REMEDIATION STRATEGY & VERIFICATION PLAN of a site at REAR OF 39 SECOND CROSS ROAD, TWICKENHAM for ANTHONY C BIANCHI

t 020 8291 1354 e ask@gosolve.co.uk 4 De Frene Road, London, SE26 4AB

Project No 1985 Report ref: 1985-P3E-1-Issued: 24 April 2024 Revision:

Docume	nt Control						
Revision	Issue date	Reason for Revision					
Draft	19/04/2024						
Prepared	by	Matthew Mayes, BSc (Environ), AMIEnvSc					
Reviewed by		Peter George Eur.Ing. B.Eng., Dip.EM, C.Eng., MICE, MIEnvSc, MCMI, FRSPH					
Approved	for issue by	Peter George Eur.Ing. B.Eng., Dip.EM, C.Eng., MICE, MIEnvSc, MCMI, FRSPH					
Revision	Issue date	Reason for Revision					
Original	24/04/2024						
Prepared	by	Matthew Mayes, BSc (Environ), AMIEnvSc					
Reviewed	by	Peter George Eur.Ing. B.Eng., Dip.EM, C.Eng., MICE, MIEnvSc, MCMI, FRSPH					
Approved for issue by		Peter George Eur.Ing. B.Eng., Dip.EM, C.Eng., MICE, MIEnvSc, MCMI, FRSPH					
Revision	Issue date	Reason for Revision					
Α							
Prepared	by						
Reviewed	by						
Approved	for issue by						
Revision	Issue date	Reason for Revision					
В							
Prepared	by						
Reviewed	by						
Approved	for issue by						
Revision	Issue date	Reason for Revision					
С							
Prepared	by						
Reviewed	by						
Approved	for issue by						

CONTENTS

- **1** EXECUTIVE SUMMARY.
- 2 BRIEF
- **3 PRINCIPLES OF REMEDIATION**
- **4 PREVIOUS CONTAMINATION TESTING**
- **5 PROPOSED DEVELOPMENT**
- 6 REVISED CONCEPTUAL MODEL
- 7 REVISED RISK ASSESSMENT

8 SITE WORKS

- 8.1 Excavation Arisings
- 8.2 Soft Landscaping
- 8.3 External Permeable Hardstanding
- 8.4 External Impermeable Hardstanding
- 8.5 Existing Mature Planting
- 8.6 Site Boundaries
- 8.7 Water Supply
- 8.8 Watching Brief
- 9 VERIFICATION PLAN

10 DUTY OF CARE DOCUMENTATION

11 CONCLUSIONS

Appendix A – Site Location Plan

Appendix B – Indicative Verification Sampling Plan

- **Appendix C Previous Contamination Testing**
- **Appendix D Imported Material**
- Appendix E Watching Brief and Discovery Strategy
- Appendix F Indicative Capping Layer
- **Appendix G Indicative Boundary Wall Remediation**
- **Appendix H Example Record Photographs**

1 EXECUTIVE SUMMARY.

A phase 1 desktop study, phase 2 intrusive investigations and contamination tests have been undertaken by GO Contaminated Land Solutions Ltd.

The proposed site usage is residential, comprising of a two-storey dwelling with a private garden.

Based on information from the previous reports the remedial actions required comprise:

- Removal from site of made ground to a depth of the natural stratum in soft landscaped and permeable areas
- Clean sub-soil and topsoil should be imported to bring the site back to finished levels
- Installation of appropriate water supply pipe

Prior to the removal of any spoil, the WAC testing results should be agreed with the facility to which the spoil is being transported, and if any additional testing is required, this should be completed. It is critical that the WAC results are representative of the material to be disposed of and therefore care must be taken to ensure that different materials are not mixed. Guidance can be obtained from Environment Agency document Waste Sampling and Testing for Disposal to Landfill.

Records will need to be retained and collated and a verification report prepared on completion of the remediation works.

It is considered that provided the recommendations of this report are implemented that the risk to sensitive receptors will be reduced to an acceptable level for the proposed development.

Risk Summary

Very LowLowModerate / Low	Moderate	High	
------------------------------	----------	------	--

			R	ecepto	rs	
		Site Users	Ground Workers	Neighbours	Proposed Building	Aquifer
	Made Ground (On site) (Lead)					
Sources	Former War Surplus Yard and Smithy (Off- Site) (Lead)					
	Naturally occurring contaminants					

2 BRIEF

Mr Anthony Bianchi requested GO Contaminated Land Solutions to develop a remediation strategy for a site at Rea of 39 Second Cross Road, Twickenham.

This report should be read in conjunction with the following GO Contaminated Land Solutions Reports:

- Phase 1 environmental report, ref: 1985-P1E-1, issued November 2020
- 1985-P2E-Scope, issued February 2024,
- Phase 2 environmental investigation, ref: 1985-P2E-1, issued April 2024

3 PRINCIPLES OF REMEDIATION

The principles of the strategy are to:

- Demonstrate that the level of any remaining contamination does not represent a significant risk to any on-site or off-site receptors.
- Remove all made ground from areas where soft landscaping and permeable areas are proposed.
- Import clean sub-soil and topsoil to bring the site back to finished levels
- Install appropriate water supply pipe.

4 PREVIOUS CONTAMINATION TESTING

The Phase 2 Environmental Investigation identified exceedances for lead in all samples.

Leachate testing was carried out throughout the depth of the made ground encountered.

All the leachate results were found to be above the WGV of 10ug/l for lead.

The level of lead contamination identified together with the high leachability is considered to be an unacceptable risk to on and off-site receptors and therefore appropriate remediation is required.

5 PROPOSED DEVELOPMENT

The proposed development comprises a two-storey detached residential property and a private garden.

6 REVISED CONCEPTUAL MODEL

The legislative framework for the regulation of contaminated land is embodied in Part IIA of the Environmental Protection Act 1990, implemented in the Contaminated Land (England) Regulations 2000. This legislation allows for the identification and remediation of land where contamination is causing unacceptable risks to human health or the wider environment. The approach adopted by UK contaminated land policy is that of "suitability for use" which implies that the land should be suitable for its current use and made suitable for any proposed future use.

In this revised contamination assessment the site has been modelled using the Source-Pathway-Receptor approach to produce a site specific conceptual model.

Source - substances or potential contaminants which may cause harm

Pathway - a linkage or route between a source and receptor

Receptor - humans, plant life, groundwater etc., which could be harmed by a contaminant

Geological records indicate that the site is underlain by an aquifer in the superficial stratum and therefore there is a potential for contaminants to be transported both to and from site in the groundwater.

								Pot	ential	pathwa	ays					
		lation of	aminated vapour	lation of	aminated dust	ct Soil Ingestion	ct dermal contact	lation of asbestos	king contaminated sr supply	ct contact of soil with ling materials	ace water run-off	ace water percolation oundwater	ation via groundwater	1-up of ground gas		
		Inhal	conta	Inhal	conta	Dired	Direc	Inhal	Drink wate	Direc	Surfa	Surfa to gr	Migr	Build	Comments on discounte	ed pathways
	Site Users	r	N	Y		Y	Y	N	Y					N	Only lead identified as exceedance, therefore vapour	No potentially
	Ground Workers	ſ	N	Y		Y	Y	N						N	significant	significant sources
eptors	Neighbours	ſ	N	Y				N			Y		Y	N	No asbestos identified	identified.
Rec	Proposed Building									N				N	Geotechnical investigation completed	
	Watercourse										N		N		No major watercourse identified	nearby.
	Aquifer											Y				

From the information available at present a revised conceptual model has been considered.

7 REVISED RISK ASSESSMENT

The level of information provided by the previous reports, together with the other information within the report is considered suitable to provide the data for a satisfactory risk assessment for the site. While there will always be uncertainties due to known or unknown gaps in information it is considered that sufficient information is available to reduce those uncertainties to within acceptable limits for the nature of the site under review.

An asbestos survey of existing structures and infrastructure (as defined under Section 5(a) of the Control of Asbestos Regulations 2012) was beyond the brief of this report. The risk assessment has been undertaken on the basis that should asbestos be identified within buildings or infrastructure, these materials will be removed appropriately by licensed contractors and asbestos materials disposed of in accordance with legal requirements prior to demolition or other works in order to avoid contaminating soils at the site.

Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
Madamound	Site Users	Dermal contact	Medium	Likely	Moderate risk		
		Soil Ingestion and Home Produce Consumption	Medium	Likely	Moderate risk	Remediation required	
		Inhalation of contaminated dust	Medium	Low likelihood	Moderate/Low risk		
impacted by past use (On Site)	Made ground impacted by past use (On Lead Site)		Drinking of water from supply impacted by contaminated soil	Mild	Unlikely	Very low risk	It is not considered that barrier supply pipe is required. This report should be provided to the water supplier for confirmation
		Ground Workers	Dermal contact	Medium	Likely	Moderate risk	Information to be contained in site Health &
			Soil Ingestion	Medium	Likely	Moderate risk	of appropriate PPE and normal good hygiene
			Inhalation of contaminated dust	Medium	Likely	Moderate risk	dust control measures during construction.

Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
			Inhalation of contaminated dust (during construction)	Medium	Low likelihood	Moderate/Low risk	Appropriate dust control measures during construction.
Made ground impacted by	Made ground mpacted by		Inhalation of contaminated dust (after construction)	Medium	Unlikely	Low risk	No action required.
past use (On Site)	Lead	Neighbours	Surface water run-off	Medium	Low likelihood	Moderate/Low risk	Domodiation nominad
			Lateral migration of groundwater transporting contaminants	Medium	Low likelihood	Moderate/Low risk	Remediation required

Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
Made ground			Vertical percolation to groundwater via Foundations	Medium	Likely	Moderate risk	
past use (On Site)	Lead	Aquifer	Vertical percolation to groundwater via soft landscaped and permeable areas	Medium	Likely	Moderate risk	.Remediation required
			Percolation to groundwater via SuDS	Medium	Likely	Moderate risk	

Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
	Former War Surplus Yard and Smithy (Off Site) Metals Hydrocarbons PAHs Si		Dermal contact	Medium	Likely	Moderate risk	
			Soil Ingestion and Home Produce Consumption	Medium	Likely	Moderate risk	Remediation required
Former War Surplus Yard and Smithy (Off Site)		Site Users	Inhalation of contaminated dust	Medium	Low likelihood	Moderate/Low risk	
			Drinking of water from supply impacted by contaminated soil	Mild	Unlikely	Very low risk	It is not considered that barrier supply pipe is required. This report should be provided to the water supplier for confirmation

Sources	Potential pollutant	Receptor	Pathway	Hazard severity	Likelihood of occurrence	Risk / Significance	Comment & control measures
			Dermal contact	Medium	Likely	Moderate risk	Information to be contained in site Health &
Former War Surplus Yard and Smithy Metals Hydrocarbons	Ground Workers	Soil Ingestion	Medium	Likely	Moderate risk	Safety Plan and File. Use of appropriate PPE and normal good hygiene	
(Off Site)	TAIIS		Inhalation of contaminated dust	Medium	Likely	Moderate risk	measures. Appropriate dust control measures during construction.

Any visual or olfactory evidence of contamination noted during works should be investigated by a suitably qualified person and their recommendations implemented.

8 SITE WORKS

8.1 Excavation Arisings

Spoil removed from the site should be taken to an appropriate land fill facility.

If any potentially contaminated spoil is to be removed from site, the Waste Acceptance Criteria (WAC) testing should be agreed with the facility to which the spoil is being transported. It is critical that the WAC results are representative of the material to be disposed of and therefore care must be taken to ensure that different materials are not mixed. Guidance can be obtained from Environment Agency document *Waste Sampling and Testing for Disposal to Landfill*.

8.2 Soft Landscaping

Leachate testing has been undertaken on the full depth of made ground and it has been determined that the made ground is not suitable to remain on site due to the high leachability of the lead. Therefore the full depth of made ground should be removed.

Clean soil free from invasive plants and complying with the relevant criteria, refer to appendix D, shall be used to replace excavated material and bring the soft landscaping up to finished level. Assessment levels used should be for residential with plant uptake.

Care should be taken when importing soils and aggregates as asbestos is a common contaminant, even in certified materials.

8.3 External Permeable Hardstanding

The site is located over a principal aquifer. Lead leachate testing has been carried out within the full depth of made ground.

The underlying made ground should be removed to a depth of natural ground.

8.4 External Impermeable Hardstanding

Underlying made ground below impermeable hardstand can remain on the site. The pavement construct shall be a minimum of 300mm in order to provide a suitably robust barrier between any remaining potentially contaminated made ground and site users.

8.5 Existing Mature Planting

There are a mature trees and shrubs, which are to be retained in the soft landscaping

Made ground should be carefully removed from around the roots in such a manner as not to damage the roots.

Removal of soil:

- Carefully remove any contaminated soil by hand digging and/or wet digging (hydro-jet) to a depth of natural ground in so far as practicable
- Do not sever any roots, if cut by accident then should be trimmed with a sharp blade
- Work in small sections covering exposed roots with wet sacking
- Minimise exposure of roots to air to prevent drying out

Replacement of soil:

- Sharp sand placed around exposed roots and then covered with topsoil/mulch mix
- No raising of the land
- No compaction of topsoil

Scheduled Maintenance:

- Monitor via inspection programme
- Dress (loosely) with further soil/mulch mix when sand is exposed

It is considered unlikely that anyone will dig in this area and if they tried the roots would prevent them digging to a great depth, the risk from any remaining made ground around the roots is therefore not considered to be significant.

8.6 Site Boundaries

Around the site perimeter where it is not practicable to remove soil to natural ground due

to risk of instability of neighbouring structures, walls or fences, the ground should be excavated down to level with the underside of the foundation and then battered at a slope of one in three down to the natural ground below proposed finished level (refer to appendix F). In the case of shallow fence posts additional temporary support should be provided to permit excavation to reach the specified depth.

8.7 Water Supply

Appropriate water supply pipe should be installed in accordance with the requirements of the water supplier.

The only contaminant identified to exceed screening values was lead. Lead does not readily affect water supply pipes and therefore it is not considered that a protecta-line barrier pipe is required.

Confirmation from the water supplier on the appropriate water supply pipe will be included in the verification report.

8.8 Watching Brief

Soil contamination sampling and testing was undertaken across the site, sufficient to ensure an acceptable level of certainty of the nature of the made ground.

A watching brief is to be maintained by a suitably experience person during ground works with instructions to advise GO Contaminated Land Solutions Ltd should any made ground appear to vary significantly from the soil sampled and tested.

A watching brief and discovery strategy to implemented by the contractor is included in appendix E.

If any potential contamination is identified works must be stopped and GO Contaminated Land Solutions Ltd advised. Works must not recommence until further investigation has been completed and if required a revised remediation strategy has been produced to remediate the impacted area.

9 VERIFICATION PLAN

On completion of remediation a verification report must be prepared and submitted to

the local authority for approval. The report must include the information detailed below.

To demonstrate that the made ground within the soft landscape and permeable areas has been removed to a depth of 600mm or to natural strata, photographs will be taken of the proposed soft landscaped areas following removal of made ground. Examples of how to take photographs showing depth and locations are contained in appendix G. A plan showing the locations of the photographs will be prepared for inclusion in the verification report.

Test certification for any proposed fill, demonstrating compliance with the requirements of section 8.2, is to be obtained prior to importation, the list of determinands is provided in appendix D. Documentation such as purchase records to confirm the volume of imported material is also to be provided.

After placing of the topsoil verification samples will be taken and tested. The clean fill for gardens and landscaped areas should comply with the requirements set out in appendix D.

Verification pits will be excavated at each sampling location to a minimum depth of 600mm to confirm the thickness of the capping layer. A minimum of three samples will be taken per 100m3 of imported soil.

Documentation to be provided to demonstrate that the correct grade of water supply pipe has been installed.

Full details must be provided of any unforeseen contamination encountered and the remedial actions taken and communications with the local authority.

An indicative plan of the proposed sample locations and verification pits is contained in appendix B. The actual locations will be determined during the verification visit.

10 DUTY OF CARE DOCUMENTATION

A full record of "Duty of Care" documentation must be retained and a copy provided to GO Contaminated Land Solutions. This will include Waste Transfer Notes (WTN) and for hazardous waste, a Consignment Note, also tickets from the landfill confirming receipt at their facility.

Documentation must be provided to demonstrate compliance of imported fill with the

criteria in appendix D.

The above documentation must be provided for inclusion in the Verification Report.

11 CONCLUSIONS

11.1 The site was most recently used as the rear garden of 39 Second Cross Road. The Phase 2 Environmental Investigation identified exceedances for lead and lead leachate in all samples. Therefore appropriate remediation is required.

11.2 Removal of made ground in soft landscaped and permeable areas, will ensure the risk to site residents and potential off-site receptors will be reduced to an acceptable level for the continued residential end use.

11.3 A water supply pipe should be installed in accordance with the requirements of the water supplier.

11.4 For any potentially contaminated material removed from site, the Waste Acceptance Criteria (WAC) testing should be agreed with the facility to which the spoil is being transported.

11.5 It is recommended that appropriate dust control measures are implemented during construction. To assist in establishing what would be appropriate reference should be made to the Institute of Air Quality Management report entitled: *Guidance on the assessment of dust from demolition and construction*, version 1.1.

11.6 If any unexpected contamination is encountered during development (eg discoloured soil or odours or buried waste), then all works should be stopped and be investigated by a suitably qualified person and their recommendations implemented. The council should be notified and any additional remediation requirements agreed in writing before any works recommence. A watching brief and discovery strategy is included in appendix E.

11.7 Therefore if the strategy recommended herein is adopted the risk to site users and potential off-site receptors will be reduced to an acceptable level for the proposed residential end use.

11.8 Records will need to be retained and collated and a verification report prepared on completion of the remedial works.

This document has been prepared for the titled project and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and the prior written authority of GO Contaminated Land Solutions Ltd being obtained. No responsibility or liability is accepted for the consequences of this document being used for a purpose other than that for which it was commissioned. Any person using or relying on this document for such other purpose will by such use or reliance be taken to confirm his agreement to indemnify GO Contaminated Land Solutions Ltd for all loss or damage resulting therefrom. GO Contaminated Land Solutions Ltd accepts no responsibility or liability for this document to any party other than **Anthony C Bianchi** by whom it was commissioned.

Appendix A – Site Location Plan

Appendix B – Indicative Verification Sampling Plan

1985-P3E-1: 39 Second Cross Road, Twickenham Anthony C Bianchi

Appendix C – Previous Contamination Testing

R	ESIDENTIA	L WITH HON	AEGROWN PRO	DDUCE (R <u>w</u>	<u>/</u> HP) - SOM	1% - 12 M	arch 2024		
Determinend	l Init	CAC	Source		Concer	ntration		Number of	Number of
Determinand	Unit	GAC	Source	BH3	BH4	BH5	BH6	Tests	Exceedences
Metals									
Arsenic	mg/kg	37.0	DEFRAC4SL	25.5	22.6	26.0	41.3	4	0
Cadmium	mg/kg	22.1	DEFRAC4SL	0.7	0.9	0.6	0.7	4	0
Chromium (III)	mg/kg	14300.0	ATRISK SSV	22.9	25.9	27.5	31.5	4	0
Copper	mg/kg	4730.0	ATRISK SSV	110	101	112	152	4	0
Lead	mg/kg	200.0	DEFRAC4SL	791	672	760	1420	4	4
Mercury (Inorganic)	mg/kg	180.0	ATRISK SSV	1.9	1.6	2.1	5.4	4	0
Nickel	mg/kg	136.0	ATRISK SSV	24.9	22.0	25.6	37.4	4	0
Selenium	mg/kg	375.0	ATRISK SSV	< 1.0	< 1.0	< 1.0	< 1.0	4	0
Zinc	mg/kg	20000.0	ATRISK SSV	393	431	330	618	4	0
Inorganics									
Free Cyanide	mg/kg	34.0	ATRISK SSV	< 1.0	< 1.0	< 1.0	< 1.0	4	0
Hexavalent Chromium	mg/kg	20.5	DEFRAC4SL	< 0.8	< 0.8	< 0.8	< 0.8	4	0
Miscellaneous									
Moisture Content	%	-	-	22.2	19.9	21.9	20.4	4	-
рН	pH units	-	-	7.8	7.5	7.5	7.7	4	-
Soil Organic Matter	%	-	-	3.5	3.1	3.3	3.9	4	-
Stones Content	%	-	-	12.0	< 0.1	< 0.1	17.8	4	-
Phenols									
Total Monohydric Phenols	ma/ka	280.0	LQM/CIEH	< 5	< 5	< 5	< 5	4	0
Polyaromatic hydroca	rhons								-
Nanhthalene	ma/ka	0.83	ATRISK SSV	0.05	0.05	0.02	0.13	4	0
Acenanhthylene	ma/ka	170.0	LOMCIEH	0.00	0.00	< 0.02	0.10	4	0
Acenaphthene	ma/ka	608.0	ATRISK SSV	< 0.02	0.03	< 0.02	< 0.02	4	0
Fluorene	ma/ka	735.0	ATRISK SSV	< 0.02	0.03	< 0.02	0.04	4	0
Phenanthrene	ma/ka	95.0	LOMCIEH	0.34	0.56	0.21	0.82	4	0
Anthracene	ma/ka	10200.0	ATRISK SSV	0.06	0.00	0.05	0.02	4	0
Fluoranthene	ma/ka	983.0	ATRISK SSV	0.78	1.20	0.55	1.90	4	0
Pyrene	ma/ka	668.0	ATRISK SSV	0.65	1.00	0.47	1.61	4	0
Benzo(a)anthracene	ma/ka	7.2	I QM/CIFH	0.35	0.51	0.27	0.89	4	0
Chrvsene	ma/ka	15	LOM/CIEH	0.37	0.63	0.32	0.92	4	0
Benzo(b)fluoranthene	ma/ka	2.6	LOM/CIEH	0.44	0.62	0.31	1.19	4	0
Benzo(k)fluoranthene	ma/ka	77	LOM/CIEH	0.18	0.24	0.13	0.49	4	0
Benzo(a)pyrene	ma/ka	4.95	DEFRAC4SL	0.34	0.49	0.25	0.96	4	0
Indeno (1,2,3-cd) pyrene	mg/kg	27	LQM/CIEH	0.24	0.31	0.17	0.66	4	0
Dibenzo(a,h)anthracene	mg/kg	0.24	LQM/CIEH	0.05	0.07	0.04	0.14	4	0
Benzo(q,h,i)perylene	mg/kg	320	LQM/CIEH	0.26	0.37	0.18	0.72	4	0
TPH CWG									
>C ₅ -C ₆ Aliphatic	ma/ka	42.7	ATRISK SSV	<0.01	<0.01	<0.01	<0.01	4	0
>C ₆ -C ₉ Aliphatic	ma/ka	99.3	ATRISK SSV	<0.05	< 0.05	< 0.05	< 0.05	4	0
>C ₈ -C ₁₀ Aliphatic	ma/ka	13.9	ATRISK SSV	<2.0	<2.0	<2.0	<2.0	4	0
>C10-C12 Aliphatic	ma/ka	81.7	ATRISK SSV	<2.0	<2.0	<2.0	<2.0	4	0
>C12-C16 Aliphatic	ma/ka	385.0	ATRISK SSV	<3.0	<3.0	<3.0	<3.0	4	0
>C ₁₆ -C ₃₅ Aliphatic	ma/ka	210000.0	ATRISK SSV	<10.0	<10.0	<10.0	<10.0	4	0
>C ₅ -C ₇ Aromatic (benzene)	ma/ka	0.14	ATRISK SSV	<0.01	< 0.01	< 0.01	< 0.01	4	0
>C ₇ -C ₈ Aromatic (toluene)	ma/ka	113.0	ATRISK SSV	<0.05	<0.05	<0.05	<0.05	4	0
>C ₈ -C ₁₀ Aromatic	ma/ka	20.5	ATRISK SSV	<2.0	<2.0	<2.0	5.0	4	0
>C ₁₀ -C ₁₂ Aromatic	ma/ka	70.0	ATRISK SSV	<2.0	<2.0	<2.0	4.0	4	0
>C ₁₂ -C ₁₆ Aromatic	ma/ka	165.0	ATRISK SSV	<2.0	<2.0	<2.0	4.0	4	0
>C ₁₆ -C ₂₁ Aromatic	ma/ka	319.0	ATRISK SSV	<3.0	<3.0	<3.0	8.0	4	0
>C ₂₁ -C ₃₅ Aromatic	mg/kg	1120.0	ATRISK SSV	<21.0	<21.0	<21.0	17.0	4	0

RESIDENTIAL WITH HOMEGROWN PRODUCE (R <u>w</u> HP) - SOM 1% - 4 April 2024									
Determinand	Unit	GAC	Source		Co	oncentration		Number of	of Number of
Determinanu	Unit	GAC	Source	BH1	I3 BH1	I4 BH1	5 BH16	Tests	Exceedences
Metals									
Lead	mg/kg	200.0	DEFRAC4	4SL 388	.0 381	.0 282.	0 836.0	4	4
WATER GUIDELINE VALUES (WGV) - 12 March 2024									
Determinand	Unit	WGV	Sourco		Conce	ntration		Number of	Number of
Determinantu	Unit	WGV	Source	BH3	BH4	BH5	BH6	Tests	Exceedances
Matala									
wetais			1						
Lead	µg/l	10	UK DWS	43	37	140	58	4	4
Lead	μg/l	10 WATER (UK DWS GUIDELINE	43 VALUES (37 WGV) - 4 /	140 April 2024	58	4	4
Lead	µg/l	10 WATER		43 VALUES (37 WGV) - 4 / Conce	140 April 2024	58	4 Number of	4 Number of
Determinand	µg/l Unit	10 WATER (WGV	UK DWS GUIDELINE Source	43 VALUES (BH13	37 WGV) - 47 Conce BH14	140 April 2024 Intration BH15	58 BH16	4 Number of Tests	4 Number of Exceedances
Determinand Metals	µg/l Unit	10 WATER WGV	UK DWS GUIDELINE Source	43 VALUES (BH13	37 WGV) - 47 Conce BH14	140 April 2024 Intration BH15	58 BH16	4 Number of Tests	4 Number of Exceedances

Elab Customer Services The Environmental Laboratory Ltd Unit 42, Windmill Road Ponswood Industrial Estate St Leonards-on-Sea East Sussex TN38 9BY

Normec DETS Limited Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 24-02807

Site Reference:	24-52810
Project / Job Ref:	TPHCWG Analysis
Order No:	PO-12367
Sample Receipt Date:	18/03/2024
Sample Scheduled Date:	18/03/2024
Report Issue Number:	1
Reporting Date:	25/03/2024

Authorised by:

Sila

Steve Knight Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Upinions and interpretations are outside the laboratory's scope of 15O 17025 accreditation. I his certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate - TPH CWG Bande	d						
DETS Report No: 24-02807	^	Date Sampled	12/03/24	12/03/24	12/03/24	12/03/24	
The Environmental Laboratory Ltd	^	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
~Site Reference: 24-52810		~TP / BH No	355443	355444	355445	355446	
~Project / Job Ref: TPHCWG Analysis	~/	Additional Refs	BH3	BH4	BH5	BH6	
~Order No: PO-12367		~Depth (m)	0.20 - 0.60	0.20 - 0.60	0.20 - 0.60	0.20 - 0.60	
Reporting Date: 25/03/2024	D	ETS Sample No	704869	704870	704871	704872	
Determinand Unit	RL	Accreditation					
Aliphatic >C5 - C6 mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8 mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10 mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Aliphatic >C10 - C12 mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Aliphatic >C12 - C16 mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	
Aliphatic >C16 - C21 mg/kg	< 3	MCERTS	< 3	< 3	< 3	< 3	
Aliphatic >C21 - C34 mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	
Aliphatic (C5 - C34) mg/kg	< 21	NONE	< 21	< 21	< 21	< 21	
Aromatic >C5 - C7 mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8 mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10 mg/kg	< 2	MCERTS	< 2	< 2	< 2	5	
Aromatic >C10 - C12 mg/kg	< 2	MCERTS	< 2	< 2	< 2	4	
Aromatic >C12 - C16 mg/kg	< 2	MCERTS	< 2	< 2	< 2	4	
Aromatic >C16 - C21 mg/kg	< 3	MCERTS	< 3	< 3	< 3	8	
Aromatic >C21 - C35 mg/kg	< 10	MCERTS	< 10	< 10	< 10	17	
Aromatic (C5 - C35) mg/kg	< 21	NONE	< 21	< 21	< 21	38	
Total >C5 - C35 mg/kg	< 42	NONE	< 42	< 42	< 42	< 42	

Total >C5 - C35 ~ Sample details provided by the customer

Soil Analysis Certificate -	BTEX / MTBE							
DETS Report No: 24-02807		^	Date Sampled	12/03/24	12/03/24	12/03/24	12/03/24	
The Environmental Laborate	ory Ltd	~	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
~Site Reference: 24-52810)		~TP / BH No	355443	355444	355445	355446	
~Project / Job Ref: TPHCW	/G Analysis	~4	Additional Refs	BH3	BH4	BH5	BH6	
~Order No: PO-12367			~Depth (m)	0.20 - 0.60	0.20 - 0.60	0.20 - 0.60	0.20 - 0.60	
Reporting Date: 25/03/202	24	D	ETS Sample No	704869	704870	704871	704872	
Determinand	Unit	RL	Accreditation					
Benzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
Toluene	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
Ethylbenzene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
p & m-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
o-xylene	ug/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	
MTBE	ug/kg	< 5	MCERTS	< 5	< 5	< 5	< 5	
~ Sample details provided by the cust	omer							

Page 3 of 5

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 24-02807	
The Environmental Laboratory Ltd	
~Site Reference: 24-52810	
~Project / Job Ref: TPHCWG Analysis	
~Order No: PO-12367	
Reporting Date: 25/03/2024	

DETS Sample No	~TP / BH No	~Additional Refs	~Depth (m)	Moisture Content (%)	Sample Matrix Description
704869	355443	BH3	0.20 - 0.60	19	Black sandy loam with vegetation
704870	355444	BH4	0.20 - 0.60	18.7	Brown sandy loam with vegetation
704871	355445	BH5	0.20 - 0.60	23.9	Brown sandy loam with stones and vegetation
704872	355446	BH6	0.20 - 0.60	17.5	Brown sandy loam with stones

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm US}$ Unsuitable Sample $^{\rm US}$ ~ Sample details provided by the customer

Soil Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 24-02807	
The Environmental Laboratory Ltd	
~Site Reference: 24-52810	
~Project / Job Ref: TPHCWG Analysis	
~Order No: PO-12367	
Reporting Date: 25/03/2024	

Matrix	Analysed	Determinand	Brief Method Description			
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OFS	E012		
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001		
Soil	D	Cations	Determination of cations in soil by agua-regia digestion followed by ICP-OES	E002		
Soil	D	Chloride - Water Soluble (2:1)	termination of chloride by extraction with water & analysed by ion chromatography			
Soil	AR	Chromium - Hexavalent	termination of hexavalent chromium in soil by extraction in water then by acidification, addition of in the other other other in the other			
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015		
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015		
Soll	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015		
Soil		Diesel Pange Organics (C10 - C24)	Determination of beyane/acetone extractable hydrocarbons by CC-FID	E011 E004		
301		Dieser Kange organics (C10 - C24)	Determination of electrical conductivity by addition of saturated calcium sulphate followed by	LUUT		
Soil	AR	Electrical Conductivity	electrometric measurement	E022		
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023		
Soll		Elemental Sulphur EPH (C10 – C40)	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020		
Soil	AR	FPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004		
0011	740	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by			
Soil	AR	C12-C16. C16-C21. C21-C40)	headspace GC-MS	E004		
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009		
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027		
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027		
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027		
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029		
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	E010		
Soil	D	Loss on Ignition @ 450oC	titration with iron (11) sulphate Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle c	E019		
Soil	D	Magnesium - Water Soluble	Turnace Determination of water coluble magnecium by extraction with water followed by ICP-OES	F025		
Soil	D	Magnesium - Water Soldble Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E023		
0.11	10		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	5002		
Soil	AR	Mineral Oil (C10 - C40)	cartridge	E004		
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003		
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009		
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010		
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005		
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008		
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011		
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007		
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021		
SOIL	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009		
Soil		Sulphate (as SO4) - Toldi Sulphate (as SO4) - Water Soluble (2:1)	Determination of total sulphate by extraction with 10% HCI followed by ICP-UES	E013		
Soil	<u>л</u>	Sulphate (as SO4) - Water Soluble (2.1)	Determination of water soluble sulphate by extraction with water followed by ICP-OFS	F014		
Soil	AR	Sulnhide	Determination of sulphide by distillation followed by colorimetry	E018		
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with agua-regia followed by ICP-OES	E024		
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006		
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017		
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011		
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) subhate	E010		
		TPH CWG (ali: C5- C6, C6-C8, C8-C10,				
Coil	۸D	C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	E004		
5011	AK	aro: C5-C7, C7-C8, C8-C10, C10-C12,	cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004		
		C12-C16, C16-C21, C21-C35)				
		TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPF			
Soil	AR	aro: C5-C7 C7-C8 C8-C10 C10-C12	cartridge for C8 to C44_C5 to C8 by headspace GC-MS	E004		
		C_{12} - C_{16} , C_{16} - C_{21} , C_{21} - C_{35} , C_{35} - C_{44})				
Soil	۸D		Determination of valatile organic compounds by headspace CC-MS	F001		
Soil	AR	۷۵۵۵ ۷۳۲ (۲۵-۲۵ & ۲۹-۲۱۵)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	F001		
	Dried			2001		

AR As Received ~ Sample details provided by the customer

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

Certificate of Analysis

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number:	24-52810
Issue:	1
Date of Issue:	28/03/2024
Contact:	Peter George
Customer Details:	GO Contaminated Land Solutions Ltd 4 De Frene Road Sydenham London SE26 4AB
Quotation No:	Q24-04324
Order No:	Not Supplied
Customer Reference:	1985
Date Received:	14/03/2024
Date Approved:	28/03/2024
Details:	39 Second Cross Road, Twickenham
Approved by:	

Ben Rees, Customer Services Assistant

Sample Summary

Report No.: 24-52810, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
355443	BH3 0.20 - 0.60	12/03/2024	14/03/2024	Silty loam	
355444	BH4 0.20 - 0.60	12/03/2024	14/03/2024	Silty clayey loam	
355445	BH5 0.20 - 0.60	12/03/2024	14/03/2024	Silty clayey loam	
355446	BH6 0.20 - 0.60	12/03/2024	14/03/2024	Sandy silty loam	

Results Summary

Report No.: 24-52810, issue number 1

	ELAB Reference						355446
	C	Customer	Reference				
		:	Sample ID				
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL
	Sample Location				BH4	BH5	BH6
		Sample	Depth (m)	0.20 - 0.60	0.20 - 0.60	0.20 - 0.60	0.20 - 0.60
		Sam	pling Date	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Determinand	Codes	Units	LOD				
Soil sample preparation parameters							
Moisture Content	N	%	0.1	22.2	19.9	21.9	20.4
Stones Content	N	%	0.1	12.0	< 0.1	< 0.1	17.8
Material removed	N	%	0.1	12.0	< 0.1	< 0.1	17.8
Description of Inert material removed	N	70	0	Stones	None	None	Stones
Metals					Hono		Clonico
Arconic	M	ma/ka	1	25.5	22.6	26.0	/1 2
Cadmium	M	mg/kg	0.5	23.3	22.0	20.0	41.5
Chromium	M	mg/kg	5	22.0	25.0	27.5	21.5
Coppor		mg/kg	5	22.9	20.9	27.5	152
	M	mg/kg	5	701	672	760	1420
Moroury		mg/kg	0.5	10	1.6	700	1420 5.4
Nielcul		mg/kg	0.5	1.9	1.0	2.1	0.4 07.4
NICKEI Selenium		mg/kg	5	24.9	22.0	25.0	37.4
	IVI	mg/kg		< 1.0	< 1.0	< 1.0	< 1.0
	IVI	mg/kg	5	393	431	330	618
Inorganics							
Free Cyanide	N	mg/kg	1	< 1.0	< 1.0	< 1.0	< 1.0
Hexavalent Chromium	N	mg/kg	0.8	< 0.8	< 0.8	< 0.8	< 0.8
Miscellaneous							
рН	M	pH units	0.1	7.8	7.5	7.5	7.7
Soil Organic Matter	U	%	0.1	3.5	3.1	3.3	3.9
Phenols							
Total Monohydric Phenols	N	mg/kg	5	< 5	< 5	< 5	< 5
Polyaromatic hydrocarbons							
Naphthalene	SM	mg/kg	0.02	0.05	0.05	0.02	0.13
Acenaphthylene	SM	mg/kg	0.02	0.03	0.04	< 0.02	0.10
Acenaphthene	SM	mg/kg	0.02	< 0.02	0.03	< 0.02	< 0.02
Fluorene	S	mg/kg	0.02	< 0.02	0.03	< 0.02	0.04
Phenanthrene	SM	mg/kg	0.02	0.34	0.56	0.21	0.82
Anthracene	S	mg/kg	0.02	0.06	0.12	0.05	0.13
Fluoranthene	SM	mg/kg	0.02	0.78	1.20	0.55	1.90
Pyrene	SM	mg/kg	0.02	0.65	1.00	0.47	1.61
Benzo(a)anthracene	S	mg/kg	0.02	0.35	0.51	0.27	0.89
Chrysene	SM	mg/kg	0.02	0.37	0.63	0.32	0.92
Benzo(b)fluoranthene	SM	mg/kg	0.02	0.44	0.62	0.31	1.19
Benzo(k)fluoranthene	SM	mg/kg	0.03	0.18	0.24	0.13	0.49
Benzo(a)pyrene	S	mg/kg	0.02	0.34	0.49	0.25	0.96
Indeno(1,2,3-cd)pyrene	SM	mg/kg	0.02	0.24	0.31	0.17	0.66
Dibenzo(a,h)anthracene	SM	mg/kg	0.02	0.05	0.07	0.04	0.14
Benzo[g,h,i]perylene	SM	mg/kg	0.02	0.26	0.37	0.18	0.72
Total PAH(16)	NS	mg/kg	0.34	4.16	6.27	2.97	10.7

Results Summary

Report No.: 24-52810, issue number 1

		ELAB	Reference	355443	355444	355445	355446
	Customer Reference						
		:	Sample ID				
		Sa	mple Type	SOIL	SOIL	SOIL	SOIL
		Sampl	e Location	BH3	BH4	BH5	BH6
	5	Sample	Depth (m)	0.20 - 0.60	0.20 - 0.60	0.20 - 0.60	0.20 - 0.60
		Sam	pling Date	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Determinand	Codes	Units	LOD				
Metals							
Lead 10:1 extract	N	ug/l	5	43	37	140	58

Unit A2, Windmill Road, Ponswood Industrial Estate, St Leonards on Sea, East Sussex, TN38 9BY Tel: +44 (0)1424 718618, Email: info@elab-uk.co.uk, Web: www.elab-uk.co.uk

Results Summary

Report No.: 24-52810, issue number 1

Asbestos Results

Analytical result only applies to the sample as submitted by the client. Any comments, opinions or interpretations (marked #) in this report are outside UKAS accreditation (Accreditation No2683). They are subjective comments only which must be verified by the client.

In accordance with procedures, a 1kg soil sample should be analysed. For amounts less than this caution should be used when analysing the data as sample size is smaller than the recommended amount, therefore samples could be deemed as not being representative of the materials present on site.

Elab No	Depth (m)	Clients Reference	Description of Sample Matrix #	Asbestos	Gravimetric	Gravimetric	Free Fibre	Total	F/mm2
				Identification	Analysis Total	Analysis by ACM	Analysis	Asbestos	(I)
					(%)	Type (%)	(%)	(%)	
355443	0.20 - 0.60	BH3	Brown Sandy Soil, Stones, Clinker	No asbestos detected	n/t	n/t	n/t	n/t	n/t
355444	0.20 - 0.60	BH4	Brown Sandy Soil, Glass, Stones	No asbestos detected	n/t	n/t	n/t	n/t	n/t
355445	0.20 - 0.60	BH5	Brown Sandy Soil, Stones, Clinker	No asbestos detected	n/t	n/t	n/t	n/t	n/t
355446	0.20 - 0.60	BH6	Brown Sandy Soil, Stones, Clinker	No asbestos detected	n/t	n/t	n/t	n/t	n/t

Method Summary Report No.: 24-52810, issue number 1

Parameter		Analysis Undertaken	Date	Method	Technique
	oouco	On	Tested	Number	reeninque
Soil					
Leachate metals 10:1 extract	N		27/03/2024	301	ICPMS
Free cyanide	N	As submitted sample	18/03/2024	107	Colorimetry
Hexavalent chromium	N	As submitted sample	15/03/2024	110	Colorimetry
рН	М	Air dried sample	18/03/2024	113	Electromeric
Aqua regia extractable metals	М	Air dried sample	15/03/2024	118	ICPMS
Phenols in solids	N	As submitted sample	15/03/2024	121	HPLC
Asbestos identification	U	Air dried sample	18/03/2024	281	Microscopy
Soil organic matter	U	Air dried sample	15/03/2024	BS1377:P3	Titrimetry

Tests marked N are not UKAS accredited

Report Information

Report No.: 24-52810, issue number 1

U hold UKAS accreditation M hold MCERTS and UKAS accreditation N do not currently hold UKAS accreditation ^ MCERTS accreditation not applicable for sample matrix * UKAS accreditation not applicable for sample matrix S Subcontracted to approved laboratory UKAS Accredited for the test SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test SM Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S Insufficient Sample U/S Unsuitable sample n/t Not tested means "greater than" > means greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.	Key	
 M hold MCERTS and UKAS accreditation N do not currently hold UKAS accreditation MCERTS accreditation not applicable for sample matrix UKAS accreditation not applicable for sample matrix Subcontracted to approved laboratory UKAS Accredited for the test SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test Subcontracted to approved laboratory. UKAS accreditation is not applicable. Insufficient Sample U/S Unsuitable sample N/ Not tested means "less than" means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	U	hold UKAS accreditation
 N do not currently hold UKAS accreditation MCERTS accreditation not applicable for sample matrix UKAS accreditation not applicable for sample matrix Subcontracted to approved laboratory UKAS Accredited for the test SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test NS Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S Insufficient Sample U/S Unsuitable sample n/t Not tested means "less than" means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	М	hold MCERTS and UKAS accreditation
 MCERTS accreditation not applicable for sample matrix UKAS accreditation not applicable for sample matrix Subcontracted to approved laboratory UKAS Accredited for the test Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test Subcontracted to approved laboratory. UKAS accreditation is not applicable. Insufficient Sample U/S Unsuitable sample Not tested means "less than" means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	Ν	do not currently hold UKAS accreditation
 * UKAS accreditation not applicable for sample matrix S Subcontracted to approved laboratory UKAS Accredited for the test SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test NS Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S Insufficient Sample U/S Unsuitable sample n/t Not tested means "less than" means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	۸	MCERTS accreditation not applicable for sample matrix
 S Subcontracted to approved laboratory UKAS Accredited for the test SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test NS Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S Insufficient Sample U/S Unsuitable sample n/t Not tested < means "less than" > means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	*	UKAS accreditation not applicable for sample matrix
SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test NS Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S Insufficient Sample U/S Unsuitable sample n/t Not tested means "less than" > means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.	S	Subcontracted to approved laboratory UKAS Accredited for the test
NS Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S Insufficient Sample U/S Unsuitable sample n/t Not tested means "less than" > means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.	SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
 I/S Insufficient Sample U/S Unsuitable sample n/t Not tested means "less than" means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
 U/S Unsuitable sample n/t Not tested means "less than" means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	I/S	Insufficient Sample
n/t Not tested <	U/S	Unsuitable sample
 means "less than" means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	n/t	Not tested
 means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. 	<	means "less than"
LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.	>	means "greater than"
Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.	LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.		Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.		ELAB are unable to provide an interpretation or opinion on the content of this report.
PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. Peviation Codes		The results relate only to the sample received.
Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results. Peviation Codes		PCB congener results may include any coeluting PCBs
eviation Codes		Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may
	Doviation	
O No data of a smalling a unaliant	Deviation	No data of complian ourplied

- b No time of sampling supplied (Waters Only)
- С Sample not received in appropriate containers
- d Sample not received in cooled condition
- е The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- Sample age exceeds stability time (sampling to analysis) g

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- EH Extractable Hydrocarbons - i.e. everything extracted by the solvent
- CU Clean-up - e.g. by florisil, silica gel
- 1D GC - Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- 2D GC-GC - Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- Operator underscore to separate acronyms (exception for +)
- Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total +
- MS Mass Spectrometry

End of Report

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

Certificate of Analysis

THE ENVIRONMENTAL LABORATORY LTD

Analytical Report Number:	24-53137				
Issue:	2. Replaces Analytical Report number 24-53137; issue no.1				
Date of Issue:	17/04/2024				
Contact:	Peter George				
Customer Details:	GO Contaminated Land Solutions Ltd 4 De Frene Road Sydenham London SE26 4AB				
Quotation No:	Q24-04324				
Order No:	Not Supplied				
Customer Reference:	1985				
Date Received:	08/04/2024				
Date Approved:	17/04/2024				
Details:	39 Second Cross Road, Twickenham				
Approved by:					

Ben Rees, Customer Services Assistant

Client: Address:

Re-Issue Summary

GO Contaminated Land Solutions Ltd 4 De Frene Road, Sydenham, London, SE26 4AB

Date: 17-Apr-24

Report No.: 24-53137

Issue: 2

This report replaces 24-53137, issue: 1, issued: 11 April 2024

Reason for Change

1 - Client request - additional analysis

Details of Changes to Work / Results

Sample Refs:

Tests* / Dets*: Leachate metals 10:1 NRA Leachate extraction

Key

A - Additional Work added
D - Work Deleted
E - Result Edited*
R - Work Repeated*

*If a result changed, please refer to the previous report for the old result. The new result will be shown in this report. **Re-issued by:** Ben Rees, Customer Services Assistar **Approved by:** Ben Rees, Customer Services Assistar

Sample Summary

Report No.: 24-53137, issue number 2

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
357269	BH13 0.60 - 1.10	04/04/2024	08/04/2024	Silty loam	
357270	BH14 0.60 - 0.40	04/04/2024	08/04/2024	Sandy loam	
357271	BH15 0.60 - 1.00	04/04/2024	08/04/2024	Sandy loam	
357272	BH16 0.60 - 1.10	04/04/2024	08/04/2024	Silty loam	

Results Summary

Report No.: 24-53137, issue number 2

	357269	357270	357271	357272			
	Customer Reference						
	Sample ID						
	Sample Type					SOIL	SOIL
	Sample Location					BH15	BH16
	Sample Depth (m)					0.60 - 1.00	0.60 - 1.10
		Sam	pling Date	04/04/2024	04/04/2024	04/04/2024	04/04/2024
Determinand	Codes	Units	LOD				
Soil sample preparation parameters							
Moisture Content	N	%	0.1	17.0	14.8	15.2	15.4
Material removed	0.1	10.5	9.1	8.5	13.1		
Description of Inert material removed N 0				Stones	Stones	Stones	Stones
Metals							
Lead	М	mg/kg	5	388	381	282	836

Results Summary

Report No.: 24-53137, issue number 2

	ELAB Reference			357269	357270	357271	357272
	Customer Reference						
	Sample ID						
	SOIL	SOIL	SOIL	SOIL			
	BH13	BH14	BH15	BH16			
	Sample Depth (m)				0.60 - 0.40	0.60 - 1.00	0.60 - 1.10
	Sampling Date			04/04/2024	04/04/2024	04/04/2024	04/04/2024
Determinand	erminand Codes Units LOD						
Metals							
Lead 10:1 extract	N	ug/l	5	128	61	107	61

Method Summary Report No.: 24-53137, issue number 2

Parameter		Analysis Undertaken On	Date Method Tested Number		Technique
Soil					
Leachate metals 10:1 extract	N		16/04/2024	301	ICPMS
Aqua regia extractable metals		Air dried sample	09/04/2024	300	ICPMS

Tests marked N are not UKAS accredited

Report Information

Report No.: 24-53137, issue number 2

Key U hold UKAS accreditation Μ hold MCERTS and UKAS accreditation Ν do not currently hold UKAS accreditation ۸ MCERTS accreditation not applicable for sample matrix UKAS accreditation not applicable for sample matrix S Subcontracted to approved laboratory UKAS Accredited for the test SM Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test NS Subcontracted to approved laboratory. UKAS accreditation is not applicable. I/S **Insufficient Sample** U/S Unsuitable sample n/t Not tested means "less than" < > means "greater than" LOD refers to limit of detection, except in the case of pH soils and pH waters where it LOD means limit of discrimination. Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed. ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received. PCB congener results may include any coeluting PCBs Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Deviation Codes

- No date of sampling supplied а
- b No time of sampling supplied (Waters Only)
- С Sample not received in appropriate containers
- d Sample not received in cooled condition
- е The container has been incorrectly filled
- f Sample age exceeds stability time (sampling to receipt)
- Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month

All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- ΕH Extractable Hydrocarbons - i.e. everything extracted by the solvent
- CU Clean-up - e.g. by florisil, silica gel
- 1D GC - Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- 2D GC-GC - Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
- MS Mass Spectrometry

End of Report

Appendix D – Imported Material

Any imported material should be tested for the following parameters, and compared against the current environmental screening levels to ensure that the fill material meets the criteria for the proposed end use.

Care should be taken when importing soils and aggregates as asbestos is a common contaminant, even in certified materials.

ArsenicCadmiumChromiumLeadMercuryNickelCopperZincSeleniumHexavalent ChromiumpH ValueFree CyanideNaphthaleneAcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHS>C10-C12 >C2-C76 >SAromatic>C6-C6 >C10-C12 >C2-C6-C8 >C10-C12 >C2-C6-C8 >C10-C12 >C2-C16 >C2-10-C12 >C2-10-C12 >C2-10-C12 >C2-10-C12 >C2-10-C12 >C2-10-C12 >C10-C12 >	Determinand							
Cadmium Chromium Lead Mercury Nickel Copper Zinc Selenium Hexavalent Chromium pH Value Free Cyanide Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(ghi)perylene TOTAL PAH $>C_5^-C_7$ $>C_7^-C_8$ P(T) = 2 P(T) = 2	Arsenic							
ChromiumLeadMercuryNickelCopperZincSeleniumHexavalent ChromiumpH ValueFree CyanideNaphthaleneAcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHSSAromaticHydrocarbonSS <td colspan="6">Cadmium</td>	Cadmium							
Lead Mercury Nickel Copper Zinc Selenium Hexavalent Chromium pH Value Free Cyanide Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(ghi)perylene TOTAL PAH $\begin{array}{r} >C_5^-C_7\\ >C_7^-C_8\\ \\ >C_7^-C_8\\ \\ Pyrone \\ \hline Dibenz(ah)anthracene \\ \hline Preserve \\ \hline Preserve \\ \hline Dibenz(ah)anthracene \\ \hline Preserve \\ $	Chromium	Chromium						
NickelMercuryNickelCopperZincSeleniumHexavalent ChromiumpH ValueFree CyanideNaphthaleneAcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHSSAromaticHydrocarbonSSSSAliphaticHydrocarbonSSSC10-C12SSSSC10-C12SS <t< td=""><td>Lead</td><td></td></t<>	Lead							
Nickel Copper Zinc Selenium Hexavalent Chromium pH Value Free Cyanide Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(ghi)perylene TOTAL PAH S S C12-C16 S S C12-C16 S S C10-C12 S S S C10-C12 S S S C10-C12 S S S C10-C12 S S S C10-C12 S S S C10-C12 S S S C10-C12 S S S S S S S S S S S S S	Mercury							
NickelCopperZincSeleniumHexavalent ChromiumpH ValueFree CyanideNaphthaleneAcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHAromaticHydrocarbonS>C10-C12S>C10-C12S>C10-C12S>C10-C12S>C10-C12S>C10-C12S>C10-C12S>C10-C12 <td>Nickel</td> <td></td>	Nickel							
CopperZincSeleniumHexavalent ChromiumpH ValueFree CyanideNaphthaleneAcenaphthyleneAcenaphtheneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(ch)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAH $>C_5^-C_7$ $>C_7^-C_8$ $>C_{10}^-C_{12}$ $>C_{21}^-C_{16}$ $>C_{21}^-C_{16}$ $>C_{21}^-C_{16}$ $>C_{6}^-C_6$ Aliphatic Hydrocarbon s $>C_{10}^-C_{12}$ $>C_{10}^-C_{12}$ $>C_{10}^-C_{12}^-C_{16}$ $>C_{10}^-C_{12}^-C_{16}$ $>C_{10}^-C_{12}^-C_{16}^-C_{23}^-TOTAL TPHAsbestos>$								
ZincSeleniumHexavalent ChromiumpH ValueFree CyanideNaphthaleneAcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(c)fluorantheneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAH $>C_{10}^{-}C_{12}$ $>C_{1$								
SeleniumHexavalent ChromiumpH ValueFree CyanideNaphthaleneAcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHS>C10-C12 >S>C12-C16 >S>C10-C12 >S>C10-C12 >S>C10-C12 >S>C10-C12 >S>C10-C12 >S>C10-C12 >S>C10-C12 >S>C10-C12 >S>C10-C12 >S </td <td></td> <td></td>								
Hexavalent ChromiumpH ValueFree CyanideNaphthaleneAcenaphthyleneAcenaphtheneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(ch)fluorantheneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHSSC10 ⁻ C12 SSC10 ⁻ C12 SAromatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SAliphatic Hydrocarbon SStoractic SAliphatic Hydrocarbon SStoractic SStoractic SStoractic SAliphatic SAliphatic SAliphatic SAliphatic SAliphatic SAliphatic SAliphatic SAliphatic SAliphatic S <t< td=""><td>Selenium</td><td>-</td></t<>	Selenium	-						
pH Value Free Cyanide Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(ch)fluoranthene Benzo(c	Hexavalent C	nromium						
Free Cyanide Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(ghi)perylene TOTAL PAH $>C_5-C_7$ $>C_7-C_8$ $>C_7-C_8$ $>C_12-C_{16}$ $>C_{21}-C_{21}$ $>C_2-C_{21}-C_{35}$ $>C_{12}-C_{10}$ $>C_{21}-C_{21}$ $>C_5-C_6$ $>C_{10}-C_{12}$ $>C_6-C_8$ $>C_{10}-C_{12}$ $>C_6-C_8$ $>C_{10}-C_{12}$ $>C_{10}-C_{10}$	pH Value							
NaphthaleneAcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHAromaticHydrocarbonS>C10-C12>C21-C35>C16-C21>C5-C6>C6-C8>C10-C12	Free Cyanide							
AcenaphthyleneAcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(k)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHAromaticS $>C_{10}$ -C12S $>C_{10}$ -C12 $>C_{21}$ -C35 $>C_{10}$ -C12 $>C_{21}$ -C35 $>C_{10}$ -C12	Naphthalene							
AcenaphtheneFluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(k)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHAromatic $>C_6^-C_8$ $>C_{12}^-C_{16}$ $>C_{12}^-C_{16}$ $>C_{12}^-C_{16}$ $>C_{10}^-C_{12}$ $>C_{21}^-C_{35}$ AliphaticHydrocarbonS $>C_{10}^-C_{12}$ $>C_{6}^-C_8$ $>C_{6}^-C_8$ $>C_{10}^-C_{12}$	Acenaphthyle	ne						
FluorenePhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(k)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHAromaticHydrocarbonS>C10-C12S>C21-C35AliphaticHydrocarbonS>C5-C6>C6-C8>C10-C12>C21-C35>C10-C12>C5-C6>C6-C8>C10-C12>C10-C13>C10-C12>C10-C12>C10-C13>C10-C12>C10-C12>C10-C13>C10-C12>C10-C12>C10-C13>C10-C13>C10-C1	Acenaphthen	9						
PhenanthreneAnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAH $PC_5^-C_7$ $PC_7^-C_8$ $PC_{10}^-C_{12}$ PC_{10}^-C	Fluorene							
AnthraceneFluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(k)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAH PC_5-C_7 PC_7-C_8 PC_8-C_{10} PC_9-C_{12} PC_9-C_{12} PC_9-C_{12} PC_9-C_8 PC_9-C_8 PC_9-C_8 PC_9-C_8 PC_9-C_8 PC_9-C_8 PC_9-C_8 PC_9-C_9 PC	Phenanthrene	;						
FluoranthenePyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(k)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHAromaticSSS </td <td>Anthracene</td> <td></td>	Anthracene							
PyreneBenz(a)anthraceneChryseneBenzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAH $>C_5-C_7$ $>C_7-C_8$ $Aromatic$ HydrocarbonS $>C_{10}-C_{12}$ $>C_{21}-C_{35}$ $>C_{10}-C_{12}$ $>C_5-C_6$ $>C_6-C_8$ $>C_10-C_{12}$ $>C_{10}-C_{12}$ $>C_{10}-C_{13}$ TOTAL TPHAsbestos	Fluoranthene							
Benz(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(ghi)perylene TOTAL PAH Aromatic Hydrocarbon s Aliphatic Hydrocarbon s Aliphatic Hydrocarbon s C5-C6 S S S S S S S C12-C16 S S S S S S S S S S S S S	Pyrene							
Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(ghi)perylene TOTAL PAH Aromatic Hydrocarbon S >C ₁₀ -C ₁₂ >C ₂₁ -C ₁₆ >C ₁₀ -C ₁₂ >C ₂₁ -C ₃₅ >C ₁₂ -C ₆ >C ₆ -C ₈ >C ₁₀ -C ₁₂ >C ₂₁ -C ₃₅ >C ₁₀ -C ₁₂ >C ₆ -C ₈ >C ₆ -C ₈ >C ₆ -C ₈ >C ₁₀ -C ₁₂ >C ₁₀ -C ₁₂	Benz(a)anthra	acene						
Benzo(b)fluorantheneBenzo(a)pyreneIndeno(123-cd)pyreneIndeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHAromatic $>C_5-C_7$ $>C_7-C_8$ $Aromatic$ Hydrocarbon $>C_{10}-C_{12}$ $>C_{21}-C_{35}$ $>C_5-C_6$ $>C_6-C_8$ $>C_10-C_{12}$ $>C_{12}-C_{16}$ $>C_10-C_{12}$ $>C_5-C_6$ $>C_6-C_8$ $>C_10-C_{12}$ $>C_{12}-C_{16}$ $>C_{12}-C_{16}$ $>C_{12}-C_{16}$ $>C_{12}-C_{16}$ $>C_{12}-C_{16}$ $>C_{12}-C_{16}$ $>C_{16}-C_{35}$ TOTAL TPHAsbestos	Chrvsene							
Benzo(k)fluoranthene Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(ghi)perylene TOTAL PAH Aromatic Hydrocarbon S Aliphatic Hydrocarbon S Aliphatic Hydrocarbon S Aliphatic Hydrocarbon S Aliphatic Hydrocarbon S C10 ⁻ C12 S S C10 ⁻ C12 S S S C10 ⁻ C12 S S S C10 ⁻ C12 S S C10 ⁻ C12 S C10 ⁻ C12 S S C10 ⁻ C12 S C10 ⁻ C12 C10 ⁻ C12	Benzo(b)fluor	anthene						
Benzo(a)pyrene Indeno(123-cd)pyrene Dibenz(ah)anthracene Benzo(ghi)perylene TOTAL PAH Aromatic Hydrocarbon S Aliphatic Hydrocarbon S Aliphatic Hydrocarbon S Aliphatic Hydrocarbon S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₂ S S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₃ S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₃₅ TOTAL TPH	Benzo(k)fluor	anthene						
Indeno(123-cd)pyreneDibenz(ah)anthraceneBenzo(ghi)peryleneTOTAL PAHAromaticHydrocarbonS>C10-C12>C21-C16>C21-C35>C10-C12>C5-C6>C6-C8>C6-C8>C10-C12>C21-C35AliphaticHydrocarbonS>C10-C12>C21-C35>C10-C12>C5-C6>C6-C8>C10-C12>C10-C12>C10-C12>C10-C12>C10-C12>C10-C12>C10-C12>C10-C135TOTAL TPHAsbestos	Benzo(a)pyrei	ne						
Aromatic Hydrocarbon S Aliphatic Hydrocarbon S Aliphatic Hydrocarbon S Aliphatic Hydrocarbon S Aliphatic Hydrocarbon S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₃ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₃ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₃ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₃ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₃ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₃ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₃ S C ₁₀ -C ₁₂ S C ₁₀ -C ₁₃ S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₃ S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₃ S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₂ S S C ₁₀ -C ₁₃ S S C ₁₀ -C ₃₅	Indeno(123-co	1)nvrene						
Bindeniz (ani)antinacenteBenzo(ghi)peryleneTOTAL PAHAromatic $>C_5-C_7$ Aromatic $>C_8-C_{10}$ Hydrocarbon $>C_{10}-C_{12}$ S $>C_{10}-C_{12}$ $>C_{21}-C_{35}$ $>C_5-C_6$ Aliphatic $>C_6-C_8$ Hydrocarbon $>C_{10}-C_{12}$ S $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{6}-C_8$ $>C_{6}-C_8$ $>C_{6}-C_{10}$ S $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{12}-C_{16}$ $>C_{16}-C_{35}$ $TOTAL TPH$ Asbestos	Dibenz(ab)ant	bracene						
Denizo(gini/per yieneTOTAL PAHAromatic $>C_5-C_7$ Hydrocarbon $>C_{10}-C_{12}$ S $>C_{10}-C_{12}$ $>C_{21}-C_{35}$ $>C_{21}-C_{35}$ Aliphatic $>C_6-C_8$ Hydrocarbon $>C_{10}-C_{12}$ S $>C_5-C_6$ $>C_6-C_8$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{12}-C_{16}$ $>C_{10}-C_{12}$ $>C_{12}-C_{16}$ $>C_{16}-C_{35}$ TOTAL TPHAsbestos $>$	Benzo(ghi)per	vlene						
Aromatic > C_5 - C_7 Hydrocarbon > C_{10} - C_{12} S > C_{10} - C_{12} > C_{10} - C_{12} > C_{10} - C_{12} > C_{10} - C_{12} > C_{16} - C_{21} > C_{21} - C_{35} > C_6 - C_8 Aliphatic > C_6 - C_8 Hydrocarbon > C_{10} - C_{12} > C_{21} - C_{35} > C_6 - C_8 Total TPH Asbestos		ylerie						
$>C_5-C_7$ $>C_7-C_8$ $>C_7-C_8$ Hydrocarbon S $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{16}-C_{21}$ $>C_{21}-C_{35}$ $>C_{5}-C_{6}$ $>C_{6}-C_{8}$ $>C_{6}-C_{10}$ $>C_{10}-C_{12}$ $>C_{10}-C_{35}$ TOTAL TPH Asbestos	TOTAL PAR							
Aromatic > C_7 - C_8 Hydrocarbon > C_{10} - C_{12} s > C_{10} - C_{12} > C_{10} - C_{12} > C_{10} - C_{12} > C_{10} - C_{21} > C_{10} - C_{21} > C_{10} - C_{21} > C_{21} - C_{35} Aliphatic > C_6 - C_8 Hydrocarbon > C_{10} - C_{12} > > C_{10} - C_{12} > C_{10} - C_{10} > C_{10} - C_{10} > C_{10} - C_{10} > C_{10} - C_{10} > $C_{$		>C ₅ -C ₇						
Aromatic $>C_8-C_{10}$ Hydrocarbon $>C_{10}-C_{12}$ S $>C_{12}-C_{16}$ $>C_{16}-C_{21}$ $>C_{21}-C_{35}$ Aliphatic $>C_6-C_8$ Hydrocarbon $>C_{10}-C_{12}$ S $>C_6-C_8$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ S $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{16}-C_{35}$ TOTAL TPH Asbestos		>C ₇ -C ₈						
Hydrocarbon > C_{10} - C_{12} S > C_{10} - C_{12} $>C_{12}$ - C_{16} > C_{16} - C_{21} > C_{21} - C_{35} > C_{5} - C_{6} Aliphatic > C_{6} - C_{8} Hydrocarbon > C_{10} - C_{12} S > C_{10} - C_{12} > C_{10} - C_{12} > C_{10} - C_{12} > C_{12} - C_{16} > C_{16} - C_{35} TOTAL TPH Asbestos	Aromatic	>C ₈ -C ₁₀						
S >C12-C16 >C16-C21 >C21-C35 >C5-C6 >C6-C8 Hydrocarbon >C10-C12 >C10-C12 >C10-C12 >C10-C12 >C16-C35 TOTAL TPH Asbestos	Hydrocarbon	>C ₁₀ -C ₁₂						
>C16-C21 >C21-C35 >C5-C6 >C6-C8 >C8-C10 >C10-C12 >C10-C12 >C16-C35 TOTAL TPH Asbestos	S	>C ₁₂ -C ₁₆						
Aliphatic Hydrocarbon s - C ₂ -C ₆ - C ₆ -C ₈ - C ₆ -C ₈ - C ₆ -C ₁₀ - C ₁₀ -C ₁₂ - C ₁₀ -C ₁₂ - C ₁₀ -C ₁₃ - C ₁₆ -C ₃₅ TOTAL TPH		>C ₁₆ -C ₂₁						
Aliphatic Hydrocarbon s $>C_5-C_6$ $>C_6-C_8$ $>C_8-C_{10}$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{16}-C_{35}$ TOTAL TPH Asbestos		>C ₂₁ -C ₃₅						
Aliphatic Hydrocarbon S $>C_6-C_8$ $>C_{8}-C_{10}$ $>C_{10}-C_{12}$ $>C_{10}-C_{12}$ $>C_{12}-C_{16}$ $>C_{16}-C_{35}$ TOTAL TPH Asbestos		>C ₅ -C ₆						
Aliphatic Hydrocarbon S $>C_8-C_{10}$ $>C_{10}-C_{12}$ $>C_{12}-C_{16}$ $>C_{16}-C_{35}$ TOTAL TPH Asbestos		>C ₆ -C ₈						
S >C ₁₀ -C ₁₂ >C ₁₂ -C ₁₆ >C ₁₆ -C ₃₅ TOTAL TPH Asbestos	Aliphatic	>C ₈ -C ₁₀						
>C ₁₂ -C ₁₆ >C ₁₆ -C ₃₅ TOTAL TPH Asbestos	s	>C ₁₀ -C ₁₂						
>C ₁₆ -C ₃₅ TOTAL TPH Asbestos		>C ₁₂ -C ₁₆						
TOTAL TPH Asbestos		>C ₁₆ -C ₃₅						
Asbestos	TOTAL TPH							
	Asbestos							

Appendix E – Watching Brief and Discovery Strategy

Watching Brief and Discovery Strategy

DISPLAY AND AWARENESS

The Discovery Strategy must be placed on the Health & Safety Notice Board and displayed in a prominent area where all site staff are able to consult the document at any time. Any member of the workforce entering the site to undertake any excavation must be made aware of the potential to discover contamination and the discovery strategy.

HOW TO IDENTIFY POTENTIAL CONTAMINATED MATERIAL

- Looks oily and has an oily odour.
- Solvent type of odour.
- Man-made materials in fill such as paint cans, car parts, glass fragments.
- Contains fragments of white asbestos sheeting, coal or coke clinker.
- Sand bags or subsurface concrete structures.
- Unusual colour.
- Asbestos cement or lagging.

(This list is not exhaustive. If in any doubt, please contact GO Contaminated Land Solutions)

PROCEDURE

If unexpected evidence of contamination is found the following procedures shall be adhered, including:

1. All site works at the position of the suspected contamination should stop.

2. Site Personnel to inform the Site Manager or Agent.

3. Visual and olfactory observations of the condition of the ground and the extent of contamination should be made and notification shall be given to Go Contaminated Land Solutions (GO CLS) Consultants as soon as practicable. GO CLS will then inform the Local Authority as soon as practicable. Should the contamination be likely to affect controlled waters the Environment Agency shall also be informed.

4. In the presence of a suitably qualified Environmental Consultant from GO CLS, investigation works shall commence to recover samples for testing and, using visual and olfactory observations of the condition of the ground, delineate the area over which contaminated materials are present.

5. Should GO CLS deem it appropriate, the affected material may be excavated and placed in a stockpile on a suitable impermeable surface. This should be suitably quarantined with no addition to, or removal of, the stockpile while chemical analysis is being undertaken. Alternatively, the material should remain in situ until laboratory test results have been obtained.

6. A photographic recorded should also be made of relevant observations.

7. GO CLS will determine an appropriate testing suite based on visual and olfactory observations.

8. Test results will be compared against current assessment criteria suitable for the future use of the area of the site affected.

9. If after testing the ground is found to be contaminated, the Local Authority Environmental Team shall be informed. After consultation with the Local Authority and if necessary, the Environment Agency, materials should either be removed for disposal to a licensed waste management facility or remediated to agreed clean-up criteria.

10. If the potential for contamination is severe or may lead to pollution of either groundwater or water courses, the Environment Agency shall be informed immediately as a potential environmental incident (see EA website).

Appendix F – Indicative Capping Layer

Appendix G – Indicative Boundary Wall Remediation

Indicative Schematic

If the boundary wall is acting as a retaining wall or appears to be unsound or there are any concerns regarding stability advice should be obtained from a civil, structural or geotechnical engineer.

Appendix H – Example Record Photographs

Example A: Close up, showing the depth clearly.

Example A: Showing the location of the close up

Example B: Close up, showing the depth clearly

Example B: Showing the location of the close up

