	0.6	0.4
·		-						
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Amosite	Chrysotile	-	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Detected	-	Detected	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	< 0.001	< 0.001	-	< 0.001	-
Asbestos Quantification Total	%	0.001	ISO 17025	< 0.001	< 0.001	-	< 0.001	-
Asbestos Analyst ID	N/A	N/A	N/A	KSZ	KSZ	N/A	KSZ	N/A
General Inorganics					•	•		•
pH - Automated	pH Units	N/A	MCERTS	9	I -	10.2	10.6	_
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	530	-	200	1500	-
Water Soluble SO4 16hr extraction (2:1 Leachate	3, 3			0.262		0.101	0.750	
Equivalent)	g/l	0.00125	MCERTS	0.263	-	0.101	0.759	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	263	-	101	759	-
Organic Matter (automated)	%	0.1	MCERTS	3.2	-	1.6	4.5	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	-	0.4	1	2.6	0.9
Speciated PAHs	mg/kg	0.05	MCERTS	0.08		< 0.05	0.15	_
Naphthalene Assnaphthylene	mg/kg	0.05	MCERTS	0.15		0.08	0.13	-
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	0.15	_	< 0.05	0.16	
·	mg/kg	0.05	MCERTS	0.16		< 0.05	0.16	
Fluorene Phenanthrene	mg/kg	0.05	MCERTS	0.17	-	0.37	2.1	-
Anthracene	mg/kg	0.05	MCERTS	0.46		0.37	0.47	
Fluoranthene	mg/kg	0.05	MCERTS	2.8		0.97	3.2	_
	mg/kg	0.05	MCERTS	2.3		0.81	2.6	
Pyrene Ponzo(a)anthracono	mg/kg	0.05	MCERTS	0.88		0.81	1.5	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.1		0.32	2	-
Chrysene Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	1.1		0.39	2	
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.38		0.18	0.88	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.38		0.18	1.5	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.46		0.2	0.85	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.46		< 0.05	0.29	-
	mg/kg	0.05	MCERTS	0.13	<u>-</u>	< 0.05 0.25	0.29	-
Benzo(ghi)perylene				0.52		0.23	1	-
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	13.3	<u> </u>	4.41	19	
openated Total LFA-10 FAHS			1, 023	13.3	_	7.41	13	

Analytical Report Number: 23-51916 Project / Site name: Oldfield Road, Hampton Your Order No: M5478-4495-CO

Lab Sample Number				2786158	2786159	2786160	2786161	2786162
Sample Reference				WS03B	BH03	WS03A	WS07	WS01
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.25	0.70	0.30	0.40	4.00
Date Sampled				15/08/2023	15/08/2023	15/08/2023	16/08/2023	15/08/2023
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		··			
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	12	-	13	14	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1	-	0.6	0.7	-
Chromium (hexavalent)	mg/kg	1.2	NONE	< 1.2	-	< 1.2	< 1.2	-
Chromium (III)	mg/kg	1	NONE	13	-	16	130	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	13	-	16	130	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	19	-	9.4	40	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	69	-	47	95	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	< 0.3	< 0.3	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	13	-	11	63	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	160	-	94	160	-
Benzene	mg/kg	0.005	MCERTS	-	< 0.005	< 0.005	-	-
Toluene	mg/kg	0.005	MCERTS	-	< 0.005	< 0.005	-	-
Ethylbenzene	mg/kg	0.005	MCERTS	-	< 0.005	< 0.005	-	-
p & m-xylene	mg/kg	0.005	MCERTS	-	< 0.005	< 0.005	-	-
o-xylene#	mg/kg	0.005	MCERTS	-	< 0.005	< 0.005	-	-
MTBE (Methyl Tertiary Butyl Ether)	mg/kg	0.005	NONE	-	< 0.005	< 0.005	-	-
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg	0.1	NONE	-	< 0.10	< 0.10	-	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.1	NONE	-	< 0.10	< 0.10	-	-
TPH-CWG - Aliphatic > EC8 - EC10 HS 1D AL	mg/kg	0.1	NONE	-	< 0.10	< 0.10	-	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-	< 1.0	< 1.0	-	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	< 2.0	< 2.0	-	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	< 8.0	8.7	-	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	< 8.0	130	-	-
TPH-CWG - Aliphatic >EC16 - EC35 EH CU 1D AL	mg/kg	10	MCERTS	-	< 10	140	-	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	< 10	140	-	-
	_		_	-	=		-	-
				_	< 0.10	< 0.10	_	-
TPH-CWG - Aromatic >EC5 - EC7 _{HS 1D AR}	mg/kg	0.1	NONE		· 0.10			_
TPH-CWG - Aromatic >EC5 - EC7 _{HS_1D_AR} TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR}	mg/kg mg/kg	0.1	NONE	-	< 0.10	< 0.10	-	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR				-			-	
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	0.1	NONE		< 0.10	< 0.10		-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR} TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg mg/kg	0.1	NONE NONE	-	< 0.10 < 0.10	< 0.10 < 0.10	-	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR} TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR} TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg mg/kg mg/kg	0.1 0.1 1	NONE NONE MCERTS	-	< 0.10 < 0.10 < 1.0	< 0.10 < 0.10 < 1.0	-	- - -
TPH-CWG - Aromatic >EC7 - EC8 _{HS_1D_AR} TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR} TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR} TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 1 2	NONE NONE MCERTS MCERTS	- - -	< 0.10 < 0.10 < 1.0 < 2.0	< 0.10 < 0.10 < 1.0 < 2.0	- - -	- - -

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Your Order No: M5478-4495-CO

Lab Sample Number				2786163	2786164
Sample Reference				WS06	BH02
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	0.30
Date Sampled				16/08/2023	16/08/2023
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	7.8	9.1
Total mass of sample received	kg	0.001	NONE	0.3	0.3
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	=	-
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	i	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-
Asbestos Analyst ID	N/A	N/A	N/A	N/A	N/A

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.6	-
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	100	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0518	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	51.8	-
Organic Matter (automated)	%	0.1	MCERTS	2.6	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.5	1.3

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	0.06	_
•					
Acenaphthylene	mg/kg	0.05	MCERTS	0.1	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	0.54	-
Anthracene	mg/kg	0.05	MCERTS	0.12	-
Fluoranthene	mg/kg	0.05	MCERTS	1.7	-
Pyrene	mg/kg	0.05	MCERTS	1.6	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.89	-
Chrysene	mg/kg	0.05	MCERTS	0.98	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	1.4	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.55	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.99	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.65	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.19	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.74	-

Total PAH

Total FAIT					
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	10.4	-

Your Order No: M5478-4495-CO

				2786163	2786164
Sample Reference				WS06	BH02
Sample Number				None Supplied	None Supplied
Depth (m)				0.50	0.30
Date Sampled				16/08/2023	16/08/2023
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	20	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1.2	-
Chromium (hexavalent)	mg/kg	1.2	NONE	< 1.2	-
Chromium (III)	mg/kg	1	NONE	34	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	=
Copper (aqua regia extractable)	mg/kg	1	MCERTS	54	=
Lead (aqua regia extractable)	mg/kg	1	MCERTS	200	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.5	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	27	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	170	-
Toluene Ethylbenzene	mg/kg mg/kg	0.005 0.005	MCERTS MCERTS	-	-
p & m-xylene	mg/kg	0.005	MCERTS		
	919		MCLKIS	-	-
o-xylene#	mg/kg	0.005	MCERTS	-	-
		0.005 0.005		-	
o-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons	mg/kg	0.005	MCERTS NONE	-	-
o-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_ID_AL	mg/kg mg/kg	0.005	MCERTS NONE	-	-
o-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_ID_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_ID_AL	mg/kg mg/kg	0.005 0.1 0.1	MCERTS NONE NONE	-	-
o-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg mg/kg	0.005 0.1 0.1 0.1	MCERTS NONE NONE NONE NONE	- - -	-
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 H5_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 H5_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 H5_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 H5_1D_AL	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.005 0.1 0.1 0.1 1	NONE NONE NONE NONE NONE NONE NONE	-	-
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 H5_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 H5_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 H5_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.005 0.1 0.1 0.1 1 2	NONE NONE NONE NONE NONE NONE MCERTS	- - - - - -	
o-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 H5_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 H5_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 H5_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.005 0.1 0.1 0.1 1 2 8	NONE NONE NONE NONE NONE NONE MCERTS MCERTS	- - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_ID_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_ID_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_ID_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_ID_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL	mg/kg	0.005 0.1 0.1 0.1 1 2 8	NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS	- - - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 HC_0_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 HC_0_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 HC_0_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 HC_0_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 HC_0_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 HC_0_1D_AL	mg/kg	0.005 0.1 0.1 0.1 1 2 8 8 10	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_ID_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_ID_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_ID_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_ID_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_ID_AL	mg/kg	0.005 0.1 0.1 0.1 1 2 8	NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS	- - - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU_1D_AL	mg/kg	0.005 0.1 0.1 1 2 8 8 10	NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS NONE	- - - - - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 H5_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 H5_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 H5_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC5 - EC7 H5_1D_AL	mg/kg	0.005 0.1 0.1 0.1 1 2 8 8 10	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS MCERTS	- - - - - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_ID_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_ID_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_ID_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_ID_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_ID_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_ID_AL TPH-CWG - Aliphatic >EC5 - EC35 EH_CU_ID_AL TPH-CWG - Aromatic >EC5 - EC7 HS_ID_AR TPH-CWG - Aromatic >EC7 - EC8 HS_ID_AR	mg/kg	0.005 0.1 0.1 1 2 8 8 10 10	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS MCERTS MORE NONE	- - - - - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.005 0.1 0.1 1 2 8 8 10 10 0.1	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS MCERTS NONE NONE	- - - - - - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	0.005 0.1 0.1 1 2 8 8 10 10 0.1 0.1 0.1 0.1 0.1	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS MCERTS NONE NONE NONE	- - - - - - - - - - - - -	
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 EH_CU_1D_AL TPH-CWG - Aromatic >EC5 - EC75 EH_CU_1D_AL TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	0.005 0.1 0.1 1 2 8 8 10 10 0.1 0.1 1 1 1 1 1 1 1 1 1	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS NONE NONE NONE NONE NONE NONE		- - - - - - - - - - - - - - - -
O-xylene# MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL TPH-CWG - Aliphatic >EC10 - EC12 HC_0_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 HC_0_1D_AL TPH-CWG - Aliphatic >EC12 - EC16 HC_0_1D_AL TPH-CWG - Aliphatic >EC16 - EC21 HC_0_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 HC_0_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 HC_0_1D_AL TPH-CWG - Aliphatic >EC16 - EC35 HC_0_1D_AL TPH-CWG - Aliphatic >EC5 - EC75 HS_1D_AR TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic >EC10 - EC12 HS_0_1D_AR	mg/kg	0.005 0.1 0.1 1 2 8 8 10 10 0.1 0.1 1 1 2 2 3 4 5 6 7 7 8 8 8 10 10 10 10 10 10 10 1	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS NONE NONE NONE NONE NONE MCERTS	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Analytical Report Number: 23-51916

Project / Site name: Oldfield Road, Hampton
Your Order No: M5478-4495-CO

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
2786156	BH01	0.50	165	Loose Fibrous Debris	Chrysotile	0.007	0.007
2786158	WS03B	0.25	151	Loose Fibrous Debris	Amosite	< 0.001	< 0.001
2786159	BH03	0.70	177	Loose Fibres Chrysotile		< 0.001	< 0.001
2786161	WS07	0.40	162	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2786153	BH01	None Supplied	1	Brown clay.
2786154	WS04	None Supplied	0.4	Brown sand with gravel.
2786155	WS03A	None Supplied	0.6	Brown clay and sand with gravel.
2786156	BH01	None Supplied	0.5	Brown clay and sand with gravel.
2786158	WS03B	None Supplied	0.25	Brown sand with gravel.
2786159	BH03	None Supplied	0.7	Brown clay and sand with gravel.
2786160	WS03A	None Supplied	0.3	Brown sand with gravel.
2786161	WS07	None Supplied	0.4	Brown sand with gravel.
2786162	WS01	None Supplied	4	Brown clay.
2786163	WS06	None Supplied	0.5	Brown loam and sand with gravel and vegetation.
2786164	BH02	None Supplied	0.3	Brown clay and sand with gravel.

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Is in soil by ICP-OES Determination of metals in soil by aqua-regia digestion followed by ICP-OES. In-house method based on MEWAM 2006 for the Determination of Metals in Soil.		L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by In house method. automated electrometric measurement.			D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as dry weight. In-house method based on Britis Methods and MCERTS requirement		L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	NONE
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

^{# -} Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised.

Chigozie Orafu

Brownfield Solutions Ltd William Smith House 173 - 183 Witton Street Northwich Cheshire

Your order number:

CW9 5LP

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

23/08/2023

e: C.Orafu@brownfield-solutions.co.uk

Analytical Report Number: 23-52803

Project / Site name: Oldfield Road, Hampton Samples received on: 22/08/2023

Your job number: M5478 Samples instructed on/

Analysis started on:

Analysis completed by: 06/09/2023

Report Issue Number: Report issued on: 06/09/2023

Samples Analysed: 6 soil samples

Signed:

Dominika Liana Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

M5478 4513 CO

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Your Order No: M5478 4513 CO

Lab Sample Number				2790970	2790971	2790972	2790973	2790974
Sample Reference				BH03	BH01	BH02	BH03	WS01
Sample Number				None Supplied				
Depth (m)				9.00	2.00	1.00	6.00	1.10
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	70	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	4.9	15	17	15
Total mass of sample received	kg	0.001	NONE	0.3	0.3	0.5	0.5	0.5

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.4	8.3	7.8	8.2	7.6
Total Sulphate as SO4		0.005	MCERTS	0.347	0.017	0.112	0.105	0.022
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.521	0.0666	0.449	0.506	0.0505
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	21	4.1	11	19	7.6
Total Sulphur	%	0.005	MCERTS	0.875	0.01	0.102	0.668	0.01
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	71	8.8	72	67	14
Magnesium (leachate equivalent)	mg/l	2.5	NONE	35	4.4	36	34	6.8

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Your Order No: M5478 4513 CO

Lab Sample Number		2790975		
Sample Reference				WS04
Sample Number				None Supplied
Depth (m)				0.70
Date Sampled				Deviating
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	8.2
Total mass of sample received	kg	0.001	NONE	0.5

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	7.1
Total Sulphate as SO4	%	0.005	MCERTS	0.03
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0506
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	22
Total Sulphur	%	0.005	MCERTS	0.017
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	13
Magnesium (leachate equivalent)	mg/l	2.5	NONE	6.6

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2790970	BH03	None Supplied	9	Brown clay.
2790971	BH01	None Supplied	2	Brown gravelly sand with stones.
2790972	BH02	None Supplied	1	Brown clay and sand with gravel.
2790973	BH03	None Supplied	6	Brown clay.
2790974	WS01	None Supplied	1.1	Brown clay and sand with gravel.
2790975	WS04	None Supplied	0.7	Brown loam and clay with gravel and vegetation.

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	w	NONE
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 23-52803 Project / Site name: Oldfield Road, Hampton

 $This \ deviation \ report \ indicates \ the \ sample \ and \ test \ deviations \ that \ apply \ to \ the \ samples \ submitted \ for \ analysis. Please$ note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH01	None Supplied	S	2790971	a	None Supplied	None Supplied	None Supplied
BH02	None Supplied	S	2790972	a	None Supplied	None Supplied	None Supplied
BH03	None Supplied	S	2790970	a	None Supplied	None Supplied	None Supplied
BH03	None Supplied	S	2790973	a	None Supplied	None Supplied	None Supplied
WS01	None Supplied	S	2790974	a	None Supplied	None Supplied	None Supplied
WS04	None Supplied	S	2790975	a	None Supplied	None Supplied	None Supplied

Chigozie Orafu

Brownfield Solutions Ltd□ William Smith House 173 - 183 Witton Street Northwich Cheshire CW9 5LP i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: C.Orafu@brownfield-solutions.co.uk

Your order number:

Analytical Report Number: 23-51917

Project / Site name: Oldfield Road, Hampton Samples received on: 18/08/2023

Your job number: M5478 Samples instructed on/

Analysis started on:

Analysis completed by: 29/08/2023

18/08/2023

Report Issue Number: 1 Report issued on: 29/08/2023

Samples Analysed: 3 10:1 WAC samples

M5478-4495-CO

Signed:

Dominika Liana Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		23-	51917				
Report No.							
					Client:	BSL	
Location		Oldfield Ro	ad, Hampton				
Lab Reference (Sample Number)		2706165	/ 2706166		Landfill	Waste Acceptanc	e Criteria
Lab Reference (Sample Namber)			/ 2786166			Limits	
Sampling Date			8/2023			Stable Non- reactive	
Sample ID		В	H01		Inert Waste	HAZARDOUS	Hazardous
Depth (m)		1	.00		Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**	0.4				3%	5%	6%
Loss on Ignition (%) **	2.8						10%
BTEX (µg/kg)**	< 5.0				6000		
Sum of PCBs (mg/kg)**	< 0.007				1		
Mineral Oil (mg/kg) _{EH_1D_CU_AL}	< 10		1		500		
Total PAH (WAC-17) (mg/kg)	1.68		 		100		
pH (units)**	7.9					>6	
Acid Neutralisation Capacity (mmol / kg)	3.1					To be evaluated	To be evaluate
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test
(DC EN 124E7 2 proparation utilizing and over and leaching			1		using BS EN	12457-2 at L/S 10	I/kg (mg/kg)
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg			
Arsenic *	0.0042			0.0415	0.5	2	25
Barium *	0.0342			0.342	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0047			0.047	0.5	10	70
Copper *	0.019			0.19	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0058			0.0582	0.5	10	30
Nickel *	0.0043		1	0.044	0.4	10	40
Lead *	0.0088		+	0.088	0.5	10	50
Antimony * Selenium *	< 0.0017 < 0.0040			< 0.017 < 0.040	0.06 0.1	0.7 0.5	5 7
Zinc *	0.029		1	0.29	4	50	200
Chloride *	1.3			13	800	15000	25000
Fluoride*	1.5			15	10	150	500
Sulphate *	22		1	220	1000	20000	50000
TDS*	95			950	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	12.2			122	500	800	1000
Leach Test Information							
	1		1			1	
Stone Content (%)	< 0.1		1	İ		1	
Sample Mass (kg)	0.80		1			İ	
Dry Matter (%)	85						
Moisture (%)	15						
Results are expressed on a dry weight basis, after correction for m					*= LIVAS accredit	ed (liquid eluate ana	lucic only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended)

and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		23-	51917				
					Client:	BSL	
Location		Oldfield Ro	ad, Hampton		1 46:11	\\t - At	- C-iti-
Lab Reference (Sample Number)		2786167	/ 2786168		Landfill	Waste Acceptano Limits	e Criteria
Sampling Date		16/0	8/2023			Stable Non-	
Sample ID			/S06			reactive	
·					Inert Waste Landfill	HAZARDOUS waste in non-	Hazardous Waste Landfil
Depth (m)		0	.70		Lanunii	hazardous	waste Landin
						Landfill	
Solid Waste Analysis							
TOC (%)**	0.7				3%	5%	6%
Loss on Ignition (%) **	3.0		1				10%
BTEX (µg/kg)**	< 5.0		+	+	6000		
Sum of PCBs (mg/kg)** Mineral Oil (mg/kg) _{EH_ID_CU_AL}	< 0.007 < 10		+		1 500		
Mineral OII (mg/kg) _{EH_ID_CU_AL} Total PAH (WAC-17) (mg/kg)	< 0.85		+	 	100		
pH (units)**	8.0		+	<u> </u>		>6	
Acid Neutralisation Capacity (mmol / kg)	3.0					To be evaluated	To be evaluate
Eluate Analysis					Limit valu	es for compliance le	•
Eluate Allalysis	10:1			10:1			
(BS EN 12457 - 2 preparation utilising end over end leaching			*		using BS EN	I 12457-2 at L/S 10	I/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	< 0.0010			< 0.0100	0.5	2	25
Barium *	0.0093			0.0926	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0014			0.014	0.5	10	70
Copper *	0.014		1	0.14	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum * Nickel *	0.0056 0.0020			0.0561 0.020	0.5 0.4	10 10	30 40
Lead *	0.0020			0.020	0.4	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	0.0059			0.059	0.1	0.5	7
Zinc *	0.0029			0.029	4	50	200
Chloride *	1.9			19	800	15000	25000
Fluoride*	1.1			11	10	150	500
Sulphate *	3.3			33	1000	20000	50000
TDS*	42			420	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	24.0			240	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.80						
Dry Matter (%)	91		1				
Moisture (%)	8.7						
			1	1			
					* 111/16 ::	10	
Results are expressed on a dry weight basis, after correction for mo	isture content where	applicable.			*= UKAS accredit	ed (liquid eluate ana	iysis only)

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

hazardous or non-hazardous.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		23-	51917				
•							
					Client:	BSL	
Location		Oldfield Ro	oad, Hampton		1 45:11	M A	- C-iti-
Lab Reference (Sample Number)		2786169	7 / 2786170		Landfill	Waste Acceptano Limits	e Criteria
Sampling Date		15/08/2023				Stable Non-	
Sample ID			H03			reactive	
54p.c 15					Inert Waste	HAZARDOUS	Hazardous
Depth (m)		().40		Landfill	waste in non- hazardous	Waste Landfill
						Landfill	
Solid Waste Analysis							
TOC (%)**	0.4			ļ	3%	5%	6%
Loss on Ignition (%) **	3.0						10%
BTEX (µg/kg)**	< 5.0			1	6000		
Sum of PCBs (mg/kg)**	< 0.007		+	+	500		
Mineral Oil (mg/kg) EH_ID_CU_AL	< 10 1.17		+	1	500 100		
Total PAH (WAC-17) (mg/kg) pH (units)**	6.1		+	+		>6	
Acid Neutralisation Capacity (mmol / kg)	-3.6					To be evaluated	To be evaluated
· · · · · · · · · · · · · · · · · · ·						es for compliance le	
Eluate Analysis	10:1			10:1			
(BS EN 12457 - 2 preparation utilising end over end leaching			-!		using BS EN	l 12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.0015			0.0155	0.5	2	25
Barium *	0.0279			0.279	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0013			0.013	0.5	10	70
Copper *	0.012			0.12	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	< 0.0004			< 0.0040	0.5	10	30
Nickel *	0.0007			0.0070	0.4	10	40
Lead *	0.0011			0.011	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5 7
Selenium * Zinc *	< 0.0040 0.020			< 0.040 0.20	0.1 4	0.5 50	200
Chloride *	2.1			21	800	15000	25000
Fluoride*	0.77			7.7	10	150	500
Sulphate *	46			460	1000	20000	50000
TDS*	160			1600	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010		1	< 0.10	1	-	-
						900	1000
DOC	7.18			71.8	500	800	1000
Leach Test Information				 			
			1	+	 		
Stone Content (%)	< 0.1		1	1	 		
Sample Mass (kg) Dry Matter (%)	0.30 91		+	+	 		
Dry Matter (%) Moisture (%)	8.8		+	+	 		
Totale (70)	0.0		1	1			
			1	1			
			•		•		
	isture content where				*= UKAS accredit	1.0: .1.1.	hada and A

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

hazardous or non-hazardous.

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2786165	BH01	None Supplied	1	Brown clay.
2786167	WS06	None Supplied	0.7	Brown clay and sand with gravel.
2786169	BH03	None Supplied	0.4	Brown clay and sand with gravel.

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance""	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270.	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	w	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031-PL	W	ISO 17025

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Human Health Assessment Summary	- Soils Test D	ata			Soil Type: Location: Depth:	BH01 1.00	WS04 0.40	WS03A 0.60	BH01 0.50	WS06 0.70	WS03B 0.25	BH03 0.70	WS03A 0.30	WS07 0.40	WS01 4.00	WS06 0.50	BH02 0.30
Contaminant	GAC (mg/kg)	No. Samples	Min. Value	Max. Value	No. Samples ≥GAC												
Moisture Content Soil Organic Matter	-	11 8	5.20 0.80	27.00 8.10	-	15 0.8	27 8.1	15 3.0	16 4.7		5 3.2	8	7 1.6	6 4.5	16	8 2.6	9
pH Water Soluble Sulphate (2:1 Leachate Equivalent) (mg/l)	- Note mg/l	8 8	7.50 38.60	10.60 759.00	-	7.9 96.7	7.5 91.2	7.5 38.6	10.0 547.0		9.0 263.0		10.2 101.0	10.6 759.0		8.6 51.8	
Arsenic	640	8	12.00	32.00	0	13.0	32.0	13.0	14.0		12.0		13.0	14.0		20.0	
Cadmium	190	8	< LOD	1.20	0	< 0.2	< 0.2	< 0.2	0.9		1.0		0.6	0.7		1.2	
Chromium (III) Hexavalent Chromium (VI)	8600 33	8	13.00 < LOD	130.00 <lod< td=""><td>0</td><td>31.0 < 1.2</td><td>22.0 < 1.2</td><td>20.0 < 1.2</td><td>22.0 < 1.2</td><td></td><td>13.0 < 1.2</td><td></td><td>16.0 < 1.2</td><td>130.0 < 1.2</td><td></td><td>34.0 < 1.2</td><td></td></lod<>	0	31.0 < 1.2	22.0 < 1.2	20.0 < 1.2	22.0 < 1.2		13.0 < 1.2		16.0 < 1.2	130.0 < 1.2		34.0 < 1.2	
Copper	68000	8	9.40	82.00	0	11.0	82.0	36.0	36.0		19.0		9.4	40.0		54.0	
Lead	2300	8	26.00	890.00	0	26.0	890.0	120.0	200.0		69.0		47.0	95.0		200.0	
Mercury Nickel	58.0 980	8	< LOD 11.00	0.50 63.00	0	< 0.3 24.0	0.5 38.0	< 0.3 17.0	< 0.3 18.0		< 0.3 13.0		< 0.3 11.0	< 0.3 63.0		0.5 27.0	
Selenium	12000	8	< LOD	<lod< td=""><td>0</td><td>< 1.0</td><td>< 1.0</td><td>< 1.0</td><td>< 1.0</td><td></td><td>< 1.0</td><td></td><td>< 1.0</td><td>< 1.0</td><td></td><td>< 1.0</td><td></td></lod<>	0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0		< 1.0	
Zinc	730000	8	46.00	1200.00	0	46.0	1200.0	52.0	230.0		160.0		94.0	160.0		170.0	
Cyanide (free) Phenol (total)	16000 1500	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
Naphthalene	460.0	8	< LOD	0.74	0	< 0.05	0.74	< 0.05	0.25		0.08		< 0.05	0.15		0.06	
Acenaphthylene Acenaphthene	97000 97000	8	< LOD < LOD	0.64 0.98	0	< 0.05 < 0.05	0.64 0.98	0.19 < 0.05	0.47 0.19		0.15 0.16		0.08 < 0.05	0.24 0.16		0.10 < 0.05	
Fluorene	68000	8	< LOD	0.92	0	< 0.05	0.92	< 0.05	0.27		0.17		< 0.05	0.13		< 0.05	
Phenanthrene	22000	8	0.13	16.00	0	0.13	16.00	0.51	2.90		2.00		0.37	2.10		0.54	
Anthracene Fluoranthene	540000 23000	8	< LOD 0.29	4.10 39.00	0	< 0.05 0.29	4.10 39.00	0.16 2.20	0.85 7.70		0.46 2.80		0.10 0.97	0.47 3.20		0.12 1.70	
Pyrene	54000	8	0.28	36.00	0	0.28	36.00	2.10	6.50		2.30		0.81	2.60		1.60	
Benzo(a)anthracene	170	8	0.16	21.00	0	0.16	21.00	1.40	2.80		0.88		0.32	1.50		0.89	
Chrysene Benzo(b)fluoranthene	350 44.0	8	0.17 0.24	20.00 32.00	0	0.17 0.24	20.00 32.00	1.50 2.00	3.30 4.10		1.10 1.00		0.44 0.39	2.00 2.00		0.98 1.40	
Benzo(k)fluoranthene	1200	8	0.09	9.80	0	0.09	9.80	0.83	1.30		0.38		0.18	0.88		0.55	
Benzo(a)pyrene	35.0	8	0.15	25.00	0	0.15	25.00	1.50	2.90		0.77		0.30	1.50		0.99	
Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	510 3.60	8	0.09 < LOD	11.00 3.10	0	0.09 < 0.05	11.00 3.10	0.93 0.22	1.70 0.48		0.46 0.13		0.20 < 0.05	0.85 0.29		0.65 0.19	
Benzo(ghi)perylene	4000	8	0.11	12.00	0	0.11	12.00	0.99	2.00		0.52		0.25	1.00		0.74	
Asbestos Detected (Detected or Not-Detected)	Y	8	0.00	0.00		Not-detecte	:cNot-detecte	oNot-detected		Not-detecte		Detected		Detected			
Asbestos Quantification (% w/w) Petroleum Hydrocarbons Aliphatic >EC5-EC6	0.001 5900	4	< LOD < LOD	0.01 <lod< td=""><td>1 0</td><td>< 0.10</td><td></td><td></td><td>0.007</td><td></td><td>< 0.001</td><td>< 0.001 < 0.10</td><td>< 0.10</td><td>< 0.001</td><td></td><td></td><td></td></lod<>	1 0	< 0.10			0.007		< 0.001	< 0.001 < 0.10	< 0.10	< 0.001			
Petroleum Hydrocarbons Aliphatic >EC6-EC8	17000	3	< LOD	<lod< td=""><td>0</td><td>< 0.10</td><td></td><td></td><td></td><td></td><td></td><td>< 0.10</td><td>< 0.10</td><td></td><td></td><td></td><td></td></lod<>	0	< 0.10						< 0.10	< 0.10				
Petroleum Hydrocarbons Aliphatic >EC8-EC10 Petroleum Hydrocarbons Aliphatic >EC10-EC12	4800 23000	3	< LOD < LOD	<lod <lod< td=""><td>0</td><td>< 0.10</td><td></td><td></td><td></td><td></td><td></td><td>< 0.10</td><td>< 0.10 < 1.0</td><td></td><td></td><td></td><td></td></lod<></lod 	0	< 0.10						< 0.10	< 0.10 < 1.0				
Petroleum Hydrocarbons Aliphatic >EC12-EC12	82000	3	< LOD	<lod <lod< td=""><td>0</td><td>< 1.0 < 2.0</td><td></td><td></td><td></td><td></td><td></td><td>< 1.0 < 2.0</td><td>< 2.0</td><td></td><td></td><td></td><td></td></lod<></lod 	0	< 1.0 < 2.0						< 1.0 < 2.0	< 2.0				
Petroleum Hydrocarbons Aliphatic >EC16-EC35	1700000	3	< LOD	140.00	0	< 10						< 10	140.0				
Petroleum Hydrocarbons Aliphatic >EC35-EC40 Petroleum Hydrocarbons Aromatic >EC5-EC7	1700000 46000	0	0.00 < LOD	<lod <lod< td=""><td>0</td><td>< 0.10</td><td></td><td></td><td></td><td></td><td></td><td>< 0.10</td><td>< 0.10</td><td></td><td></td><td></td><td></td></lod<></lod 	0	< 0.10						< 0.10	< 0.10				
Petroleum Hydrocarbons Aromatic >EC7-EC8	110000	3	< LOD	<lod <lod< td=""><td>0</td><td>< 0.10</td><td></td><td></td><td></td><td></td><td></td><td>< 0.10</td><td>< 0.10</td><td></td><td></td><td></td><td></td></lod<></lod 	0	< 0.10						< 0.10	< 0.10				
Petroleum Hydrocarbons Aromatic >EC8-EC10	8100	3	< LOD	<lod< td=""><td>0</td><td>< 0.10</td><td></td><td></td><td></td><td></td><td></td><td>< 0.10</td><td>< 0.10</td><td></td><td></td><td></td><td></td></lod<>	0	< 0.10						< 0.10	< 0.10				
Petroleum Hydrocarbons Aromatic >EC10-EC12 Petroleum Hydrocarbons Aromatic >EC12-EC16	28000 37000	3	< LOD < LOD	<lod <lod< td=""><td>0</td><td>< 1.0 < 2.0</td><td></td><td></td><td></td><td></td><td></td><td>< 1.0 < 2.0</td><td>< 1.0 < 2.0</td><td></td><td></td><td></td><td></td></lod<></lod 	0	< 1.0 < 2.0						< 1.0 < 2.0	< 1.0 < 2.0				
Petroleum Hydrocarbons Aromatic >EC16-EC21	28000	3	< LOD	<lod< td=""><td>0</td><td>< 10</td><td></td><td></td><td></td><td></td><td></td><td>< 10</td><td>< 10</td><td></td><td></td><td></td><td></td></lod<>	0	< 10						< 10	< 10				
Petroleum Hydrocarbons Aromatic >EC21-EC35 Petroleum Hydrocarbons Aromatic >EC35-EC40	28000	3	< LOD	87.00	0	16.0						< 10	87.0				
Benzene	28200 47.00	3	0.00 < LOD	<lod <lod< td=""><td>0</td><td>< 0.005</td><td></td><td></td><td></td><td></td><td></td><td>< 0.005</td><td>< 0.005</td><td></td><td></td><td></td><td></td></lod<></lod 	0	< 0.005						< 0.005	< 0.005				
Toluene	110000	3	< LOD	<lod< td=""><td>0</td><td>< 0.005</td><td></td><td></td><td></td><td></td><td></td><td>< 0.005</td><td>< 0.005</td><td></td><td></td><td></td><td></td></lod<>	0	< 0.005						< 0.005	< 0.005				
Ethyl benzene	13000 150000	3	< LOD < LOD	<lod <lod< td=""><td>0</td><td>< 0.005 < 0.005</td><td></td><td></td><td></td><td></td><td></td><td>< 0.005 < 0.005</td><td>< 0.005 < 0.005</td><td></td><td></td><td></td><td></td></lod<></lod 	0	< 0.005 < 0.005						< 0.005 < 0.005	< 0.005 < 0.005				
o-xyiene m- & p-Xylene	28000	3	< LOD	<lod <lod< td=""><td>0</td><td>< 0.005</td><td></td><td></td><td></td><td></td><td></td><td>< 0.005</td><td>< 0.005</td><td></td><td></td><td></td><td></td></lod<></lod 	0	< 0.005						< 0.005	< 0.005				
MTBE	13000	3	< LOD	<lod< td=""><td>0</td><td>< 0.005</td><td></td><td></td><td></td><td></td><td></td><td>< 0.005</td><td>< 0.005</td><td></td><td></td><td></td><td></td></lod<>	0	< 0.005						< 0.005	< 0.005				
Chloroethene (Vinyl Chloride) 1,2-Dichloroethane (1,2-DCA)	0.07700 0.970	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
1,1,1-Trichloroethane	1300.0	0	0.00	<lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0												
1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane	550.0 1.9	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
Tetrachloroethene (PCE)	42.00	0	0.00	<lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0												
Tetrachloromethane (carbon tetrachloride)	6.300	0	0.00	<lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0												
Trichloroethene (TCE) Trichloromethane (chloroform)	2.600 170.00	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
Chlorobenzene	130.00	0	0.00	<lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0												
1, 2 Dichlorobenzene 1, 3 Dichlorobenzene	4800	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
1, 4 Dichlorobenzene	73.00 10000	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
1, 2, 3 Trichlorobenzene	250.00	0	0.00	<lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0												
1, 2, 4 Trichlorobenzene 1, 3, 5 Trichlorobenzene	530.00 55.00	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
1, 2, 3, 4 Tetrachlorobenzene	3080	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
1, 2, 3, 5 Tetrachlorobenzene	120.00	0	0.00	<lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0												
1, 2, 4, 5 Tetrachlorobenzene Pentachlorobenzene	72.00 770.0	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
Hexachlorobenzene	120.0	0	0.00	<lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0												
Hexachlorobutadiene	66.00	0	0.00	<lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>	0												
ADD CoC ADD CoC	0.0	0	0.00	<lod <lod< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<></lod 	0												
Mean Average SO																	
Mean Average p	н 8.9																
	Commercial :	2.5% SOM				Values in I	RED are > tl	he relevant	screening	levels and f	urther asse	ssment is re	equired. Exc	ceedance of	the screen	ing levels a	lone may
Job Numbe Clien	r: M5478 t: SHURGARD L	TD															
Site	e: Oldfield Road	i i															
Soil Group Typ	e Combined Re	sult															

APPENDIX G

Geotechnical Testing Results

Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3.14, 5.5, Fall Cone Method, 1 Pt Test, BS 1377-2:2022, cl 5.3, 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478 Job Number: 23-52804-1 Date Sampled: Not Given Date Received: 22/08/2023 Date Tested: 29/08/2023

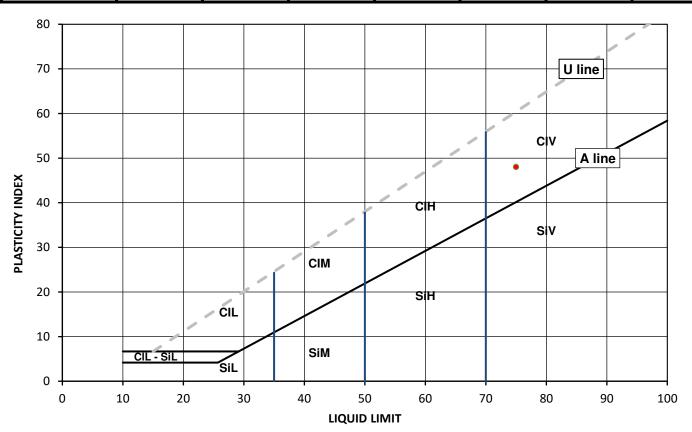
Sampled By: Client - CO

Depth Top [m]: 11.00

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2790976 BH01 Hole No.: Sample Reference: Not Given

Sample Description: Brownish grey CLAY

Sample Preparation: Tested in natural condition;

80g/30deg Cone Type:

As Received Water	Corrected Liquid	Correlation Factor	Plastic Limit	Plasticity Index	Liquidity index	Consistency index	% Passing 425μm	
Content [W] %	Limit [WL] %		[Wp] %	[lp] %	[IL] % #	[IC] % #	BS Test Sieve	
27.2	75	1.018	27	48	N/A	N/A	100	

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧

Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS EN 17892-1: 2014; Correlation Factor by Clayton C.R.I and Jukes A.W (1978); # Non accredited

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

GF 360.12

Kozies Page 1 of 1

Kataryna

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3.14, 5.5, Fall Cone Method, 1 Pt Test, BS 1377-2:2022, cl 5.3, 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478 Job Number: 23-52804-1 Date Sampled: Not Given

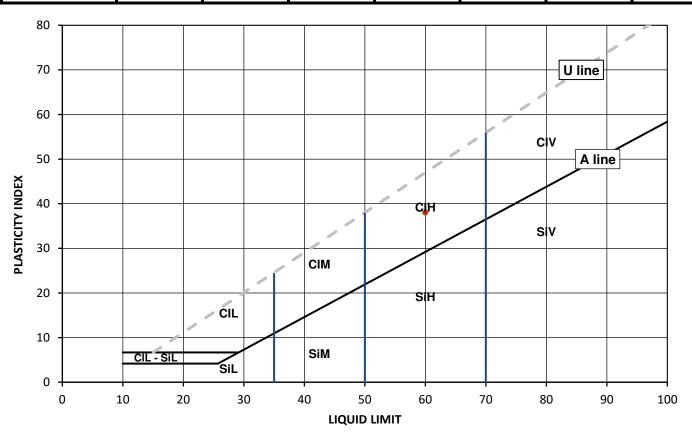
Date Received: 22/08/2023 Date Tested: 29/08/2023 Sampled By: Client - CO

Depth Top [m]: 4.00

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2790977 WS06 Hole No.: Sample Reference: Not Given

Sample Description: Greyish brown slightly gravelly CLAY

Tested after >0.425 mm removed by hand; Sample Preparation:

80g/30deg Cone Type:

ı	As Received Water Content [W] %	Corrected Liquid Limit [WL] %	Correlation Factor	Plastic Limit [Wp] %	Plasticity Index [lp] %	Liquidity index [IL] % #	Consistency index [IC] % #	% Passing 425µm BS Test Sieve
	28.8	60	1.036	22	38	N/A	N/A	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS EN 17892-1: 2014; Correlation Factor by Clayton C.R.I and Jukes A.W (1978); # Non accredited

Remarks:

Signed:

Kataryna

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Kozies

Page 1 of 1 **Date Reported:** 08/09/2023

GF 360.12

Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3.14, 5.5, Fall Cone Method, 1 Pt Test, BS 1377-2:2022, cl 5.3, 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

Site Address: Oldfield Road, Hampton

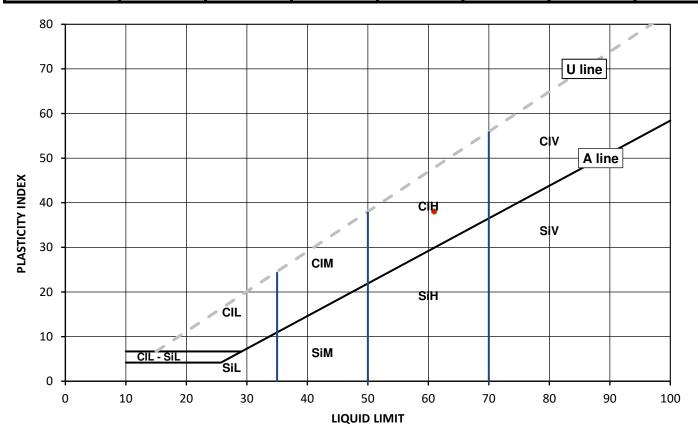
Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478 Job Number: 23-52804-1 Date Sampled: Not Given Date Received: 22/08/2023

Date Tested: 29/08/2023

Sampled By: Client - CO

Test Results:


Laboratory Reference: 2790978 Depth Top [m]: 15.00 BH01 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Greyish brown slightly gravelly CLAY

Tested after >0.425 mm removed by hand; Sample Preparation:

80g/30deg Cone Type:

As Received Water	Corrected Liquid	Correlation Factor	Plastic Limit	Plasticity Index	Liquidity index	Consistency index	% Passing 425μm
Content [W] %	Limit [WL] %		[Wp] %	[lp] %	[IL] % #	[IC] % #	BS Test Sieve
21.9	61	1.036	23	38	N/A	N/A	90

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS EN 17892-1: 2014; Correlation Factor by Clayton C.R.I and Jukes A.W (1978); # Non accredited

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Kataryna

Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3.14, 5.5, Fall Cone Method, 1 Pt Test, BS 1377-2:2022, cl 5.3, 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

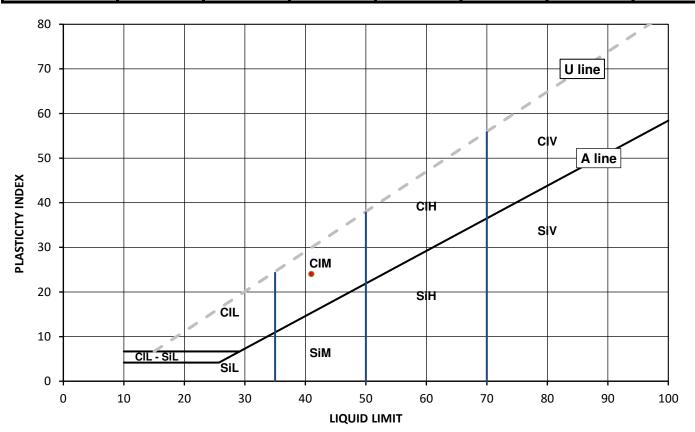
Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478 Job Number: 23-52804-1 Date Sampled: Not Given Date Received: 22/08/2023

Date Tested: 29/08/2023 Sampled By: Client - CO

Test Results:


Laboratory Reference: 2790979 Depth Top [m]: 0.70 **BH03** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brownish grey gravelly sandy CLAY

Tested after washing to remove >0.425 mm; Sample Preparation:

80g/30deg Cone Type:

As Received Water	Corrected Liquid	Correlation Factor	Plastic Limit	Plasticity Index	Liquidity index	Consistency index	% Passing 425μm
Content [W] %	Limit [WL] %		[Wp] %	[lp] %	[IL] % #	[IC] % #	BS Test Sieve
14.6	41	1.058	17	24	N/A	N/A	65

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS EN 17892-1: 2014; Correlation Factor by Clayton C.R.I and Jukes A.W (1978); # Non accredited

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 08/09/2023

Page 1 of 1

Kataryna

GF 360.12

Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3.14, 5.5, Fall Cone Method, 1 Pt Test, BS 1377-2:2022, cl 5.3, 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

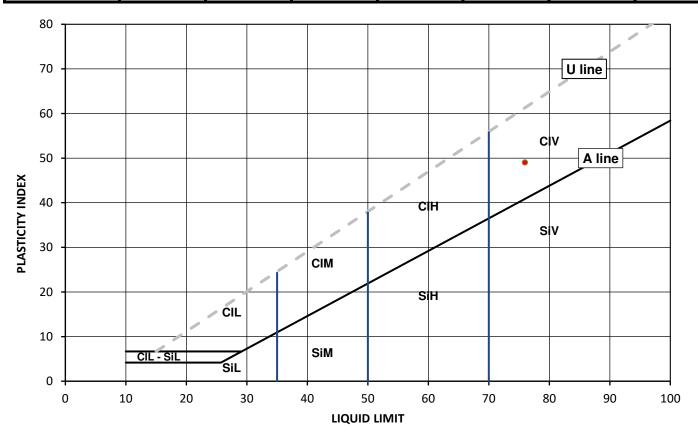
Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478 Job Number: 23-52804-1 Date Sampled: Not Given

Date Received: 22/08/2023 Date Tested: 29/08/2023 Sampled By: Client - CO

Test Results:


Laboratory Reference: 2790980 Depth Top [m]: 9.00 **BH03** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Greyish brown CLAY

Tested in natural condition; Sample Preparation:

80g/30deg Cone Type:

As Received Water Content [W] %	Corrected Liquid Limit [WL] %	Correlation Factor	Plastic Limit [Wp] %	Plasticity Index [lp] %	Liquidity index [IL] % #	Consistency index [IC] % #	% Passing 425μm BS Test Sieve
27.9	76	1.036	27	49	N/A	N/A	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS EN 17892-1: 2014; Correlation Factor by Clayton C.R.I and Jukes A.W (1978); # Non accredited

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Date Reported: 08/09/2023

Kataryna

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3.14, 5.5, Fall Cone Method, 1 Pt Test, BS 1377-2:2022, cl 5.3, 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Brownfield Solutions Ltd

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478

Job Number: 23-52804-1

Date Sampled: Not Given

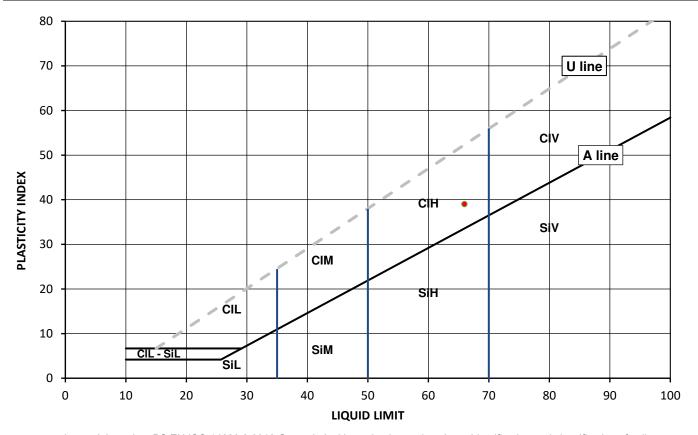
Date Received: 22/08/2023

Date Tested: 29/08/2023 Sampled By: Client - CO

Test Results:

Laboratory Reference: 2790981 Depth Top [m]: 13.00

Hole No.: BH03 Depth Base [m]: Not Given


Sample Reference: Not Given Sample Type: D

Sample Description: Greyish brown slightly gravelly CLAY

Sample Preparation: Tested after >0.425 mm removed by hand;

Cone Type: 80g/30deg

As Received Water Content [W] %	Corrected Liquid Limit [WL] %	Correlation Factor	Plastic Limit [Wp] %	Plasticity Index [lp] %	Liquidity index [IL] % #	Consistency index [IC] % #	% Passing 425µm BS Test Sieve
22.3	66	1.036	27	39	N/A	N/A	93

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS EN 17892-1: 2014; Correlation Factor by Clayton C.R.I and Jukes A.W (1978); # Non accredited

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

for and on benan of 12 Analytical 2

Page 1 of 1

Kataryna

Date Reported: 08/09/2023

GF 360.12

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3.14, 5.5, Fall Cone Method, 1 Pt Test, BS 1377-2:2022, cl 5.3, 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

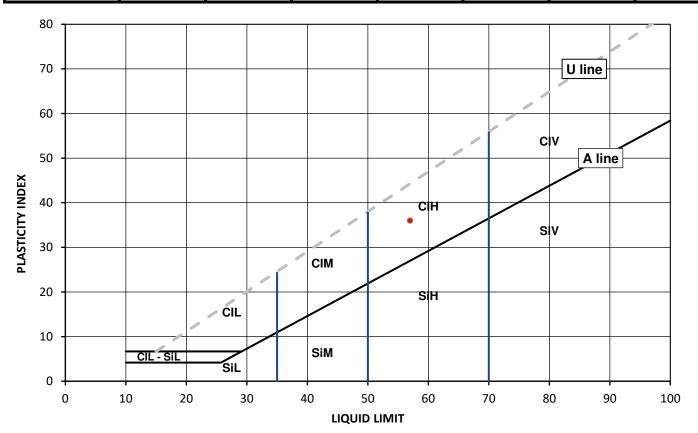
Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478 Job Number: 23-52804-1 Date Sampled: Not Given Date Received: 22/08/2023 Date Tested: 29/08/2023

Sampled By: Client - CO

Test Results:


Laboratory Reference: 2790982 Depth Top [m]: 3.50 **BH03** Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Sample Description: Brownish grey slightly sandy CLAY

Tested in natural condition; Sample Preparation:

80g/30deg Cone Type:

As Received Water Content [W] %	Corrected Liquid Limit [WL] %	Correlation Factor	Plastic Limit [Wp] %	Plasticity Index [lp] %	Liquidity index [IL] % #	Consistency index [IC] % #	% Passing 425µm BS Test Sieve
25.9	57	1.036	21	36	N/A	N/A	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS EN 17892-1: 2014; Correlation Factor by Clayton C.R.I and Jukes A.W (1978); # Non accredited

Remarks:

Signed:

Kataryna

Kozies

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Page 1 of 1

Date Reported: 08/09/2023 GF 360.12

DETERMINATION OF LIQUID AND PLASTIC LIMITS

Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3.14, 5.5, Fall Cone Method, 1 Pt Test, BS 1377-2:2022, cl 5.3, 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Brownfield Solutions Ltd

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478
Job Number: 23-52804-1
Date Sampled: Not Given
Date Received: 22/08/2023
Date Tested: 29/08/2023

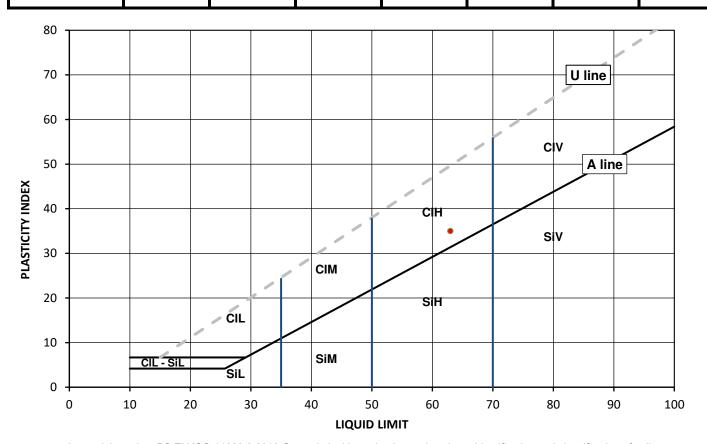
Sampled By: Client - CO

Depth Top [m]: 6.00

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2790983 Hole No.: BH01 Sample Reference: Not Given

Sample Description: Brownish grey CLAY

Sample Preparation: Tested in natural condition;

Cone Type: 80g/30deg

I	As Received Water Content [W] %	Corrected Liquid Limit [WL] %	Correlation Factor	Plastic Limit [Wp] %	Plasticity Index [lp] %	Liquidity index [IL] % #	Consistency index [IC] % #	% Passing 425μm BS Test Sieve
	30.3	63	1.055	28	35	N/A	N/A	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Liquid Limit **Plasticity** CI Clay L Iow below 35 Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS EN 17892-1: 2014; Correlation Factor by Clayton C.R.I and Jukes A.W (1978); # Non accredited

Remarks:

Signed:

Kataryna

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

ge 1 of 1 **Date Reported:** 08/09/2023

or and on benan or iz Analytical Eta

Page 1 of 1

GF 360.12

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

W by BS EN 17892-1: 2014; Liquid and Plastic Limit by BS EN ISO 17892-

12:2018+A1:2021: Clause 5.3 (4 Point Test), Clause 5.3.14 (1 Point Test) and

5.5; Correlation Factor by Clayton C.R.I and Jukes A.W (1978)

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: M5478

Job Number: 23-52804-1 Date Sampled: Not Given Date Received: 22/08/2023

Date Tested: 29/08/2023

Sampled By: Client - CO

4041

Client: **Brownfield Solutions Ltd**

William Smith House, 173 - 183 Witton Client Address:

Street.

Northwich, Cheshire,

CW9 5LP

Chigozie Orafu Contact:

Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Test results

			Sample	:							Liquio	l & Plasti	c Limit				Density	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	w	% Passing 425um	WL*	Correlation Factor	Wp	lp	Cone type	Sample reparation	bulk	dry	PD
			m	m				%	%	%	O	%	%		۵	Mg/m3	Mg/m3	Mg/m3
2790976	BH01	Not Given	11.00	Not Given	D	Brownish grey CLAY	Atterberg 1 Point	27.2	100	75	1.018	27	48	80g/30 deg	N			
2790977	WS06	Not Given	4.00	Not Given	D	Greyish brown slightly gravelly CLAY	Atterberg 1 Point	28.8	99	60	1.036	22	38	80g/30 deg	R			
2790978	BH01	Not Given	15.00	Not Given	D	Greyish brown slightly gravelly CLAY	Atterberg 1 Point	21.9	90	61	1.036	23	38	80g/30 deg	R			
2790979	BH03	Not Given	0.70	Not Given	D	Brownish grey gravelly sandy CLAY	Atterberg 1 Point	14.6	65	41	1.058	17	24	80g/30 deg	W			
2790980	BH03	Not Given	9.00	Not Given	D	Greyish brown CLAY	Atterberg 1 Point	27.9	100	76	1.036	27	49	80g/30 deg	N			
2790981	BH03	Not Given	13.00	Not Given	D	Greyish brown slightly gravelly CLAY	Atterberg 1 Point	22.3	93	66	1.036	27	39	80g/30 deg	R			
2790982	BH03	Not Given	3.50	Not Given	D	Brownish grey slightly sandy CLAY	Atterberg 1 Point	25.9	100	57	1.036	21	36	80g/30 deg	N			
2790983	BH01	Not Given	6.00	Not Given	D	Brownish grey CLAY	Atterberg 1 Point	30.3	100	63	1.055	28	35	80g/30 deg	N			

Note: # Non accredited; NP - Non plastic; N - Tested in natural condition, R - Tested after >0.425mm removed by hand, W - Tested after washing to remove >425mm; * - One point liquid limit corrected as per the report Correlation Factor by Clayton C.R.I and Jukes A.W (1978)

Comments:

Signed:

Katarzvna Koziel Reporting Specialist Kataryna

for and on behalf of i2 Analytical Ltd

Date Reported: 08/09/2023

Page 1 of 1

GF 361.12

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478

Job Number: 23-52804-1 Date Sampled: Not Given

Date Received: 22/08/2023 Date Tested: 29/08/2023 Sampled By: Client - CO

Test Results:

Laboratory Reference: 2790984 Depth Top [m]: 7.50 **BH01** Depth Base [m]: 7.95 Hole No.: Sample Reference: Not Given Sample Type: U

Greyish brown slightly silty CLAY Sample Description:

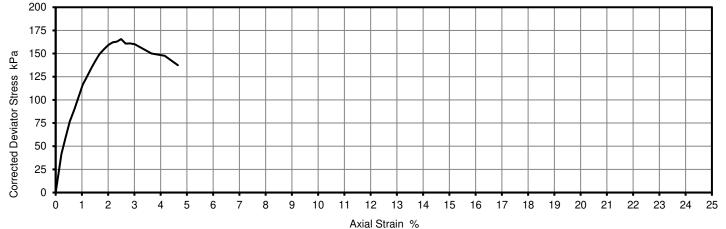
Sample prepared in accordance with BS 1377-1:2016 Clause 9.1.1. Sample Preparation:

Test Number Length Diameter **Bulk Density** Moisture Content Dry Density

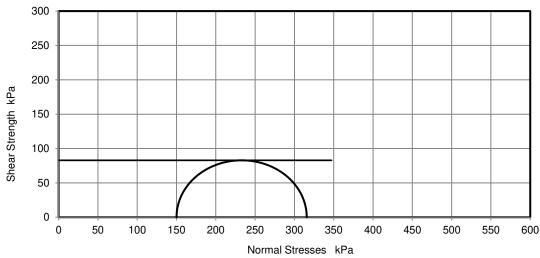
Membrane Correction

1	
100.96	mm
49.46	mm
1.94	Mg/m3
27	%
1.53	Mg/m3
0.32	kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


	0	-
Mode of Failure		
atex membrane thick	nes	ss

2.00	%/min
150	kPa
2.5	%
166	kPa
83	kPa 1


0.23

½(σ1 - σ3)f Brittle

Deviator Stress v A	xial Strain
---------------------	-------------

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Kataryna

Kozies

Katarzyna Koziel Reporting Specialist for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing. Page 1 of 1

Date Reported: 08/09/2023 GF 184.14

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Job Number: 23-52804-1 Date Sampled: Not Given Date Received: 22/08/2023

Client Reference: M5478

Date Tested: 29/08/2023 Sampled By: Client - CO

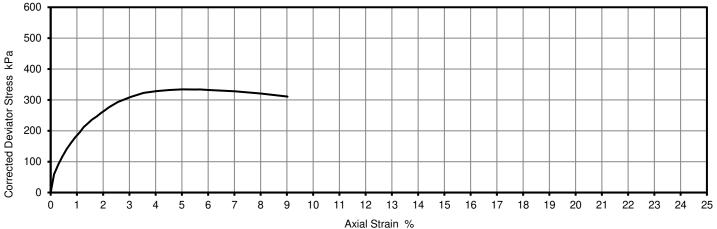
Test Results:

Laboratory Reference: 2790985 Depth Top [m]: 10.50 **BH01** Depth Base [m]: 10.95 Hole No.: Sample Reference: Not Given Sample Type: U

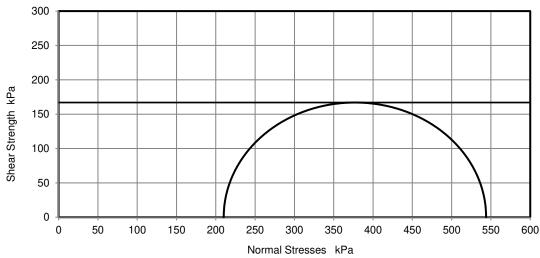
Greyish brown slightly silty CLAY Sample Description:

Sample prepared in accordance with BS 1377-1:2016 Clause 9.1.1. Sample Preparation:

Test Number Length 101.43 mm Diameter 49.91 mm 1.92 **Bulk Density** Mg/m3 28 Moisture Content Dry Density 1.50 Mg/m3 Membrane Correction 0.70


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu Mode of Failure

Compound Latex membrane thickness 0.23


2.00	%/min
210	kPa
5.7	%
334	kPa
167	kPa 1

½(σ1 - σ3)f

Deviator Stress v Axial Strain

Mohr Circles 300

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

DETERMINATION OF THE UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Tested in Accordance with: BS 1377-7: 1990: Clause 8

Brownfield Solutions Ltd Client:

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Contact: Chigozie Orafu

Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478 Job Number: 23-52804-1

Date Sampled: Not Given Date Received: 22/08/2023 Date Tested: 29/08/2023

Sampled By: Client - CO

Test Results:

Laboratory Reference: 2790986 Depth Top [m]: 9.00 **BH03** Depth Base [m]: 9.45 Hole No.: Sample Reference: Not Given Sample Type: U

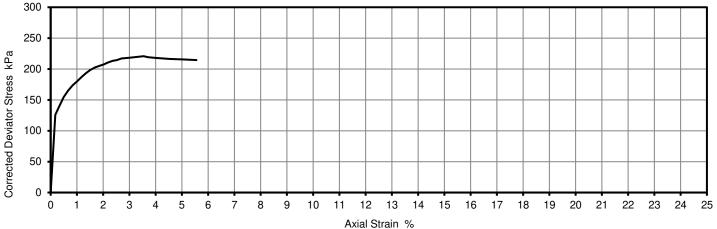
Greyish brown slightly silty CLAY Sample Description:

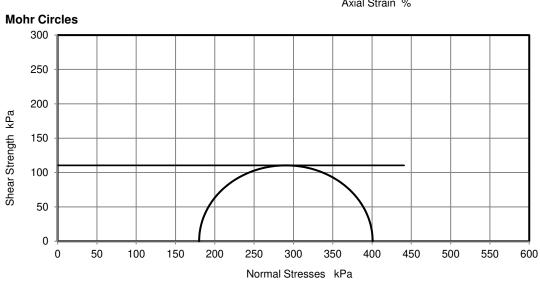
Sample prepared in accordance with BS 1377-1:2016 Clause 9.1.1. Sample Preparation:

Test Number	1	
Length	139.89	mm
Diameter	69.79	mm
Bulk Density	1.91	Mg/m3
Moisture Content	29	%
Dry Density	1.47	Mg/m3
Membrane Correction	0.36	kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure	
Latex membrane thickness	


	_
2.00	%/min
180	kPa
3.5	%
221	kPa
440	1


0.26

110 ½(σ1 - σ3)f Brittle

mm

Deviator Stress v Axial Strain

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd Kozies

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Date Reported: 08/09/2023

GF 184.14

DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

Tested in Accordance with: BS 1377-5:1990: Clause 3

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Brownfield Solutions Ltd

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Chigozie Orafu Contact:

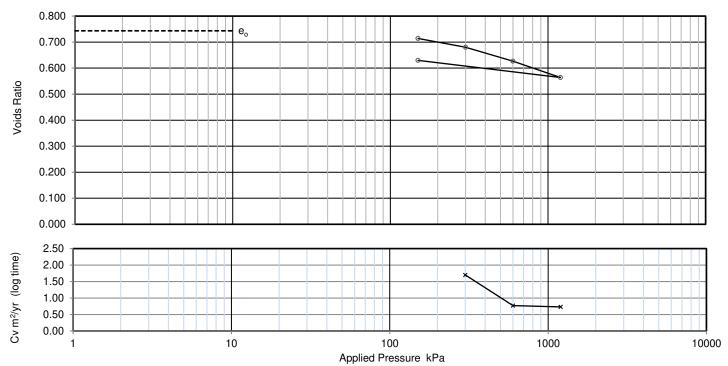
Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478 Job Number: 23-52804-1 Date Sampled: Not Given Date Received: 22/08/2023 Date Tested: 30/08/2023

Test Results:

Laboratory Reference: 2790984 BH01 Hole No .: Not Given Sample Reference:


Greyish brown slightly silty CLAY Sample Description:

Sampled By: Client - CO

Depth Top [m]: 7.50

Depth Base [m]: 7.95

Sample Type: U

Applied	Voids	Μv	Cv	Cv	Csec
Pressure	ratio		(t50, log)	(t90, root	
kPa		m2/MN	m2/yr	m2/yr	
0	0.743	-	-	-	-
150	0.714	0.11	N/A	67	0.00026
300	0.680	0.13	1.7	0.95	0.0025
600	0.627	0.11	0.77	0.72	0.0019
1 200	0.564	0.064	0.73	0.57	0.0032
150	0.630	0.04			

Plastic limit

Orientation of the sample Particle density

Liquid limit

Preparation

Index tests

Specimen details Diameter Height Moisture Content

Bulk density Dry density Voids Ratio

Saturation

Avg. temperature for test Swelling Pressure Settlement on saturation

Total test time

Vertical		_
assumed	2.65	Mg/m3
N/A		%
N/A		%

Sample squeezed out of core

		=
Initial	Final	
50.10	-	mm
20.10	18.79	mm
28	27	%
1.94	2.07	Mg/m3
1.52	1.63	Mg/m3
0.743	0.630	
98	114	%
22	°C	
Not me	easured	kPa
		%
ļ	davs	

Note: Cv corrected to 20°C

Remarks:

Signed: Katasyna

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 08/09/2023

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

GF 172.17

DETERMINATION OF THE ONE-DIMENSIONAL CONSOLIDATION PROPERTIES

Tested in Accordance with: BS 1377-5:1990: Clause 3

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Brownfield Solutions Ltd

Client Address: William Smith House, 173 - 183 Witton Street,

Northwich, Cheshire,

CW9 5LP

Chigozie Orafu Contact:

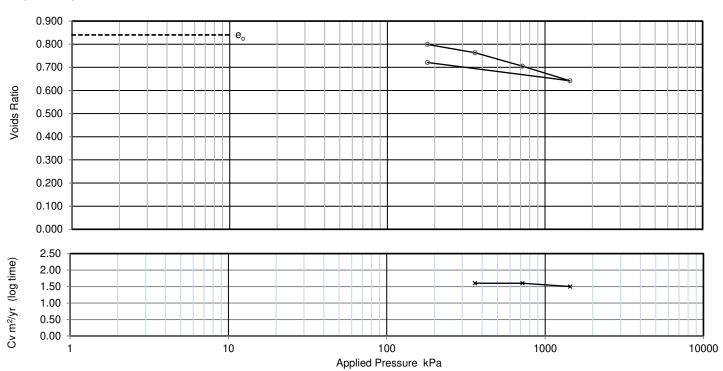
Site Address: Oldfield Road, Hampton

Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland

Client Reference: M5478

Test Results:

Laboratory Reference: 2790986 BH03 Hole No.: Not Given Sample Reference:


Greyish brown slightly silty CLAY Sample Description:

Job Number: 23-52804-1 Date Sampled: Not Given Date Received: 22/08/2023 Date Tested: 31/08/2023 Sampled By: Client - CO

Depth Top [m]: 9.00

Depth Base [m]: 9.45

Sample Type: U

Applied Pressure	Voids ratio	Μv	Cv (t50, log)	Cv (t90, root	Csec
kPa	Tatio	m2/MN	m2/yr	m2/yr	
0	0.840	-	-	-	-
180	0.799	0.12	N/A	29	0.0015
360	0.763	0.11	1.6	1.3	0.0013
720	0.705	0.091	1.6	1.2	0.0016
1 440	0.642	0.051	1.5	1.1	0.0023
180	0.721	0.038			

Note: Cv corrected to 20°C

Carried out on middle of U100

Index tests

Orientation of the sample Particle density

Liquid limit Plastic limit

Specimen details
Diameter
Height
Moisture Content
Bulk density
Dry density
Voids Ratio

Avg. temperature for test Swelling Pressure

Settlement on saturation Total test time

Saturation

Vertical		_
assumed	2.65	Mg/m3
N/A		%
N/A		%

Initial	Final	
50.03	-	mm
20.11	18.81	mm
28	29	%
1.84	1.98	Mg/m3
1.44	1.54	Mg/m3
0.840	0.721	
88	105	%
22	°C	
Not me	kPa	
		%
į	days	

Remarks:

Signed: Katasyna

Katarzyna Koziel Reporting Specialist

for and on behalf of i2 Analytical Ltd

Date Reported: 08/09/2023

APPENDIX H

Monitoring Results

Ground Gas Monitoring Results

							Temp (°C)	Pressure Trend		
SHURGARD UK LTD	31/08/2023	LH	GFM436	Light rain	Light breeze	Cool	14	Steady	1020	
JOB NO.	08/09/2023	LH	GFM436	Sunny	Light breeze	Hot	27	Steady	1018	
M5478	21/09/2023	LH	GFM436	Heavy rain	No wind	Cool	14	Falling	996	
	02/10/2023	LH	GFM436	Intermittent cloud	Light breeze	Warm	20	Falling	1016	
OLDFIELD ROAD, HAMPTON										

	piaces, calibr	ation Records for	analysers u	sea availore on requ																				
					Pressur	es (mb)		flows /hr)	C) (%)	H ₄ v/v)	CH (%L			O ₂ v/v)	C (%)		(Other Gase (PPM)	S	Dept	Wel	Gas: Value	Gas Value	
		Location		onse zone (m)	Atmospheri c Pressure	Relative Well Pressure	Initial	Steady	Peak	Steady	Peak	Steady	Peak	Steady	Peak	Steady	со	H₂S	TVOC (PID)	h to Water (m)		Screening (CH ₄) (I/hr)	Screening (CO ₂) (I/hr)	
													Summ	ary Statisto	:s									
				Max. values:	1015	0.0	3.6	0.1	0.0	0.0	0.0	0.0	9.8	8.6	20.5	20.6	0.0	0.0	0.0	2.6	4.5	0.000	0.010	Highlight Box - Methane >1.0% v/v
				Min. values:	993	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	10.0	9.4	0.0	0.0	0.0	0.8	1.0	0.000	0.003	Highlight Box - Carbon Dioxide >5.0% v/v
			Тор	Bottom							e - not wors		GSVs basi	ed on m <u>axi</u>	mum recor	ded stead	y flow and		individual	peak conce		0.000	0.010	
31/08/2023	AM	Ambient			1007					0.0		0.0		0.0		20.6	0.0	0.0						
		BH01	1.50	4.50		0.0	0.1	0.1	0.0	0.0	0.0	0.0	8.0	6.9	10.0	9.4	0.0	0.0		2.41	4.53	0.000	0.008	
		WS04	0.50	1.00		0.0	0.1	0.1	0.0	0.0	0.0	0.0	4.7	5.7	14.7	13.9	0.0	0.0		0.91	0.96	0.000	0.005	
		WS06	1.00	2.80		0.0	0.1	0.1	0.0	0.0	0.0	0.0	3.5	3.6	17.0	16.8	0.0	0.0		2.58	2.68	0.000	0.004	
		BH03	1.00	3.00		0.0	0.1	0.1	0.0	0.0	0.0	0.0	8.9	8.3	10.6	11.4	0.0	0.0		2.41	2.98	0.000	0.009	
		Ambient			1007					0.0		0.0		0.0		20.6	0.0	0.0						
08/09/2023	AM	Ambient			1014					0.0		0.0		0.0		20.5	0.0	0.0						
		BH01	1.50	4.50		0.0	0.1	0.1	0.0	0.0	0.0	0.0	7.5	7.4	10.2	9.6	0.0	0.0		2.34	4.53	0.000	0.008	
		WS04	0.50	1.00		0.0	0.1	0.1	0.0	0.0	0.0	0.0	5.1	4.4	15.0	15.2	0.0	0.0		0.88	0.96	0.000	0.005	
		WS06	1.00	2.80		0.0	0.1	0.1	0.0	0.0	0.0	0.0	3.6	3.8	17.2	16.9	0.0	0.0		2.45	2.68	0.000	0.004	
		BH03	1.00	3.00		0.0	0.1	0.1	0.0	0.0	0.0	0.0	8.6	8.6	10.4	11.3	0.0	0.0		2.24	2.98	0.000	0.009	
		Ambient			1014					0.0		0.0		0.0		20.5	0.0	0.0						
21/09/2023	AM	Ambient			993					0.0		0.0		0.0		20.5	0.0	0.0						
		BH01	1.50	4.50		0.0	0.1	0.1	0.0	0.0	0.0	0.0	7.2	6.8	11.1	9.6	0.0	0.0		2.30	4.53	0.000	0.007	
		WS04	0.50	1.00		0.0	0.1	0.1	0.0	0.0	0.0	0.0	4.3	4.2	15.4	15.2	0.0	0.0		0.83	0.96			
		WS06	1.00	2.80		0.0	0.1	0.1	0.0	0.0	0.0	0.0	3.6	2.9	17.8	16.9	0.0	0.0		2.38	2.68	0.000	0.004	
		BH03	1.00	3.00		0.0	0.1	0.1	0.0	0.0	0.0	0.0	7.9	7.8	10.9	11.3	0.0	0.0		2.21	2.98	0.000	0.008	
		WS01	1.50	2.80		0.0	0.1	0.1	0.0	0.0	0.0	0.0	5.1	4.9	15.8	16.5	0.0	0.0		2.56	2.78	0.000	0.005	
		Ambient			993					0.0		0.0		0.0		20.5	0.0	0.0						
02/10/2023	AM	Ambient			1015				0.0		0.0		0.0		20.5		0.0	0.0						
		BH01	1.50	4.50			0.1	0.1	0.0	0.0	0.0	0.0	5.2	5.0	14.5	14.7	0.0	0.0		2.31	4.54	0.000	0.005	slight hydrocarbon smell
		WS04	0.50	1.00			0.1	0.1	0.0	0.0	0.0	0.0	5.8	5.6	14.1	14.2	0.0	0.0		NGW	0.96	0.000	0.006	
		WS06	1.00	2.80			3.6	0.1	0.0	0.0	0.0	0.0	3.0	2.9	16.9	17.1	0.0	0.0		2.49	2.68	0.000	0.003	
		BH03	1.00	3.00			0.1	0.1	0.0	0.0	0.0	0.0	7.7	6.9	13.0	13.7	0.0	0.0		2.33	2.96	0.000	0.008	
		WS01	1.50	2.80			0.1	0.1	0.0	0.0	0.0	0.0	9.8	3.8	10.0	16.8	0.0	0.0		2.21	2.57	0.000	0.010	
		Ambient			1015				0.0		0.0		0.0		20.5		0.0	0.0						

TESTEDATIE AND CON	DITITIONS
Date 24,	07/2023
Atmospheric Pressure	989 mB
Ambient Temperature	22.7 °C ″
Environics Serial No	5089

GFM436 Final Inspection & Calibration Check Certificate

Customer	Brownfield Solutions
Certificate Number	124413
Order Number	335371

Serial Number	13361
Software Version	G436-00.0027/0010

GAS DATA LTD

Unit 4, Fairfield Court

Seven Stars Estate

Tel 02476303311

Wheler Rd

Coventry

CV3 4LJ

GAS DATA

Fax 02476307711

Recalibration DUE Date	
 24/07/24	

		Instrume	ent Checks		
Keyboard		√ 1	Display Contrast		·
Pump Flow In	500	Accept > 200 cc/min	Pump Flow @ -200mB	300	Accept > 200 cc/min
Clock Set / Running		√	Labels Fitted		✓

	СН 4		CO ₂		02	
	Instrument Gas	True Gas	Instrument Gas	True Gas	Instrument Gas	True Gas
	Readings %	Value %	Readings %	Value %	Readings %	Value %
Sensor	60.2	×0	40.0	40	20.9	20.0
7	Accept ±3.0	60	Accept ±3.0	40	Accept ±0.5	20.9
	5.0		5.1		6.0	6
	Accept ±0.3	5	Accept ±0.3	3	Accept ±0.3	O
Zero	0.0	•	0.0		0.0	0
Reading 100% N2	Accept ±0.0	1 0	Accept ±0.0	0	Accept ±0.1	

Applied	d Gas & Range	Concentration Tested @		Instrument	Readings (ppm)) .	
Gas Type	Range (ppm)	(ppm)		Zero Reading		Instrument Gas Reading	
H2S	5000	1500	0	$Accept \pm 0.0$	1500	Accept ±5.0%	
со	2000	1000	0	Accept ±0.0	998	Accept ±5.0%	
Hexane	2.0%	2.0% 0		Accept ±0.0	1.99	Accept ±10.0%	

Applie	d Gas (ppm)			I	nstrument	Readings (ppm)	and the following of the land
Gas Type	Concentration	Toxic 1:	H2S	Toxic 2:	CO	Toxic 3:	нех	
H2S	1500	150	0	0		0		
со	1000	70		99	8	0		
Hexane	2.0%	0		0		1.9	9	

	Pressure	Checks	
	Atmospheric Pres	sure [AP] <i>(mB)</i>	
Current Atmospheri	c Pressure (mB)	Instrument Atmospher	ic Pressure Reading (mB)
AP Open I	Ports	990	Accept ±2.0
AP Port (Internal)	+800 mB	801	Accept ±5.0
vi rour (internati)	+1200mb	1200	Accept ±5.0

Вог	ehole Flow		Differential Pressure			
Applied Reading (I/h) Instrument Reading (I/h)			Applied Pressure (Pa)	Instrui	nent Reading (Pa)	
-30	-29.8	Accept ±3.0	-372	-372	Accept ±50	
-3	-3.0	Accept ±1.0	-17	-17	Accept ±6.0	
θ	-0.0	Accept ±0.0	0	0	Accept ±0.5	
3	3,0	Accept ±0.5	15	16	Accept ±3.0	
30	30.2	Accept ±3.0	320	325	Accept ±50	
60	60.1	Accept ±6.0	947	951	Accept ±130	
90	90.9	Accept ±9.0	1862	1917	Accept ±250	

Calibration Temperature	_	0	
Applied Temperature ⁰ C	Instrument Temperature Reading ⁰ C		
-10	-10.0	Accept ±2.0	
o	0.0	Accept ±1.0	
30	30.0	Accept ±1.0	
60	60.0	Accept ±1.0	
100	100.0	Accept ±1.0	

Jack Rutland	24/07/2023
Technician;	Date Tested:

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015, BS EN ISO14001:2015, BS EN ISO45001:2018 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated.

The results displayed on the instrument at each stage are recorded above.

APPENDIX I

Waste Assessment Report