Ref: 24/54720/A Date: March 2024 Prepared by: J.McLoughlin

CLIENT:-Richard James Hastings Architecture Wortan Park Cassington OX29 4SX

PROJECT:-34 Nassau Road Barnes SW13 9QE

Structural Engineering Notes Including Construction Method Statement

Consulting Structural & Civil Engineers

16 Upper Woburn Place London WC1H 0AF

Tel: 0203 741 8042 E-mail: <u>london@dsagroup.co.uk</u>

Contents

1.0 Introduction	
1.1 Statement of Objectives	1
1.2 Overview of Research	1
1.3 Structural Appraisal	2
2.0 Research/Building Appraisal	
2.1 Site Location	
2.2 Existing Structure Summary	4
3.0 Proposed Structure	6
3.1 Structural Proposals	6
3.2 Loadings	
3.3 Impact of the Proposed Develop	nent on Existing Trees8
4.0 Ground Conditions	9
4.1 Ground Conditions	9
4.2 Heave and Settlement	9
4.3 Site Hydrology/Groundwater	9
5.0 Movement Assessment	
5.1 Ground Movement Assessment.	
5.2 Movement Monitoring Method	
6.0 Construction Method	
6.1 Proposed Demolition and Constr	uction13
6.2 Site Set Up	
6.3 Initial Temporary Works	
6.4 Reinforced Concrete Underpinnin	ng/Basement Construction14
6.6 Principal Contractor Responsi	bilities16
6.7 CDM Regulations 2015	
7.0 Conclusions	

7.1 Evaluation of Project

1.0 Introduction

David Smith Associates Consulting Structural & Civil Engineers have been commissioned by Richard James Hastings Architecture on behalf of the property owners to carry out a construction method statement for the redevelopment of 34 Nassau Road, London.

This report has been developed with reference to the London Borough of Richmond Upon Thames basement guidance to ensure that the key structural engineering planning considerations are addressed.

This report forms part of the application for planning permission for the proposed subterranean works to this property.

1.1 Statement of Objectives

This study provides research and analysis of the existing structure for the proposed single storey basement and redevelopment of the house. Whilst the study identifies the existing site's capacity for the new construction there are two primary objectives of the study.

- How the proposed basement structure is to be constructed? This includes proposed construction materials, layout of the proposed temporary structural framework and the temporary sequence of works.
- How the proposed superstructure is to be constructed? This includes proposed construction materials, layout of the proposed structural framework, allowable loadings and temporary works.

1.2 Overview of Research

DSA have attended site to ascertain the existing structural format of the property, including the existing foundation details and bearing stratum on site. The above site investigations, including the recommendations given in the Geotechnical Report, form the basis of our design proposal.

This documentation focused on the proposed method of construction and method of works for the basement structure including small elements of architectural information. In addition to this, we have reviewed the preliminary geotechnical report and currently base our designs on the data within the document.

This document is based upon the planning drawings produced by the Architect and should be read in conjunction with their current drawings and documentation.

1.3 Structural Appraisal

British Standards and relevant Codes of Practice have been used in the preparation of our structural analysis. The codes of practice used within the assessment listed in the below table.

Loadings	[BS 6399 - Part 1:1996, Part 2:1997, Part 3:1988] [BS 648:1964]
Concrete	[BS 8110 - Part 1:1997, Part 3:1985] [BS 8007 : 1987]
Foundations	[BS 8004:1986] [BS 8002 : 1994]
Timber	[BS 5268 - Part 2:2002]
Masonry	[BS 5628 - Part 1:2005, Part 2:2005, Part 3:2005]
Steelwork	[BS 5950 - Part 1:2000, Part 3:1990, Part 5:1987, Part 8:1990] [BS 2853:1957]
Temporary Works	[BS 5975 : 2019]

2.0 Research/Building Appraisal

2.1 Site Location

34 Nassau Road is located in the centre of Nassau Road close to the junction of Lowther road. The property is arranged as a semi-detached property. The property is a three-storey property. The neighbouring properties on Sutherland Avenue are of comparable footprint and height. The age of the properties and its neighbours date to the early-20th century.

Figure 1 from Google Maps – 34 Nassau Road

London Tube maps indicate that the property is approximately 2000m from the district line.

Figure 2 from Google Maps – Proximity of Tube Lines

2.2 Existing Structure Summary

The properties on Nassau road were constructed during the early 20th Century. It is a semidetached structure.

Given the age of the redevelopment, it can be reasonably assumed that the structure is of traditional construction with load-bearing masonry walls/steel beams with supporting timber floors and a cut timber butterfly roof structure. The entrance to the property is to the front elevation with access over vault below.

The existing foundations are shallow stepped brick corbels. The original corbel foundations are likely to be founded into the made ground.

The stability of the existing structure is provided by the semi-detached nature, with floors and roofs acting as diaphragms to transfer any horizontal forces into the masonry walls. The roof and floor structure help to laterally restrain the front and rear walls to the property.

Existing architectural drawings indicate the layout of the existing structures, and we also confirm the existing structure is generally in good structural condition. From our research it would appear that there are no basement structures to the surrounding properties. If any additional basements are present DSA are to be informed to revise details accordingly.

The existing structure is generally in adequate structural condition and has been well maintained over its life.

3.0 Proposed Structure

3.1 Structural Proposals

The main elements to the proposed re-development of the property is the construction of a new single storey basement beneath the property and protruding into the rear garden forming a lightwell area. In addition to the above the internal layouts will be redeveloped.

The basement structure generally reflects the footprint of the existing property and is approximately 210m² in area at basement level and 588m³ in volume. The formation level for the proposed structure is at basement level, which is approximately 4.15m below the existing external levels.

The new basement structure will be constructed using traditional concrete underpinning to the loadbearing masonry walls. This construction will aid in keeping the excavated basement area dry during the construction process.

A reinforced concrete shell will be constructed as the permeant basement structure. The basement structure floor will be constructed using a traditional concrete slab. The slab assists in propping the base of the concrete walls between elevations to assist in the prevention of sliding and overturning.

The basement structure will form a watertight enclosure by using a combination of waterresistant slurry to the face and between sections of retaining wall. Additionally, an internal waterproof drainage system (Delta Membrane Systems) will be used to prevent the ingress of water.

New steel and concrete framework will be provided at floor levels to provide adequate support to the proposed new walls and floor structures during the new construction. These steel frames will be supported from external party walls.

New internal partitions and external walls will be constructed in masonry and lightweight stud to ensure that additional dead loadings are minimised. Structural walls to staircases and service risers will be constructed in traditional blockwork construction.

We confirm that the provision of the reinforced concrete retaining walls and underpin foundations will be suitable for the proposed basement extension. The vertical and horizontal loadings from the structures above will be transferred down the underpinning and the load distributed beneath. This distribution of load will help spread the increased loads from the vertical extension. The construction of the reinforced concrete retaining walls is cast in a sequenced bay formation which will reduce the risk of movement. This is an accepted method of construction, and we see no problems with the structural proposals.

3.2 Loadings

The assessment of the existing building has been based on the following proposed Imposed Loadings.

Typical Residential	1.5kN/m²
Toilets/stairs/corridors/landings	1.5kN/m²
Lightweight Partitions	1.0kN/m²
Gym	5.0kN/ m²
Car Parking	2.5 kN/m ²

Proposed Dead Loadings are as specified within BS648 Schedule of weights of Building materials.

3.3 Impact of the Proposed Development on Existing Trees

No arboricultural report has been undertaken at this stage.

4.0 Ground Conditions

4.1 Ground Conditions

The site is generally flat lying and surrounded by residential developments of similar age and style.

The BGS map showed the site to be located directly upon the London Clay Formation with no overlying superficial deposits.

The bole hole investigation revealed that the soil composition consisted of made ground material up to a depth of 1.20 meters below ground level (BGL). From 1.2 to 2.0 meters, there is a layer of Kempton Park gravel member characterized by orange, brown, very sandy clay. Between 2.0 and 4.0 meters, there is light brown, very sandy gravel. It's noteworthy that groundwater was detected at approximately 2.8 meters below ground level from the borehole location, which equates to 4.2 meters below the existing ground floor level and beneath the proposed basement formation level.

An allowable gross bearing value of 200kPa has been taken.

The soil has been found to be contaminated after intrusive investigations in the rear garden at approx location of new swimming pool only (TP2 & TP3). Refer to the G&W remediation strategy in Appendix D for removal / remedy details.

4.2 Heave and Settlement

The foundations have been designed to consider the potential heave and settlement. The retaining wall has been designed to limit settlement and we do not expect any heave movement.

4.3 Site Hydrology/Groundwater

It is considered that the flow of ground water around the basement will not be affected by the new construction. The relatively small size of the basement's footprint combined with the small extent of depth affected compared with the approximate zone of gravels indicates that the flow of water should not be impeded.

In general, the "natural" trend in groundwater flow directions within the Secondary Upper Aquifer would originally have tended to be towards the old river courses incised in the River Terrace Deposits which have largely been culverted. This is believed to be the case of the old Westbourne River and surrounding ground water.

5.0 Movement Assessment

5.1 Ground Movement Assessment

All structural alterations, including excavations and underpinning, alter the way buildings transfer loads to the ground. This can cause minor movements or settlements within the main building and neighbouring properties.

By detailed planning and precautions, movements during the construction process will be minimised. However, it is required to observe such movements as they occur, and it is assumed that a dilapidation and photographic survey of the existing buildings and adjoining buildings will be carried out prior to commencement of construction works.

All materials, workmanship and practice shall comply in general with the requirements of the relevant standards. However, the particular requirements of the engineering drawings and specification, including those related to structural movement and tolerances shall take precedence over other standards.

Following a detailed review of the permanent and temporary works we confirm that the works are generally estimated to fall within damage category 1 or 0. We confirm that this is satisfactory.

Monitoring will need to be carried out to assist in recording any movement. The temporary works design associated with the construction and associated temporary works will assist in minimising the effects of the Works on the existing buildings, but we cannot guarantee that movements will not occur.

5.2 Movement Monitoring Method

Fixed monitoring retro reflective targets are to be affixed to the neighbouring party walls.

Targets will be measured two weeks prior to the commencement of building works and at weekly and then fortnightly intervals as the work progresses to assess whether there is movement of the structure.

A report will be supplied after each visit determining any measured movement.

Target Installation

Reflective reference targets will be placed around the worksite outside the zone of influence. The reference & monitoring targets on the buildings will be retro reflective targets affixed with a strong yet ultimately removable adhesive. This is an economical and effective solution for measurement at this level. Where required some targets will be mounted on small plastic brackets to allow tangential observation.

It is assumed that safe access at height will be provided by the client, and that they will arrange all third-party agreements to install the targets on neighbouring properties.

Observation Stations

A site grid will be set up with the referenced retro targets fixed to stable structures outside the area of influence. These reference datum points will be observed prior to each observation session. A minimal total station traverse will be used to observe the internal targets. All the initial observations will be related to OS datum via GPS observations.

Observation Equipment

The observations will be made on each occasion with a Leica TS30 which is capable of sub second and sub millimetre measurement. It is an instrument designed particularly for this type of task.

Accuracy of Measurement

We would expect that the relative accuracy would be +/-1.0mm to the retros. The absolute accuracy between all targets is more likely to be +/-2mm. The accuracy generally depends on the accessibility of the measurement position. Ideally, we would wish to minimise any

transferring of control position (traversing) but this depends on the site activity at the time and therefore the sight-lines to targets that are possible.

Trigger Values

Amber - Cumulative movement of more than +/-5mm.

Red - Cumulative movement of more than +/-8mm.

Trigger Actions

Amber - All parties will be information that the amber trigger level has been reached/exceeded. The sequence of works and methodology will be reviewed by interested parties.

Red - All interested parties will be informed that the red trigger level has been reached/exceeded.

Works in the affected area will be made safe and suspended. A meeting will be held on site with all interested parties to review the sequence of works and the methodology and agree on any revisions to procedures which may be considered necessary.

At code red monitoring should be increased to alternative days (i.e. 3 / 4 times weekly).

The monitoring frequency will be reviewed commensurate with the rate at which movements develop.

6.0 Construction Method

6.1 Proposed Demolition and Construction

A significant factor affecting the choice of structural solution for the basement works includes preventing movement, settlement and the risk of collapse of existing structures when the current permanent horizontal support provided by the ground is removed.

The permanent works will need to be constructed in a manner that ensures that the existing masonry structures are continuously supported both vertically and horizontally without undue movement both during the construction works and in the final state.

The immediately adjoining properties will be monitored for movement and damage during the initial installation of the underpinning, excavation, construction and initial transfer of loads to the permanent floors and walls. All measures will be subject to agreement with the owners and occupiers of these premises under the Party Wall Act 1996.

To maintain structural integrity to the building and allow works to be carried out, a tried and tested method of underpinning is proposed. This involves the ground being excavated in alternate sections underneath the existing walls and reinforced concrete shuttered and poured under the exposed existing foundations. Once the concrete has achieved sufficient strength the same process is then applied to the adjacent sections ensuring uniform structural support at all times, when this is completed the floor level can be lowered to the base of the basement slab and the basement formed from reinforced waterproof concrete.

6.2 Site Set Up

- 1. Erect site hoarding to the agreed layout and make site boundaries secure.
- 2. Set up site office, welfare and toilets to the agreed layout
- 3. Perform a detailed survey of 34 Nassau Road and adjacent properties to confirm the assumed structure and to determine the size and level of the existing neighbouring foundations.

6.3 Initial Temporary Works

- 1. Install external scaffold frame for full height and enclose the existing roof structure.
- Soft Strip using appropriate plant and hand tools to remove any non-loadbearing elements, suspended ceilings fixtures and fittings, electrical and mechanical systems skirting's door frames etc.
- 3. Isolate existing services.
- 4. Install temporary supports to support existing roof structure
- 5. Install RMD horizontal supports at second floor level
- 6. Remove internal structure down to second floor level
- 7. Install RMD horizontal supports at first floor level
- 8. Remove internal structure down to first floor level
- 9. Install RMD horizontal supports at ground floor level
- 10. Remove internal structure down to ground floor level
- 11. Install pile and needle beams to allow removal of rear and side walls
- 12. Demolish rear wall and side walls to allow ground floor walls to be completely demolished
- 13. Remove ground floor structural slab
- 14. Reduce ground Locally to 500mm below ground floor level or to U/S of footing whichever deeper.
- 15. All existing internal foundations and drainage to be grubbed out as necessary.
- 16. Bung existing drainage system at ground floor level within the front drive to prevent backup from existing drainage system

6.4 Reinforced Concrete Underpinning/Basement Construction

Due to the extents and depth of underpinning required, it is likely to necessitate a singlephase underpinning arrangement to the basement structure generally.

1. Excavate down to the base of the underpinning in the sequence provided and cast the reinforced concrete wall and underpinning to the existing walls. (Provide vertical sacrificial props as necessary if underside of existing corbeling is in poor condition) Ensure underpin trench is fully shored using M8 sheet piles and propped horizontally with acrow props. After each section of underpin is cast the working trench should be backfilled with arisings to ground level.

- Dry pack to be provided between top of underpinning and underside of existing footing. Snap off corbel as necessary. If existing concrete footings are found dowel bar tie into underpin section vertically.
- 3. It may be necessary to provide ground water control during the construction works. If soils encountered appear to be unstable, loose or saturated consideration should be given in to splitting the vertical height of the underpin.
- 4. Once all underpins have been cast the existing ground level is to be excavated to 300mm above the base of the first stage of horizontal props. Wailing beam and horizontal props are to be installed as the excavation progresses to provide adequate support.
- 5. Repeat stages 4 until formation level is reached.
- 6. Excavate to formation level of basement level.
- 7. Repeat stages above until pool formation level is reached.
- At formation level fix reinforcement and cast the new basement reinforced slab, including new drainage and sump/pump points required for the waterproofing and Plant Room.
- 9. Install scaffold frame to create working platform from basement formation level.
- 10. Install new padstones to the proposed ground floor steel beams
- 11. Install new steelwork at ground floor level and lay ground floor metal deck and reinforcement.
- 12. Cast and cure new concrete ground floor structure.
- 13. Install new lining walls and fully tie to top of the new retaining structure to ensure retaining structure is fully propped in the permanent case.
- 14. Remove the previously installed horizontal temporary props to the underpin sections leaving propping to the levels above
- 15. Remove all temporary propping as construction progresses when concrete is fully cured.
- 16. Install waterproofing as necessary.

6.5 Principal Contractor Responsibilities

The Contractor is entirely responsible for maintaining the stability of all existing buildings and structures, within and adjacent to the works, and of all the works from the date of possession of the site until practical completion of the works.

The contractor shall install and maintain all necessary temporary works and shall produce a Temporary Works Register. The temporary works proposals shall be checked and calculations and signed off by a qualified TWC (Temporary Works Co-Ordinator).

Under no circumstances will any structural alterations be carried out prior to the project structural engineer commenting on the contractor's temporary works proposals.

The contractor is to familiarise himself with the building and its structure so that he is aware of the nature and magnitude of the loads to be supported.

Particular care is to be taken to ensure that temporary props are regularly inspected and remain adequately seated and tightened so that support to the structure above is not allowed to yield during building operations.

The contractor is to ensure that any temporarily propped structure is adequately wedged, pinned or packed off the permanent works using suitably sized and spaced steel shims fixed in position prior to removal of any temporary supports.

In addition, the contractor shall ensure that loads are transferred from temporary supports/props to the permanent structure without resulting in excessive deflection/movement of the temporary or permanent structure. The contractor shall assess the need for jacking or pre-deflection of permanent structural members prior to transferring loads from temporary supports/props to ensure that deflections of the permanent structure, when loaded, does not result in excessive deflection due to slack connections or any damage (including cracking) to any of the permanent structures or buildings, etc.

The contractor shall ensure that any completed or partially completed structural element is not overloaded. Details of design loads may be obtained from the structural engineer upon request.

All temporary works to support the sides of excavations for new foundations shall be designed in accordance with BS 8000 part 1: 1989 and any other relevant approved documents.

The designated Temporary Works Co-Ordinator (TWC) should be employed to oversee all temporary works elements during all construction stages. He may be assisted on site by a Temporary Works Supervisor (TWS). If a variation to any Temporary Works Design is required by on site conditions the installation shall be stopped. The variation must then be checked or modified by the Temporary Work Designer (TWD) and approved by the Temporary Works Co-Ordinator prior to continuing with the installation.

6.6 CDM Regulations 2015

This particular project will require careful consideration by all parties in regards to their roles and responsibilities under to the 2015 CDM (Construction and Design Management) Regulations. The particularly onerous requirements will revolve around the permanent design works and temporary design works and installation for the project. There will therefore need to be a carefully controlled process where the procedures and methodologies are detailed and then followed by the appropriate designers and contractors.

The primary concern with this project is the temporary works processes that will need to be managed initially by the design team and subsequently prior to works commencing on site by the Principal Contractor and his Temporary Works Design Team.

This will entail the production of a Temporary Works Register by the Temporary Works Co-Ordinator for the project who will be appointed by the Principal Contractor. The Temporary Works Co-Ordinator will then need to liaise with the Temporary Works Designers as well as the individual sub-contractors. This is to ensure that at all times the works and adjoining properties are safe from any structural instability or failure. This will then ensure the safety of the site personnel, the adjoining occupiers and the general public. The Principal Designer for the project will also have an obligation to ensure that this is carried through from the design phase through into the construction phase. The Principal Designer will need to liaise with the Temporary Works Designer prior to any temporary works being designed and executed on site. This is to ensue that continuity of any methodologies and understandings of the permanent works are transferred through to the construction phase and any temporary works design requirements.

Therefore, there will be a considerable amount of liaison between the Principal Designer and the Principal Contractor to ensure that this is managed efficiently and accurately and hence significantly reduce the risk of any failures.

The Client themselves will need to be aware of all of these processes going on as part of their project delivery. In addition to this, they will also share the responsibility with the Principal Contractor for all the welfare facilities and accommodation required for the site personnel.

18

This will be particularly tricky in relation to the significant site constraints with regards to space. However, this is something that can be resolved within the pre-start planning phase and as part of any tender appraisal process.

Above ground level, the project is fairly straightforward and nothing in the preliminary proposals would suggest that the usual construction methodologies for a structure of this size, type and framing are out of the ordinary. Therefore, they should be well within the capabilities of a competent contractor.

There will be the usual requirements for a Pre-Construction Information File to be prepared by the Principal Designer in conjunction with the Client. This will need to include a significant amount of documentation in regards to the adjoining buildings, site geology, services and any other unusual hazards.

Following this and prior to works commencing on site, the Principal Contractor will need to prepare his Construction Phase Plan which should be sufficiently developed to allow works commence on site. Within this document there will be procedures outlined for the works themselves along with the temporary works management processes.

During the construction phase and following the completion of the building the contents and documentation associated with the Health & Safety File will need to be prepared. This is usually carried out by the Principal Designer in conjunction with the Principal Contractor. The file itself will then be presented to the Client shortly after completion of the building. It is normally then made readily available for any users of the building with regards to maintenance and, operations and any alterations / extensions in the future. Ideally a copy should be placed with the Deeds for future buyers and users of the property.

7.0 Conclusions

7.1 Evaluation of Project

Using current good practice in executing the works, it is considered that the proposed development at 34 Nassau Road can be realised whilst maintaining adequate temporary vertical and horizontal support to the ground and to all the surrounding masonry structures.

The final form of the basement construction will minimise any potential ground movements and will new create a load path for vertical and horizontal loads that does not overload the surface geology.

The proposed development does not increase the area of hard standing impermeable to rain and as such does not adversely impact on the existing site hydrology or increase surface water discharge volume from site.

Detailed site investigation, design calculations, drawings and method statements will be produced prior to commencement onsite for issue to the contractor, building control and party wall surveyors. Any hazards remaining after design statement will be developed as the design progresses to highlight residual design risks outside those expected in standard construction.

8.0 Certification

Signed: J.M.Loghin	Title: Designer
Name: Joseph McLoughlin	Date: March 2024

Signed:	Title: Checker		
Name: David Smith	Date: March 2024		

I certify that the staff who have prepared the above Design and Check are competent to carry out their duties and that they have used reasonable professional skill and care.

Eur Ing David Smith BSc(Hons), CEng, MICE, MIStructE, CMaPS, MFPWS, FCABE, ACIArb

APPENDIX A DRAWINGS

STEELWORK

1:50

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND INFORMATION. CONSTRUCTION: FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE. IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

CDM 2015 DESIGNER NOTES

Notes

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK.
- 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING. CONCRETE MIX SPECIFICATIONS
- SPECIAL FOUNDATION PANELS CONCRETE MIX TO BE RC50 (C40/50 STRENGTH CLASS) WITH A MINIMUM CEMENT CONTENT OF 340kg/m3 AND A MAXIMUM WATER/CEMENT RATIO OF 0.45. MAXIMUM AGGREGATE SIZE TO BE 20mm.
- BASEMENT SLAB CONCRETE MIX TO BE RC35 (C28/35 STRENGTH CLASS) WITH A MINIMUM CEMENT CONTENT OF 280kg/m3 AND A MAXIMUM WATER/CEMENT RATIO OF 0.60. MAXIMUM AGGREGATE SIZE TO BE 20mm.
- 9. CONCRETE TO BE WELL VIBRATED TO ENSURE A SOLID MASS FREE FROM VOIDS 10. ALL WATERPROOFING TO CONTRACTORS DETAILS AND
- SPECIFICATION. 11. 50mm CONCRETE BLINDING TO BE INCORPORATED BELOW SPECIAL FOUNDATION WALL PANEL BASE AND BASEMENT FLOOR SLAB.

NOTE: NUMBERING DENOTES SEQUENCE FOR CASTING OF BASEMENT WALL SECTIONS (MAX 1000mm WIDE). EACH SECTION TO BE CURED PRIOR TO MOVING TO THE NEXT SECTION IN SEQUENCE	P1 FIRST ISSUE JM 28.03.24
W LINE	ISSUE REVISION BY DATE THIS DRAWING IS THE PROPERTY OF DAVID SMITH ASSOCIATES. IT MUST NOT BE REPRODUCED, COPIED NOR ITS CONTENTS DIVULGED WITHOUT THEIR PERMISSION. © DAVID SMITH ASSOCIATES ISSUE PRELIMINARY CLIENT PIH ARCHITECTI IRE
	CONTRACT 34 NASSAU ROAD LONDON
	TITLE PROPOSED BASEMENT LAYOUT
	ARCHITECT RJH ARCHITECTURE DRAWN CHECKED DATE SCALE JM TG MAR' 24 1:50 @A1
	Dista David Smith Associates Consulting Structural & Civil Engineers Tel: (01604)782620 Email: northampton@dsagroup.co.uk

Website: www.dsagroup.co.uk

24

DRAWING

NUMBER

Northampton NN3 6WL

54720/01

REVISION

P1

NOTE: DELTA MEMBRANE WATERPROOFING SYSTEM, INCLUDING DRAINAGE SYSTEM, SUMP AND PUMPS ARE TO BE DESIGNED BY SPECIALIST MANUFACTURE AND INSTALLED IN ACCORDANCE

CONSIDERATION SHOULD BE TAKEN TO TREAT ALL NEW CONCRETE WHICH INCLUDES THE BASEMENT SLAB AND WALLS WITH A FREE LIME TREATMENT SUCH AS KOSTER POLYSIL TG500 BEFORE THE INTRODUCTION OF THE DELTA MEMBRANES. THIS IS REQUIRED TO PREVENT FREE LIME BUILD UP BENEATH OR BEHIND THE MEMBRANES, IMPEDING FLOW. INTERNAL WALLS CONSTRUCTED DIRECTLY OFF THE SLAB SHOULD EITHER BE WRAPPED WITH

INTERNAL WALLS AND FLOORS SHOULD BE FINISHED WITH A WATERPROOFING SLURRY (DELTA KOSTER NB1) PRIOR TO INSTALLING DELTA MEMBRANE.

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND

CONSTRUCTION:

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK.
- 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING.

ISSUE R				JM BY	28.03.24 DATE
THIS DR IT MUST DIVULGI ©DAVID	AWING IS T NOT BE RE ED WITHOUT SMITH ASS	HE PROPERTY PRODUCED, CO I THEIR PERMI OCIATES	of David Smith Dpied Nor Its Co Ssion.	ASSOC ONTENT	IATES. TS
ISSUE	PRI	E L I 1	MINZ	4 F	R Y
CLIENT					
RJH	ARCH	IITECTU	JRE		
CONTRA	IASSA	U ROAE)		
	IDON				
ARCHITE	СТ				
RJH	ARCH	IITECTU	JRE		
DRAWN JM	CHECKED TG	DATE MAR' 24	SCALE 1:20 & 1:10	@A1	
Tel: Email:	(01604)7	David S Consulting 82620	Smith As Structural & C 8 Dun 2 co.uk Moult	SSOC <i>ivil En</i> can Clo	ciates gineers
Websit	e: www.dsa	group.co.uk	Northa	ampton	NN3 6WL
DRAWIN NUMBER	G 24	4 5	4720/02	F	REVISION P1

1:50

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND

CONSTRUCTION:

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK.
- 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING.

P1 FIRST	ISSUE				JM	28.03.24
ISSUE REVIS	ION				BY	DATE
THIS DRAWIN IT MUST NOT DIVULGED W © DAVID SMI ⁻	IG IS THE PF BE REPROD ITHOUT THE FH ASSOCIA	ROPERTY C DUCED, CO IR PERMIS TES	of david : Pied nor Sion.	SMITH A	ASSOCI <i>I</i> INTENT	ATES. S
	R E I	LIN	<i>411</i>	V /	A R	P Y
CLIENT						
RJH AF	RCHITI	ECTU	RE			
34 NAS	34 NASSAU ROAD LONDON					
	DSED I	BASE	MEN	T SE	ECTI	ONS
ARCHITECT	RCHITI	ECTU	RE			
DRAWN CH JM T	IECKED DA G M	TE AR' 24	SCALE 1:50 @)A1		
D S Tel: (0' Email: no Website: wy	Da Da Co 1604)782620 rthampton@ ww.dsagroup	vid S nsulting S oco.uk	mith Structura	AS Al & Ci 8 Duno Moulto Northa	SSOC ivil Eng can Clos on Park	gineers se
DRAWING NUMBER	24	54	1720/	03	R	evision P1

1:50

- ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK.
- 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING.
- STEELWORK NOTES 7 ALL STEELWORK TO BE GRADE S355 TO B.S.5950-2. ALL MATERIALS TO COMPLY WITH B.S. 5950:2000 AND TO B.S.C.A.1/89 - NATIONAL STRUCTURAL STEELWORK SPECIFICATION
- 8. ALL STEELWORK TO BE SHOT BLASTED TO SA 2.5 OR MECHANICALLY WIRE BRUSHED TO REMOVE ALL SURFACE CONTAMINATION, RUST OR MILLSCALE AND HAVE 2 COATS OF ZINC PHOSPHATE PRIMER APPLIED TO ACHIEVE A MINIMUM DRY FILM THICKNESS OF 75 MICRONS PER COAT, PRIOR TO SITE DELIVERY. AFTER ERECTION OF STEELWORK IS COMPLETE ANY DAMAGED SURFACES TO BE MADE GOOD WITH 2 COATS OF ZINC PHOSPHATE PRIMER TO ACHIEVE A MINIMUM DRY FILM THICKNESS OF 75 MICRONS PER COAT.
- 9. GRADE 4.6 BOLTS TO B.S.4190 AND GRADE 8.8 BOLTS TO B.S.3692. ALL BOLTS AND NUTS TO BE HOT DIP SPUN GALVANISED TO B.S. 729. A ROUND WASHER, TO B.S. 4320 AND HOT SPUN GALVANISED TO B.S. 729, TO BE PROVIDED UNDER EVERY NUT TO MINIMISE DAMAGE TO COATING. ALL NUTS TO BE CORRECTLY TIGHTENED AND HAVE AT LEAST 2 THREADS PROJECTING BEYOND THE NUT. ALL BOLTS TO HAVE STRUCTURAL THREAD AND ROUND SHANK.
- 10. FIRE SURROUND TO ALL STEELWORK AS PER ARCHITECTS REQUIREMENTS

					00.00.01
P1 ISSUE	REVISION			JM BY	28.03.24 DATE
THIS D IT MUS DIVULO ©DAV	RAWING IS T ST NOT BE RE GED WITHOU ID SMITH ASS	HE PROPERT PRODUCED, T THEIR PERM SOCIATES	Y OF DAVID SMITH COPIED NOR ITS (MISSION.	ASSOCI	ATES. S
ISSUE	PRI	ELI	MIN	A F	R Y
CLIENT	-				
RJŀ	H ARCH	HITECT	URE		
CONTF 34 LO	NASSA NDON	U ROA	D		
BAS SH	SEMEN OWING	IT LAY(STRU	OUT CTURE A	BOV	E
ARCHI	TECT				
RJŀ	H ARCH	HITECT	URE		
DRAWI JM	N CHECKEI TG	DATE MAR' 24	SCALE 1:50 & 1:10	@A1	
Tel: Email Webs	(01604)7 northams ite: www.dsa	David Consultin 82620 pton@dsagro igroup.co.uk	Smith A g Structural & G up.co.uk Moul North	SSOC Civil En ncan Clo ton Park nampton	ciates gineers ¹ Se NN3 6WL
DRAWI NUMBE	NG R 24	4	54720/11	R	EVISION P1

ALL DIMENSIONS TO BE CONFIRMED ON SITE PRIOR TO ORDERING / FABRICATION OF MATERIALS AND COMMENCEMENT OF WORKS

(SHOWING ROOF SUPPORTS)

1:50

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK.
- 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING.
- 7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING No. 12 FOR TIMBER NOTES

P1 I	FIRST ISSUE				JM	28.03.24
ISSUE F	REVISION				BY	DATE
THIS DF IT MUST DIVULG ©DAVIE	RAWING IS TH I NOT BE REF ED WITHOUT D SMITH ASSO	E PROPERTY PRODUCED, CO THEIR PERMIS DCIATES	of David : DPIED Nor Ssion.	SMITH A R ITS CO	SSOCI/ NTENT	ATES. S
ISSUE	P R E	ELIN	M I I	V earrow	A R	P Y
CLIENT						
RJH	I ARCH	ITECTL	IRE			
34 N LON	NASSAI NDON	J ROAD				
PRC SHC	DPOSE DWING	D SECC ROOF \$)ND F SUPP	LOC OR1)R TS	
ARCHIT	ECT					
RJH	I ARCH	ITECTU	IRE			
DRAWN JM	CHECKED TG	DATE MAR' 24	SCALE 1:50 @)A1		
Tel: Email: Websit	Dist David Smith Associates Consulting Structural & Civil Engineers Tel: (01604)782620 8 Duncan Close Email: northampton@dsagroup.co.uk Moulton Park Website: www.dsagroup.co.uk Northampton NN3 6WL					
DRAWIN NUMBER	R 24	. 5	4720/	13	RI	EVISION P1

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND

CONSTRUCTION:

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

- IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

SEQUENCE OF CONSTRUCTION (PHASE 1 STAGE '3 & 4')

PRELIMINARIES: STRIP AND REMOVE NON-LOAD BEARING ELEMENTS, CEILINGS ETC

- INSTALL WAILING AND HORIZONTAL PROPS AS SHOWN ON PLAN 300mm ABOVE EXISTING SECOND FLOOR LEVEL
- CAREFULLY DEMOLISH INTERNAL FIRST FLOOR WALLS DOWN TO FIRST
- INSTALL WAILING AND HORIZONTAL PROPS AS SHOWN ON PLAN 300mm
- ABOVE EXISTING FIRST FLOOR LEVEL AND 300mm ABOVE EXISTING
- CAREFULLY DEMOLISH EXISTING LEAN-TO ROOF STRUCTURE AND FIRST
- CAREFULLY DEMOLISH EXISTING REAR SINGLE STORY STRUCTURE (CAN BE DONE AT ANY TIME TO SUIT PROGRAM)

Notes

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK. 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED
- FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING.
- 7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING No. 12 FOR TIMBER NOTES
- 8. ALL TEMPORARY WORKS HAVE BEEN DESIGNED IN ACCORDANCE WITH BS 5975:2008
- 9. ALL SCAFFOLDING TO BE DESIGNED IN ACCORDANCE WITH WITH NASC TG20:13 10. PRINCIPAL CONTRACTOR TO APPOINT TEMPORARY WORKS
- COORDINATOR (TWC) TO OVERSEE ALL AREAS OF TEMPORARY WORK UNTIL COMPLETION OF ASSOCAITED WORKS.
- 11. TWC TO INFORM TEMPORARY WORKS DESIGNER (TWD) OF ANY CHANGES MADE TO TEMPORARY WORKS ON SITE AND GAIN FORMAL SIGN OFF PRIOR TO INSTALLATION.
- 12. CONTRACTOR/CLIENT TO ENSURE ALL TEMPORARY WORKS DESIGNS HAVE BEEN CHECKED TO THE RELEVANT CATEGORY OF DESIGN CHECK AS DETAILED WITHIN TABLE 1 IN BS 5975:2008
- CONTRACTOR TO SUBMIT DETAILED METHOD STATEMENT AND SEQUENCE OF WORKS TO THE TWD AND TWC FOR CHECKING PRIOR TO COMMENCEMENT OF WORKS ON SITE.
- CONTRACTOR TO CONFIRM ANY BUILDING MATERIAL WEIGHTS TO BE STORED IN THE AREA OF TEMPORARY SUPPORT PRIOR TO THE COMMENCEMENT OF WORKS.

P1	FIRST ISSUE			JM	28.03.24	
ISSUE	REVISION			BY	DATE	
THIS I IT MUS DIVUL © DAV	DRAWING IS TH ST NOT BE REF GED WITHOUT 'ID SMITH ASSO	E PROPERTY (PRODUCED, CC) THEIR PERMIS DCIATES	OF DAVID SMITH IPIED NOR ITS CO ISION.	ASSOCI. ONTENT	ATES. S	
ISSUE	P R E	ELIN	AIN	4 <i>R</i>	P Y	
CLIEN	Т					
RJI	H ARCH	ITECTU	RE			
CONT	RACT					
34	NASSA	J ROAD				
LO	NDON					
EN PH SH	TITLE ENABLING WORKS PHASE 1, STAGES 1-5 SHT 1 OF 6					
ARCHI	TECT					
RJI	H ARCH	ITECTU	RE			
draw JM	N CHECKED	DATE MAR' 24	SCALE 1:50 @A1			
DISA David Smith Associates Consulting Structural & Civil Engineers						
Tel: Emai Webs	(01604)78 : northampt site: www.dsag	2620 on@dsagroup proup.co.uk	8 Dun .co.uk Moulto Northa	can Clo on Park ampton	se NN3 6WL	
DRAW				R	EVISION	

54720/21

P1

24

NUMBER

| |

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK. 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED
- FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING. 7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING
- No. 12 FOR TIMBER NOTES 8. ALL TEMPORARY WORKS HAVE BEEN DESIGNED IN
- ACCORDANCE WITH BS 5975:2008
- 9. ALL SCAFFOLDING TO BE DESIGNED IN ACCORDANCE WITH WITH NASC TG20:13 10. PRINCIPAL CONTRACTOR TO APPOINT TEMPORARY WORKS
- COORDINATOR (TWC) TO OVERSEE ALL AREAS OF TEMPORARY WORK UNTIL COMPLETION OF ASSOCAITED WORKS.
- 11. TWC TO INFORM TEMPORARY WORKS DESIGNER (TWD) OF ANY CHANGES MADE TO TEMPORARY WORKS ON SITE AND GAIN FORMAL SIGN OFF PRIOR TO INSTALLATION.
- 12. CONTRACTOR/CLIENT TO ENSURE ALL TEMPORARY WORKS DESIGNS HAVE BEEN CHECKED TO THE RELEVANT CATEGORY OF DESIGN CHECK AS DETAILED WITHIN TABLE 1 IN BS 5975:2008
- 13. CONTRACTOR TO SUBMIT DETAILED METHOD STATEMENT AND SEQUENCE OF WORKS TO THE TWD AND TWC FOR CHECKING PRIOR TO COMMENCEMENT OF WORKS ON SITE.
- 14. CONTRACTOR TO CONFIRM ANY BUILDING MATERIAL WEIGHTS TO BE STORED IN THE AREA OF TEMPORARY SUPPORT PRIOR TO THE COMMENCEMENT OF WORKS.

P1 FIRST	ISSUE			JM	28.03.24	
ISSUE REVIS	ION			BY	DATE	
THIS DRAWIN IT MUST NOT DIVULGED W © DAVID SMI	NG IS THE PR BE REPROD ITHOUT THE TH ASSOCIA	ROPERTY (DUCED, CO IR PERMIS TES	OF DAVID SMITH PIED NOR ITS C SION.	ASSOCI ONTENT	ATES. S	
	R E I	LIN	ΊΝ	A R	R Y	
CLIENT						
RJH AF	RCHITI	ECTU	RE			
		KUAD				
	JN					
TITLE ENABLING WORKS PHASE 1, STAGES 6 & 7 SHT 2 OF 6						
ARCHITECT						
RJH ARCHITECTURE						
DRAWN CH JM T	G M	TE AR' 24	SCALE 1:50 @A1			
Distant David Smith Associates Consulting Structural & Civil Engineers Tel: (01604)782620 8 Duncan Close Email: northampton@dsagroup.co.uk Moulton Park Website: www.dsagroup.co.uk Northampton NN3 6WL						
DRAWING NUMBER	24	54	1720/22	R	EVISION P1	

ALL DIMENSIONS TO BE CONFIRMED ON SITE PRIOR TO ORDERING / FABRICATION OF MATERIALS AND COMMENCEMENT OF WORKS

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK. 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED
- FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING. 7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING
- No. 12 FOR TIMBER NOTES 8. ALL TEMPORARY WORKS HAVE BEEN DESIGNED IN
- ACCORDANCE WITH BS 5975:2008
- 9. ALL SCAFFOLDING TO BE DESIGNED IN ACCORDANCE WITH WITH NASC TG20:13 10. PRINCIPAL CONTRACTOR TO APPOINT TEMPORARY WORKS
- COORDINATOR (TWC) TO OVERSEE ALL AREAS OF TEMPORARY WORK UNTIL COMPLETION OF ASSOCAITED WORKS.
- 11. TWC TO INFORM TEMPORARY WORKS DESIGNER (TWD) OF ANY CHANGES MADE TO TEMPORARY WORKS ON SITE AND GAIN FORMAL SIGN OFF PRIOR TO INSTALLATION.
- 12. CONTRACTOR/CLIENT TO ENSURE ALL TEMPORARY WORKS DESIGNS HAVE BEEN CHECKED TO THE RELEVANT CATEGORY OF DESIGN CHECK AS DETAILED WITHIN TABLE 1 IN BS 5975:2008
- 13. CONTRACTOR TO SUBMIT DETAILED METHOD STATEMENT AND SEQUENCE OF WORKS TO THE TWD AND TWC FOR CHECKING PRIOR TO COMMENCEMENT OF WORKS ON SITE.
- 14. CONTRACTOR TO CONFIRM ANY BUILDING MATERIAL WEIGHTS TO BE STORED IN THE AREA OF TEMPORARY SUPPORT PRIOR TO THE COMMENCEMENT OF WORKS.

P1 FIRST IS	SUE				JM	28.03.24	
ISSUE REVISIO	N				BY	DATE	
THIS DRAWING IT MUST NOT BE DIVULGED WITH ©DAVID SMITH	THIS DRAWING IS THE PROPERTY OF DAVID SMITH ASSOCIATES. IT MUST NOT BE REPRODUCED, COPIED NOR ITS CONTENTS DIVULGED WITHOUT THEIR PERMISSION. © DAVID SMITH ASSOCIATES						
PR	PRELIMINARY						
CLIENT							
RJH AR	CHITE	ECTU	RE				
CONTRACT							
34 NASS	SAUF	ROAD					
	N						
TITLE PILE + NEEDLE SECTION STAGE '7' SHT 3 OF 6							
ARCHITECT							
DRAWN CHEC	CKED DA	TE AR' 24	SCALE 1:20 @)A1			
David Smith Associates Consulting Structural & Civil Engineers Tel: (01604)782620 8 Duncan Close Email: northampton@dsagroup.co.uk Moulton Park Website: www.dsagroup.co.uk Northampton NN3 6WL							
DRAWING NUMBER	24	54	1720/	23	R	EVISION P1	

Notes

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK. 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED
- FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING. 7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING
- No. 12 FOR TIMBER NOTES 8. ALL TEMPORARY WORKS HAVE BEEN DESIGNED IN
- ACCORDANCE WITH BS 5975:2008
- 9. ALL SCAFFOLDING TO BE DESIGNED IN ACCORDANCE WITH WITH NASC TG20:13 10. PRINCIPAL CONTRACTOR TO APPOINT TEMPORARY WORKS
- COORDINATOR (TWC) TO OVERSEE ALL AREAS OF TEMPORARY WORK UNTIL COMPLETION OF ASSOCAITED WORKS. 11. TWC TO INFORM TEMPORARY WORKS DESIGNER (TWD) OF ANY
- CHANGES MADE TO TEMPORARY WORKS ON SITE AND GAIN FORMAL SIGN OFF PRIOR TO INSTALLATION. 12. CONTRACTOR/CLIENT TO ENSURE ALL TEMPORARY WORKS
- DESIGNS HAVE BEEN CHECKED TO THE RELEVANT CATEGORY OF DESIGN CHECK AS DETAILED WITHIN TABLE 1 IN BS 5975:2008
- 13. CONTRACTOR TO SUBMIT DETAILED METHOD STATEMENT AND SEQUENCE OF WORKS TO THE TWD AND TWC FOR CHECKING PRIOR TO COMMENCEMENT OF WORKS ON SITE.
- 14. CONTRACTOR TO CONFIRM ANY BUILDING MATERIAL WEIGHTS TO BE STORED IN THE AREA OF TEMPORARY SUPPORT PRIOR TO THE COMMENCEMENT OF WORKS.

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND INFORMATION.

CONSTRUCTION:

1. N/A

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

4		0
<u>12</u>	250	3
	,	(5)
4		2

PW LINE _____

1:50

CDM 2015 DESIGNER NOTES

- IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND
- CONSTRUCTION:

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

Notes

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK. 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED
- FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING. 7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING
- No. 12 FOR TIMBER NOTES 8. ALL TEMPORARY WORKS HAVE BEEN DESIGNED IN
- ACCORDANCE WITH BS 5975:2008
- 9. ALL SCAFFOLDING TO BE DESIGNED IN ACCORDANCE WITH WITH NASC TG20:13 10. PRINCIPAL CONTRACTOR TO APPOINT TEMPORARY WORKS
- COORDINATOR (TWC) TO OVERSEE ALL AREAS OF TEMPORARY WORK UNTIL COMPLETION OF ASSOCAITED WORKS.
- 11. TWC TO INFORM TEMPORARY WORKS DESIGNER (TWD) OF ANY CHANGES MADE TO TEMPORARY WORKS ON SITE AND GAIN FORMAL SIGN OFF PRIOR TO INSTALLATION.
- 12. CONTRACTOR/CLIENT TO ENSURE ALL TEMPORARY WORKS DESIGNS HAVE BEEN CHECKED TO THE RELEVANT CATEGORY OF DESIGN CHECK AS DETAILED WITHIN TABLE 1 IN BS 5975:2008
- 13. CONTRACTOR TO SUBMIT DETAILED METHOD STATEMENT AND SEQUENCE OF WORKS TO THE TWD AND TWC FOR CHECKING PRIOR TO COMMENCEMENT OF WORKS ON SITE.
- 14. CONTRACTOR TO CONFIRM ANY BUILDING MATERIAL WEIGHTS TO BE STORED IN THE AREA OF TEMPORARY SUPPORT PRIOR TO THE COMMENCEMENT OF WORKS.

P	1 FIRST	ISSUE			JM	28.03.24	
TH IT I DIV ©E	S DRAWIN NUST NOT ULGED W	NG IS THE F BE REPRO ITHOUT TH TH ASSOCI	PROPERTY (DDUCED, CC IEIR PERMIS ATES	DF DAVID SMITH PIED NOR ITS (SION.	H ASSOC	CIATES. ITS	
ISS	P .	R E	LIN	AIN	Al	R Y	
cLI R	^{ent} JH Al	RCHIT	FECTU	RE			
со З. L	CONTRACT 34 NASSAU ROAD LONDON						
™ E P S	TITLE ENABLING WORKS PHASES '4' SHT 5 OF 6						
AR R	ARCHITECT RJH ARCHITECTURE						
DR. JI	AWN CH M T	IECKED D G	DATE MAR' 24	SCALE 1:50 @A1			
	DIS A David Smith Associates Consulting Structural & Civil Engineers						
Te Er W	l: (0 nail: no ebsite: wy	1604)7826 rthampton ww.dsagro	20 @dsagroup up.co.uk	8 Du co.uk Mou Norti	ncan Cl Iton Par namptor	lose k n NN3 6WL	
DR/ NUI	AWING MBER	24	54	4720/25		REVISION P1	
ALL DIMENSIONS TO BE CONFIRMED ON SITE PRIOR TO ORDERING / FABRICATION OF MATERIALS AND COMMENCEMENT OF WORKS

Notes

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK. 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED
- FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING. 7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING
- No. 12 FOR TIMBER NOTES 8. ALL TEMPORARY WORKS HAVE BEEN DESIGNED IN
- ACCORDANCE WITH BS 5975:2008
- 9. ALL SCAFFOLDING TO BE DESIGNED IN ACCORDANCE WITH WITH NASC TG20:13
- 10. PRINCIPAL CONTRACTOR TO APPOINT TEMPORARY WORKS COORDINATOR (TWC) TO OVERSEE ALL AREAS OF TEMPORARY WORK UNTIL COMPLETION OF ASSOCAITED WORKS.
- 11. TWC TO INFORM TEMPORARY WORKS DESIGNER (TWD) OF ANY CHANGES MADE TO TEMPORARY WORKS ON SITE AND GAIN FORMAL SIGN OFF PRIOR TO INSTALLATION.
- 12. CONTRACTOR/CLIENT TO ENSURE ALL TEMPORARY WORKS DESIGNS HAVE BEEN CHECKED TO THE RELEVANT CATEGORY OF DESIGN CHECK AS DETAILED WITHIN TABLE 1 IN BS 5975:2008
- 13. CONTRACTOR TO SUBMIT DETAILED METHOD STATEMENT AND SEQUENCE OF WORKS TO THE TWD AND TWC FOR CHECKING PRIOR TO COMMENCEMENT OF WORKS ON SITE.
- 14. CONTRACTOR TO CONFIRM ANY BUILDING MATERIAL WEIGHTS TO BE STORED IN THE AREA OF TEMPORARY SUPPORT PRIOR TO THE COMMENCEMENT OF WORKS.

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND INFORMATION.

CONSTRUCTION:

1. N/A

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

P1	FIRST ISSUE			JM	28.03.24		
ISSUE	REVISION			BY	DATE		
THIS D IT MUS DIVUL © DAV	THIS DRAWING IS THE PROPERTY OF DAVID SMITH ASSOCIATES. IT MUST NOT BE REPRODUCED, COPIED NOR ITS CONTENTS DIVULGED WITHOUT THEIR PERMISSION. © DAVID SMITH ASSOCIATES						
ISSUE	PRE	<u>CLIN</u>	ΊΝ	4 <i>R</i>	$\frac{1}{2}Y$		
CLIEN	Г						
RJł	H ARCH	ITECTU	RE				
CONTF	RACT NASSAL	J ROAD					
LO	NDON						
EN EN PH	ABLING ASE '5' T 6 OF €	WORKS	3				
ARCHI	TECT						
RJI	H ARCH	ITECTU	RE				
DRAW JM	N CHECKED TG	DATE MAR' 24	SCALE 1:50 @A1				
D		David S	mith As	SSOC	iates		

8 Duncan Close

Northampton NN3 6WI

REVISION

P1

(01604)782620

Website: www.dsagroup.co.uk

24

Email: northampton@dsagroup.co.uk Moulton Park

54720/26

Tel:

DRAWING NUMBER

ALL DIMENSIONS TO BE CONFIRMED ON SITE PRIOR TO ORDERING / FABRICATION OF MATERIALS AND COMMENCEMENT OF WORKS

PHASE 1

- 1. THE EXISTING SLAB HAS BEEN REMOVED AND EXCAVATED DOWN TO TOP OF THE FORMATION LEVEL OF THE EXISTING FOUNDATIONS.
- 2. THE SPECIAL FOUNDATION IS TO BE CONSTRUCTED IN ACCORDANCE WITH THE SEQUENCE HIGHLIGHTED ON PLAN.
- THE LOCATIONS OF ALL PROPOSED BAYS ARE TO BE MARKED ON THE EXISTING WALLS PRIOR TO COMMENCING WORKS.
- ALL DRAWINGS, SPECIFICATION AND CONSTRUCTION METHODOLOGY SHOULD BE REFERRED TO PRIOR TO
- COMMENCING WORKS. 4. A SAFE MEANS OF ACCESS/EGRESS IS TO BE PROVIDED AT ALL TIMES DURING THE CONSTRUCTION WORKS.

PLAN 1:25

PHASE 2

- 5. EXCAVATE THE PROPOSED SPECIAL FOUNDATION BAYS AT
- MAXIMUM 1m WIDE STRIPS. 6. PROCEED WITH EXCAVATION TO THE PROPOSED FORMATION
- LEVEL INDICATED ON PLAN. 7. INSTALL THE TRENCH SUPPORTS AS INDICATED AROUND THE
- EXCAVATION AS THE EXCAVATION EXTENDS DOWN ENSURING THE SIDES OF THE EXCAVATION ARE SUPPORTED AT ALL TIMES 8. DEPENDING ON GROUND CONDITIONS ENCOUNTERED AND SOIL
- PARAMETERS, IT MAY BE A REQUIREMENT TO SUPPORT THE BACK FACE OF THE EXCAVATION. THIS SHALL BE SUPPORTED USING TIMBER BOARDS/TRENCH SHEETS AND BRACED BACK TO THE EXCAVATION FACE IN ORDER TO RESTRAIN THE REAR WALL FACE OF THE EXCAVATION.
- 9. ONCE IT HAS BEEN EXCAVATED, THE UNDERSIDE OF THE EXISTING FOOTING SHALL BE CLEANED OF ANY LOOSE CRUMPLED MATERIAL TO PROVIDE A SOUND SURFACE TO THE WALL TO BE SUPPORTED.

Notes

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- 5. CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK. 6. ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED
- FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING. 7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING
- No. 12 FOR TIMBER NOTES 8. ALL TEMPORARY WORKS HAVE BEEN DESIGNED IN
- ACCORDANCE WITH BS 5975:2008
- 9. ALL SCAFFOLDING TO BE DESIGNED IN ACCORDANCE WITH WITH NASC TG20:13
- 10. PRINCIPAL CONTRACTOR TO APPOINT TEMPORARY WORKS COORDINATOR (TWC) TO OVERSEE ALL AREAS OF TEMPORARY WORK UNTIL COMPLETION OF ASSOCAITED WORKS.
- 11. TWC TO INFORM TEMPORARY WORKS DESIGNER (TWD) OF ANY CHANGES MADE TO TEMPORARY WORKS ON SITE AND GAIN FORMAL SIGN OFF PRIOR TO INSTALLATION. 12. CONTRACTOR/CLIENT TO ENSURE ALL TEMPORARY WORKS
- DESIGNS HAVE BEEN CHECKED TO THE RELEVANT CATEGORY OF DESIGN CHECK AS DETAILED WITHIN TABLE 1 IN BS 5975:2008
- 13. CONTRACTOR TO SUBMIT DETAILED METHOD STATEMENT AND SEQUENCE OF WORKS TO THE TWD AND TWC FOR CHECKING PRIOR TO COMMENCEMENT OF WORKS ON SITE.
- 14. CONTRACTOR TO CONFIRM ANY BUILDING MATERIAL WEIGHTS TO BE STORED IN THE AREA OF TEMPORARY SUPPORT PRIOR TO THE COMMENCEMENT OF WORKS.

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND INFORMATION.

CONSTRUCTION:

1. N/A

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

			I			
			I			
			I			
P1	FIRST ISSUE			JM	28.03.24	
ISSUE	REVISION			BY	DATE	
THIS D	DRAWING IS TH				ATES.	
DIVUL	GED WITHOUT	THEIR PERMIS	SION.		5	
© DAV	ID SMITH ASSU	CIATES				
19905	ם מ ת	¬ <i>т</i> т л	ΛΙΝΙ	Λ Γ) V	
	ΡΚΕ			4 N	í Y	
CLIEN	Т					
RJł	H ARCH	ITECTU	RE			
CONTR	RACT					
34	34 NASSAU ROAD					
LO	LONDON					
TITLE	TITLE					
SP	SPECIAL FOUNDATION					
SE	SEQUENCING					
сΗ.						
RJI	RJH ARCHITECTURE					
DRAW	N CHECKED	DATE	SCALE			
JM	TG	MAR' 24	1:50 @A1			
			,			
)avid S	mith As	SSOC	riates	
μ	SA	Consulting S	Structural & C	ivil En _i	gineers	

8 Duncan Close

Northampton NN3 6WL

REVISION

P1

(01604)782620

24

Website: www.dsagroup.co.uk

Email: northampton@dsagroup.co.uk Moulton Park

54720/27

Tel:

DRAWING

NUMBER

ALL DIMENSIONS TO BE CONFIRMED ON SITE PRIOR TO ORDERING / FABRICATION OF MATERIALS AND COMMENCEMENT OF WORKS

- THE EXISTING FOUNDATION.
 15. ALLOW TO CURE FOR 24 HOURS BEFORE DRY PACKING. THE EXCAVATION IS THEN TO BE BACKFILLED AND COMPACTED IN
- LAYERS NOT EXCEEDING 600mm THICK. 16. DRY PACK MORTAR TO BE RAMMED INTO THE VOID USING
- 16. DRY PACK MORTAR TO BE RAMMED INTO THE VOID USING HEAVY STEEL RAMMING BAR.
 17. ALLOWING THE DRY PACKING TO CURE FOR 24 HOURS
- 17. ALLOWING THE DRY PACKING TO CURE FOR 24 HOURS PRIOR TO COMMENCING THE EXCAVATION OF THE NEXT PIN IN SEQUENCE.
- 18. THIS PROCESS SHALL BE REPEATED FOR EACH PIN.

TYPICAL UNDERPINNING TRENCH DETAIL

H20 DOWEL BARS @ 300 CTRS AS - PER REINFORCEMENT DRAWING TO PREVIOUS PIN

Notes

- 1. IF IN DOUBT ASK !!! DO NOT SCALE
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL ARCHITECTS AND ENGINEERS DRAWINGS.
- 3. ALL WORK TO BE CARRIED OUT IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, CODES OF PRACTICE AND BUILDING PRACTICE.
- 4. ALL DIMENSIONS TO BE CHECKED PRIOR TO STARTING THE WORKS ON SITE. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER IMMEDIATELY.
- CONTRACTOR TO ASCERTAIN THE LOCATION OF SERVICES ON SITE PRIOR TO STARTING THE WORK.
 ALL DIMENSIONS FOR CONSTRUCTION ARE TO BE OBTAINED
- FROM SITE MEASUREMENTS OR ARCHITECTS SETTING OUT DRAWINGS PRIOR TO MANUFACTURE/BUILDING.7. REFER TO DRAWING No. 11 FOR STEELWORK NOTES & DRAWING
- No. 12 FOR TIMBER NOTES
- 8. ALL TEMPORARY WORKS HAVE BEEN DESIGNED IN ACCORDANCE WITH BS 5975:2008
- 9. ALL SCAFFOLDING TO BE DESIGNED IN ACCORDANCE WITH WITH NASC TG20:13
 10. PRINCIPAL CONTRACTOR TO APPOINT TEMPORARY WORKS
- COORDINATOR (TWC) TO OVERSEE ALL AREAS OF TEMPORARY WORK UNTIL COMPLETION OF ASSOCAITED WORKS.
- TWC TO INFORM TEMPORARY WORKS DESIGNER (TWD) OF ANY CHANGES MADE TO TEMPORARY WORKS ON SITE AND GAIN FORMAL SIGN OFF PRIOR TO INSTALLATION.
 CONTRACTOR/CLIENT TO ENSURE ALL TEMPORARY WORKS
- DESIGNS HAVE BEEN CHECKED TO THE RELEVANT CATEGORY OF DESIGN CHECK AS DETAILED WITHIN TABLE 1 IN BS 5975:2008
- 13. CONTRACTOR TO SUBMIT DETAILED METHOD STATEMENT AND SEQUENCE OF WORKS TO THE TWD AND TWC FOR CHECKING PRIOR TO COMMENCEMENT OF WORKS ON SITE.
- 14. CONTRACTOR TO CONFIRM ANY BUILDING MATERIAL WEIGHTS TO BE STORED IN THE AREA OF TEMPORARY SUPPORT PRIOR TO THE COMMENCEMENT OF WORKS.

CDM 2015 DESIGNER NOTES

IN ADDITION TO THE HAZARDS, AND RISKS NORMALLY ASSOCIATED WITH THE TYPE OF WORK DETAILED ON THIS DRAWING, NOTE THE FOLLOWING SIGNIFICANT RISKS AND INFORMATION.

CONSTRUCTION:

1. N/A

FOR INFORMATION RELATING TO END USE, MAINTENANCE, DEMOLITION, SEE THE HEALTH AND SAFETY FILE.

IT IS ASSUMED THAT ALL WORKS WILL BE CARRIED OUT BY A COMPETENT CONTRACTOR, WHERE APPROPRIATE, TO AN APPROVED METHOD STATEMENT.

EXISTING WALL TO BE UNDERPINNED

CORREX BOARD BY CORDEX OR SIMILAR APPROVED _ SET AGAINST EXPOSED EARTH FACE TO

MAINTAIN LINE OF PARTY WALL OVER

- 125x65 PFC

APPENDIX B CALCULATIONS

DAVID SMITH ASSOCIATES LLP
 Consulting Structural & Civil Engineers
 London
 Northampton
 Cheltenham
 Birmingham
 www.dsagroup.co.uk

Design Notes

Job Ref: 24/54720

RE: 34 NASSAU ROAD, LONDON

The following calculations are in respect of our clients brief relating to **specific structural elements listed on the following page(s).** No responsibility is accepted in respect of other elements of the building. Any assumed bearing stresses must be confirmed on site to the satisfaction of the Building Control Officer.

Dimensions have been obtained from information provided and where no figured dimensions have been provided, scaling has been used. <u>Dimensions indicated on the following calculations are for design purposes only and must not be used for constructional purposes. All dimensions for construction are to be obtained by site measurements prior to manufacture / building.</u>

Appended sketches are to demonstrate certain features of the design and are not intended as working drawings. Where shown, details are intended to identify the main structural features. It is assumed that the work will be carried out by experienced and competent personnel, therefore exhaustive detailing is not required.

Where constructional connection details are indicated on these calculations, these shall not be varied. Any proposed changes should be substantiated by calculation, submitted and approved in writing by the Engineer before fabrication is commenced.

Where Building Control approval is required it is essential that this be obtained before the works proceed or materials are ordered. The contractor must ensure the stability of each element, and overall stability of the construction is maintained until all the works are completed.

These calculations and designs are copyright and must not be reproduced, defaced or passed to any other person or persons for any purpose other than as originally intended

DSA LLP VAT REG : 443 6613 95

Eur Ing **David Smith** BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, **Hitesh Jethwa** BSc Eng (Hons), I.Eng, AMIStructE **Steven Ainge** B.Eng (Hons), I.Eng, AMIStructE **Thomas Garrod** B.Eng (Hons), **Ben Mason** BSc (Hons), IEng, MICE

REFERENCES

British Standards and Codes of Practice indicated below have been used in the preparation of these calculations - all constructional details must be in accordance with all relevant clauses contained in these same standards, associated standards or manufacturer's recommendations and details and normal good practice.

Loadings	[BS 6399 - Part 1:1996, Part 2:1997, Part 3:1988] [BS 648:1964]
Concrete	[BS 8110 - Part 1:1997, Part 3:1985] [BS 8007 : 1987]
Foundations	[BS 8004:1986] [BS 8002 : 1994]
Timber	[BS 5268 - Part 2:2002]
Masonry	[BS 5628 - Part 1:2005, Part 2:2005, Part 3:2005]
Industrial Floor Slabs	[Concrete Society Technical Report 34 (2nd Edition)] [C & CA Technical Report 550] [BCA Tech Note 11]
Steelwork	[BS 5950 - Part 1:2000, Part 3:1990, Part 5:1987, Part 8:1990] [BS 2853:1957]

ISSUE RECORD

Prep. by	Chkd by	Documents / Sheets / Drawings Issued	Description of Relating Structural Elements	Issue Date
OAM		Structural calculations Pages 1-187 MAIN HOUSE Pages201-230 TEMP.WORK	STEEL BEAMS / STEEL COLUMNS / FOUNDATION.	

◆ DAVID SMITH ASSOCIATES LLP ◆ Consulting Structural & Civil Engineers ◆

London
 Northampton
 Cheltenham
 Birmingham
 www.dsagroup.co.uk

HEALTH & SAFETY

Where appropriate, the Client will be the/or appoint a, Principal Designer to act on his behalf who will ensure that where applicable the "Construction (Design and Management) Regulations 2015" are adhered to.

The Principal Contractor must at all times ensure safe working practices, maintain the integrity of the existing structures and conform to all the appropriate requirements of the Health and Safety Executive including the "Construction (Design and Management) Regulations 2015".

The working methods of any hazardous operations must first be discussed with the Principal Designer and the designer prior to commencement.

Below are identified hazards that are either impractical or uneconomic to eliminate at the design stage. The list is not exhaustive and must be read in conjunction with the main contractors own Health & Safety policy.

Hazard	Solution/Precaution/Sequence
Demolition and creation of new openings	To be carried out in accordance with prepared demolition statement ensuring structural integrity of existing building at all times. Openings should follow published procedure in Building Research Establishment publication GBG20 "Removing internal loadbearing walls in older dwellings".
Scaffolds	Scaffolds erected and used in accordance with BS5973. Scaffolds and propping must be inspected by a qualified person before use and at least once per week to ensure they are fit for use.
Personnel working at height	Works to be properly supervised with personnel provided with safe working platforms.
Lifting	Adequate means for moving and positioning elements to be available. Handling and construction to be carried out in accordance with relevant HSE 7 BS guidelines. Individuals are not to manually lift more than 25kg.
Deep excavation	No one shall enter an excavation deeper than 1.2m without adequately designed temporary shoring being in place. Where foundations are deeper than 2.5m they should be constructed in two pours.
Open trenched footings	Access to unattended trenches to be protected.

DSA LLP VAT REG : 443 6613 95

Eur Ing **David Smith** BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, **Hitesh Jethwa** BSc Eng (Hons), I.Eng, AMIStructE **Steven Ainge** B.Eng (Hons), I.Eng, AMIStructE **Thomas Garrod** B.Eng (Hons), **Ben Mason** BSc (Hons), IEng, MICE

DAVID SMITH ASSOCIATES LLP
 Consulting Structural & Civil Engineers
 London
 Northampton
 Cheltenham
 Birmingham
 www.dsagroup.co.uk

RE: 34 NASSAU ROAD, LONDON

Job Ref: 24/54720

Dimensions

1. All dimensions for construction to be obtained by site measurements prior to manufacture / building

Steelwork Specifications

- Unless noted otherwise, all steelwork to be Grade S275 to BS 5950-2. All materials to comply with BS 5950:2000 and to B.S.C.A. 1/89 - National Structural Steelwork Specification.
- 2. Unless noted otherwise, all steelwork to be shot blasted to SA 2.5 or mechanically wire brushed to remove all surface contamination, rust or millscale and have 2 coats of zinc phosphate primer applied to achieve a minimum dry film thickness of 75 microns per coat, prior to site delivery.
- 3. Grade 4.6 bolts to BS4190 and Grade 8.8 bolts to BS3692.
- Unless stated otherwise, all structural connections to have minimum of 2 bolts.
 Minimum bolt size for any connection to be M16 Grade 8.8 bolts.
- 5. Fire surround to all steelwork as per Architects/Local Authority requirements but generally cased in a layer of 12.5mm thick plasterboard and skim.
- 6. For steel within an external wall cavity (this includes shelf angles and plates supporting external skins that are welded to the bottom flange of beams) the steel should be shot blasted to SA2½ and use 450µm coat of solvent free epoxy applied. Alternatively, the steel may be galvanized to a thickness of 85µm and 200µm of heavy duty bitumen applied in two coats.

DSA LLP VAT REG : 443 6613 95

Eur Ing **David Smith** BSc(Hons), C.Eng, MICE, FIStructE, CMaPS, MFPWS, FCABE, ACIArb, **Hitesh Jethwa** BSc Eng (Hons), I.Eng, AMIStructE **Steven Ainge** B.Eng (Hons), I.Eng, AMIStructE **Thomas Garrod** B.Eng (Hons), **Ben Mason** BSc (Hons), IEng, MICE

London	Northampton	Cheltenham	Birmingham
16 Upper Woburn Place	8 Duncan Close	Unit 2, 1 The Hayloft	Central Boulevard,
London	Moulton Park	Far Peak	Blythe Valley Business Park
WC1H 0AF	Northampton, NN3 6WL	Northleach, GL54 3AP	Solihull, B90 8AG.
0203 741 8042	01604 782620	01285 657328	01564 711008
ondon@dsagroup.co.uk	northampton@dsagroup.co.uk	cheltenham@dsagroup.co.uk	birmingham@dsagroup.co.uk
	Our Privacy Notice can be viewed	by visiting www.dsagroup.co.uk/pri	vacy-policy

General Notes

Works to be carried out regarding installation of new beams/lintels

All works should be carried out by a competent contractor/builder familiar and experienced with the procedures.

- 1. All works to comply with current British EN Standards and Building Regulations and to be to good building practice.
- 2. All new steelwork to be to BS EN 10025 1993: Minimum Grade S275 unless noted otherwise.
- 3. Any bolts to be Grade 8.8 and zinc plated with washers and nuts.
- 4. All mortar to be 1: 1: 6 (cement: lime: sand) unless noted otherwise.
- 5. Where new steelwork or other fabricated components are specified, site dimensions must be undertaken by the builder/fabricator to ensure an accurate fit and adequate clearance, etc.
- 6. Unless noted otherwise, generally steel beam is to be installed so that its centerline coincides with centerline of the wall it is supporting. In case of cavity walls, this will generally be centerline of the overall thickness of the wall including the thickness of the inner skin, cavity and outer-skin (See also Note 8 for variations).
- 7. Where multiple beams/lintels are indicated to support existing walls, the exact number of beams/lintel is to be determined by the builder on site to suit thickness of wall(s) prior to commencing works in that area and ordering/fabrication of materials. Report immediately to DSA for further advice if site conditions differ to that indicated on the drawings/details.
- 8. Scenarios for supporting external walls on single beam:
 - (a) Typical Arrangement Beam with Top Plate

- 9. Where steel beams bear into walls at right angles, fully surround the beam with brickwork to prevent any rotation of the beam.
- 10. Where steel beams/lintels are required to be concealed within floor/ceiling void, the contractor must take measurements of floor/ceiling void and review the size of beam/lintel specified on the drawings prior to ordering/fabrication of material. Report to DSA for further advice if the specified beam/lintel size cannot be concealed within the floor/ceiling zone due to existing site details.
- 11. Where walls are to be removed:
 - a) Fully support wall over the new beams by needling through the wall and supporting needles on Acrow props. Number of needles and props required will depend on the existing structural format, loading and site conditions. Contractor/Builder to be responsible for the necessary temporary works.
 - b) When wall is supported cut out openings and prepare piers and padstones. Ensure padstone size and full bearing lengths as specified are achieved.
 - c) Install steel beams and shim / dry pack beams as necessary onto padstones to ensure full load transfer.
 - d) To minimize cracking of the walls above, preload the new beams by using machined steel folding wedges rammed home.
 If the beam is not preloaded there is a risk of initial cracking to the walls above as the load is transferred but this will not be progressive.
 - e) After preloading the beams dry pack the gap between existing wall and the beam using a minimum thickness of 30mm of sand and cement 3:1 mixed to just bind and then rammed home to ensure a fully packed joint for the full width of the beam/wall.
 - f) Leave props in place for at least 7 days until the packing is cured.

Exact arrangement of works to suit site specific conditions; if in doubt, Contractor/Builder to contact DSA for further advice prior to commencing of works and ordering/fabrication of materials.

◆DAVID SMITH ASSOCIATES ◆ Consulting Structural & Civil Engineers ◆

Job TitleJob No.34 NASSAU ROAD, LONDON24/54720

Compliance with BS EN 1090-1:2009 +A1:2011

Execution of steel structures and aluminium structures.

Requirements for conformity assessment of structural components

CE Marking of Fabricated Structural Steelwork

DERIVATION OF EXECUTION CLASS

Table A.1 - Categorisation of Consequence Classes

Example of categorisation of building type and occupancy	Consequence Class
Single occupancy house not exceeding 4 storeys.	
	1

Table A.1 - Definition of Consequence Classes			
Description	Consequence Class		
Medium consequence for loss of human life; economic, social or environmental consequences considerable Example Residential and office buildings, public buildings where consequences of failure are medium (e.g. an office building)	CC2		

Table B.1 - Suggested Criteria for Service Categories

Criteria	Categories
Buildings and components designed for quasi static actions only (Example: Buildings)	SC1

Table B.2 - Suggested Criteria for Production Categories

Criteria	Categories
Welded components manufactured from steel grade products below S355	
	PC1

Table B.3 - Recommended Matrix for Determination of Execution Classes

CC2
SC1
PC1
EXC2

a EXC4 should be applied to special structures or structures with extreme consequences of a structural failure as required by national provisions

Execution Class

EXC2

◆ David Smith Associates ◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: northampton@dsagroup.co.uk

Project No:	24/54720	Sheet No:	1
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG
			10.0

Project: 34 NASSAU ROAD, LONDON

LOADING								
PITCHED ROOF				<u>SLS</u>				ULS
Roof angle =	35	deg						
Roof tiles	0.560 /cos	35	=	0.68	KN/m2	х	1.4=	0.96 KN/m2
battens & felt	0.050 /cos	35	=	0.06	KN/m2	х	1.4=	0.09 KN/m2
rafters	0.120 /cos	35	=	0.15	KN/m2	х	1.4=	0.21 KN/m2
insul.	0.050 /cos	35	=	<u>0.06</u>	KN/m2	х	1.4=	<u>0.09</u> KN/m2
Roof Dead load			=	0.95	KN/m2	х	1.4=	1.33 KN/m2
ceiling dead load	0.180 /cos	35	=	0.22	KN/m2	х	1.4=	0.31 KN/m2
				1.17	KN/m2			1.64 KN/m2
Roof imposed load	0.75(60-	35)/30	=	0.63				
			=	0.75	KN/m2	х	1.6=	1.20 KN/m2
Ceiling imposed load			=	<u>0.25</u>	KN/m2	х	1.6=	<u>0.40</u> KN/m2
Imposed load				1.00	KN/m2			1.60 KN/m2
		тот	AL =	<u>2.17</u>	KN/m2			<u>3.24</u> KN/m2
	DESIG	N FOR UDI	_ =	2.17	KN/m2		1.49	3.24 KN/m2
TIMBER FLOOR								
Boarding			=	0.20	KN/m2	х	1.4=	0.28 KN/m2
Joist			=	0.15	KN/m2	х	1.4=	0.21 KN/m2
Plasterboard/ INS.			=	0.25	KN/m2	х	1.4=	<u>0.35</u> KN/m2
				0.60 K	N/m2			0.84 KN/m2
Imposed			=	<u>1.50</u>	KN/m2	х	1.6=	<u>2.40</u> KN/m2
		ТОТ	AL =	2.10	KN/m2			3.24 KN/m2
	DESIG	N FOR UDI	_ =	2.10	KN/m2		1.54	3.24 KN/m2

WIND LOAD

SAY wl=

0.7 KN/m2

go to page 2

All design calculations have been author reviewed and subject to additional review by the project team, as required by David Smith Associates Quality Assurance procedures.

 ◆ David Smith Associates ◆
 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	2
Made By:	ОАМ	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

LOADING					<u>SLS</u>				ULS
FLAT ROOF									
FELT and CHIPPI	NGS			=	0.30	KN/m2	x	1.4=	0.42 KN/m2
TIMBER DECK an	nd FIRRIN	GS		=	0.20	KN/m2	x	1.4=	0.28 KN/m2
JOISTS and INSU	LATION			=	0.15	KN/m2	x	1.4=	0.21 KN/m2
PLASTERBOARD)			=	<u>0.13</u>	KN/m2	x	1.4=	0.18 KN/m2
Dead load				=	0.78	KN/m2			1.09 KN/m2
Roof imposed loa	d			=	0.75 KI	N/m2	x	1.6=	1.20 KN/m2
Ceiling imposed lo	ad			=	0.00	KN/m2	x	1.6=	0.00 KN/m2
					<u>0.75</u>	KN/m2			<u>1.20</u> KN/m2
			TOTAL	=	1.53 KI	N/m2			2.29 KN/m2
GREEN ROOF									
Dead load				=	2.00	KN/m2			3.49 KN/m2
Imposed				=	0.75	KN/m2	x	1.6=	1.20 KN/m2
GROUND FLOOR	<u> </u>				<u>SLS</u>				ULS
Screed	- 7:	5 mm		=	1.80	KN/m2	x	1.4=	2.520 KN/m2
metal deck	200	0 mm		=	3.84	KN/m2	x	1.4=	5.376 KN/m2
services				=	0.250	KN/m2	х	1.4=	0.350 KN/m2
RAISED FLOOR				=	0.000	KN/m2	х	1.4=	<u>0.000</u> KN/m2
		dead load =			5.89	KN/m2			8.246 KN/m2
		Imposed	1.5+1	=	2.50	KN/m2	x	1.6=	4.00 KN/m2
	GYM	Imposed		=	5.00 KI	N/m2			
INTERNAL WALL	:								
Blocks(140)		=	2.00	KN/m2	x	1.4=	2.80 KN/m2
Plaster				=	<u>0.25</u>	KN/m2	x	1.4=	<u>0.35</u> KN/m2
			ΤΟΤΑΙ	L =	<u>2.25</u>	KN/m2			<u>3.15</u> KN/m2

go to page 3

All design calculations have been author reviewed and subject to additional review by the project team, as required by David Smith Associates Quality Assurance procedures.

date printed 28/03/24

◆ David Smith Associates LLP ◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: northampton@dsagroup.co.uk

Project No:	24/54720	Sheet No:	3
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG
			1

Project: 34 NASSAU ROAD, LONDON

DIMENSIONS IN THESE CALCULATIONS ARE ONLY APPROXIMATE AND THE CONTRACTOR MUST CHECK THE LATEST ARCHITECTURAL DRAWINGS AND MEASURE UP ON SITE BEFORE ORDERING ANY MATERIALS.NO WORK SHOULD START BEFORE THE CALCULATIONS HAVE BEEN RECEIVED AND APPROVED BY THE LA BUILDING CONTROL.

ROOF LEVEL TIMBER ROOF RAFTERS **R1** Max span = 4.5 m USE 195X47 C24 AT 400 C/C SEE PAGE 6 4 TIMBER SLOPE RAFTERS TR1 Max span = 2.5 m USE 150X47 C24 AT 400 C/C SEE PAGE 7 11 **H1** STEEL BEAM Max span = 4.6 m Cover= 2.8 m USE 152x152x30 UC S355 SEE PAGE 12 14 STEEL BEAM RB1 Max span = 4.6 m Cover= 1.3 m USE 152x152x23 UC S355 SEE PAGE 15 17 STEEL BEAM H2 Max span = 46 m Cover= 2.8 m USE 152x152x30 UC S355 SEE PAGE 20 18 -STEEL BEAM RB2 Max span = 5.1 m Cover= SAY 1.3 m USE 203x133x25 UB S355 SEE PAGE 21 23 STEEL BEAM RB3 6.9 m Max span = Cover= 3.6 m SAY USE 254x254x73 UC S355 SEE PAGE 24 26 STEEL BEAM RB4 Max span = 6.9 m Cover= 4.7 m FLAT USE 254x254x73 UC S355 SEE PAGE 27 29 go to page 30

All design calculations have been author reviewed and subject to additional review by the project team, as required by David Smith Associates Quality Assurance procedures.

THE REAL PROPERTY.	David Smith Associates LLP Structural & Civil Engineering Design & Detailing	Project No:	24/54720	Sheet No:	4
DSA	Party Wall Structural Surveys Expert Witness Reports Flood Risk Assessments Temporary Works Design	Made by:	OAM	Revision:	
Calcs for: FLAT	ROOF RAFTERS R1	Date:	22/03/2024	Checked by:	TG
Project: 34 N	ASSAU ROAD. LONDON				

Tedds calculation version 1.1.04

TIMBER JOIST DESIGN (BS5268-2:2002)

Joist detailsJoist breadthb = 47 mmJoist depthh = 195 mmJoist spacings = 400 mmTimber strength classC24Service class of timber1

Load duration factor	K ₃ = 1.50
Maximum bending moment	M = 1.902 kNm
Maximum shear force	V = 1.691 kN
Maximum support reaction	R = 1.691 kN
Maximum deflection	δ = 11.799 mm
Check bending stress	
Bending stress	σ _m = 7.500 N/mm ²
Permissible bending stress	$\sigma_{m_adm} = \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = \textbf{12.976} \text{ N/mm}^2$
Applied bending stress	σ _{m_max} = M / Z = 6.386 N/mm ²
	PASS - Applied bending stress within permissible limits

www.dsagroup.co.uk					
Northampton	London	Birmingham	Cheltenham		
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk		

David Smith Associates LLP Structural & Civil Engineering Design & Detailing Party Wall | Structural Surveys | Expert Witness Reports Flood Risk Assessments | Temporary Works Design

Project No:	24/54720	Sheet No:	6
Made by:	OAM	Revision:	
Date:	22/03/2024	Checked by:	TG

Calcs for: FLAT ROOF RAFTERS R1

Check deflection

Project: 34 NASSAU ROAD, LONDON

Check shear stress	
Shear stress	τ = 0.710 N/mm ²
Permissible shear stress	τ_{adm} = $\tau \times K_{2s} \times K_3 \times K_8$ = 1.172 N/mm ²
Applied shear stress	τ_{max} = 3 × V / (2 × b × h) = 0.277 N/mm ²
	PASS - Applied shear stress within permissible limits
Check bearing stress	
Compression perpendicular to grain (no wane)	σ _{cp1} = 2.400 N/mm ²

Compression perpendicular to grain (no wane) Permissible bearing stress Applied bearing stress

 $\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = \textbf{3.960} \text{ N/mm}^2$

 $\sigma_{c_{max}} = R / (b \times L_b) = 0.360 \text{ N/mm}^2$

PASS - Applied bearing stress within permissible limits

Permissible deflection	δ_{adm} = min(L _{s1} × 0.003, 14 mm) = 13.500 mm
Bending deflection (based on E_{mean})	δ _{bending} = 11.430 mm
Shear deflection	δ_{shear} = 0.369 mm
Total deflection	$\delta = \delta_{bending} + \delta_{shear} = 11.799 \text{ mm}$

PASS - Actual deflection within permissible limits

www.dsagroup.co.uk					
London	Birmingham	Cheltenham			
london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk			
-	London london@dsagroup.co.uk	London Birmingham london@dsagroup.co.uk birmingham@dsagroup.co.uk			

	David Smith Associates LLP Structural & Civil Engineering Design & Detailing	Project No:	24/54720	Sheet No:	7
DSA	Party Wall Structural Surveys Expert Witness Reports Flood Risk Assessments Temporary Works Design	Made by:	OAM	Revision:	
Calcs for: TIMBE	R RAFTERS TR1	Date:	22/03/2024	Checked by:	TG
Project: 34 NAS	SAU ROAD, LONDON				

TIMBER RAFTER DESIGN (BS5268-2:2002)

Rafter details

Kallel Uelalis	
Breadth of timber sections	b = 47 mm
Depth of timber sections	h = 150 mm
Rafter spacing	s = 400 mm
Rafter slope	α = 35.0 deg
Clear span of rafter on horizontal	L _{clh} = 2500 mm
Clear span of rafter on slope	$L_{cl} = L_{clh} / \cos(\alpha) = 3052 \text{ mm}$
Rafter span	Continuous
Timber strength class	C24
Section properties	
Cross sectional area of rafter	A = b × h = 7050 mm ²
Section modulus	Z = b × h ² / 6 = 176250 mm ³
Second moment of area	l = b × h³ / 12 = 13218750 mm ⁴
Radius of gyration	r = √(I / A) = 43.3 mm
Loading details	
Rafter self weight	F_j = b × h × ρ_{char} × g_{acc} = 0.02 kN/m
Dead load on slope	F _d = 0.95 kN/m ²
Imposed load on plan	F _u = 0.75 kN/m ²
Imposed point load	F _p = 0.90 kN
Modification factors	
Section depth factor	K ₇ = (300 mm / h) ^{0.11} = 1.08
Load sharing factor	K ₈ = 1.10

www.dsagroup.co.uk			
Northampton	London	Birmingham	Cheltenham
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk

David Smith Associates LLP Structural & Civil Engineering Design & Detailing Party Wall | Structural Surveys | Expert Witness Reports Flood Risk Assessments | Temporary Works Design

Project No:	24/54720	Sheet No:	8
Made by:	OAM	Revision:	
Date:	22/03/2024	Checked by:	TG

Calcs for: TIMBER RAFTERS TR1

Project: 34 NASSAU ROAD, LONDON

Consider long term load condition		
Load duration factor	K ₃ = 1.00	
Total UDL perpendicular to rafter	$F = F_{d} \times \cos(\alpha) \times s + F_{j} \times \cos(\alpha) = 0.331 \text{ kN/m}$	
Notional bearing length	L_b = F × L_{cl} / [2 × (b × σ_{cp1} × K ₈ - F)] = 4 mm	
Effective span	L _{eff} = L _{cl} + L _b = 3056 mm	
Check bending stress at purlin		
Bending stress parallel to grain	σ _m = 7.500 N/mm ²	
Permissible bending stress	σ_{m_adm} = $\sigma_m \times K_3 \times K_7 \times K_8$ = 8.904 N/mm ²	
Applied bending stress	σ_{m_max} = F × L _{eff} ² / (8 × Z) = 2.193 N/mm ²	
	PASS - Applied bending stress within permissible limits	
Check compressive stress parallel to grain at p	urlin	
Compression stress parallel to grain	σ _c = 7.900 N/mm ²	
Minimum modulus of elasticity	E _{min} = 7200 N/mm ²	
Compression member factor	K ₁₂ = 0.59	
Permissible compressive stress	$\sigma_{c_adm} = \sigma_c \times K_3 \times K_8 \times K_{12} = \textbf{5.133 N/mm}^2$	
Applied compressive stress	$\sigma_{c_max} = 3 \times F \times L_{eff} \times (cot(\alpha) + 8 \times tan(\alpha) / 3) / (8 \times A) = 0.177 \text{ N/mm}^2$	
	PASS - Applied compressive stress within permissible limits	
Check combined bending and compressive stress parallel to grain at purlin		
Euler stress	σ_e = $\pi^2 \times E_{min}$ / λ^2 = 14.267 N/mm ²	
Euler coefficient	$K_{eu} = 1 - (1.5 \times \sigma_{c_max} \times K_{12} / \sigma_e) = 0.989$	
Combined axial compression and bending check	$\sigma_{m_max} / (\sigma_{m_adm} \times K_{eu}) + \sigma_{c_max} / \sigma_{c_adm} = 0.284 < 1$	
PASS - Combin	ned compressive and bending stresses are within permissible limits	

Check bending stress in lower portion of rafter

Bending stress parallel to grain	σ _m = 7.500 N/mm ²
Permissible bending stress	σ_{m_adm} = $\sigma_m \times K_3 \times K_7 \times K_8$ = 8.904 N/mm ²
Applied bending stress	σ_{m_max} = 9 × F × L _{eff} ² / (128 × Z) = 1.234 N/mm ²
	PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain in lower portion of rafter

Compression stress parallel to grain	σ _c = 7.900 N/mm ²
Minimum modulus of elasticity	E _{min} = 7200 N/mm ²
Compression member factor	K ₁₂ = 0.59
Permissible compressive stress	$\sigma_{c_adm} = \sigma_{c} \times K_{3} \times K_{8} \times K_{12} = $ 5.133 N/mm ²
Applied compressive stress	$\sigma_{c_max} = 3 \times F \times L_{eff} \times (\cot(\alpha) + 13 \times \tan(\alpha) / 3) / (8 \times A) = 0.240 \text{ N/mm}^2$
	PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain in lower portion of rafter

PASS - Combin	ed compressive and bending stresses are within permissible limits
Combined axial compression and bending check	$\sigma_{m_max} / (\sigma_{m_adm} \times K_{eu}) + \sigma_{c_max} / \sigma_{c_adm} = 0.187 < 1$
Euler coefficient	$K_{eu} = 1 - (1.5 \times \sigma_{c_{max}} \times K_{12} / \sigma_{e}) = 0.985$
Euler stress	$\sigma_{\text{e}} = \pi^2 \times E_{\text{min}} / \lambda^2 = 14.267 \text{ N/mm}^2$

Check shear stress $\tau = 0.710 \text{ N/mm}^2$ Shear stress parallel to grain $\tau = 0.710 \text{ N/mm}^2$ Permissible shear stress $\tau_{adm} = \tau \times K_3 \times K_8 = 0.781 \text{ N/mm}^2$ Applied shear stress $\tau_{max} = 15 \times F \times L_{eff} / (16 \times A) = 0.135 \text{ N/mm}^2$ www.dsagroup.co.uk

Northampton	London	Birmingham	Cheltenham
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk

Project No:	24/54720	Sheet No:	9
Made by:	OAM	Revision:	
Date:	22/03/2024	Checked by:	TG

PASS - Applied shear stress within permissible limits

Calcs for: TIMBER RAFTERS TR1

Project: 34 NASSAU ROAD, LONDON

Check deflection	
Permissible deflection	δ_{adm} = 0.003 × L _{eff} = 9.168 mm
Bending deflection	δ_b = F × L _{eff} ⁴ / (185 × E _{mean} × I) = 1.093 mm
Shear deflection	δ_s = 12 × F × L _{eff} ² / (5 × E _{mean} × A) = 0.097 mm
Total deflection	$\delta_{max} = \delta_b + \delta_s = 1.191 \text{ mm}$
	PASS - Total deflection within permissible limits

Consider medium term load condition	
Load duration factor	K ₃ = 1.25
Total UDL perpendicular to rafter	$F = [F_{u} \times \cos(\alpha)^2 + F_{d} \times \cos(\alpha)] \times s + F_{j} \times \cos(\alpha) = 0.532 \text{ kN/m}$
Notional bearing length	$L_{b} = F \times L_{cl} / [2 \times (b \times \sigma_{cp1} \times K_{8} - F)] = 7 \text{ mm}$
Effective span	$L_{eff} = L_{cl} + L_{b} = 3059 \text{ mm}$
Check bending stress at purlin	
Bending stress parallel to grain	σ _m = 7.500 N/mm ²
Permissible bending stress	$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = \textbf{11.130} \text{ N/mm}^2$
Applied bending stress	$\sigma_{m_max} = F \times L_{eff}^2 / (8 \times Z) = 3.532 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain at purlin

Compression stress parallel to grain	$\sigma_{\rm c}$ = 7.900 N/mm ²
Minimum modulus of elasticity	E _{min} = 7200 N/mm ²
Compression member factor	K ₁₂ = 0.55
Permissible compressive stress	σ_{c_adm} = $\sigma_{c} \times K_3 \times K_8 \times K_{12}$ = 5.960 N/mm ²
Applied compressive stress	σ_{c_max} = 3 × F × L _{eff} × (cot(α) + 8 × tan(α) / 3) / (8 × A) = 0.285 N/mm ²
	PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain at purlin

Euler stress	σ_e = $\pi^2 \times E_{min}$ / λ^2 = 14.243 N/mm ²	
Euler coefficient	$K_{eu} = 1 - (1.5 \times \sigma_{c_{max}} \times K_{12} / \sigma_{e}) = 0.984$	
Combined axial compression and bending check	σ_{m_max} / ($\sigma_{m_madm} \times K_{eu}$) + σ_{c_max} / σ_{c_madm} = 0.371 < 1	

PASS - Combined compressive and bending stresses are within permissible limits

Check bending stress in lower portion of rafter

Bending stress parallel to grain	σ _m = 7.500 N/mm ²
Permissible bending stress	σ_{m_adm} = $\sigma_m \times K_3 \times K_7 \times K_8$ = 11.130 N/mm ²
Applied bending stress	σ_{m_max} = 9 × F × L _{eff} ² / (128 × Z) = 1.987 N/mm ²
	PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain in lower portion of rafter

Compression stress parallel to grain	σ c = 7.900 N/mm²
Minimum modulus of elasticity	E _{min} = 7200 N/mm ²
Compression member factor	K ₁₂ = 0.55
Permissible compressive stress	σ_{c_adm} = $\sigma_{c} \times K_3 \times K_8 \times K_{12}$ = 5.960 N/mm ²
Applied compressive stress	$\sigma_{c_max} = 3 \times F \times L_{eff} \times (cot(\alpha) + 13 \times tan(\alpha) / 3) / (8 \times A) = 0.387 \text{ N/mm}^2$
	PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain in lower portion of rafter Euler stress

 σ_e = $\pi^2 \times E_{min}$ / λ^2 = **14.243** N/mm²

www.dsagroup.co.uk			
Northampton	London	Birmingham	Cheltenham
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk

David Smith Associates LLP Structural & Civil Engineering Design & Detailing Party Wall | Structural Surveys | Expert Witness Reports Flood Risk Assessments | Temporary Works Design

Project No:	24/54720	Sheet No:	10
Made by:	OAM	Revision:	
Date:	22/03/2024	Checked by:	TG

Calcs for: TIMBER RAFTERS TR1

Project: 34 NASSAU ROAD, LONDON

Euler coefficient	

Combined axial compression and bending check

Check shear stress

Shear stress parallel to grain Permissible shear stress Applied shear stress

Check deflection

$$\begin{split} & K_{eu} = 1 - (1.5 \times \sigma_{c_{max}} \times K_{12} / \sigma_{e}) = 0.978 \\ & \sigma_{m_{max}} / (\sigma_{m_{adm}} \times K_{eu}) + \sigma_{c_{max}} / \sigma_{c_{adm}} = 0.247 < 1 \end{split}$$

PASS - Combined compressive and bending stresses are within permissible limits

τ = 0.710 N/mm ²
τ_{adm} = $\tau \times K_3 \times K_8$ = 0.976 N/mm ²
τ_{max} = 15 × F × L _{eff} / (16 × A) = 0.217 N/mm ²
PASS - Applied shear stress within permissible limits

Permissible deflection	δ_{adm} = 0.003 × L _{eff} = 9.176 mm
Bending deflection	δ_b = F × L _{eff} ⁴ / (185 × E _{mean} × I) = 1.764 mm
Shear deflection	δ_s = 12 × F × L _{eff} ² / (5 × E _{mean} × A) = 0.157 mm
Total deflection	$\delta_{max} = \delta_b + \delta_s = 1.921 \text{ mm}$
	PASS - Total deflection within permissible limits

Consider short term load condition

Load duration factor	K ₃ = 1.50
Total UDL perpendicular to rafter	$F = F_d \times cos(\alpha) \times s + F_j \times cos(\alpha) = 0.331 \text{ kN/m}$
Notional bearing length	$L_{b} = [F \times L_{cl} + F_{p} \times cos(\alpha)] / [2 \times (b \times \sigma_{cp1} \times K_{8} - F)] = 7 \text{ mm}$
Effective span	L _{eff} = L _{cl} + L _b = 3059 mm
Check bending stress at purlin	

Bending stress parallel to grain	σ _m = 7.500 N/mm ²
Permissible bending stress	σ_{m_adm} = $\sigma_m \times K_3 \times K_7 \times K_8$ = 13.355 N/mm ²
Applied bending stress	$\sigma_{m_max} = F \times L_{eff}^2 / (8 \times Z) + 3 \times F_p \times cos(\alpha) \times L_{eff} / (32 \times Z) = 3.397 \text{ N/mm}^2$
	PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain at purlin

Compression stress parallel to grain	σ _c = 7.900 N/mm ²
Minimum modulus of elasticity	E _{min} = 7200 N/mm ²
Compression member factor	K ₁₂ = 0.51
Permissible compressive stress	$\sigma_{c_adm} = \sigma_c \times K_3 \times K_8 \times K_{12} = \textbf{6.627} \text{ N/mm}^2$
Applied compressive stress	$\sigma_{c_max} = 3 \times F \times L_{eff} \times (\cot(\alpha) + 8 \times \tan(\alpha)/3)/(8 \times A) + F_p \times \sin(\alpha)/A = 0.251$
N/mm ²	

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain at purlin

Euler stress	$\sigma_{e} = \pi^{2} \times E_{min} / \lambda^{2} = 14.239 \text{ N/mm}^{2}$
Euler coefficient	$K_{eu} = 1 - (1.5 \times \sigma_{c_{max}} \times K_{12} / \sigma_{e}) = 0.987$
Combined axial compression and bending check	σ_{m_max} / ($\sigma_{m_adm} \times K_{eu}$) + σ_{c_max} / σ_{c_adm} = 0.296 < 1
PASS - Combined compressive and bending stresses are within permissible limits	

Check bending stress in lower portion of rafter	
Bending stress parallel to grain	σ _m = 7.500 N/mm ²
Permissible bending stress	$\sigma_{m_adm} = \sigma_m \times K_3 \times K_7 \times K_8 = \textbf{13.355} \text{ N/mm}^2$
Applied bending stress	$\sigma_{m_{max}} = F \times L_{eff}^{2} / (16 \times Z) + 13 \times F_{p} \times cos(\alpha) \times L_{eff} / (64 \times Z) = 3.698 \text{ N/mm}^{2}$
	PASS - Applied bending stress within permissible limits

www.dsagroup.co.uk							
Northampton	London	Birmingham	Cheltenham				
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk				
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk					

Check combined bending and compressive stress parallel to grain in lower portion of rafter

Euler stress	$\sigma_{\rm e}$ = $\pi^2 \times E_{\rm min} / \lambda^2$ = 14.239 N/mm ²				
Euler coefficient	$K_{eu} = 1 - (1.5 \times \sigma_{c_{max}} \times K_{12} / \sigma_{e}) = 0.984$				
Combined axial compression and bending check	σ_{m_max} / ($\sigma_{m_adm} \times K_{eu}$) + σ_{c_max} / σ_{c_adm} = 0.327 < 1				
PASS - Combined compressive and bending stresses are within permissible limits					

Check a	shear	stress
---------	-------	--------

Shear deflection Total deflection

Shear stress parallel to grain	τ = 0.710 N/mm ²
Permissible shear stress	$\tau_{adm} = \tau \times K_3 \times K_8 = 1.172 \text{ N/mm}^2$
Applied shear stress	$\tau_{max} = 15 \times F \times L_{eff} / (16 \times A) + 3 \times F_{p} \times \cos(\alpha) / (2 \times A) = 0.292 \text{ N/mm}^{2}$ PASS - Applied shear stress within permissible limits
Check deflection	
Permissible deflection	δ_{adm} = 0.003 × L _{eff} = 9.177 mm
Bending deflection	$\delta_{b} = L_{eff}^{3} \times (F \times L_{eff} / 185 + 0.015 \times F_{p} \times \cos(\alpha)) / (E_{mean} \times I) = 3.315 \text{ mm}$

$\delta_b = L_{eff} \times (F \times L_{eff} / 185 + 0.015 \times F_p \times COS(\alpha)) / (E_{mean} \times I) = 3.315 \text{ mm}$
$\delta_{s} = 12 \times L_{eff} \times (F \times L_{eff} + 2 \times F_{p} \times cos(\alpha))/(5 \times E_{mean} \times A) = 0.240 \text{ mm}$
$\delta_{max} = \delta_b + \delta_s = 3.555 \text{ mm}$

PASS - Total deflection within permissible limits

www.dsagroup.co.uk								
Northampton	London	Birmingham	Cheltenham					
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk					

◆ David Smith Associates LLP 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	12
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

◆ David Smith Associates LLP ◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	13
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF H1

<u>Strength of steel</u> Design strength	(Grade	Claus	e 3.1.1 S 355	,)						
for thickness of	f 9.4	mm	pv	/= [′]	355	N/mm2	pv=	355.	0 1	N/mm2	vq =wvq
Young's Modulus			Ē	=	205	KN/mm2	.,				., .,
-											
Classification of cr	oss sectio	on		((clause	3.5.2)			TAB	LE 11	rolled section
Constant (table 1	1 note b)		= 3		0.880			class 1	(class 2	class 3
Outstand of flang	е		b)=	76.45	mm		plastic	(compac	semi compact
Ratio			b/T	=	8.13		b/Tlim=	7.92	2	8.80	13.20
The classification	is based	on the	outsatnd e	eler	ment			The sect	tion is	class2	<u>compact</u>
r1 =min(1.0,max(-0.1,Fc/(d	xtxpyw)))=		0.21		r2=	=Fc/(Agxp	yw)=	0.044	
Depth between fil	lets		d	=	123.4	mm			TAB	LE 11	rolled section
ratio			d/1	t=	18.70			class 1	(class 2	class 3
	40	3	=		35.21		d/tlim=	5	58.31	67.12	97.03
The classification	is based	on the	general w	eb	conditio	on		The sect	tion is	class1	<u>plastic</u>
0											
Shear capacity	CL 4.2.3		^		1011		(h v D)				
Shear area	(0.0.4)		AV y	/=	1041	mm2	(I X D)				
Shear capacity	(0.6pyA)		Pvy –	/=	222	KN			_		
Shear force			Fvy	/=	22.1	KN		Fvy/	Pvy=	0.10	SHEAR PASS OK
Moment Capacity											
Elastic modulus			Zx	(=	221.2	cm3		Mcx1=		78.53	
Plastic modulus			Sx	(=	247	cm3		Mcx2=		87.72	
Moment capacity	for sectio	n	Мсх	(=	88	KNm					
Elastic modulus			Zy	/=	73.06	cm3		Mcy1=		25.94	
Plastic modulus			Sy	/=	111	cm3		mcy2=		39.48	
Moment capacity	for sectio	n	Mcy	/=	39	KNm					
Local capacity c	heck Cla	use 4.8	3.3.2								
F +	Mx	+	N	1v :	= <=1						
Ag pv	Mcx		Mo	.v							
				.,							
0 044 +	0 268	+	0.06	60	=	0.372	LOCAL	CAPACIT	Y IS S	ATISFI	ED
0.011	0.200		0.00					<u></u>			
restraint/effective l	enath Cla	1150 4	31 to 4 3 5	5				TARI E 1	3		
Effective length	ingen ola	uoc	to lt1 ام ا	<u>-</u>	4600	mm	normal c		0		
Effective length)_	4600	mm	normare	onation			
				-	4600	mm					
			L e II=		4000	11111					
				-	2 00						
Radius of gyration	п у-у		ry	/=	3.82	cm					
			rx	(=	6.75	cm					
			Lam'y=	=	120.4						
			La'mx=	-	68.1						

◆ David Smith Associates LLP
 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	14
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

34 NASSAU ROAD, LONDON Project:

CON		F	H1									
B	uckling r	esistar	nce Clause	4.8.3.3.1	<u>I</u> .							
<u>C</u>	ompress	ive stro	ength:perry	strust f	ormula	from A	ppendex C	<u> 2.1</u>				
L	imiting sle	nderne	SS.		lam 0=	15.10		2	py=	355 N/	/mm2	
F	or buckling	g abou	t y-y					Λ	. L0=	30.20 TA	ABLE 16	
R	obertson	consta	nt for section	1								
					a=	5.5	for table 2	:3	С			
Ρ	erry factor	r			eta=	0.58						
E	uler streng	gth			pe=	140	N/mm2					
F	actor				phi=	288	N/mm2					
С	ompressiv	ve strer	ngth		pcy=	105.4	N/mm2					
S	lendernes	s of se	ction	L	.am'y= .amda=	120.4 120.4		La'mx=	68.15		Lamy/x= Lamx/x=	7.5262 4.2593
			Torsic	onal inde	ex x=	16						
-					N=	0.5						
S	lendernes	s facto	r		v=	0.71	from Table	e 19				
_				βv	v =	1.0						
В	uckling pa	aramete	er		u=	0.848						
E	quivalent	slende	mess		lamit=	73.0	N/mm2		for lomit-	75		255
	ucking su	aiarana			pp-	205				75	ру-	300
D	ucking re	SISTATIC	emoment		Mb L -	51	KNm					
					Mrv-	30	KNm					
					Pc-	402 G	KN					
					Pcv=	402.0	KN					
	Fc	+W/	x Mx	+\V/ v	Mv	= <=1			\W/	x= 0	95	
			Dy 7y	· •• <u>v</u>	 				W	x- 0. v- 0	05 05	
	10		1 y ZA		ру∠у				vv	y- 0.	30	
	0.149	+	0.284	+	0.086	=	0.519		<u>The interactio</u>	<u>n formula</u>	a is satisfied	L
	Fc	+W	LT M It	+W v	Mv	= <=1						
	<u> </u>		Mb	· · · <u>y</u>	 py 7v							
	. 39				¥ <u>→</u> ر ۲							
	0.149	+	0.464	+	0.086	=	0.699		The interactio	n formula	a is satisfied	<u>I</u>

◆ David Smith Associates LLP 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

	roject no.	24/54720	Sheet No:	15
N	Made By:	OAM	Revision:	
0	Date:	Mar-24	Checked By:	ΤG

Project: 34 NASSAU ROAD, LONDON

David Smith Associates LLP +

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	16
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF RB1

Strength of steel		Clause	e 3.1.1						
Design strength	(Grade	•	S 355)					
for thickness	of 6.8	mm	py=	355	N/mm2	py=	355.0	N/mm2	pyw= py
Young's Modulu	IS		E=	205	KN/mm2				
Classification of o	cross sect	ion		(clause	3.5.2)		TA	BLE 11	rolled section
Constant (table	11 note b)		= 3	0.880			class 1	class 2	class 3
Outstand of flar	ige		b=	76.2	mm		plastic	compac	semi compact
Ratio			b/T=	11.21		b/Tlim=	7.92	8.80	13.20
The classification	on is based	on the	outsatnd ele	ment			The section	is class 3	<u>3 semi compact</u>
r1 =min(1.0,ma	x(-0.1,Fc/(c	(xtxpyw))=	0.22		r2=	=Fc/(Agxpyw)=	0.057	
Depth between	fillets		d=	123.4	mm		TA	BLE 11	rolled section
ratio			d/t=	20.23			class 1	class 2	class 3
	40	3 (=	35.21		d/tlim=	57.50	65.84	94.86
The classification	on is based	on the	general web	conditio	on		The section	is class1	plastic
Shear capacity	CL 4.2.3	3							
Shear area			Av y=	930.3	mm2	(t x D)			
Shear capacity	(0.6pyA)	Pvy=	198	KN				
Shear force			Fvy=	10.5	KN		Fvy/Pvy=	0.05	SHEAR PASS OK
Moment Capacity									
Elastic modulus	;		Zx=	165.7	cm3		Mcx1=	58.82	
Plastic modulus	;		Sx=	184	cm3		Mcx2=	65.43	
Moment capacit	ty for section	on	Mcx=	65	KNm				
Elastic modulus			Zv=	52.95	cm3		Mcv1=	18.8	
Plastic modulus			Sv=	81	cm3		mcv2=	28 71	
Moment capacit	ty for section	on	Mcy=	29	KNm		moyz	20.7 1	
l ocal capacity	check Cla	use 4 8	32						
F +	Mx	+	<u></u> Mv	= <=1					
Ag ny	Mcx		Mcv	•					
~g. py	INICA		Wicy						
0.057 +	0.171	+	0.039	=	0.267	LOCAL	CAPACITY IS	SATISFI	ED
restraint/effective	length Cla	ause 4.3	<u>31 to 4.3.5</u>				TABLE 13		
Effective length			Le It1=	4600	mm	normal c	ondition		
Effective length			Lelt2=	4600	mm				
			L e lt=	4600	mm				
Radius of gyrati	on y-y		ry=	3.68	cm				
			rx=	6.51	cm				
			Lam'v=	125.0					
			La'mx=	70.7					

◆ David Smith Associates LLP◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	17
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF RB1						
Buckling resistance Cla	ause 4.8.3.3.1					
Compressive strength:	perry strust formula	from A	ppendex C.1			
Limiting slenderness	lam 0=	15.10		py=	355 N/mm2	
For buckling about y-y				λ L0=	30.20 TABLE 16	
Robertson constant for s	ection					
	a=	5.5	for table 23	С		
Perry factor	eta=	0.60				
Euler strength	pe=	129	N/mm2			
Factor	phi=	281	N/mm2			
Compressive strength	pcy=	99.2	N/mm2			
	Lam'y=	125.0	La'mx=	= 70.66	Lamy/x=	6.1275
Slenderness of section	Lamda=	125.0			Lamx/x=	3.4638
	Torsional index x=	20.4				
	N=	0.5				
Slenderness factor	v=	0.77	from Table 19			
	β w =	1.0				
Buckling parameter	u=	0.837				
Equivalent slenderness	lamit=	80.3	NI/mama Q	for lomit-	9 <i>E</i> by <i>E</i>	255
Buckling strength (Table	io) pp-	175	N/IIIIIZ	ior iamit-	oo py-	300
Buckling resistance mon	nent Mbl=	32	KNM			
	Mrv=	32 20	KNm			
	Pc=	295.5	KN			
	Pcv=	295.5	KN			
Fc +W x Mx	+W y My	= <=1		W	x= 0.95	
PC Py Zx	py Zy			W	y= 0.95	
0.203 + 0.18	81 + 0.057	=	0.441	The interaction	on formula is satisfie	<u>d</u>
Fc +WITMI	lt +W v Mv	= <=1				
Pcy Mb	pv Zv					
,	(- (-)					
0.203 + 0.34	48 + 0.057	=	0.608	The interaction	on formula is satisfie	<u>d</u>

◆ David Smith Associates LLP ◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	18
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

 ◆ David Smith Associates LLP
 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	19
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

H2

CONTINUE OF

Strengt	<u>h of steel</u>		Clause	9.1.1							
Desi	gn strength	(Grade)	S 355)						
fe	or thickness o	f 9.4	mm	ру	=	355	N/mm2	py=	355.0	N/mm2	pyw= py
Youn	ıg's Modulus			E	=	205	KN/mm2				
<u>Classific</u>	cation of cros	s section			(clause	3.5.2)			TABLE 11 rol	led section
Cons	stant			= 3		0.880)		class 1	class 2 cla	iss 3
Outs	tand of flange			b	=	76.45	5 mm		plastic	compac se	mi compact
Ratic)			b/T	=	8.13	}	b/Tlim=	7.92	8.80	13.20
									The section	is class2 con	<u>npact</u>
r1 =n	nin(1.0,max(-0	.1,Fc/(dxt)	(pyw)))=	:		0.35	5	r2	=Fc/(Agxpyw	/)= 0.0007	
Dept	h between fille	ets		d	=	123.4	mm			TABLE 11 rol	led section
ratio				d/t	=	18.70)		class 1	class 2	class 3
		40	3 (=		35.206	5	d/tlim=	52.	32 57.95	105.46
The	classification i	s based o	n the ge	neral web c	ono	dition			The section	is class1 plas	<u>stic</u>
<u>Shear c</u>	apacity	CL 4.2.3									
Shea	ar area			Av y	=	1041.5	5 mm2	(t x D)			
Shea	ar capacity	(0.6pyA)		Pvy	=	222	2 KN				
Shea	ar force			Fvy	=	52.2	2 KN		Fvy/Pv	y= 0.24 S	HEAR PASS OK
Moment	Capacity										
Elast	ic modulus			Zx	=	221.2	cm3		Mcx1=	78.526	
Plast	ic modulus			Sx	=	247	cm3		Mcx2=	87 721	
Mom	ent capacity f	or section		Мсх	=	87.7	' KNm				
	· · · · · · · · · · · · · · · · · · ·			7.		70.00			Maria	05 000	
Elast	ic modulus			Zy	=	73.06	cm3		MCy1=	25.936	
Plast	ic modulus			Sy	=	111.2	2 cm3		mcy2=	39.476	
Mom	ient capacity f	or section		Мсу	=	39.5	6 KNm				
Loca	I capacity ch	eck Claus	e 4.8.3.	2							
<u>F</u>	+	Mx	+	M	y	= <=1					
Ag. p	у	Мсх		Мс	y						
0	.001 +	0.344	ļ +	0.07	6	=	0.421	LOCAL C	<u>APACITY IS</u>	SATISFIED	
restrain	t/effective ler	oth Claus	e 4.31 f	0 4.3.5					TABLE 13		
Effec	ctive length			Lelt1	=	4600) mm	normal co	ndition		
Effec	ctive length			Lolt2	=	4777 8	2 mm	normaroo			
Life				L e lt=	_	4688.9) mm				
Padi	us of avration	<i>M_M</i>		P1 /	_	2 00	2 cm				
itaul	us or gyrauoli	у-у		i y	_	5.02 6 7	om				
				rx	-	0.75					
				Lamy=		125.1					
				La'mx=		68.1					

David Smith Associates LLP 8 Duncan Close Moulton Park Northampton NN3 6WL Tel: (01604) 782620 Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	20
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

355

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF H2 Buckling resistance Clause 4.8.3.3.1 Compressive strength:perry strust formula from Appendex C.1 lam 0= 15.10 355 N/mm2 Limiting slenderness py= 30.20 TABLE 16 λ L0= For buckling about y-y Robertson constant for H section 5.5 a= Perry factor eta= 0.60 Euler strength 129 N/mm2 pe= 281 N/mm2 Factor phi= Compressive strength 99.1 N/mm2 pcy= Lam'y= 125.1 La'mx= 68.15 Lamy/x= 7.81708 Slenderness of section Lamda= 125.1 Lamx/x= 4.25926 Torsional index x= 16 N= 0.5 Slenderness factor 0.7 from Table 19 v= β w = 1.0 Buckling parameter 0.848 u= lamlt= Equivalent slenderness 74.2 Buckling strength (Table 16) pb= 205 N/mm2 for lamlt= 75 py= Buckling resisrance moment Mb= 50.7 KNm Mb L= 50.7 KNm Mry= 39.5 KNm Pc= 378.41 KN Pcy= 378.41 KN Fc +W <u>x Mx</u> +W <u>y My</u> = <=1 W x= 0.95 Py Zx PC ру Zy W y= 1 0.003 0.365 0.116 0.484 The interaction formula is satisfied + = +

<u>Fc</u> Pcy	+W	/ <u>LT M It</u> Mb	+W	y <u>My</u> py Zy	= <=	1	
0.003	+	0.596	+	0.116	=	0.715	The interaction formula is satisfied

◆ David Smith Associates LLP 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	21
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

David Smith Associates LLP + 8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	22
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF RB2

Strength of steel		Claus	e 3.1.1						
Design strength	(Grade)	S 355)					
for thickness	of 7.8	mm	py=	355	N/mm2	py=	355.0	N/mm2	pyw= py
Young's Modulu	S		E=	205	KN/mm2				
Classification of c	ross secti	ion		(clause	3.5.2)		TAE	BLE 11	rolled section
Constant (table	11 note b)		e =	0.880	,		class 1	class 2	class 3
Outstand of flan	ge ,		b=	66.7	mm		plastic	compac	semi compact
Ratio	0		b/T=	8.55		b/Tlim=	7.92	8.80	13.20
The classification	n is based	on the	outsatnd ele	ement			The section is	s class2	compact
r1 =min(1.0,max	(-0.1,Fc/(d	lxtxpyw)))=	0.17		r2=Fc/(Agxpyw)=0.052			
Depth between	fillets		d=	172.3	mm		TAE	3LE 11	rolled section
ratio			d/t=	29.71			class 1	class 2	class 3
	40	3 (=	35.21		d/tlim=	60.23	70.20	95.58
The classification is based on the general web condition The section is class1 pl					plastic				
Shear capacity	CL 4.2.3	3							
Shear area			Av y=	1179	mm2	(t x D)			
Shear capacity	(0.6pvA)	Pvv=	251	KN	. ,			
Shear force		,	Fvy=	11.8	KN		Fvy/Pvy=	0.05	SHEAR PASS OK
Moment Capacity			_						
Elastic modulus			Zx=	231.9	cm3		Mcx1=	82.32	
Plastic modulus			Sx=	260	cm3		Mcx2=	92.23	
Moment capacit	y for sectio	on	Mcx=	92	KNm				
Elastic modulus			Zy=	46.4	cm3		Mcy1=	16.47	
Plastic modulus			Sv=	71	cm3		mcv2=	25.34	
Moment capacit	y for sectio	n	Mcy=	25	KNm		,		
Local capacity	chock Cla	uco 4 9	22						
		<u>use 4.0</u>	<u></u> Mv	1					
	Mox		Mov	- \-					
Ag. py	IVICX		IVICY						
0.052 +	0.150) +	0.055	=	0.258	LOCAL	CAPACITY IS	SATISFI	ED
restraint/effective	length Cla	ause 4.	<u>31 to 4.3.5</u>				TABLE 13		
Effective length			Le It1=	5100	mm	normal o	condition		
Effective length			Lelt2=	5100	mm				
			L e It=	5100	mm				
Radius of ovration	on v-v		rv=	31	cm				
			ry=	8 54	cm				
			-^- am'v=	161 5	5111				
			Lainy-	50.7					
				JJ./					

◆ David Smith Associates LLP◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	23
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF RB2						
Buckling resistance Clause 4	<u>.8.3.3.1</u>					
Compressive strengtn:perry	strust formula	15 10	<u>(</u>		2EE N/mm2	
Limiting stenderness	iam 0=	15.10	2	py=		
For buckling about y-y			λ	L0=	30.20 TABLE 10	
Robertson constant for section		0 C for table		b		
Dorm (footor	a-		23	D		
Ferry factor	ela-	0.5Z				
	pe-	75 N/IIIII2				
	pni=	234 N/mm2				
Compressive strength	pcy=	65.9 N/mm2				
	Lam'y=	164.5	La'mx=	59.72	Lamy/x=	6.477
Slenderness of section	Lamda=	164.5			Lamx/x=	2.3511
Torsio	nal index x=	25.4				
	N=	0.5				
Sienderness factor	V=	0.75 from 1a	DIE 19			
Buckling perometer	р w –	1.0				
Equivalent slenderness	u- Iamit-	108.6				
Buckling strength (Table 16)	=dq	120 N/mm2		for lamIt=	110 pv=	355
Buckling resistance moment	Mb=	31 KNm				
	Mb L=	31 KNm				
	Mry=	25 KNm				
	Pc=	212 KN				
	Pcy=	212 KN				
<u>Fc</u> +W <u>x Mx</u>	+W <u>y My</u>	= <=1		W x	= 0.95	
PC Py Zx	py Zy			W y	= 0.95	
0.292 1 0.160	. 0.090	- 0.500		The interaction	formula is actiofied	
0.265 + 0.160	+ 0.060	- 0.525		The interaction	riormula is satisfied	
<u>Fc</u> +W <u>LT M It</u>	+W <u>y My</u>	= <=1				
Pcy Mb	ру Zy					
0.283 + 0.445	+ 0.080	= 0.808		The interaction	n formula is satisfied	

Project: 34 NASSAU ROAD, LONDON

Project No:	24/54720	Sheet No:	25
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF RB3

Strength of ste	el		Clause	e 3.1.1							
Design stren	igth	(Grade		S 355)					
for thickr	ness of	14.2	mm		ру=	355	N/mm2	py=	355.0	N/mm2	руw= ру
Young's Moo	dulus				E=	205	KN/mm2				
Classification o	of cros	s section				(clause	3.5.2)		ТА	BLE 11 r	olled section
Constant				= 3		0.880		cla	ass 1	class 2 d	class 3
Outstand of	flange				b=	127	mm	pla	astic	compac s	semi compact
Ratio					b/T=	8.94		b/Tlim=	7.92	8.80	13.20
								<u>TI</u>	he section is	class 3 s	<u>emi compact</u>
r1 =min(1.0,r	max(-0	1,Fc/(dxtx	pyw)))=	:		0.16		r2=F	=c/(Agxpyw)=	0.0003	
Depth betwe	en fille	ts			d=	200.2	mm		TA	BLE 11 r	olled section
ratio					d/t=	23.28		cla	ass 1	class 2	class 3
		40	3	=		35.206		d/tlim=	60.51	70.67	105.55
The classific	ation is	s based on	the ge	neral we	eb cor	dition		<u>TI</u>	he section is	class1 pla	<u>astic</u>
Shear capacity	-	CL 4.2.3									
Shear area				ŀ	4v y=	2184.4	mm2	(t x D)			
Shear capac	ity	(0.6pyA)			Pvy=	465	KN				
Shear force					Fvy=	80.0	KN		Fvy/Pvy=	0.17	SHEAR PASS OK
Moment Capac	ity										
Elastic modu	Jus				Zx=	894.5	cm3	M	cx1=	317.55	
Plastic modu	lus				Sx=	989	cm3	M	cx2=	350.95	
Moment cap	acity fo	or section		I	Mcx=	351.0	KNm				
Elastic modu	ilus				7v=	305	cm3	М	cv1=	108 28	
Diastic modu	iluo				2y-	462.4	om2	m	cy 1-	164 15	
Moment cap	acity fo	or section		I	Mcy=	402.4 164.2	KNm		Cy2-	104.15	
				•							
Local capac	ity che		<u>4.0.3.</u>	<u> </u>							
<u>F</u>	+		+			= <=1					
Ag. py		Мсх			Мсу						
0.000	+	0.388	+	(0.041	=	0.430	LOCAL CAI	PACITY IS SA	ATISFIED	
								-			
restraint/effecti	ve leng	gth Clause	9 4.311	0 4.3.5					ABLE 13		
Effective len	gth			Le	e lt1=	6900	mm	normal cond	lition		
Effective len	gth			L	_elt2=	5094	mm				
				Le	lt=	5997	mm				
Radius of gy	ration	у-у			ry=	6.46	cm				
					rx=	11.1	cm				
				Lam	ı'y=	78.9					
				La'n	nx=	62.2					

Project No:	24/54720	Sheet No:	26
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

CONTINUE OF	RB3										
Buckling resistance	e Clause 4.8.	<u>3.3.1</u>									
Compressive stren	gth:perry str	ust formula	from	Appen	<u>dex C.1</u>						
Limiting slenderness		lar	n 0=	15.10				py=	355 N/m	nm2	
For buckling about y	-у						λ L0=		30.20 TAE	BLE 16	
Robertson constant	for H section										
			a=	5.5							
Perry factor			eta=	0.35							
Euler strength			pe=	325	N/mm2						
Factor			phi=	397	N/mm2						
Compressive streng	th	F	ocy=	191.6	N/mm2						
Slenderness of secti	on	Lam' Lam	y= ıda=	78.9 78.9		La'mx=		62.16		Lamy/x= Lamx/x=	4.55806 3.59319
	Tors	ional index	x=	17.3							
			N=	0.5							
Slenderness factor			v=	0.82	from Tab	le 19					
—		β w =		1.0							
Buckling parameter		1.	u=	0.849							
Equivalent sienderne Buckling strength (Ta	iss able 16)	la	mit=	54.9 274	N/mm2			for lamit=	55	nv=	355
Buckling resistance	moment		Mb=	270 0	KNm				00	Py-	000
Buoking resistance i	noment	М	b L=	270.9	KNm						
		N	лгу=	164.2	KNm						
			Pc=	1780	KN						
		F	Pcy=	1780	KN						
<u>Fc</u> +W :	<u>x Mx</u>	+W <u>y My</u>	<u> </u>	= <=1				W x	= 0.95	5	
PC	Py Zx	р	y Zy					W y	= 1		
0.001 +	0.407	+ 0	.063	=	0.471		<u>The i</u>	interaction 1	ormula is s	satisfied	
<u>Fc</u> +W	LT M It	+W <u>y My</u>	<u>.</u> :	= <=1							
Рсу	Mb	p	y Zy								
0.001 +	0.503	+ 0	.063	=	0.566		<u>The</u> i	interaction f	ormula is s	satisfied	

◆ David Smith Associates LLP◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	27
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

David Smith Associates LLP +

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	28
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF RB4

Stre	ngth of stee	el 🛛		Claus	e 3.1.1							
D	esign streng	th	(Grade		S 35	5)					
	for thicknes	s of	11	mm		py=	355	N/mm2	py=	355.0	N/mm2	pyw= py
Y	oung's Modu	ulus				E=	205	KN/mm2				
Clas	sification of	fcro	oss sectio	on			(clause	3.5.2)		TA	BLE 11	rolled section
С	onstant (tabl	le 1'	1 note b)		= 3		0.880			class 1	class 2	class 3
0	utstand of fla	ange	Э			b=	101.6	mm		plastic	compac	semi compact
R	atio					b/T=	9.24		b/Tlim=	7.92	8.80	13.20
TI	he classifica	tion	is based o	on the	outsat	nd ele	ment			The section is	s class 3	<u> semi compact</u>
r1	=min(1.0,m	ax(-	0.1,Fc/(dx	txpyw)))=		0.14		r2:	=Fc/(Agxpyw)=	0.029	
D	epth betwee	n fill	ets			d=	160.8	mm		TA	3LE 11	rolled section
ra	itio					d/t=	22.03			class 1	class 2	class 3
			40	3	=		35.21		d/tlim=	61.55	72.38	99.88
TI	he classifica	tion	is based o	on the	genera	al web	conditio	on		The section is	s class1	plastic
<u>Shea</u>	ar capacity		CL 4.2.3									
S	hear area					Av y=	1483	mm2	(t x D)			
S	hear capacit	y	(0.6pyA)			Pvy=	316	KN				
S	hear force					Fvy=	39.8	KN		Fvy/Pvy=	0.13	SHEAR PASS OK
Mom	nent Capaci	ty										
E	lastic moduli	us				Zx=	449.2	cm3		Mcx1=	159.5	
Р	lastic moduli	us				Sx=	497	cm3		Mcx2=	176.6	
M	oment capa	city	for sectior	ı		Mcx=	177	KNm				
-	1 4 ¹					7.	454			M	50.04	
E	lastic moduli	us				Zy=	151	cm3		Mcy1=	53.61	
P	lastic moduli	us	.			Sy=	230	cm3		mcy2=	81.65	
M	oment capa	city	for sectior	1		Мсу=	82	KNm				
L	ocal capacit	ty cl	heck Clau	ise 4.8	3.3.2							
	<u>F</u> +	-	<u>Mx</u>	+		My	= <=1					
A	д. ру		Mcx			Мсу						
	0.029 +	-	0.360	+		0.078	=	0.467	LOCAL	CAPACITY IS	SATISFI	ED
				_								
restr	aint/effectiv	/e le	ength Clai	use 4.	<u>31 to 4</u>	1.3.5				TABLE 13		
E	ffective lengt	th			L	e lt1=	6900	mm	normal o	ondition		
E	ffective lengt	th			L	.elt2=	3450	mm				
					Le	lt=	5175	mm				
R	adius of gyra	atior	і у-у			ry=	5.11	cm				
						rx=	8.81	cm				
					Lar	m'v=	67 5					
						mx=	78.3					

Project No:	24/54720	Sheet No:	29
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF RB4						
Buckling resistance Clause 4	.8.3.3.1					
Compressive strength:perry	strust formula	from Appende	<u>ex C.1</u>			
Limiting slenderness	lam 0=	15.10		py=	355 N/mm2	
For buckling about y-y			λ	L0=	30.20 TABLE 16	
Robertson constant for section						
	a=	5.5 for tab	le 23	С		
Perry factor	eta=	0.35				
Euler strength	pe=	330 N/mm	2			
Factor	phi=	400 N/mm	2			
Compressive strength	pcy=	193.1 N/mm	2			
Slenderness of section	Lam'y= Lamda=	67.5 78.3	La'mx=	78.32	Lamy/x= Lamx/x=	3.8144 4.4249
Torsio	nal index x=	17.7				
	N=	0.5				
Sienderness factor	V=	0.87 from 1	able 19			
Buckling perometer	р w –	1.0				
Equivalent slenderness	u- Lamit-	0.040				
Buckling strength (Table 16)	=dq	257 N/mm	2	for lamlt=	60 pv=	355
Buckling resistance moment	Mb=	128 KNm				
5	Mb L=	128 KNm				
	Mry=	82 KNm				
	Pc=	1135 KN				
	Pcy=	1135 KN				
<u>Fc</u> +W <u>x Mx</u>	+W <u>y My</u>	= <=1		W x	= 0.95	
PC Py Zx	ру			W y	= 0.95	
0.053 + 0.379	+ 0.113	= 0.544		The interaction	n formula is satisfied	<u> </u>
<u>Fc</u> +W <u>LT M lt</u> Pcy Mb	+W <u>y My</u> py Zy	= <=1				
0.053 + 0.497	+ 0.113	= 0.663		The interaction	n formula is satisfied	L

Project No:	24/54720	Sheet No:	30
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG
			K

Project: 34 NASSAU ROAD, LONDON

DIMENSIONS IN THESE CALCULATIONS ARE ONLY APPROXIMATE AND THE CONTRACTOR MUST CHECK THE LATEST ARCHITECTURAL DRAWINGS AND MEASURE UP ON SITE BEFORE ORDERING ANY MATERIALS.NO WORK SHOULD START BEFORE THE CALCULATIONS HAVE BEEN RECEIVED AND APPROVED BY THE LA BUILDING CONTROL.

ROOF LEVEL

STEEL I	BEAM		RB5				
Ма	ax span =	2.6 m					
	Cover=	2.3 m	FLAT				
USE	152x89x16 U	В		S355	SEE PAGE	31 -	33
STEEL I	BEAM		RB6				
Ma	ax span =	2 m					
	Cover=	1 m					
USE	152x89x16 U	В		S355	SEE PAGE	34 -	36
STEEL	COLUMNS		SP1				
Ма	x HIGH =	2.4 m					
USE	90x90x6.3 SI	IS		S355	SEE PAGE	37 -	38

go to page 39

All design calculations have been author reviewed and subject to additional review by the project team, as required by David Smith Associates Quality Assurance procedures.

◆ David Smith Associates LLP 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL The (01001) 700000

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	31
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

David Smith Associates LLP +

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	32
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF RB5

Strength of steel		Claus	e 3.1.1							
Design strength	(Grade		S 355)					
for thickness o	f 7.7	mm	p	y=	355	N/mm2	py=	355.0	N/mm2	pyw= py
Young's Modulus	;		I	=	205	KN/mm2				
Classification of cr	oss secti	<u>on</u>			(clause	3.5.2)		TAE	BLE 11	rolled section
Constant (table 1	1 note b)		= 3		0.880			class 1	class 2	class 3
Outstand of flang	e			b=	44.45	mm		plastic	compac	semi compact
Ratio			b/	Г=	5.77		b/Tlim=	7.92	8.80	13.20
The classification	ı is based	on the	outsatnd	ele	ment			The section is	s class1	plastic
r1 =min(1.0,max(-0.1,Fc/(d	xtxpyw)))=		0.30		r2=	=Fc/(Agxpyw)=	0.082	
Depth between fi	llets			d=	121.8	mm		TAE	BLE 11	rolled section
ratio			d	/t=	26.48			class 1	class 2	class 3
	40	3	=		35.21		d/tlim=	54.09	60.60	90.67
The classification	n is based	on the	general w	/eb	conditio	on		The section is	s class1	plastic
Shear capacity	CL 4.2.3	1								
Shear area			Av	y=	701	mm2	(t x D)			
Shear capacity	(0.6pyA))	Pv	y=	149	KN				
Shear force			Fv	y=	7.2	KN		Fvy/Pvy=	0.05	SHEAR PASS OK
Moment Capacity										
Elastic modulus			Z	x=	110	cm3		Mcx1=	39.05	
Plastic modulus			S	x=	124	cm3		Mcx2=	44.02	
Moment capacity	for sectio	n	Мс	x=	44	KNm				
Elastic modulus			Z	v=	20.3	cm3		Mcv1=	7.207	
Plastic modulus			s	, v=	31	cm3		mcv2=	11 15	
Moment capacity	for sectio	n	Mc	y=	11	KNm				
l ocal capacity o	heck Cla	use 4 8	32							
E +	My	+	<u></u>	Av	= <=1					
Ag py	Mcx		- M							
лу. ру	INICA		IVI	Сy						
0.082 +	0.099	+	0.0	39	=	0.220	LOCAL	CAPACITY IS	SATISFI	ED
restraint/effective I	ength Cla	use 4.	<u>31 to 4.3.</u>	<u>5</u>				TABLE 13		
Effective length			Le It	1=	2600	mm	normal c	ondition		
Effective length			Lelt	2=	2600	mm				
			L e lt=		2600	mm				
Radius of gyratio	n y-y		r	y=	2.1	cm				
			r	x=	6.4	cm				
			Lam'v	=	123.8					
			, La'mx	=	40.6					

Project No:	24/54720	Sheet No:	33
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF	RB5								
Buckling resista	nce Clause 4	4.8.3.3.1 <u></u>							
Compressive st	rength:perry	strust formu	la from A	ppendex C.	<u>1</u>				
Limiting slendern	ess	lam 0)= 15.10		_	py=	355 N/ı	mm2	
For buckling abo	ut y-y				λ	, L0=	30.20 TA	BLE 16	
Robertson consta	ant for section	1							
		a	a= 3.5	for table 23		b			
Perry factor		eta	a= 0.38						
Euler strength		pe	e= 132	N/mm2					
Factor		ph	i= 269	N/mm2					
Compressive stre	ength	рсу	/= 109.6	N/mm2					
		Lam'y=	= 123.8	1	La'mx=	40.63		Lamy/x=	6.3492
Slenderness of s	ection	Lamda	a= 123.8					Lamx/x=	2.0833
	Torsic	onal index x	(= 19.5						
		N	l= 0.5						
Slenderness fact	or	v	/= 0.76	from Table	19				
		β w =	1.0						
Buckling parame	ter	U	ı= 0.889						
Equivalent slende	erness	lamli	t= 83.5	NUmme		f	05		055
Buckling strength	i (Table 16)	pb)= 1/5	N/mm2		for lamit=	85	py=	355
Buckling resisran	ce moment	Mb)= 22	KNm					
		Mb L	_= 22	KNM					
		IVIFY	/= 11	KINM					
		PC)= 224.0 (= 224.6	KIN					
Fc +\/	/ × M×	۲-Cy +\\/ v Mv	- 224.0	rxin		\٨/	v- 00	5	
						VV \\\/	x- 0.8	5	
FC	FyZx	py z	_у			vv	y- 0.8	00	
0.267 +	0.106	+ 0.05	57 =	0.430		The interactio	<u>n formula</u>	is satisfied	L
<u>Fc</u> +W	/ <u>LT M It</u>	+W <u>y My</u>	= <=1						
Рсу	Mb	py Z	Ży						
0.267 +	0.200	+ 0.05	57 =	0.525		The interactio	n formula	is satisfied	<u>l</u>

Project No:	24/54720	Sheet No:	34
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

Project No:	24/54720	Sheet No:	35
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF RB6

Strength of	steel		Clause	3.1.1							
Design s	strength	(Grade		S 355)						
for th	nickness of	7.7	mm	ру=	= 35	5	N/mm2	py=	355.0	N/mm2	рум= ру
Young's	Modulus			E=	= 20	5	KN/mm2				
Classificatio	on of cross	s section			(clau	se	3.5.2)			TABLE 11 rd	olled section
Constant	t			= 3	0.8	880)		class 1	class 2 c	lass 3
Outstand	d of flange			b=	= 44	.45	i mm		plastic	compac s	emi compact
Ratio				b/T=	= 5	5.77	,	b/Tlim=	7.92	8.80	13.20
									The section	<u>n is class1 pla</u>	stic
r1 =min(1.0,max(-0.	1,Fc/(dxtx	(pyw)))=	:	0	.50		r.	2=Fc/(Agxpy	w)= 0.0014	
Depth be	etween fillet	S		d=	= 12	1.8	mm			TABLE 11 ro	olled section
ratio				d/t=	= 26	6.48	5		class 1	class 2	class 3
		40	3 (=	35.2	206	5	d/tlim=	46	6.85 50.17	105.33
The clas	sification is	based or	n the ge	neral web co	onditio	n			The section	n is class1 pla	<u>stic</u>
Shear capa	<u>icity</u>	CL 4.2.3									
Shear ar	ea			Av y=	= 701	.04	mm2	(t x D)			
Shear ca	apacity	(0.6pyA)		Pvy=	= [·]	149) KN				
Shear fo	rce			Fvy=	=	8.8	8 KN		Fvy/P	vy= 0.06 \$	SHEAR PASS OK
Moment Ca	pacity										
Elastic m	nodulus			Zx=	= ·	110	cm3		Mcx1=	39.05	
Plastic m	nodulus			Sx=	= ·	124	cm3		Mcx2=	44.02	
Moment	capacity fo	or section		Mcx=	= 4	4.0	KNm				
Elastic m	nodulus			7v=	= 2	0.3	cm3		Mcv1=	7 2065	
Plastic m	nodulus			Sv=	- 3	1 4	cm3		mcy2=	11 147	
Moment	capacity fo	or section		Mcy=	= 1	1.1	KNm		moyz	11.147	
	n na situ a ha	ok Clouo	. 4 9 2	2							
		My	<u>e 4.0.3.</u>	<u> </u>		1					
<u> </u>	+		+		⊻ -	- 1					
Ag. py		MCX		MC	/						
0.001	1 +	0.140) +	0.028	3 =		0.169	LOCAL	CAPACITY I	<u>S SATISFIED</u>	
restraint/eff	fective lend	oth Claus	e 4.31 t	0 4.3.5					TABLE 13		
Effective	e lenath			l e lt1=	= 20	000	mm	normal co	ondition		
Effective	elenath			Lett2:	= 125	52 4	mm				
Encouve	siongui			L e lt=	162	26.2	2 mm				
Radius o	of avration	/-\/		rv:	=	21	cm				
	gration			- y-	_	61	cm				
				IX-	- ,	0.4 :0.0					
				Lamy=	5	0.80					
				La mx=	3	1.3	•				

Project No:	24/54720	Sheet No:	36
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASS

34 NASSAU ROAD, LONDON

CONTINUE OF RB6						
Buckling resistance Clause 4.8	<u>.3.3.1</u>					
Compressive strength:perry str	rust formula from	Appendex C.1				
Limiting slenderness	lam 0=	15.10		py=	355 N/mm2	
For buckling about y-y			λL	0=	30.20 TABLE 16	
Robertson constant for H sectior	ı					
	a=	5.5				
Perry factor	eta=	0.24				
Euler strength	pe=	569 N/mm2				
Factor	phi=	532 N/mm2				
Compressive strength	pcy=	247.6 N/mm2				
		50.0		04.05		0.05000
Clanderness of eastion	Lamy=	59.6	La'mx=	31.25	Lamy/x=	3.05830
		59.0 10.5			Lamx/x-	1.00200
1013	N=	0.5				
Slenderness factor	v=	0.91 from Tab	ole 19			
	β w =	1.0				
Buckling parameter	u=	0.889				
Equivalent slenderness	lamlt=	48.2				
Buckling strength (Table 16)	pb=	292 N/mm2		for lamlt=	50 py=	355
Buckling resisrance moment	Mb=	36.2 KNm				
	Mb L=	36.2 KNm				
	Mry=	11.1 KNm				
	Pc=	507.58 KN				
F	Pcy=	507.58 KN			0.05	
Fc +VV <u>x Mx</u>	+w <u>y My</u>	= <=1		VV x=	• 0.95	
PC Py Zx	ру ∠у			VV y=	= 1	
0.002 + 0.150	+ 0.043	= 0.194	I	he interaction fo	ormula is satisfied	
<u>Fc</u> +W <u>LT M It</u>	+W <u>y My</u>	= <=1				
Pcy Mb	ру Ży					
0.002 + 0.170	+ 0.043	= 0.214	I	he interaction fo	ormula is satisfied	

David Smith Associates +

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	37
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

1.0 DESIGN OF STEEL COLUMN				
LOCATION= SP1				S355
Clause 2.4.2.3				H rolled section
For sway stability a notional horizontal t	force of 0.	5 %		Calculation in accordance
of the dead and imposed vertical loads	are consi	dered		with BS 5950: 1: 2000
in the design of the columns.				
FACTORED LOAD = 10	KN			Partial safety factor for load
notional force = 0.05	KN			dead= 1.4
1.1 All applied loads and moment are	factored			live= 1.6
				factor
Maximum BM about axis X	MX=	3.27	KNm	Local capacity PASS 0.161
Maximum BM about axis Y	MY=	0.12	KNm	Overall buckling PASS 0.639
Axial compressive load	F=	10.0	KN	1
Shear force in x axis	Fv=	10.00	KN	
Length of column	L=	2.40	m	
Effective length about axis X	LX=	2.40	m	
Effective length about axis Y	LY=	4.80	m	Fully restraint for Ly& LX <1.
1.2 Section properties				
Section size (Ref. No=	141)	90x90	6.3 SHS S355
Depth of steel section	D=	90	mm	SECTION
Width of section	B=	90	mm	
				Mcx= 22.96 KNm
	T=	6.3	mm	Mcy= 23.18 KNm
				Mbs= 5 KNm
Second moment of area x-x	lx=	242	cm4	Pc = 194 KN
Second moment of area y-y	ly=	242	cm4	
Plastic modulus x-x	Sx=	65.3	cm3	Mit= 0.925
Plastic modulus y-y	Sy=	65.3	cm3	
Area of section	A=	20.9	cm2	
1 3 Strongth of stool	1 1			
<u>I.3 Strength (Grade S</u>	355	`		
for thickness of 6.3 mm	nv=	355	N/mm2	
Young's Modulus	F=	205	KNI/mm2	
	-	200		
1.4 Classification of cross section		(clause 3	3.5.2)	TABLE 11 rolled section
Constant (table 11 note b) ε	=	0.88		class 1 class 2 class 3
Outstand of flange	b=	45	mm	plastic compac semi compact
Ratio	b/T=	7.143	mm	b/Tlim= 7.92 8.80 13.20
The classification is based on the outs	atnd elem	ent		The section is class1 plastic
r1 =min(1.0,max(-0.1,Fc/(dxtxpyw)))=		0.06		r2=Fc/(Agxpyw)= 0.013
Depth between fillets	d=	/1.1	mm	I ABLE 11 rolled section
ratio	d/t=	11.29		class 1 class 2 class 3
40 ε	=	35.206		d/tlim= 66.25 80.43 102.84
The classification is based on the gene	eral web co	ondition		The section is class1 plastic
1.5 Shear capacity CL 4 2 3				
Shear area	Av=	1134	mm2	
Shear capacity (0.6pvA)	Pv=	241.5	KN	
Shear force	Fv=	10.00	KN	LOW SHEAR LOAD

David Smith Associates +

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	38
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	

CONTINUE	OF	SP1
00111100	01	U I I

1.6 Moment Capacity						
Elastic modulus	Zx=	53.9	cm3		Mcx1= 22.96 (1.2 py Zx)	
Plastic modulus	Sx=	65.3	cm3		Mcx2= 23.18	
Memort conscitution	Maxe	22.0	Khim			
Moment capacity for section	IVICX-	23.0	NINIII			
Elastic modulus	Zy=	53.9	cm3		Mcy1= 28.7 (1.5 py Zy)	
Plastic modulus	Sy=	65.3	cm3		mcy2= 23.18	
Moment capacity for section	Mcy=	23.18	KNm			
Local capacity check	L 4.8.3.2					
F + Mx	+ Mv	= <=1				
Aq. py Mcx	Mcy					
0.042 . 0.442	. 0.005	_	0.464			
0.013 + 0.143	+ 0.005	=	0.161		LOCAL CAPACITY IS SATISFIED	
1.7 Compressive Resistnace se	ction 4.7					
1.7 Slenderness Clause 4.7.3		0.400				
Effective length x-x	Lex=	2400	mm			
Effective length y-y	Ley=	4800	mm			
Radius of gyration y-y	ry=	3.41	cm			
	rx=	3.41	cm			
	Lain y-	70.4				
	La mx=	70.4				
1.8 Compressive strength perm	strust formula	from An	nendex C 1			
Limiting slenderness	lam 0=	15 10				
For buckling about v-v	ian o	10.10				
Robertson constant for section	a=	2	for table 23		а	
Perry factor	eta=	0 25			ŭ	
Fuler strength	pe=	102	N/mm2			
Factor	pe phi=	241	N/mm2			
Compressive strength	pcv=	93.0	N/mm2			
ep	Pc =	194.4	KN			
1.9 Resistance to Lteral-Bucklin	a resistance SE	CTION 4	1.3			
Limiting slenderness	lam 0=	30.20			Lamy/x= 0.37	
Slenderness of section	Lamda=	140.8			Torsional index x= 381.00	
Slenderness factor	v=	0.9983	from Table 19		N= 0.5	
Buckling parameter	u=	1			β w = 1.0	0.1
Equivalent slenderness	lamlt=	140.5			0.	9983
Perry coefficient	eta lt=	0.7723				
Elastic strength	pe=	102	N/mm2			
Factor	phi It=	268	N/mm2		Mb L= 5.2 KNm	
Factor	pey=	36374			Mry= 23.2 KNm	
Buckling strength (Table 16)	pb=	79.593	N/mm2		Pc= 194.4 KN	
Buckling resisrance moment	Mb=	5.2	KNm		Pcy= 194.4 KN	
Overall buckling check						
For member with moment abou	t both axes					355
for lateral torsional buckling						
<u>Fc</u> +W <u>LT M It</u>	+W <u>y My</u>	(1+FC/F	CY) =	<=1	W x= 0.93	
Pcy Mb	py Zy				W y= 0.93	
0.051 + 0.582	+ 0.005	=	0.639		The interaction formula is satisfied	

Project No:	24/54720	Sheet No:	39
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG
			5

Project: 34 NASSAU ROAD, LONDON

DIMENSIONS IN THESE CALCULATIONS ARE ONLY APPROXIMATE AND THE CONTRACTOR MUST CHECK THE LATEST ARCHITECTURAL DRAWINGS AND MEASURE UP ON SITE BEFORE ORDERING ANY MATERIALS.NO WORK SHOULD START BEFORE THE CALCULATIONS HAVE BEEN RECEIVED AND APPROVED BY THE LA BUILDING CONTROL.

SECOND FLOOR LEVEL

TIMBER SLOPE	RAFTER	<u> 85</u>	TJ2							
Max span =	= 3.1	1 m								
USE 195X47	C24 AT	400 C/C				SEE PA	AGE	40	-	42
STEEL BEAM			FB2.01							
Max span -	= 3.2	2 m								
BEAM LOADING	<u>)</u>	D LOAD		I LOAD	cover y			dead load		live load
		KN/m2	KN/m2		m			KN/m'		KN/m'
ROOF	dead	1.2			2.2	=> 2.2* 1.2=		2.64		
	live		1.00		2.2	=> 2.2*1.00=				2.2
1ST floor	dead	0.6			0.6	=6. *6. <=		0.36		
	live		1.50		0.6	=> .6*1.50=				0.9
wall	dead	0.75			2	=> 2* .75=		<u>1.5</u>		
						U	IDL	4.5 KI	N/m'	3.1 KN/m'
USE 203x10	2x23 UB				S355	SEE P/	AGE	43	-	45
STEEL BEAM			FB2.02							
Max span -	= 6.9	9 m								
BEAM LOADING	<u>)</u>	D LOAD		I LOAD	cover y			dead load		live load
		KN/m2	KN/m2		m			KN/m'		KN/m'
ROOF	dead	1.2			2.2	=> 2.2* 1.2=		2.64		
	live		1.00		2.2	=> 2.2*1.00=				2.2
1ST floor	dead	0.6			2.2	=> 2.2* .6=		1.32		
	live		1.50		2.2	=> 2.2*1.50=				3.3
wall	dead	0.75			2	=> 2* .75=		<u>1.5</u>		
						U	IDL	5.46 KI	N/m'	5.5 KN/m'
USE 203x20	3x71 UC				S355	SEE P/	AGE	46	-	48
STEEL BEAM			FB2.03							
Max span -	= 5.7	7 m								
Cover	= 2.4	4 m								
USE 203x20	3x46 UC				S355	SEE P/	AGE	49	-	51

go to page 52

All design calculations have been author reviewed and subject to additional review by the project team, as required by David Smith Associates Quality Assurance procedures.

DSA	David Smith Associates LLP Structural & Civil Engineering Design & Detailing	Project No:	24/54720	Sheet No:	40
	Party Wall Structural Surveys Expert Witness Reports Flood Risk Assessments Temporary Works Design	Made by:	OAM	Revision:	
Calcs for: T	IMBER FLOOR JOISTS TJ2	Date:	22/03/2024	Checked by:	TG
Project 34	4 NASSAU ROAD, LONDON				

Tedds calculation version 1.1.04

TIMBER JOIST DESIGN (BS5268-2:2002)

Joist detailsJoist breadthb = 47 mmJoist depthh = 195 mmJoist spacings = 400 mmTimber strength classC24Service class of timber1

 Northampton
 London
 Birmingham
 Cheltenham

 northampton@dsagroup.co.uk
 birmingham@dsagroup.co.uk
 cheltenham@dsagroup.co.uk

Check bending stress

Bending stress Permissible bending stress Applied bending stress $\sigma_m = 7.500 \text{ N/mm}^2$ $\sigma_{m_adm} = \sigma_m \times K_{2m} \times K_3 \times K_7 \times K_8 = 10.813 \text{ N/mm}^2$ $\sigma_{m_max} = M / Z = 5.185 \text{ N/mm}^2$

PASS - Applied bending stress within permissible limits

www.dsagroup.co.uk						
Northampton	London	Birmingham	Cheltenham			
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk			

David Smith Associates LLP Structural & Civil Engineering Design & Detailing Party Wall | Structural Surveys | Expert Witness Reports Flood Risk Assessments | Temporary Works Design

Project No:	24/54720	Sheet No:	42
Made by:	OAM	Revision:	
Date:	22/03/2024	Checked by:	TG

Calcs for: TIMBER FLOOR JOISTS TJ2

Project: 34 NASSAU ROAD, LONDON

Check shear stress	
Shear stress	τ = 0.710 N/mm²
Permissible shear stress	$\tau_{adm} = \tau \times K_{2s} \times K_3 \times K_8 = 0.976 \text{ N/mm}^2$
Applied shear stress	τ_{max} = 3 × V / (2 × b × h) = 0.316 N/mm ²
	PASS - Applied shear stress within permissible limits
Check bearing stress	

Compression perpendicular to grain (no wane)	σ _{cp1} = 2.400 N/mm ²
Permissible bearing stress	$\sigma_{c_adm} = \sigma_{cp1} \times K_{2c} \times K_3 \times K_8 = \textbf{3.300} \text{ N/mm}^2$
Applied bearing stress	$\sigma_{c_{max}} = R / (b \times L_b) = 0.411 \text{ N/mm}^2$
	PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection Bending deflection (based on E_{mean}) Shear deflection Total deflection

$\delta_{adm} = min(L_{s1} \times 0.003, 14 mm) = 9.600 mm$ $\delta_{bending} = 4.490 mm$ $\delta_{shear} = 0.300 mm$ $\delta = \delta_{bending} + \delta_{shear} = 4.790 mm$

PASS - Actual deflection within permissible limits

www.dsagroup.co.uk						
Northampton	London	Birmingham	Cheltenham			
northampton@dsagroup.co.uk	london@dsagroup.co.uk	birmingham@dsagroup.co.uk	cheltenham@dsagroup.co.uk			

◆ David Smith Associates LLP◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

³ y: TG
E

Project No:	24/54720	Sheet No:	44
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF FB2.01

Strength of steel			Claus	e 3.1.1							
Design strengt	th	(Grade		S 355)					
for thickness	s of	9.3	mm		py=	355	N/mm2	py=	355.0	N/mm2	pyw= py
Young's Modu	lus				E=	205	KN/mm2				
Classification of	cro	ss sectio	on			(clause	3.5.2)		TA	BLE 11	rolled section
Constant (table	e 11	note b)		= 3		0.880	,		class 1	class 2	class 3
Outstand of fla	anae	,			b=	50.8	mm		plastic	compac	semi compact
Ratio	5				b/T=	5 46		b/Tlim=	7 92	8 80	13 20
The classificat	ion i	s based o	on the	outsatr	nd ele	ment			The section	is class1	plastic
r1 = min(1.0 m)	ax(-0) 1 Fc/(d)	dxnvw'))=		0 19		r2=	=Fc/(Aaxpyw)=	0.058	<u></u>
Depth betweer	n fille	ets	(otp) 11)	///	d=	169.4	mm		TA	BIF 11	rolled section
ratio	1 mic				d/t=	32 58			class 1	class 2	Class 3
1410		40	c	_	u/ (-	35 21		d/tlim-	50 08	68 3/	0/ 50
The classificat	ion i	ut bosod a	on the	aonora	lwoh	conditio	n	u/unn=	The section i	ie class1	nlactic
THE Classificat		s baseu (JII IIIE	genera	i web	conunic			The section	IS CIASS I	plastic
Shoor consoity		CI 4 2 2									
Shoor groo		GL 4.2.3		^		1057	mm2	(t v D)			
				A .	.v y-	1057		((X D)			
Shear capacity	/	(0.6pyA)		ŀ	Jvy=	225	KN				
Shear force				I	Fvy=	18.5	KN		Fvy/Pvy=	0.08	SHEAR PASS OK
Moment Capacit	Y										
Elastic modulu	IS				Zx=	206	cm3		Mcx1=	73.13	
Plastic modulu	IS				Sx=	232	cm3		Mcx2=	82.36	
Moment capac	sity fo	or section	h	Ν	/cx=	82	KNm				
momont capac	July IV		•		nox	-					
Electic modulu	10				7	22.1	om2		Mov1-	11 /	
Elastic modulu	15				∠y-	52.1			IVICY I –	11.4	
Plastic modulu	IS r		_		Sy=	50	CITI 3		mcyz=	17.57	
Moment capac	city to	or section	ו	N	/icy=	18	KNM				
Local capacity	y ch	<u>eck Clau</u>	ise 4.8	.3.2							
<u>F</u> +	1	Mx	+		My	= <=1					
Ag. py		Мсх			Мсу						
					-						
0.058 +		0.167	+	0	.078	=	0.303	LOCAL	CAPACITY IS	SATISFI	ED
				-							
rootroint/offoctiv	. I	anth Cla		21 +0 1	2 5						
	e iei	igin Cia	use 4.,	51104.	.3.5	2000			TABLE 13		
	n			Le	(t)=	3200	mm	normal c	onaltion		
Effective lengt	h			Le	elt2=	3200	mm				
				Le	lt=	3200	mm				
Radius of gyra	tion	у-у			ry=	2.37	cm				
		-			rx=	8.49	cm				
				Lam	י'v=	135.0					
				l a'n	, nx=	37.7					
				Lan	···^ -	51.1					

Project No:	24/54720	Sheet No:	45
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF FB	2.01								
Buckling resistance	Clause 4.8.3	.3.1							
Compressive streng	th:perry strue	st formula	from A	opendex C	<u>.1</u>				
Limiting slenderness		lam 0=	15.10			py=	355 N/n	nm2	
For buckling about y-	у				λ	, L0=	30.20 TAI	BLE 16	
Robertson constant for	or section								
		a=	3.5	for table 23	3	b			
Perry factor		eta=	0.42						
Euler strength		pe=	111	N/mm2					
Factor		phi=	256	N/mm2					
Compressive strength	า	pcy=	94.2	N/mm2					
Slenderness of sectio	on Torsional i	Lam'y= Lamda= ndex x= N=	135.0 135.0 22.6 0.5		La'mx=	37.69		Lamy/x= Lamx/x=	5.9744 1.6678
Slenderness factor		v=	0.77	from Table	19				
	I	3 w =	1.0						
Buckling parameter		u=	0.89						
Equivalent slendernes	SS	lamlt=	93.0			.			
Buckling strength (Ia	ble 16)	pb=	150	N/mm2		for lamit=	95	ру=	355
Buckling resistance n	noment	Mb=	35	KNm					
		Mrv-	35 19	KNM					
		Pc=	273.1	KN					
		Pcv=	273.1	KN					
Fc +W x M	۸x +۷	V v Mv	= <=1			W	x= 0.9	5	
PC Pv	Zx	pv Zv				W	v= 0.9	5	
,		.,,,,					,		
0.220 +	0.178 +	0.114	=	0.512		<u>The interactio</u>	n formula	is satisfied	L
<u>Fc</u> +W <u>LT</u> Pcy Mb	<u>Mlt</u> +V ⊳	V <u>y My</u> py Zy	= <=1						
0.220 +	0.394 +	0.114	=	0.728		The interactio	n formula	is satisfied	<u>l</u>

◆ David Smith Associates LLP 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	46
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Date:	Mar-24	Checked By:	ΤG
Made By:	OAM	Revision:	
Project No:	24/54720	Sheet No:	47

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF FB2.02

Strength of steel		Clause	3.1.1						
Design strength	(Grade		S 355)					
for thickness o	f 17.3	mm	py=	345	N/mm2	py=	345.0	N/mm2	pyw= py
Young's Modulus			E=	205	KN/mm2				
Classification of cr	oss secti	<u>on</u>		(clause	3.5.2)		TAE	BLE 11	rolled section
Constant (table 1	1 note b)		= 3	0.893			class 1	class 2	class 3
Outstand of flang	е		b=	103.1	mm		plastic	compac	semi compact
Ratio			b/T=	5.96		b/Tlim=	8.04	8.93	13.39
The classification	is based	on the o	outsatnd ele	ment			The section is	s class1	<u>plastic</u>
r1 =min(1.0,max(-0.1,Fc/(d	xtxpyw)))=	0.11		r2=	=Fc/(Agxpyw)=	0.019	
Depth between fi	llets		d=	160.8	mm		TAE	BLE 11	rolled section
ratio			d/t=	15.61			class 1	class 2	class 3
	40	3	=	35.71		d/tlim=	64.64	77.13	103.20
The classification	is based	on the g	general web	conditio	on		The section is	s class1	<u>plastic</u>
	0.400								
Shear capacity	CL 4.2.3			0004	0	(D)			
Shear area			Av y=	2224	mm2	(t x D)			
Shear capacity	(0.6pyA)		Pvy=	460	KN				
Shear force			Fvy=	60.2	KN		Fvy/Pvy=	0.13	SHEAR PASS OK
Moment Conseits									
Floatio moduluo			7	709.4			Max1-	244.4	
			ZX-	700.4	cms			244.4	
Plastic modulus			Sx=	802	cm3		Mcx2=	276.8	
Moment capacity	for sectio	n	Mcx=	277	KNm				
Elastic modulus			Zv=	246	cm3		Mcv1=	84.87	
Plastic modulus			Sv=	374	cm3		mcv2=	129.1	
Moment capacity	for sectio	n	Mcv=	129	KNm		moyz	120.1	
. ,			,						
Local capacity c	heck Cla	use 4.8.	.3.2						
<u>F</u> +	Mx	+	My	= <=1					
Ag. py	Mcx		Мсу						
			-						
0.019 +	0.347	+	0.074	=	0.440	LOCAL	CAPACITY IS S	SATISFI	<u>ED</u>
rostraint/offoctivo l	onath Cla		1 to 1 3 5						
Effective length	engun ola	use 4.3	<u>ا د ا+1 –</u>	6000	mm	normal	ondition		
				6000	mm	normal G	onution		
			Leitz=	0000	1000				
			L e It=	6900	mm				
Radius of ovratio	n v-v		rv=	5 28	cm				
. indice of gyradio	. , ,		rv=	9.16	cm				
			-^: Lom'v=	120 7	om				
			Laill y-	750.7					
			La mx=	15.3					

Project No:	24/54720	Sheet No:	48
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF FB2.02						
Buckling resistance Clause	<u>4.8.3.3.1</u>					
Compressive strength:perr	y strust formula	from Ap	pendex C.1			
Limiting slenderness	lam 0=	15.32		py=	345 N/mm2	
For buckling about y-y			2	L0=	30.60 TABLE 16	
Robertson constant for section	on					
	a=	5.5 f	for table 23	с		
Perry factor	eta=	0.63				
Euler strength	pe=	118 I	N/mm2			
Factor	phi=	269 I	N/mm2			
Compressive strength	pcy=	91.4	N/mm2			
	Lam'y=	130.7	La'mx=	75.33	Lamy/x=	10.982
Slenderness of section	Lamda=	130.7			Lamx/x=	6.33
Tors	ional index x=	11.9				
Slenderness factor	N=	0.5 0.61 f	from Table 10			
	βw=	1.0				
Buckling parameter	ب u=	0.852				
Equivalent slenderness	lamlt=	68.4				
Buckling strength (Table 16)	pb=	218 I	N/mm2	for lamlt=	70 py=	345
Buckling resisrance moment	Mb=	175 H	KNm			
	Mb L=	175 I	KNm			
	Mry=	129 I	KNm			
	Pc=	832.5 I	KN			
	Pcy=	832.5 I	KN			
<u>Fc</u> +W <u>x Mx</u>	+W <u>y My</u>	= <=1		W :	x= 0.95	
PC Py Zx	ру Ду			VV	y= 0.95	
0.072 + 0.373	+ 0.107	= (0.553	<u>The interactio</u>	n formula is satisfied	
<u>Fc</u> +W <u>LT</u> M It	+W <u>y My</u>	= <=1				
Pcy Mb	py Zy					
-						
0.072 + 0.549	+ 0.107	= (0.728	The interactio	n formula is satisfied	i

◆ David Smith Associates LLP◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL

Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	49
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

David Smith Associates LLP +

8 Duncan Close ♦ Moulton Park ♦ Northampton NN3 6WL Tel: (01604) 782620 ♦ Fax: (01604) 782629 E-mail: post@dsagroup.co.uk

Project No:	24/54720	Sheet No:	50
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	TG

Project: 34 NASSAU ROAD, LONDON

CONTINUE OF FB2.03

Strength of steel		Clause	3.1.1						
Design strength	Grade)	S 355)					
for thickness	of 11	mm	py=	355	N/mm2	py=	355.0	N/mm2	pyw= py
Young's Modulu	IS		E=	205	KN/mm2				
Classification of o	cross secti	ion		(clause	3.5.2)		TAE	BLE 11	rolled section
Constant (table	11 note b)		= 3	0.880			class 1	class 2	class 3
Outstand of flar	nge		b=	101.6	mm		plastic	compac	semi compact
Ratio			b/T=	9.24		b/Tlim=	7.92	8.80	13.20
The classification	on is based	on the c	outsatnd ele	ment			The section is	s class :	<u>3 semi compact</u>
r1 =min(1.0,ma	x(-0.1,Fc/(d	(xtxpyw))=	0.14		r2=	=Fc/(Agxpyw)=	0.029	
Depth between	fillets		d=	160.8	mm		TAE	BLE 11	rolled section
ratio			d/t=	22.03			class 1	class 2	class 3
	40	3 (=	35.21		d/tlim=	61.55	72.38	99.88
The classification	on is based	on the g	general web	conditio	on		The section is	s class1	<u>plastic</u>
Shear capacity	CL 4.2.3	3							
Shear area			Av y=	1483	mm2	(t x D)			
Shear capacity	(0.6руА)	Pvy=	316	KN				
Shear force			Fvy=	24.0	KN		Fvy/Pvy=	0.08	SHEAR PASS OK
Moment Capacity									
Elastic modulus	6		Zx=	449.2	cm3		Mcx1=	159.5	
Plastic modulus	6		Sx=	497	cm3		Mcx2=	176.6	
Moment capaci	ty for sectio	on	Mcx=	177	KNm				
Elastic modulus	6		Zv=	151	cm3		Mcv1=	53.61	
Plastic modulus	3		Sv=	230	cm3		mcv2=	81 65	
Moment capaci	ty for section	on	Mcv=	82	KNm		···· ·		
	,		,						
Local capacity	check Cla	use 4 8	32						
F +	Mx	+	Mv	= <=1					
Ag py	Mex		Mov						
Ag. py	INCX		IVICy						
0.020 +	0 170	<u>ч</u>	0 030	_	0 247				ED
0.029 +	0.178	<i>у</i> т	0.039	_	0.247	LUCAL	CAPACITY 13 3	AIISFI	
rootroint/offootivo	Jonath Cl		1 +0 1 2 5						
Effective longth		ause 4.5	l o lt1-	5700	mm	normal o			
				5700		normal c	onution		
Effective length			Leitz=	5700	mm				
			L e It=	5700	mm				
Radius of gyrati	on y-y		ry=	5.11	cm				
			rx=	8.81	cm				
			Lam'y=	111.5					
			La'mx=	64.7					

Project No:	24/54720	Sheet No:	51
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG

34 NASSAU ROAD, LONDON Project:

CONTINUE OF FB2.03	3					
Buckling resistance Cla	<u>use 4.8.3.3.1</u>					
Compressive strengtn:p	berry strust formula	15 10	ppendex C.1		255 N/mm2	
	iam 0=	15.10	2	py=		
For buckling about y-y	-		λ	LU=	30.20 TABLE 16	
Robertson constant for se	cuon		fan tabla 00			
	a=	5.5	for lable 23	С		
Perry factor	eta=	0.53	N/mar 0			
	pe=	163	N/mm2			
Factor	phi=	302	N/mm2			
Compressive strength	pcy=	119.1	N/mm2			
	Lam'y=	111.5	La'mx=	64.70	Lamy/x=	6.302
Sienderness of section	Lamda=	111.5			Lamx/x=	3.6553
I	orsional index x=	17.7				
Slenderness factor	N= V=	0.5	from Table 19			
	β w =	1.0				
Buckling parameter	ب u=	0.846				
Equivalent slenderness	lamlt=	71.8				
Buckling strength (Table 1	16) pb=	205	N/mm2	for lamIt=	75 py=	355
Buckling resisrance mome	ent Mb=	102	KNm			
	Mb L=	102	KNm			
	Mry=	82	KNm			
	Pc=	700.2	KN			
	Pcy=	700.2	KN			
<u>Fc</u> +W <u>x Mx</u>	+W <u>y My</u>	= <=1		W x	= 0.95	
PC Py Zx	ру			W y	= 0.95	
0.086 + 0.18	8 + 0.056	=	0.330	The interaction	n formula is satisfied	l
<u>Fc</u> +W <u>LT M It</u>	+W <u>y My</u>	= <=1				
Pcy Mb	ру					
0.086 + 0.31	0 + 0.056	=	0.452	The interaction	n formula is satisfied	L

wall

USE

◆ David Smith Associates LLP ◆ 8 Duncan Close ◆ Moulton Park ◆ Northampton NN3 6WL Tel: (01604) 782620 ◆ Fax: (01604) 782629 E-mail: northampton@dsagroup.co.uk

Project No:	24/54720	Sheet No:	52
Made By:	OAM	Revision:	
Date:	Mar-24	Checked By:	ΤG
			5

Project: 34 NASSAU ROAD, LONDON

DIMENSIONS IN THESE CALCULATIONS ARE ONLY APPROXIMATE AND THE CONTRACTOR MUST CHECK THE LATEST ARCHITECTURAL DRAWINGS AND MEASURE UP ON SITE BEFORE ORDERING ANY MATERIALS.NO WORK SHOULD START BEFORE THE CALCULATIONS HAVE BEEN RECEIVED AND APPROVED BY THE LA BUILDING CONTROL.

SECOND FLOOR LEVEL STEEL BEAM FB2.04 Max span = 3.2 m Cover= 1 m USE 203x133x30 UB S355 SEE PAGE 53 55 STEEL BEAM FB2.05 Max span = 6.9 m 2.5 m Cover= USE 203x203x60 UC S355 SEE PAGE 56 58 STEEL BEAM FB2.06 Max span = 2.4 m **BEAM LOADING** D LOAD I LOAD cover y dead load live load KN/m2 KN/m2 KN/m' KN/m' m ROOF dead 1.2 0.6 => .6* 1.2= 0.72 1.00 => .6*1.00= live 0.6 06 1ST floor 0.6 0.6 => .6* .6= 0.36 dead live 1.50 0.6 => .6*1.50= 0.9 wall dead 2.5 => 4.4* 2.5= 4.4 <u>11</u> UDL 12.08 KN/m' 1.5 KN/m' USE 203x102x23 UB S355 SEE PAGE 59 61 STEEL BEAM FB2.07 Max span = 6.9 m Cover= 2.6 m USE 203x203x60 UC S355 SEE PAGE 62 64 STEEL BEAM FB2.08 Max span = 2.4 m **BEAM LOADING** D LOAD I LOAD cover y dead load live load KN/m2 KN/m2 KN/m' KN/m' m ROOF dead 1.2 3.5 => 3.5* 1.2= 4.2 live 1.00 => 3.5*1.00= 3.5 3.5 1ST floor dead 0.6 0.6 => .6* .6= 0.36 => .6*1.50= live 1.50 0.6 0.9

 dead
 5
 4.4
 => 4.4* 5=
 22

 UDL
 26.56
 KN/m'
 4.4
 KN/m'

 152x152x37 UC
 +PLATE
 \$355
 SEE PAGE
 65
 67

go to page 68

All design calculations have been author reviewed and subject to additional review by the project team, as required by David Smith Associates Quality Assurance procedures.