

M M

Site Details:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

Map legend available at: www.groundsure_legend.pdf

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	County Series	Ν
Map date:	1894-1895	
Scale:	1:10,560	
Printed at:	1:10,560	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

03 April 2024 Production date:

Map legend available at: www.groundsure.com/sites/default/files/groundsure_legend.pdf

Site Details:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	County Series	Ν
Map date:	1894-1899	
Scale:	1:10,560	
Printed at:	1:10,560	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

03 April 2024 Production date:

M

Site Details:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	County Series	
Map date:	1919	
Scale:	1:10,560	v
Printed at:	1:10,560	

Ν

Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

Map legend available at: www.groundsure_legend.pdf

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

03 April 2024 Production date:

Map legend available at: <u>www.groundsure_legend.pdf</u>

Site Details:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	County Series	Ν
Map date:	1933	
Scale:	1:10,560	₩ Ţ Ĕ
Printed at:	1:10,560	S

Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

Map legend available at: www.groundsure.com/sites/default/files/groundsure_legend.pdf

Site Details:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	County Series	Ν
Map date:	1933-1938	
Scale:	1:10,560	
Printed at:	1:10,560	S

Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

M

Site Details:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

Map legend available at: www.groundsure_legend.pdf

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	Provisional	Ν
Map date:	1947	
Scale:	1:10,560	
Printed at:	1:10,560	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

03 April 2024 Production date:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	Provisional	Ν
Map date:	1958	w
Scale:	1:10,560	
Printed at:	1:10,560	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	Provisional	Ν
Map date:	1962	W
Scale:	1:10,560	
Printed at:	1:10,560	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

03 April 2024 Production date:

M W

Site Details:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	Provisional	Ν
Map date:	1967	
Scale:	1:10,560	
Printed at:	1:10,560	S

Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

Map legend available at: www.groundsure_legend.pdf

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	National Grid	Ν
Map date:	1974	
Scale:	1:10,000	
Printed at:	1:10,000	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

' Map legend available at: <u>www.groundsure.com/sites/default/files/groundsure_legend.pdf</u>

Site Details:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	National Grid	Ν
Map date:	1987	
Scale:	1:10,000	Ť
Printed at:	1:10,000	S

Е

Produced by Groundsure Insights T: 08444 159000 E: <u>info@groundsure.com</u> W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights 2024 Ordnance Survey 100035207

Production date: 03 April 2024

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	National Grid	Ν
Map date:	2001	
Scale:	1:10,000	
Printed at:	1:10,000	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

03 April 2024 Production date:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	National Grid	Ν
Map date:	2010	
Scale:	1:10,000	Ϋ́Τ
Printed at:	1:10,000	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

© Crown copyright and database rights 2024 Ordnance Survey 100035207

03 April 2024 Production date:

34, NASSAU ROAD, BARNES, LONDON, RICHMOND UPON THAMES, SW13 9QE

Client Ref: Report Ref: Grid Ref:	GWPR5909 GS-R7I-VE4-EA3-BPT 521771, 176566	
Map Name:	National Grid	Ν
Map date:	2024	
Scale:	1:10,000	
Printed at:	1:10,000	S

Produced by Groundsure Insights T: 08444 159000 E: info@groundsure.com W: www.groundsure.com

 $\ensuremath{\mathbb{C}}$ Crown copyright and database rights 2024 Ordnance Survey 100035207

03 April 2024 Production date:

geotechnical and environmental consultants

APPENDIX D: Trial Hole Logs

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office Rineton House, 37 Horse Fait Banbury, Oxfordshite OX16 OAE: Registered in England No 07052001

Percussion Drilling Log

	ground	l&water									3				
Project N	lame:	34 Nassau	Road		Client: ⁻	ſom Richar	rds			Date:					
Location	: SW1	3 9QE			Contrac	tor:									
Project N	No. : G	WPR5909			Crew N	ame:				Drilling Equipment:					
Boreh	ole Nu WS01	umber	Hole W	e Type /LS		Level		Logged	Ву	Scale Page Numl 1:50 Sheet 1 of					
Well W	/ater	Sampl	e and li	n Situ Testir	ng	Depth	Level	Legend	Stratum Description						
St	rikes	Depth (m)	Туре	Result	ts	(m)	(m)	g	MADE						
Well St		Depth (m) 0.20 0.50 0.80 1.00 1.20 2.00 2.00 2.50 3.00 3.00	Type D D SPT D SPT D SPT	Result N=28 (11,7/7 27 (25,24/ N=47 (18,12/11,12	rg ts 7,7,7,7) 27,) 2,12,12)	1.20 1.80 3.00		Legend	MADE CLAY S to sub- chalk (S Orange (KEMP Light bl coarse. rounde MEMBI	Strat GROUND: D Sand is fine. rounded of fli 5%). e brown very TON PARK O rown very sau Gravel is fin d of flint. (KE ER). End of	um Descrip ark brown sa gravel is fine nt (80%), bri sandy CLAY. GRAVEL MEI ndy GRAVEL e to coarse, MPTON PAF Borehole at 3	Andy gravelly to coarse, a ck (15%) and Sand is fine MBER). Sand is fir angular to s RK GRAVEL .000m	/ ingular d		
Hol Depth Bas	le Diame se D	ter De	Casing pth Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling ase Dura	ation	Tool	Depth Top	Inclination Depth Base	and Orientation	n Orient	9 9 10	
Remark Roots not	(S ted to 1	.20 ted at 2 90m	bal										AGS		

Percussion Drilling Log

	groun	d&water													
Projec	ct Name	: 34 Nassau	Road		Client:	Tom Richar	ds		Date:						
Locati	on: SW	13 9QE			Contrac	ctor:									
Projec	ct No. : 0	GWPR5909			Crew Name:					Drilling Equipment:					
Bor	ehole N WS02	umber	Hole W	: Type /LS		Level		Logged	3 By Scale Page Nur 1:50 Sheet 1						
Well	Water	Sampl	e and li	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrir	otion			
	Strikes	Depth (m)	Туре	Resul	ts	(m)	(m)	9				andy gravel	h.		
		0.20 0.50 0.80 1.00	D D D D						CLAY. S to sub-r chalk (5	<i>C</i> . Sand is fine. gravel is fine to coarse, angular b-rounded of flint (80%), brick (15%) and (5%).					
		1.20 1.50	SPT D	N=21 (6,4/4	,5,6,6) 1.20				Orange (KEMP	e brown very sandy CLAY. Sand is fine. PTON PARK GRAVEL MEMBER).					
		2.00 2.00	D SPT	27 (25,22/	27,,,)	2.20			Light br	own very sa Gravel is fin	ndy GRAVEI e to coarse.	Sand is fi	ne to sub-	2 —	
		2.50 3.00	D						rounded MEMBE	d of flint. (KE ER).	MPTON PA	RK GRAVEL	-	3 —	
		3.00 3.50	SPT D	N=52 (20,11/12,14	,13,13)									-	
		4.00	D			4.00				End of	Borehole at 4	.000m		4 —	
														-	
														5 —	
														6 -	
														7 -	
														-	
														8 —	
														9 –	
														- - - - - - - - - - - - - - - - - - -	
Depth	Hole Diam Base [eter Dej	Casing oth Base	Diameter Diameter	Depth Te	Depth Ba	Chiselling ase Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientatic	Orientati	ion	
Rema Roots No SP	arks noted to T at 4.00	1.50. Groundw m bgl due to sa	ater note	ed at 2.80m bo	gl.		1	1					AGS		

			Probe No				
			P	robe	Log	DP02	
ground&wa	ter					Sheet 1 of 2	
Project Name: 34	Nassau Road	Project No. GWPR5909	С	Co-ords:		DP	
Location: SW	/13 9QE			Scale			
Client: Ten	n Bisharda					Logged By	
				Jales.		<u> </u>	
Depth (m)	4 6 8 10 12 14 16	Blow:	s/100mm 4 26 28	ר 3 <u>30</u> 32	34 36 38 40 42 44 46	48 Torque (Nm)	
2							
3							
4							
14 14							
11							
10							
9							
9							
0			: i		:] :] :] :] :] :] :] :] :] :]		
Remarks:		Fall Height	500		Cone Base Diameter		
		Probe Type	DPSH-	A	rinai Depth 7.00	AGS	

															Probe No								
											⊃r	ok	e	Ľ	0.	g							DP02
gro	und&wat	er																	Sheet 2 of 2				
Project Nar	me: 34 I	Nassau R	load			Proj GWI	ect N PR59	lo. 909			Co-ords:							Hole Type DP					
Location:	SW	13 9QE					Level:								Scale 1·25								
Client:	Tom	Richard	S				Dates:							L	ogged By								
Depth (m)								Blow	/s/10)0m	m							_					Torque (Nm)
	9	4 6	8 10	12 1	4 16	18	20	22	24 :	26	28	30	32	34	36	5 38	3 4	.0	42	44	46	48	
-	8		-																				
-	9																						
-	8		-																				
-	7																						
-	6																						
-	5																						
	5																						
-	4																						
-	4	-																					
	4																						
	4																						
	4																						
- 7	4																_					_	_
-	-																						
-																							
-																							
8																							_
-																							
-																							
-																							
-																							
- 9																							
-																							
-																							
- -																							
- -																							
- -																							
Remarks [.]						Fall	Heir	aht	50	0	Cone Rase Diamator												
. contanto.	marks.				Har	nmei	Wt	64	-				Fin	al C)epth	<u>יי</u> ני ו		7	7.00)			
					Pro	Probe Type DPSH-																AUD	

geotechnical and environmental consultants

APPENDIX E: Geotechnical Laboratory Testing

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office Wineton House, 37 Horse Fast Banbury, Oxfordshite OX16 GAE. Registered in England No 07052001.

Contract Number: 71779

Client Ref: GWPR5909 Client PO: GWPR5909

Client: Ground and Water Limited

Contract Title: **34 Nassau Road SW13 9QE** For the attention of: **Adam Young**

Laboratory Report

> Date Received: **19-03-2024** Date Completed: **28-03-2024** Report Date: **28-03-2024**

> > This report has been checked and approved by:

Brendan Evans Office Administrator

Description	Qty
Moisture Content BS 1377:1990 - Part 2 : 3.2 - * UKAS	2
1 Point Liquid & Plastic Limit BS 1377:1990 - Part 2 : 4.4 & 5.3 - * UKAS	2
PSD Wet Sieve method BS 1377:1990 - Part 2 : 9.2 - * UKAS	3
Disposal of samples for job	1

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- $\ensuremath{@}$ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This test report/certificate shall not be reproduced except in full, without the approval of GEO Site & Testing Services Ltd. Any opinions or interpretations stated - within this report/certificate are excluded from the laboratories UKAS accreditation.

Approved Signatories:

Brendan Evans (Office Administrator) - Darren Bourne (Quality Senior Technician) - Paul Evans (Director) Richard John (Quality/Technical Manager) - Shaun Jones (Laboratory manager) - Shaun Thomas (Site Manager) Wayne Honey (HR & HSE Manager)

	NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377:1990 - Part 2 : 4.4 & 5.3)	
Contract Number	71779	
Project Name	34 Nassau Road SW13 9QE	
Date Tested	27/03/2024	
	DESCRIPTIONS	

Sample/Hole Reference	Sample Number	Sample Type	D	epth (I	m)	Descriptions
WS01		D	1.50	-		Brown sandy fine to coarse gravelly silty CLAY
WS02		D	2.00	-		Brown fine to coarse gravelly silty CLAY
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

Operator

Owain Davies

Cameron Thomas

2788

Cameron Thomas

2788

Cameron Thomas

2788

geotechnical and environmental consultants

APPENDIX F: Chemical Laboratory Testing

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office Rineton House, 37 Horse Fait Banbury, Oxfordshite OX16 OAE: Registered in England No 07052001

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: adam.young@groundwater.co.uk

Analytical Report Number : 24-009116

Project / Site name:	34 Nassau Road SW13 9QE	Samples received on:	14/03/2024
Your job number:	GWPR5909	Samples instructed on/ Analysis started on:	14/03/2024
Your order number:	GWPR5909	Analysis completed by:	20/03/2024
Report Issue Number:	1	Report issued on:	21/03/2024
Samples Analysed:	5 soil samples		

Signed: A Germanista

Agnieszka Czerwińska Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	-	4 weeks from reporting
leachates	-	2 weeks from reporting
waters	-	2 weeks from reporting
asbestos	-	6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 24-009116

Project / Site name: 34 Nassau Road SW13 9QE Your Order No: GWPR5909

Lab Sample Number				145503	145504	145505	145506	145507
Sample Reference				WS01	WS02	WS01	WS02	WS02
Sample Number				None Supplied				
Depth (m)				1.20	0.20	2.00	1.50	3.00
Date Sampled				12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	15	3.4	17	24
Total mass of sample received	kg	0.01	NONE	0.8	0.7	0.5	0.6	0.4
Total mass of sample received	5			0.8	0.7	0.5	0.0	0.4
Asbestos								
Asbestos in Soil Detected/Not Detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	KSZ	KSZ	-	-	-
General Inorganics								
pH (L099)	pH Units	N/A	MCERTS	8	7.7	8.4	8	8.3
Total Cyanide	mg/kg	1	MCERTS	2	< 1.0	-	-	-
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	0.014	0.008
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	20	27	17	46	25
Water Soluble SO4 16hr extraction (2:1 Leachate	ma/l	1.25	MCEDITC	-	-	8.44	23	12.3
Water Soluble SO4 16br extraction (2:1)	mg/l	1.25	MCERTS	10	12.6	-	-	
Water Soluble 504 Ioni extraction (2:1)	mg/l	0.5	MCERTS	10	15.0	-	-	- 1
Total Sulphur	ma/ka	50	MCERTS				80	69
Total Sulphur	%	0.005	MCERTS	-	-	-	0.008	0.007
Ammoniacal Nitrogen as NH4+	ma/ka	0.5	MCERTS	-	-	-	< 0.5	< 0.5
Ammonium as NH4+ (10:1 leachate equivalent)	mg/l	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	3.8	2.9	-	-	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	2.2	1.7	-	-	-
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	-	< 2.0	< 2.0
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	-	< 2.0	< 2.0
Total Dhanala	•							
Total Phenois	ma/ka	1	MCERTS	< 1.0	< 1.0			
	iiig/kg	-	HIGERITS	< 1.0	< 1.0	-	-	-
Speciated PAHs								
- Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	0.38	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	0.1	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	0.43	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	7.2	0.59	-	-	-
Anthracene	mg/kg	0.05	MCERTS	3	0.16	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	14	1.7	-	-	-
Pyrene	mg/kg	0.05	MCERTS	11	1.7	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	5.7	1	-	-	-
Chrysene	mg/kg	0.05	MCERTS	5.7	1.3	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	6.1	1.6	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	2.3	0.68	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	4.7	0.84	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.2	0.52	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.63	0.17	-	-	-
Benzo(ghi)perylene	шу/ку	0.05	MUCERIS	2.6	0.6	-	-	-
Tetel DAH								

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	66.1	10.9	-	-	-

Analytical Report Number: 24-009116

Project / Site name: 34 Nassau Road SW13 9QE Your Order No: GWPR5909

Lab Sample Number	145503	145504	145505	145506	145507			
Sample Reference				WS01	WS02	WS01	WS02	WS02
Sample Number				None Supplied				
Depth (m)				1.20	0.20	2.00	1.50	3.00
Date Sampled				12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Time Taken				None Supplied				
		Lim	⊳					
Analytical Davamator	~	ito	s					
(Soil Analysis)	Init	fde	tatu					
	v	tect	Is Is					
		ion	-					
Heavy Metals / Metalloids	-		-					
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	18	19	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.7	1.2	-	-	-
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-	-	-
Chromium (agua regia extractable)	mg/kg	1	MCERTS	25	24	-	-	-
Copper (agua regia extractable)	mg/kg	1	MCERTS	67	33	-	-	-
Lead (agua regia extractable)	mg/kg	1	MCERTS	220	160	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	0.6	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	21	-	-	-
Selenium (agua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	55	49	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	74	-	-	-
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	-	4.4	4.2
Magnesium (water soluble)	mg/kg	5	NONE	-	-	-	8.9	8.5
Petroleum Hydrocarbons								
TPHCWG - Aliphatic >C5 - C6 HS_1D_AL	mg/kg	0.02	NONE	-	< 0.020	-	-	-
TPHCWG - Aliphatic >C6 - C8 HS_1D_AL	mg/kg	0.02	NONE	-	< 0.020	-	-	-
TPHCWG - Aliphatic >C8 - C10 HS_1D_AL	mg/kg	0.05	NONE	-	< 0.050	-	-	-
TPHCWG - Aliphatic >C10 - C12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	< 1.0	-	-	-
TPHCWG - Aliphatic >C12 - C16 EH_CU_1D_AL	mg/kg	2	MCERTS	-	< 2.0	-	-	-
TPHCWG - Aliphatic >C16 - C21 EH_CU_1D_AL	mg/kg	8	MCERTS	-	< 8.0	-	-	-
TPHCWG - Aliphatic >C21 - C35 EH_CU_1D_AL	mg/kg	8	MCERTS	-	< 8.0	-	-	-
TPHCWG - Aliphatic >C35 - C40 EH_CU_1D_AL	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aliphatic >C5 - C35 EH_CU+HS_1D_AL	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aliphatic >C5 - C40 EH_CU+HS_1D_AL	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	-	< 0.010	-	-	-
TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-	< 0.010	-	-	-
TPHCWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-	< 0.050	-	-	-
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	< 1.0	-	-	-
TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	< 2.0	-	-	-
TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	< 10	-	-	-
TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	-	< 10	-	-	-
TPHCWG - Aromatic >EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aromatic >EC5 - EC40 EH_CU+HS_1D_AR	mg/kg	10	NONE	-	< 10	-	-	-
TPH Total >C5 - C40 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	< 10	-	-	-
			-		-	-	-	
VOCs								
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	< 5.0	-	-	- 1
Benzene	µg/kg	5	MCERTS	-	< 5.0	-	-	- 1
Toluene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
Ethylbenzene	µg/kg	5	MCERTS	-	< 5.0	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

p & m-Xylene

o-Xylene

µg/kg

µg/kg

5

5

MCERTS

MCERTS

-

-

< 5.0

< 5.0

-

-

_

Analytical Report Number : 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
145503	WS01	None Supplied	1.2	Brown clay and loam with gravel and vegetation
145504	WS02	None Supplied	0.2	Brown clay and loam with gravel and vegetation
145505	WS01	None Supplied	2	Brown sand with gravel
145506	WS02	None Supplied	1.5	Brown sandy clay
145507	WS02	None Supplied	3	Brown sand with gravel

Analytical Report Number : 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES	In-house method based on TRL 447	L038B	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES	In-house method	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES	In-house method	L038B	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	w	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction	L078B	w	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	w	MCERTS

Analytical Report Number : 24-009116

Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	w	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser	In-house method	L082B	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	w	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil [®] , silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

geotechnical and environmental consultants

APPENDIX G: Soil Assessment Criteria

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office Rineton House, 37 Horse Fait Banbury, Oxfordshite OX16 OAE: Registered in England No 07052001

Ground and Water Limited

Soil Guideline Values and Generic Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'. At preliminary risk assessment stage, risks are evaluated qualitatively. As the site investigation progresses to a generic or detailed quantitative risk assessment, data is collected and assessment criteria are utilised to evaluate whether the contaminants represent an unacceptable risk to the identified receptors.

1. Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

- 1) EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
- 2) EA Science Report SC050021/SR3: Updated technical background to the CLEA model.
- 3) EA CLEA Bulletin (2009).
- 4) CLEA software version 1.07 (2015)
- 5) Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

- Do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures;
- Do not cover risks to the environment, such as groundwater, ecosystems or buildings;
- Do not provide a definitive test for telling when human health risks are significant; and
- Are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

1.1. Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models outlined in the following sections.

1.1.1. Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small-terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

1.1.2. Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

1.1.3. Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a threestorey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

2. LQM/CIEH Suitable 4 Use Levels (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J., *The LQM/CIEH S4UL's for Human Health Risk Assessment*. Land Quality Press. 2015

2.1. S4UL Background

The Land Quality Management/Chartered Institute of Environmental Health (LQM/CIEH) S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure,

as calculated by the CLEA software, equals the Health Criteria Value. The S4ULs have been derived for substances based on various generic land use and soil organic matter contents.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2nd edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

2.2. S4UL Land-use

S4UL's have been derived for the basic CLEA land-uses, as described in section 1.2, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi).
- Public Park (POSpark).

2.2.1. Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's - 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

2.2.2. Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

The following LQM/CIEH S4UIs (Copyright Land Quality Management Limited) have been reproduced with permission, to the publication number S4UL3072.

3. Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.07 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

- A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and
- A demonstration of the methodology, via the derivation of C4SLs for six substances arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category

system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

*"*4.21 *The local authority should consider that the following types of land should be placed into Category 4: Human Health:*

(a) Land where no relevant contaminant linkage has been established.

(b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.

(c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.

(d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).

4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a):

"SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of risk-based Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

- By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);
- By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and
- By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

4. CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, *The Soil Generic Assessment Criteria for Human Health Risk Assessment*. **Contaminated** Land: Applications in the Real Environment. 2009.

Within this report, Contaminated Land: Applications in Real Environments (CL:AIRE) provided Generic Assessment Criteria (GAC) in accordance with the CLEA software and the principles outlined previously for a further 35 contaminants sometimes encountered on land affected by contamination.

5. SoBRA Acute GAC

The Society of Brownfield Risk Assessment (SoBRA) identified that most human health risk assessments focus on the chronic risks arising from long-term exposure to specific substances. As chronic risks often occur at lower doses than acute risks, they are often the key drivers, however, in some instances the acute dose may also be an important consideration within risk assessments.

The methodology for deriving the acute GAC were related to two distinct receptor groups:

- Members of the public, where the 'critical' receptor for this group will typically be a female child, which is consistent with CLEA residential and Public Open Space/allotments land-uses;
- Workers involved with excavations. The critical receptor for this group is assumed to be a female working adult, without the use of PPE.

The acute GACs relate to short term exposure of high concentrations of a substance that lead to acute effects. They are not considered to be average exposures across a specific / defined area. As a result, the GACs should be normally be compared with the maximum likely concentration that the individual may be exposed to, and not the average concentration within a specific area.

The SoBRA acute GAC will primarily be used for contaminants that do not currently have any GAC, most notably Cyanide.

6. Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of a GAC is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses, then a DQRA may be undertaken to develop site specific values for relevant soil contaminants.

- Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.
- Developing more accurate parameters using site data.

7. Phytotoxicity

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• BS3882:2015 – Specification for Topsoil

The trigger values are relevant only to those contaminants, where present in excess, have the potential to inhibit plant growth, or kill plants (Cu, Ni and Zn). The criteria have been based on a wide range of planting that are common within a multi-purpose topsoil.

8. Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

CL:AIRE published guidance in 2020, *Guidance in comparing soil contamination data with a critical concentration*, superseding the CL:AIRE/CIEH 2008 report of the same name. The guidance provides ways to assist land contamination stakeholders to apply statistical methods to their data to enable decisions under the legislative framework; either planning system or Part 2A of the Environmental Protection Act 1990.

The use of the statistical tests should only be applied if the following statements are valid for the datasets:

- Averaging areas, as well as the smallest area of concern have been identified on the basis of the CSM, including the desk study and/or the site walkover;
- The sample locations were chosen using a simple random, stratified random or stratified systematic (square, herringbone or triangular grid) sampling pattern, rather than being targeted to locations suspected of being contaminated;
- The sample locations are relatively evenly spread across the area and are not clustered, to avoid giving undue weight to some parts of the site over others in the calculated statistics;
- The analyses do not suggest a hotspot or outlier of contamination that should be treated as a separate zone. This has been established by a histogram and/or a names statistical test;
- The sample locations are all taken from one population (i.e. the same material);
- Where an averaging zone encompasses several averaging areas, analyses do not show a spatial trend or other spatial pattern across that zone; and
- The number of samples has been shown to be sufficient for a statistical analysis.

Any included statistical spreadsheet is based on an in-house method of statistical analysis, in line with those outlined within the CL:AIRE guidance (2020).

Treatment of Hot-Spots

- A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.
- Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

9. Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of the Generic Quantitative Risk Assessment are tabulated in the following pages, where the source of each has been outlined in the previous sections.

9.1. Inorganics

SoBRA – Acute Generic Assessment Criteria									
Determinand RwHP RwoHP Allotment Commercial POSresi POSpark (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg)									
Cyanide	Cyanide 24 24 24 1400 24 24								

9.2. Metals

C4SL Low Level of Toxicological Concern									
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
Lead	< 200	< 310	< 80	< 2300	< 630	< 1300			

	LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals								
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	lotment Commercial mg/kg) (mg/kg)		POSpark (mg/kg)			
Arsenic	37	40	43	640	79	170			
Beryllium	1.7	1.7	35	12	2.2	63			
Boron	290	11000	45	240000	21000	46000			
Cadmium	11	85	1.9	190	120	532			
Chromium (III)	910	910	18000	8600	1500	33000			
Chromium (VI)	6	6	1.8	33	7.7	220			
Copper	2400	7100	520	68000	12000	44000			
Elemental Mercury	1.2	1.2	21	58	16	30			
Inorganic Mercury	40	56	19	1100	120	240			
Methylmercury	11	15	6	320	40	68			
Nickel	130	180	53	980	230	800			
Selenium	250	430	88	12000	1100	1800			
Vanadium	410	1200	91	9000	2000	5000			
Zinc	3700	40000	620	730000	81000	170000			

Phytotoxicity (Harmful to Plants) Threshold Trigger Values									
Determinand	Determinand Soil pH < 6.0								
Copper	100	135	200						
Nickel	60	75	110						
Zinc	200	200	300						

Notes:

BS3882:2015 – *Specification for Topsoil*. Based on a wide range of common plants that will be exposed to multi-purpose topsoil. Toxicity of contaminant may also be impacted by pH of soils. Site observation of plant vitality may give additional guidance.

CL:AIRE Soil Generic Assessment Criteria Residential **Residential without** Determinand Allotment (mg/kg) Commercial (mg/kg) plant uptake (mg/kg) (mg/kg) ND 550 ND 7500 Antimony ND 1300 22000 Barium ND Molybdenum ND 17000 670 ND ND – Not derived

9.3. Total Petroleum Hydrocarbons (TPHs)

9.3.1. BTEX Compounds

LQM/CIEH Suitable 4 Use Levels – BTEX Compounds									
Determinand	Soil Organic Matter	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Benzene	1.0% SOM	0.087	0.38	0.017	27	72	90		
	2.5% SOM	0.170	0.70	0.034	47	72	100		
	6.0% SOM	0.370	1.40	0.075	90	73	110		
Toluene	1.0% SOM	130	880	22	56000	56000	87000		
	2.5% SOM	290	1900	51	110000	56000	95000		
	6.0% SOM	660	3900	120	180000	56000	100000		
Ethylbenzene	1.0% SOM	47	83	16	5700	24000	17000		
	2.5% SOM	110	190	39	13000	24000	22000		
	6.0% SOM	260	440	91	27000	25000	27000		
o-Xylene	1.0% SOM	60	88	28	6600	41000	17000		
	2.5% SOM	140	210	67	15000	42000	24000		
	6.0% SOM	330	480	160	33000	43000	33000		
m-Xylene	1.0% SOM	59	82	31	6200	41000	17000		
	2.5% SOM	140	190	74	14000	42000	24000		
	6.0% SOM	320	450	170	31000	43000	33000		
p-Xylene	1.0% SOM	56	79	29	5900	41000	17000		
	2.5% SOM	130	180	69	14000	42000	23000		
	6.0% SOM	310	430	160	30000	43000	31000		
SOM = Soil Organic	Matter Content (%)								

9.3.2. Total Petroleum Hydrocarbons – Aliphatic

LQM/CIEH Suitable 4 Use Levels For TPH										
Alipl	natic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
			1 8, 8,				(8/ 8/			
EC 5-6	1.0% SOM	42	42	730	3,200 (304) sol	570,000 (304) ^{sol}	95,000 (304) sol			
	2.5% SOM	78	78	1,700	5,900 (558) sol	590,000	130,000 (558) sol			
	6.0% SOM	160	160	3,900	12,000 (1150) sol	600,000 (1150) ^{sol}	180,000 (1150) sol			
EC >6-8	1.0% SOM	100	100	2,300	7,800 (144) sol	600,000	150,000 (144) sol			
	2.5% SOM	230	230	5,600	17,000 (322) sol	610,000	220,000 (322) sol			
	6.0% SOM	530	530	13,000	40,000 (736) sol	620,000	320,000 (736) sol			
EC >8-10	1.0% SOM	27	27	320	2,000 (78) sol	13,000	14,000 (78) sol			
	2.5% SOM	65	65	770	4,800 (118) vap	13,000	18,000 (118) vap			
	6.0% SOM	150	150	1,700	11,000 (451) vap	13,000	21,000 (451) vap			
EC >10-12	1.0% SOM	130 (48) ^{vap}	130 (48) ^{vap}	2,200	9,700 (48) sol	13,000	21,000 (48) sol			
	2.5% SOM	330 (118) ^{vap}	330 (118) ^{vap}	4,400	23,000 (118) vap	13,000	23,000 (118) vap			
	6.0% SOM	760 (283) ^{vap}	760 (283) ^{vap}	7,300	47,000 (283) vap	13,000	24,000 (283) vap			
EC >12-16	1.0% SOM	1,100 (24) sol	1,100 (24) sol	11,000	59,000 (24) sol	13,000	25,000 (24) sol			
	2.5% SOM	2,400 (59) sol	2,400 (59) sol	13,000	82,000 (59) sol	13,000	25,000 (59) sol			
	6.0% SOM	4,300 (142) sol	4,400 (142) sol	13,000	90,000 (142) sol	13,000	26,000 (142) sol			
EC >16-35	1.0% SOM	65,000 (8.48) sol	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000			
	2.5% SOM	92,000 (21) sol	92,000 (21) sol	270,000	1,700,000	250,000	480,000			
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000			
EC >35-44	1.0% SOM	65,000 (8.48) sol	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000			
	2.5% SOM	92,000 (21) sol	92,000 (21) sol	270,000	1,700,000	250,000	480,000			
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000			
6014 6 110		6 1 1 (0()								

SOM = Soil Organic Matter Content (%)

^{vap} – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.3.3. Total Petroleum Hydrocarbons – Aromatic

LQM/CIEH Suitable 4 Use Levels For TPH								
Aroma	tic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)	
EC 5-7	1.0% SOM	70	370	13	26,000 (1220) sol	56,000	76,000 (1220 sol	
(Benzene)	2.5% SOM	140	690	27	46,000 (2260) sol	56,000	84,000 (2260) sol	
	6.0% SOM	300	1,400	57	86,000 (4710) sol	56,000	92,000 (4710) sol	
EC >7-8	1.0% SOM	130	860	22	56,000 (869) vap	56,000	87,000 (869) sol	
(Toluene)	2.5% SOM	290	1,800	51	110,000 (1920) sol	56,000	95,000 (1920) sol	
	6.0% SOM	660	3,900	120	180,000 (4360) vap	56,000	100,000 (4360) vap	
EC >8-10	1.0% SOM	34	47	8.6	3,500 (613) ^{vap}	5,000	7,200 (613) ^{vap}	
	2.5% SOM	83	110	21	8,100 (1500) vap	5,000	8,500 (1500) ^{vap}	
	6.0% SOM	190	270	51	17,000 (3850) vap	5,000	9,300 (3580) ^{vap}	
EC >10-12	1.0% SOM	74	250	13	16,000 (364) sol	5,000	9,200 (364) sol	
	2.5% SOM	180	590	31	28,000 (899) sol	5,000	9,700 (889) ^{sol}	
	6.0% SOM	380	1,200	74	34,000 (2150) sol	5,000	10,000	
EC >12-16	1.0% SOM	140	1,800	23	36,000 (169) sol	5,100	10,000	
	2.5% SOM	330	2,300 (419) sol	57	37,000	5,100	10,000	
	6.0% SOM	660	2,500	130	38,000	5,000	10,000	
EC >16-21	1.0% SOM	260	1,900	46	28,000	3,800	7,600	
	2.5% SOM	540	1,900	110	28,000	3,800	7,700	
	6.0% SOM	930	1,900	260	28,000	3,800	7,800	
EC >21-35	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800	
	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800	
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900	
EC >35-44	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800	
	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800	
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900	
EC >44-70	1.0% SOM	1,600	1,900	1,200	28,000	3,800	7,800	
	2.5% SOM	1,800	1,900	2,100	28,000	3,800	7,800	
	6.0% SOM	1,900	1,900	3,000	28,000	3,800	7,900	

SOM = Soil Organic Matter Content (%)

vap – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.4. Polycyclic Aromatic Hydrocarbons (PAHs)

DeterminabilityRwiP Rug/kgRwiP (mg/kg)Comment (mg/kg)POSpark (mg/kg)POSpark (mg/kg)Acenaptive 2.5% SOM5103,000 (57.0)344,600(57.0)10.0030,0006.0% SOM1006,000(510)2010.00015,00030,000Acenaptive 2.5% SOM7204,600(121)60% SOM2883,000(86.1)15,00030,0007.5% SOM4204,600(121)60% SOM1500100,00015,00030,0007.6% SOM7206,000(506)160100,00015,00030,0007.6% SOM72003,000950540,00074,000150,0006.0% SOM1.003,000950540,00074,000150,0006.0% SOM71,0001302.001102.0074,000150,0007.6% SOM7201112.901102.9074,000150,0007.6% SOM7201131301301201301308.6% SOM72013.01301301301301301308.6% SOM3.703.503.503.501301301301301308.6% SOM3.703.503.503.506.401,400130	LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAHs)							
AcenaptheneIng./kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)(mg/kg)29,001Acenapthylene1.0% SOM1.1006,000(336) W2.0010,00015,00030,00030,00030,00030,00030,00030,00030,00030,00030,00030,00030,00030,00030,00030,00015,00030,0030,00<	Determinands		RwHP	RwoHP	Allotment	Commercial	POSresi	POSpark
Accanapthene 1.0% SOM 2.10 3.000 (S7.0) 3.4 8.4,000(S7.0) 15.000 2.9,000 2.5% SOM 510 4.700(14.1) 8.5 97.000(14.1) 15,000 30,000 Accanapthylene 1.0% SOM 100 6.000(350.0) 20 100,000 15,000 30,000 Accanapthylene 1.0% SOM 20 4.000(12.1) 6.0% 97.000(2.1) 15,000 30,000 Anthracene 1.0% SOM 2.400 31,000 250,000 74,000 150,000 Benzo(a)parthera 1.0% SOM 7.20 11 2.20 540,000 74,000 150,000 Benzo(a)parthera 1.0% SOM 7.20 3.20 2.00 351 57.0 12 Benzo(a)pyrene 1.0% SOM 2.70 3.20 2.00 350 3.6 5.70 113 Benzo(b)flouranthene 1.0% SOM 2.60 3.30 4.00 2.10 4.44 7.10 133 Benzo(b)flouranthene 1.0% SOM 3.20 <th></th> <th></th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th> <th>(mg/kg)</th>			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Acenapthene 1.0% SOM 210 2.000 (57.0) ¹⁹⁰ 34 84,000(57.0) ¹⁹⁰ 150.000 29.000 Acenapthylene 1.0% SOM 1100 6,000(35.0) ¹⁹⁰ 200 100,000 15.000 30.000 Acenapthylene 2.5% SOM 420 4,600(12.0) ¹⁹⁰ 68 97,000(21.1) ¹⁹⁰ 15.000 30.000 Acthracene 1.0% SOM 920 6,600(12.0) ¹⁹⁰ 690 520,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 111 2.90 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 111 2.90 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 111 2.90 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 3.20 2.90 340 350 35,00 310 Benzo(a)anthracene 1.0% SOM 3.20 3.20 350 35,00 35,00 35,00 35,00								
2.5% SOM 510 4.700(141)*** 85 97.000(141)*** 15.000 30.000 Acenapthylene 1.0% SOM 170 2.900(86.1)*** 28 83.000(86.1)*** 15.000 23.000 Anthracene 1.0% SOM 920 6.000(506)*** 160 100,000 15,000 30,000 Anthracene 1.0% SOM 2.400 33.000 950 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 72.00 11 2.700 540,000 74,000 150,000 Benzo(a)pyren 1.0% SOM 72.00 13.0 0.270 31.0 2.97 65 Benzo(a)pyren 1.0% SOM 2.200 3.00 2.00 3.50 5.70 11 2.5% SOM 3.00 0.00 2.00 3.50 3.60 3.70 4.00 3.90 4.64 7.00 13 Benzo(a)pyren 1.0% SOM 2.00 3.30 4.00 2.00 3.50 3.70 12 Benzo(b)flour	Acenapthene	1.0% SOM	210	3,000 (57.0) sol	34	84,000(57.0) sol	15,000	29,000
Acenaptivlen 6.0% SOM 1100 6.000(33.6) ¹⁴⁰ 200 100.000 15.000 29.000 Acenaptivlen 2.5% SOM 420 4.600(12.1) ¹⁴⁰ 6.9 97.000(21.1) ¹⁴⁰ 15.000 30.000 Anthracene 1.0% SOM 2.400 31.000(1.17) ¹⁴⁰ 6.90 540.000 74.000 150.000 Benzo(a)anthracene 1.0% SOM 7.20 111 2.90 540.000 74.000 150.000 Benzo(a)anthracene 1.0% SOM 7.20 111 2.90 540.000 74.000 150.000 Benzo(a)pyrene 1.0% SOM 7.20 111 44 6.50 17.0 2.9 49 Exercl(a)pyren 1.0% SOM 7.20 3.20 2.00 35 5.7.0 111 Benzo(a)pyren 1.0% SOM 2.20 3.20 3.00 36 4.7.0 1.3 Benzo(a)phoren 1.0% SOM 3.20 3.00 4.90 4.7.0 1.3 Benzo(a)phoren 1.0% SOM 3.00		2.5% SOM	510	4,700(141) sol	85	97,000(141) sol	15,000	30,000
Acenapthylene 1.0% SOM 170 2.900(85.1)** 28 83.000(86.1)** 10 15.000 23.000 Anthracene 0.0% SOM 920 6.000(S60)** 160 100.000 15.000 30.000 Anthracene 2.5% SOM 5.400 35.000 950 540,000 74,000 150,000 Benzo(s)anthracene 10.0% SOM 72.00 11 2.90 540,000 74,000 150,000 Benzo(s)pyrene 1.0% SOM 72.00 11 2.90 100 2.9 56 Go% SOM 1.1 1.4 6.0% 3.70 2.70 3.5 5.70 11 2.5% SOM 3.00 3.20 3.20 3.20 3.60 5.70 13 Benzo(s)/flourantnen 1.0% SOM 2.70 3.30 4.00 2.40 3.50 6.0% 3.70 4.00 Eenzo(k)/flourantnen 1.0% SOM 3.70 4.00 3.90 4.40 7.20 16 Eenzo(k)/flourantnen		6.0% SOM	1100	6,000(336) sol	200	100,000	15,000	30,000
2.5% SOM 2.20 6,000(212) ¹⁶⁰ 60 90,000(212) ¹⁶⁰ 15,000 30,000 Anthracene 1.0% SOM 2.400 31,000(1,17) ¹⁶⁰ 380 520,000 74,000 150,000 Berzo(a)anthracene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Berzo(a)anthracene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Berzo(a)anthracene 1.0% SOM 7.20 13 13 180 2.9 62 Berzo(b)fouranthen 1.0% SOM 2.70 3.20 2.00 35 5.70 11 2.5% SOM 3.00 3.20 3.20 3.60 36.0 12 13 Berzo(b)fouranthen 1.0% SOM 3.20 3.20 3.60 36.0 1.20 14 S/M SOM 3.20 3.60 640 4.000 640 1.400 Berzo(b)flouranthene 1.0% SOM 320 360 470 4.000 640	Acenapthylene	1.0% SOM	170	2,900(86.1) sol	28	83,000(86.1) sol	15,000	29,000
6.0% SOM 92.0 6,000(56) ⁵⁰⁴ 160 100,000 15,000 35,000 Parta 2,5% SOM 5,400 35,000 950 540,000 74,000 150,000 6,0% SOM 11,000 37,000 2,200 540,000 74,000 150,000 6,0% SOM 11 14 6.50 170 29 49 2,5% SOM 0.00 3.20 0.97 35 5.70 11 2,5% SOM 2.00 3.20 2.00 35 5.70 12 6,0% SOM 3.00 0.30 3.20 2.00 35 5.70 13 Benzo(a)pyrene 1,0% SOM 3.00 4.00 3.90 44 7.10 13 Benzo(ghi)peryten 2,5% SOM 33.0 4.00 3.90 45 7.20 16 Benzo(k)flouranthen 1,0% SOM 37.0 4.00 3.90 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.		2.5% SOM	420	4,600(212) sol	69	97,000(212) sol	15,000	30,000
Anthracene 1.0% SOM 2.400 31,000(1.17)*** 380 520,000 74,000 150,000 Benzo(a)anthracen 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Benzo(a)pyren 2.9% SOM 11 14 6.00 170 29 49 2.5% SOM 13 15 13 180 29 62 Benzo(a)pyren 2.9% SOM 2.00 3.20 0.97 35 5.70 11 2.5% SOM 3.00 3.20 3.50 36 5.70 13 Benzo(b)flouranthem 10% SOM 2.60 3.90 0.99 44 7.10 13 2.5% SOM 3.00 4.00 2.00 3.50 6.60 1.00 11 13 2.5% SOM 3.00 4.00 2.00 3.90 6.40 1.400 1.0% SOM 3.00 4.00 4.00 6.40 1.60 3.70 Benzo(s)// som 5.00 77 </th <th></th> <td>6.0% SOM</td> <td>920</td> <td>6,000(506) sol</td> <td>160</td> <td>100,000</td> <td>15,000</td> <td>30,000</td>		6.0% SOM	920	6,000(506) sol	160	100,000	15,000	30,000
2.5% SOM 5,400 35,000 950 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Benzo(a)pyrene 2.5% SOM 1.1 14 6.50 170 2.9 56 Benzo(a)pyrene 1.0% SOM 1.20 3.20 0.97 35 5.70 11 Benzo(a)pyrene 1.0% SOM 3.00 3.20 3.50 3.66 5.70 13 Benzo(b)flouranthee 1.0% SOM 3.00 3.20 3.50 3.66 5.70 13 Benzo(ghi)perylen 1.0% SOM 3.30 4.00 3.90 44 7.20 16 Si SOM 3.30 4.00 3.90 4.60 1,400 1,400 Benzo(ghi)perylen 1.0% SOM 350 360 470 4,000 640 1,500 Benzo(s)/flouranthee 1.0% SOM 110 17 1,200 190 370 Benzo(s	Anthracene	1.0% SOM	2,400	31,000(1.17) vap	380	520,000	74,000	150,000
6.0% SOM 11,000 37,000 2,200 540,000 74,000 150,000 Benzo(a)anthracem 2.5% SOM 11 14 6.50 170 29 56 6.0% SOM 13 15 13 180 29 56 Benzo(a)pyrem 2.5% SOM 2.20 3.20 2.007 355 5.70 11 Benzo(b)flourantheme 1.0% SOM 2.20 3.20 3.50 366 5.70 13 Benzo(b)flourantheme 1.0% SOM 2.60 3.90 0.99 4.44 7.10 13 Benzo(ghi)perylem 1.0% SOM 3.70 4.00 2.10 4.44 7.20 16 Benzo(k)flourantheme 1.0% SOM 3.70 4.00 5.70 13 1200 190 440 Chrysene 1.0% SOM 3.20 360 640 4,000 640 1,600 Benzo(k)flourantheme 1.0% SOM 3.00 110 137 1,200 190 440 <th></th> <td>2.5% SOM</td> <td>5,400</td> <td>35,000</td> <td>950</td> <td>540,000</td> <td>74,000</td> <td>150,000</td>		2.5% SOM	5,400	35,000	950	540,000	74,000	150,000
Benzo(a)anthracene 1.0% SOM 7.20 111 2.90 170 2.9 49 6.0% SOM 13 15 13 180 2.9 62 Benzo(a)pyrene 1.0% SOM 2.20 3.20 0.97 35 5.70 11 Common Section 6.0% SOM 3.00 3.20 2.00 35 5.70 13 Benzo(b)flouranthene 1.0% SOM 3.00 3.20 3.50 36 5.70 13 Benzo(gh)flouranthene 1.0% SOM 3.00 4.00 2.00 3.90 640 1.400 2.5% SOM 3.70 4.00 3.90 640 1.400 1.600 Benzo(gh)peryten 1.0% SOM 350 360 640 4.000 640 1.600 Benzo(k)flouranthene 1.0% SOM 350 360 640 4.000 640 4.000 2.5% SOM 320 110 130 1.200 190 440 2.5% SOM 100		6.0% SOM	11,000	37,000	2,200	540,000	74,000	150,000
2.5% 11 14 6.50 170 29 56 Benzo(a)pyren 1.0% SOM 2.20 3.20 0.97 35 5.70 11 2.5% SOM 2.70 3.20 2.00 35 5.70 12 60% SOM 3.00 3.20 3.50 366 5.70 13 Benzo(b)flouranthene 1.0% SOM 2.60 3.90 0.99 44 7.20 15 6.0% SOM 3.70 4.00 3.90 640 1,400 14 6.0% SOM 3.70 4.00 3.90 640 1,400 6.0% SOM 3.70 360 640 4,000 640 1,600 8enzo(k)flouranthene 1.0% SOM 370 110 37 1,200 190 440 6.0% SOM 100 110 130 1,200 190 440 6.0% SOM 100 110 130 1,200 190 440 6.0% SOM 10.2	Benzo(a)anthracene	1.0% SOM	7.20	11	2.90	170	29	49
6.0% SOM 13 15 13 180 29 62 Benzo(a)pyren 1.0% SOM 2.20 3.20 0.97 35.5 5.70 11 Benzo(b)flouranthen 1.0% SOM 2.60 3.00 3.50 36 5.70 13 Benzo(b)flouranthen 1.0% SOM 2.60 3.90 6.44 7.20 15 Benzo(ghi)perylen 1.0% SOM 3.20 4.00 3.90 6.40 1,400 Benzo(ghi)perylen 1.0% SOM 320 360 470 4,000 6.40 1,600 Benzo(k)flouranthen 1.0% SOM 320 360 640 4,000 640 1,600 Benzo(k)flouranthen 1.0% SOM 71 110 37 1,200 190 440 Chrysen 2.5% SOM 93 110 75 1,200 190 440 Dibenzo(a)hanthracer 1.0% SOM 17 32 19 350 57 110 2.5% SOM 0.		2.5% SOM	11	14	6.50	170	29	56
Benzo(a)pyrene 1.0% SOM 2.20 3.20 0.97 35 5.70 11 2.5% SOM 2.70 3.20 3.20 3.50 356 5.70 12 Benzo(b)flouranthene 1.0% SOM 3.00 3.20 3.50 366 5.70 13 Benzo(gh)flouranthene 1.0% SOM 3.20 3.60 0.99 44 7.10 13 Benzo(gh)flouranthene 1.0% SOM 3.20 3.60 2.00 4.40 7.20 16 Benzo(k)flouranthene 1.0% SOM 320 360 470 4,000 640 1,400 Benzo(k)flouranthene 1.0% SOM 320 360 470 4,000 640 1,600 Benzo(s)phyrene 1.0% SOM 77 110 37 1,200 190 440 6.0% SOM 100 110 130 1,200 190 440 Chrysene 1.0% SOM 22 31 9,40 350 57 120 <tr< th=""><th></th><td>6.0% SOM</td><td>13</td><td>15</td><td>13</td><td>180</td><td>29</td><td>62</td></tr<>		6.0% SOM	13	15	13	180	29	62
2.5% SOM2.703.202.00355.7012Benzo(b)flouranthen1.0% SOM2.603.203.503.605.7013Benzo(ghi)perylene1.0% SOM2.603.900.994.447.1013Benzo(ghi)perylene1.0% SOM3.704.0003.904.447.2015Benzo(ghi)perylene1.0% SOM3.704.0003.904.547.2016Benzo(k)flouranthene1.0% SOM3203606404.0006401.500Benzo(k)flouranthene1.0% SOM77110371.200190440Chrysene1.0% SOM77110371.200190440Chrysene1.0% SOM1001101301.200190440Chrysene1.0% SOM0.243106.103505793Dibenzo(a)anthracene1.0% SOM0.240.310.143500.571.10Dibenzo(a)anthracene1.0% SOM0.240.310.143.500.571.30Dibenzo(a)anthracene1.0% SOM0.240.310.143.500.571.30Dibenzo(a)anthracene1.0% SOM0.240.310.143.500.571.30Dibenzo(a)anthracene1.0% SOM0.240.310.143.500.571.30Dibenzo(a)anthracene1.0% SOM2.801.6001.6001.6003.6003.6003.600 <th>Benzo(a)pyrene</th> <td>1.0% SOM</td> <td>2.20</td> <td>3.20</td> <td>0.97</td> <td>35</td> <td>5.70</td> <td>11</td>	Benzo(a)pyrene	1.0% SOM	2.20	3.20	0.97	35	5.70	11
Benzo(b)flouranthem 6.0% SOM 3.00 3.90 3.90 9.99 4.4 7.10 13 Benzo(b)flouranthem 1.0% SOM 3.30 4.00 2.10 44 7.20 15 Benzo(ghi)perylem 1.0% SOM 3.20 4.00 3.90 45 7.20 16 Benzo(ghi)perylem 1.0% SOM 320 360 290 3,900 640 1,400 Benzo(k)flouranthem 1.0% SOM 320 360 440 4,000 640 1,600 Benzo(k)flouranthem 1.0% SOM 77 110 37 1,200 190 410 Chrysen 1.0% SOM 100 110 130 1,200 190 440 Chrysen 1.0% SOM 122 31 9,40 350 57 110 G0% SOM 27 32 19 350 57 120 Dibenzo(a)anthracee 1.0% SOM 0.28 0.32 0.43 3.60 0.57 1.30		2.5% SOM	2.70	3.20	2.00	35	5.70	12
Benzo(b)flouranthene 1.0% SOM 2.60 3.30 4.00 2.10 4.44 7.20 15 6.0% SOM 3.70 4.00 3.90 45 7.20 16 Benzo(ghi)perylene 1.0% SOM 320 360 470 4400 640 1,400 2.5% SOM 350 360 640 4,000 640 1,600 6.0% SOM 350 360 640 4,000 640 1,600 Benzo(k)flouranthene 1.0% SOM 77 110 37 1,200 190 370 2.5% SOM 93 110 75 1,200 190 440 6.0% SOM 100 110 130 1,200 190 440 2.5% SOM 0.27 320 193 557 100 6.0% SOM 0.24 0.31 0.14 3.50 0.57 1.10 2.5% SOM 0.28 1,500 52 23.000 3,100 6,300		6.0% SOM	3.00	3.20	3.50	36	5.70	13
2.5% SOM 3.30 4.00 2.10 44 7.20 115 Benzo(ghi)perylene 1.0% SOM 3.20 3.60 290 3,900 640 1,400 2.5% SOM 340 360 290 3,900 640 1,600 Benzo(k)flouranthee 1.0% SOM 77 110 37 1,200 190 410 2.5% SOM 93 110 75 1,200 190 440 2.5% SOM 93 110 130 1,200 190 440 2.5% SOM 0.0 100 100 350 57 110 6.0% SOM 122 31 9.40 350 57 110 6.0% SOM 0.24 0.31 0.43 3.60 0.57 1.30 Dibenzo(ah)anthrcene 1.0% SOM 0.28 0.32 0.43 3.60 0.57 1.30 100 0.580M 0.32 0.43 3.60 6.300 0.310 6.300	Benzo(b)flouranthene	1.0% SOM	2.60	3.90	0.99	44	7.10	13
6.0% SOM3.704.003.904.407.7016Benzo(ghi)perylen1.0% SOM3203602903,9006401,4002.5% SOM3403604704,0006401,50060% SOM3503606404,0006401,600Benzo(k)flouranthen1.0% SOM77110371,2001904406.0% SOM1001101301,2001904406.0% SOM1503004,10350571106.0% SOM22319,40350571200ibenzo(ah)anthracen1.0% SOM0.240.310.143.500.571106.0% SOM0.280.320.433.600.581.4010% SOM0.300.320.433.600.581.4010% SOM2801,5005223,0003,1006,3006.0% SOM8901,60029023,0003,1006,300102.5% SOM38007.602923,0003,1006,300101.0% SOM1702,800(30.9) sol2763,000(30.9) sol9,90020,000101.0% SOM1702,800(30.9) sol6763,0003,1006,300111.0% SOM27459,5050082150108604,50013022,0003,1006,300101.6% SOM3.60 <th></th> <td>2.5% SOM</td> <td>3.30</td> <td>4.00</td> <td>2.10</td> <td>44</td> <td>7.20</td> <td>15</td>		2.5% SOM	3.30	4.00	2.10	44	7.20	15
Benzo(ghi)perylen (A)1.0% SOM3403602903,9006401,4002.5% SOM3403606404,0006401,5006.0% SOM3503606404,0006401,5002.5% SOM93110371,2001903702.5% SOM930110751,2001904406.0% SOM153004.1035057932.5% SOM22319,40350571106.0% SOM22319,40350571106.0% SOM0.240.310,443.500.571106.0% SOM0.240.310,443.500.571.102.5% SOM0.240.320.273.500.571.306.0% SOM0.280.320.273.500.571.302.5% SOM5601,60013023,0003,1006,3002.5% SOM5601,60013023,0003,1006,3002.5% SOM8901,6001206,00(0.9) so9,90020,0006.0% SOM8004,500(18.3) sol16074,0009,90020,0001.040.9% SOM2.5% SOM6.6%5.6100460(18.3) sol1201.040.9% SOM2.3%2.5%5.6100460(18.3) sol1,200(76.4) sol1.040.9% SOM4.302.5%5.610046		6.0% SOM	3.70	4.00	3.90	45	7.20	16
2.5% SOM3400360047004,00064001,5006.0% SOM3050360064004,000064001,6001.0% SOM7711003771,2001903702.5% SOM931100751,2001904406.0% SOM1001101301,2001904406.0% SOM1253004.10350057932.5% SOM2.2319.403500571106.0% SOM0.240.310.143.5000.571.301.0% SOM0.280.320.473.500.571.302.5% SOM0.280.320.433.600.581.402.5% SOM0.300.320.433.600.581.405.60 SOM8001,5005223,0003,1006,3006.0% SOM8001,600130023,0003,1006,3006.0% SOM8001,60013023,0003,1006,3006.0% SOM8004,500(183) si06768,0009,90020,0001.061.0% SOM27459,50500821506.0% SOM8604,500(183) si06768,0009,90020,0006.0% SOM8604,5003,1006,2003,0001,00(183) si04,9001,00(76.1 si06.0% SOM8604,5001,30013016071,000 <th>Benzo(ghi)perylene</th> <td>1.0% SOM</td> <td>320</td> <td>360</td> <td>290</td> <td>3,900</td> <td>640</td> <td>1,400</td>	Benzo(ghi)perylene	1.0% SOM	320	360	290	3,900	640	1,400
6.0% SOM3503606404,0006401,600Benzo(k)flouranthe 2.5% SOM2.5% SOM93110371,2001904706.0% SOM1001101301,2001904406.0% SOM1001101301,200190440Chrysene 6.0% SOM2.2%319.40350571106.0% SOM2.2319.40350571106.0% SOM2.2319.403.505.71106.0% SOM0.240.310.143.500.571.105.0% SOM0.280.320.273.500.571.306.0% SOM0.300.320.433.600.581.406.0% SOM2.801,60023.003,1006,3006.0% SOM2.801,60023.0003,1006,3006.0% SOM1002,800(30.9) sol22,0003,1006,3007.9% SOM1002,800(30.9) sol2763.00(30.9) sol9,90020,0001.0% SOM4003,800(76.5) sol666.0% 009,90020,0001.0% SOM46621510821706.0% SOM414639510821801.0% SOM2.302.64.10190(76.4) sol4,9001,200(76.4) sol6.0% SOM4146639510821601,200(76.4) sol1.0% SOM </th <td></td> <td>2.5% SOM</td> <td>340</td> <td>360</td> <td>470</td> <td>4,000</td> <td>640</td> <td>1,500</td>		2.5% SOM	340	360	470	4,000	640	1,500
Benzo(k)flouranthene 2.5% SOM 77 110 37 1,200 190 370 2.5% SOM 93 110 75 1,200 190 410 6.0% SOM 100 110 130 1,200 190 440 Chrysene 1.0% SOM 157 30 4.10 350 57 93 2.5% SOM 2.2 31 9.40 350 57 110 6.0% SOM 2.7 32 19 350 57 1.00 2.5% SOM 0.24 0.31 0.14 3.50 0.57 1.30 6.0% SOM 0.30 0.32 0.43 3.60 0.58 1.40 1.0% SOM 0.30 0.32 0.43 3.60 0.57 1.30 6.0% SOM 850 1,600 130 23,000 3.100 6,300 1.0% SOM 170 2,800(3.9) sol 27 63,003(3.9) sol 9,900 20,000 1.0% SOM 3.60		6.0% SOM	350	360	640	4,000	640	1,600
2.5% SOM93110751,20019044060% SOM1101101301,200190440Chrysene1.0% SOM15304.0350571106.0% SOM22319.40350571106.0% SOM27321935057120Dibenzo(ah)anthracen1.0% SOM0.240.310.143.500.571.102.5% SOM0.280.320.273.500.571.306.0% SOM0.300.320.433.600.581.406.0% SOM6.081.60013023,0003,1006,3006.0% SOM8901,600230.3,1006,3006.0% SOM8901,600233,1009,90020,0006.0% SOM8804,500(18.1) sol6768,0009,90020,00010deno(123-cd)pyree1.0% SOM27459.50500821507.5% SOM5.605.6610460(18.3) sol4,9001,200(76.4) sol8.6% SOM8.602.305.60821503,0009.7% SOM6.5610460(18.3) sol4,9001,200(76.4) sol9.8% SOM6.5610460(18.3) sol4,9001,200(76.4) sol9.5% SOM6.5610460(18.3) sol4,9003,0009.8% SOM6.5610460(18.3) sol4,9003,000<	Benzo(k)flouranthene	1.0% SOM	77	110	37	1,200	190	370
IndexIndexIndexIndexIndexIndexIndexIndexChrysene1.0% SOM15304.1035057932.5% SOM22319.40350571106.0% SOM22319.4035057120Dibenzo(ah)anthracene1.0% SOM0.240.310.143.500.571.102.5% SOM0.280.320.273.500.571.306.0% SOM0.300.320.433.6003,1006,3001.0% SOM8601,60013023,0003,1006,3002.5% SOM5601,60013023,0003,1006,3006.0% SOM8901,60029023,0003,1006,3006.0% SOM8901,60029023,0003,1006,3002.5% SOM0.083,800(76.5) sol68,0009,90020,0006.0% SOM8604,500(183) sol71,0009,90020,0001.06 SOM8604,500(183) sol71,0009,90020,0001.06 SOM8604,500(183) sol510821501.06 SOM8604,500(183) sol16071,0009,90020,0001.06 SOM3605.610460 (183) sol4,9001,200(76.4) sol2.5% SOM5.605.610460 (183) sol4,9001,200(76.4) sol2.5% SOM5.605.610460 (18		2.5% SOM	93	110	75	1,200	190	410
Chrysene 1.0% SOM 15 30 4.10 350 57 93 2.5% SOM 22 31 9.40 350 57 120 6.0% SOM 27 32 19 350 57 120 Dibenzo(ah)anthracene 1.0% SOM 0.24 0.31 0.14 3.50 0.57 1.10 2.5% SOM 0.28 0.32 0.27 3.50 0.57 1.30 6.0% SOM 0.30 0.32 0.43 3.60 0.58 1.40 5.5% SOM 560 1,500 130 23,000 3,100 6,300 2.5% SOM 560 1,600 290 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 5.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 6.0% SOM 400 3,800(76.5) sol 160 71,000 9,900 20,000		6.0% SOM	100	110	130	1,200	190	440
2.5% SOM 2.2 31 9.40 350 57 110 6.0% SOM 27 32 19 350 57 120 Dibenzo(ah)anthracene 1.0% SOM 0.24 0.31 0.14 3.50 0.57 1.10 2.5% SOM 0.28 0.32 0.43 3.60 0.58 1.40 6.0% SOM 0.30 0.32 0.43 3.60 0.58 1.40 5.50 0.50M 500 1.500 52 23,000 3,100 6,300 2.5% SOM 560 1,600 130 23,000 3,100 6,300 6.0% SOM 890 1,600 27 63,00(30.9 ¹⁰⁰ 9,900 20,000 2.5% SOM 400 3,800(76.5) ¹⁵⁰¹ 67 68,000 9,900 20,000 1.06 SOM 410 3,800(76.5) ¹⁵⁰¹ 67 68,000 9,900 20,000 1.06 SOM 2.5% SOM 3,600 2.5% 50 82 150	Chrysene	1.0% SOM	15	30	4.10	350	57	93
Index6.0% SOM27321935057120Dibenzo(ah)anthracem 2.5% SOM0.0240.310.143.500.571.102.5% SOM0.280.320.673.500.571.306.0% SOM0.300.320.433.600.581.40Flourantheme 2.5% SOM2.6% SOM5601,5005223,0003,1006,3006.0% SOM8901,60013023,0003,1006,300Flourene 2.5% SOM1.0% SOM1702,800 (3.0) sol2763,000(3.0) sol9,90020,000Flourene 		2.5% SOM	22	31	9.40	350	57	110
Dibenzo(ah)anthracene [2.5% SOM 0.24 0.31 0.14 3.50 0.57 1.10 2.5% SOM 0.28 0.32 0.27 3.50 0.57 1.30 6.0% SOM 0.30 0.32 0.43 3.60 0.58 1.40 Flouranthene [0.0% SOM 280 1,500 52 23,000 3,100 6,300 2.5% SOM 560 1,600 130 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 9,900 20,000 2.5% SOM 400 3,800(76.5) sol 67 63,000(30.9) sol 9,900 20,000 1.0eno(123-cd)pyrene 6.0% SOM 860 4,500(183) sol 160 71,000 9,900 2,000(76.4) sol 1.0eno(123-cd)pyrene 1.0% SOM 3.6 4.6 21 510 82 180 1.0eno(123-cd)pyrene 1.0% SOM 3.6 4.6 <th></th> <td>6.0% SOM</td> <td>27</td> <td>32</td> <td>19</td> <td>350</td> <td>57</td> <td>120</td>		6.0% SOM	27	32	19	350	57	120
2.5% SOM0.280.320.273.500.571.306.0% SOM0.300.320.433.600.581.40Flouranthene1.0% SOM2801,5005223,0003,1006,3002.5% SOM5601,60029023,0003,1006,3006.0% SOM8901,60029023,0003,1006,300Flourene1.0% SOM1702,800 (30.9) sol2763,000(30.9) sol9,90020,0006.0% SOM4003,800(76.5) sol6768,0009,90020,0001.0% SOM27459.50500821506.0% SOM3604401,500(183) sol16071,0009,90020,0001.0% SOM27459.50500821505.0% SOM36026410190(76.4) sol821506.0% SOM414621510821200(76.4) sol6.0% SOM2.302.6410450 (183) sol4,9001,900(183) sol6.0% SOM5.610400 (183) sol4,9001,900(183) sol6,007.9% SOM5.5%1,300(183) sol1522,0003,1006,2009.9% SOM5.5%1,300(183) sol1522,0003,1006,2009.9% SOM5.610450 (183) sol4,9001,900(183) sol6,009.9% SOM5.5%1,5003,800275,4003,100 <th>Dibenzo(ah)anthracene</th> <td>1.0% SOM</td> <td>0.24</td> <td>0.31</td> <td>0.14</td> <td>3.50</td> <td>0.57</td> <td>1.10</td>	Dibenzo(ah)anthracene	1.0% SOM	0.24	0.31	0.14	3.50	0.57	1.10
Image: flouranthene 6.0% SOM 0.30 0.32 0.43 3.60 0.58 1.40 Flouranthene 1.0% SOM 280 1,500 52 23,000 3,100 6,300 2.5% SOM 560 1,600 130 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 Flourene 1.0% SOM 470 2,800 (3.0.9 sol 27 63,000(3.9.9 sol 9,900 20,000 6.0% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 1.06 SOM 860 4,500(183) sol 160 71,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 2.7 45 9.50 500 82 150 1.06% SOM 41 46 21 510 82 130 1.08 <som< th=""> 2.30 2.66 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.60</som<>		2.5% SOM	0.28	0.32	0.27	3.50	0.57	1.30
Flouranthene1.0% SOM2801,5005223,0003,1006,3002.5% SOM5601,60013023,0003,1006,3006.0% SOM8901,60029023,0003,1006,300Flourene1.0% SOM1702,800 (30.9) sol2763,000(30.9) sol9,90020,0002.5% SOM4003,800(76.5) sol6768,0009,90020,0006.0% SOM8204,500(183) sol16071,0009,90020,0001.0% SOM27459.50500821502.5% SOM3646621510821502.5% SOM3646621510821200(76.4) sol6.0% SOM4146639510821200(76.4) sol8.0% SOM5.605.610460 (183) sol4,9001,900(183) sol6.0% SOM1313241,100 (432) sol4,9003,0009.0% SOM951,300(183) sol1522,0003,1006,2009.0% SOM2201,5003822,0003,1006,3009.0% SOM951,300(183) sol1522,0003,1006,3009.0% SOM951,300(183) sol1522,0003,1006,3009.0% SOM951,300(183) sol1522,0003,1006,3009.0% SOM6203,70011054,0007,40015,0009.0%		6.0% SOM	0.30	0.32	0.43	3.60	0.58	1.40
2.5% SOM 560 1,600 130 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 Flourene 1.0% SOM 170 2,800 (30.9) sol 27 63,000(30.9) sol 9,900 20,000 2.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 6.0% SOM 860 4,500(183) sol 160 71,000 9,900 20,000 Inden(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 36 46 21 510 82 170 6.0% SOM 41 46 39 510 82 180 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 1,200(76.4) sol 2.5% SOM 2.30 2.30 3.13 13 24 1,100 (32.1) sol 3,000 Phenanthrene 1.0% SOM 95 1,300(183.9 sol 15 2,20	Flouranthene	1.0% SOM	280	1,500	52	23,000	3,100	6,300
Index 6.0% SOM 890 1,600 290 23,000 3,100 6,300 Flourene 1.0% SOM 170 2,800 (30.9) sol 27 63,000(30.9) sol 9,900 20,000 2.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 860 4,500(183) sol 160 71,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 Z.5% SOM 36 46 21 510 82 170 6.0% SOM 411 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 1.0% SOM 2.30 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,100 6,200 2.5% S		2.5% SOM	560	1,600	130	23,000	3,100	6,300
Flourene 1.0% SOM 170 2,800 (30.9) sol 27 63,000(30.9) sol 9,900 20,000 2.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 6.0% SOM 860 4,500(183) sol 160 71,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 36 46 21 510 82 170 6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22		6.0% SOM	890	1,600	290	23,000	3,100	6,300
2.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 860 4,500(183) sol 160 71,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 36 46 21 510 82 180 6.0% SOM 411 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 620 3,700	Flourene	1.0% SOM	170	2,800 (30.9) sol	27	63,000(30.9) sol	9,900	20,000
6.0% SOM 860 4,500(183) sol 160 71,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 36 46 21 510 82 170 6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 620 3,700 110 54,000 <t< th=""><th></th><td>2.5% SOM</td><td>400</td><td>3,800(76.5) sol</td><td>67</td><td>68,000</td><td>9,900</td><td>20,000</td></t<>		2.5% SOM	400	3,800(76.5) sol	67	68,000	9,900	20,000
Indeno(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 36 46 21 510 82 170 6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 155 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,300 2.5% SOM 440 1,500 90 23,000 3,100 6,300 2.5% SOM 620 3,700 110 54,000 7,400 <th></th> <td>6.0% SOM</td> <td>860</td> <td>4,500(183) sol</td> <td>160</td> <td>71,000</td> <td>9,900</td> <td>20,000</td>		6.0% SOM	860	4,500(183) sol	160	71,000	9,900	20,000
2.5% SOM 36 46 21 510 82 170 6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,300 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400	Indeno(123-cd)pyrene	1.0% SOM	27	45	9.50	500	82	150
Image: form index i		2.5% SOM	36	46	21	510	82	170
Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 620 54,000 7,400 15,000 6.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.6		6.0% SOM	41	46	39	510	82	180
2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 620 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 coal Tar (Benzo(a)pyrene 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67<	Napthalene	1.0% SOM	2.30	2.6	4.10	190 (76.4) ^{sol}	4,900	1,200(76.4) sol
6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 6.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 6.0% SOM 1.10 1.2 1.20 15 2.20		2.5% SOM	5.60	5.6	10	460 (183) sol	4,900	1,900(183) sol
Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 6.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80		6.0% SOM	13	13	24	1,100 (432) sol	4,900	3,000
2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 Coal Tar (Benzo(a)pyren used as marker 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 Coal Tar (Benzo(a)pyren 6.0% SOM 0.98 1.2 0.67 15 2.20 4.70 Gompound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80	Phenanthrene	1.0% SOM	95	1,300(183) sol	15	22,000	3,100	6,200
6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 Coal Tar (Benzo(a)pyrene used as marker 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 Compound) 6.0% SOM 0.98 1.2 0.67 15 2.20 4.70		2.5% SOM	220	1,500	38	22,000	3,100	6,200
Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 Coal Tar (Benzo(a)pyrene used as marker 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 compound) 6.0% SOM 0.98 1.2 0.67 15 2.20 4.70		6.0% SOM	440	1,500	90	23,000	3,100	6,300
2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 Coal Tar (Benzo(a)pyrene used as marker compound) 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 6.0% SOM 0.98 1.2 0.67 15 2.20 4.70 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80	Pyrene	1.0% SOM	620	3,700	110	54,000	7,400	15,000
6.0% SOM 2000 3,800 620 54,000 7,400 15,000 Coal Tar (Benzo(a)pyrene used as marker 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 compound) 6.0% SOM 0.98 1.2 0.67 15 2.20 4.70 compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80		2.5% SOM	1200	3,800	270	54,000	7,400	15,000
Coal Tar (Benzo(a)pyrene 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80		6.0% SOM	2000	3,800	620	54,000	7,400	15,000
used as marker compound) 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80	Coal Tar (Benzo(a)pyrene	1.0% SOM	0.79	1.2	0.32	15	2.20	4.40
compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80	used as marker	2.5% SOM	0.98	1.2	0.67	15	2.20	4.70
	compound)	6.0% SOM	1.10	1.2	1.20	15	2.20	4.80

SOM = Soil Organic Matter Content (%)

vap – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

 $^{\rm sol}$ – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.5. Volatile and Semi-volatile Organic Compounds

LQM CIEH Gen	eral Assessn	nent Criteria	: Volatile a	nd Semi-Vo	olatile Organ	ic Compo	ounds			
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
Chlorogikanes & alkenes										
1.2 Dichloroethane	1.0% SOM	0.0071	0.0092	0.0046	0.67	29	21			
,	2.5% SOM	0.011	0.013	0.0083	0.97	29	24			
	6.0% SOM	0.019	0.023	0.016	1.70	29	28			
1,1,2,2 Tetrachloroethane	1.0% SOM	1.60	3.90	0.41	270	1,400	1,800			
	2.5% SOM	3.40	8.00	0.89	550	1,400	2,100			
	6.0% SOM	7.50	17	2.00	1,100	1,400	2,300			
1,1,1,2 Tetrachloroethane	1.0% SOM	1.20	1.50	0.79	110	1,400	1,500			
	2.5% SOM	2.80	3.50	1.90	250	1,400	1,800			
	6.0% SOM	6.40	8.20	4.40	560	1,400	2,100			
Tetrachloroethene	1.0% SOM	0.18	0.18	0.65	19	1,400	810 ^{sol} (424)			
	2.5% SOM	0.39	0.40	1.50	42	1,400	1,100 sol(951)			
	6.0% SOM	0.90	0.92	3.60	95	1.400	1.500			
1,1,1 Trichloroethane	1.0% SOM	8.80	9.00	48	660	140,000	57,000 ^{vap} (1425)			
	2.5% SOM	18	18	110	1,300	140,000	76,000 ^{vap} (2915)			
	6.0% SOM	39	40	240	3,000	140,000	100,000 ^{vap} (6392)			
Tetrachloromethene	1.0% SOM	0.026	0.026	0.45	2.90	890	190			
	2.5% SOM	0.056	0.056	1.00	6.30	920	270			
	6.0% SOM	0.130	0.130	2.40	14	950	400			
Trichloroethene	1.0% SOM	0.016	0.017	0.041	1.20	120	70			
	2.5% SOM	0.034	0.036	0.091	2.60	120	91			
	6.0% SOM	0.075	0.080	0.210	5.70	120	120			
Trichloromethane	1.0% SOM	0.91	1.20	0.42	99	2,500	2,600			
	2.5% SOM	1.70	2.10	0.83	170	2,500	2,800			
	6.0% SOM	3.40	4.20	1.70	350	2,500	3,100			
Vinyl Chloride	1.0% SOM	0.00064	0.00077	0.00055	0.059	3.50	4.80			
	2.5% SOM	0.00087	0.00100	0.00100	0.077	3.50	5.00			
	6.0% SOM	0.00014	0.00150	0.00180	0.120	3.50	5.40			
			Explosives							
2,4,6 Trinitrotoluene	1.0% SOM	1.60	65	0.24	1,000	130	260			
	2.5% SOM	3.70	66	0.58	1,000	130	270			
	6.0% SOM	8.10	66	1.40	1,000	130	270			
RDX	1.0% SOM	120	13,000	17	210,000	26,000	49,000(18.7) ^{sol}			
(Hexogen/Cyclonite/1,3,5-	2.5% SOM	250	13,000	38	210,000	26,000	51,000			
trinitro-1,3,5- triazacyclohexane)	6.0% SOM	540	13,000	85	210,000	27,000	53,000			
HMX (Octogen/1,3,5,7-	1.0% SOM	5.70	67,00	0.86	110,000	13,000	23,000(0.35) ^{vap}			
tetrenitro-1,3,5,7-	2.5% SOM	13	67,00	1.90	110,000	13,000	23,000(0.39) ^{vap}			
tetrazacyclo-octane)	6.0% SOM	26	67,00	3.90	110,000	13,000	24,000(0.48) ^{vap}			
Atrazine	1.0% SOM	3.30	610	0.50	9,300	1,200	2,300			
	2.5% SOM	7.60	620	1.20	9,400	1,200	2,400			
	6.0% SOM	17.40	620	2.70	9,400	1,200	2,400			
vap – GAC presented excee	eds the vapou	r saturation li	mit. which is	presented i	n brackets.					

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds									
Determinand	5	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
			Posticidos						
Aldrin	1.0% SOM	5 70	7 30	3 20	170	10	30		
	2.5% SOM	6.60	7.30	6.10	170	18	31		
	6.0% SOM	7 10	7.40	9.60	170	18	31		
Dieldrin	1.0% SOM	0.97	7.00	0.17	170	18	30		
Dicidini	2.5% SOM	2.00	7.00	0.11	170	18	30		
	6.0% SOM	3 50	7.30	0.96	170	18	31		
Dichloryos	1.0% SOM	0.032	6.40	0.0049	140	16	26		
Dicinerves	2.5% SOM	0.066	6.50	0.0100	140	16	26		
	6.0% SOM	0 140	6.60	0.0220	140	16	27		
Alpha - Endosulfan	1.0% SOM	7 40	160(0.003)vap	1 20	5.600(0.003)vap	1.200	2.400		
	2.5% SOM	18	280(0.007)vap	2.90	7,400(0,007) ^{vap}	1.200	2,400		
	6.0% SOM	41	410(0.016) ^{vap}	6.80	8,400(0,016) ^{vap}	1.200	2,400		
Beta - Endosulfan	1.0% SOM	7.00	41 410(0.016) ^{vap} 6.80 8,400(0.016 7.00 190(0.0007) ^{vap} 1.10 6,300(0.0000) 17 320(0.0002) ^{vap} 2.70 7,800(0.0002) 39 440(0.0004) ^{vap} 6.40 8700		6.300(0.00007) ^{vap}	1.200	2,400		
	2.5% SOM	17	320(0.0002) ^{vap}	2.70	7.800(0.0002) ^{vap}	1.200	2.400		
	6.0% SOM	39	440(0.0004) ^{vap}	6.40	8700	1.200	2.500		
Alpha -	1.0% SOM	0.23	6.90	0.035	170	24	47		
Hexachlorocyclohexanes	2.5% SOM	0.55	9.20	0.087	180	24	48		
	6.0% SOM	1.20	11	0.210	180	24	48		
Beta -	1.0% SOM	0.085	3.70	0.013	65	8.10	15		
Hexachlorocyclohexanes	2.5% SOM	0.200	3.80	0.032	65	8.10	15		
· · · · · · · · · · · · · · · · · · ·	6.0% SOM	0.460	3.80	3.80 0.077 65 8.		8.10	16		
Gamma -	Gamma - 1.0% SOM 0.06		2.90	0.0092	67	8.2	14		
Hexachlorocyclohexanes	2.5% SOM	0.14	3.30	0.0230	69	8.2	15		
	6.0% SOM	0.33	3.50	0.0540	70	8.2	15		
			Chlorobenzen	es		-			
Chlorobenzene	1.0% SOM	0.46	0.46	5.90	56	11,000	1,300(675) ^{sol}		
	2.5% SOM	1.00	1.00	14	130	13,000	2,000(1520) ^{sol}		
	2.5% SOM 0.55 9.20 0.087 188 6.0% SOM 1.20 11 0.210 188 1.0% SOM 0.085 3.70 0.013 65 2.5% SOM 0.200 3.80 0.032 65 6.0% SOM 0.460 3.80 0.077 65 1.0% SOM 0.066 2.90 0.0092 67 2.5% SOM 0.14 3.30 0.0230 66 6.0% SOM 0.33 3.50 0.0540 70 2.5% SOM 0.46 0.46 5.90 56 6.0% SOM 0.46 0.46 5.90 56 2.5% SOM 1.00 1.00 14 13 6.0% SOM 2.40 2.40 32 29 1.0% SOM 23 24 94 2,000 (5 2.5% SOM 55 57 230 4,800 (1 6.0% SOM 130 130 540 11,000 (3	290	14.000	2.900					
1,2-Dichlorobenzene	1.0% SOM	23	24	94	2,000 (571) sol	90,000	24,000(571) ^{sol}		
,	2.5% SOM	55	57	230	4,800 (1370) sol	95,000	36,000(1370)sol		
	6.0% SOM	0.032 6.40 0.0049 140 16 0.066 6.50 0.0100 140 16 0.140 6.60 0.0220 140 16 7.40 160(0.003) ^{vap} 1.20 5,600(0.007) ^{vap} 1,200 1 41 410(0.016) ^{vap} 6.80 8,400(0.016) ^{vap} 1,200 1 7.00 190(0.0002) ^{vap} 2.70 7,800(0.0002) ^{vap} 1,200 1 7.00 190(0.0002) ^{vap} 2.70 7,800(0.0002) ^{vap} 1,200 1 0.23 6.90 0.035 170 24 1 0.55 9.20 0.087 180 24 1 0.23 6.90 0.032 65 8.10 1 0.20 3.80 0.077 65 8.10 1 0.460 3.80 0.077 65 8.10 1 0.460 3.80 0.077 65 8.10 1 0.460 3.80 0.070	98,000	51,000(3240)sol					
1,3-Dichlorobenzene	1.0% SOM	0.40	0.44	0.25	30	300	390		
	1.0% SOM 0.23 6.90 0.035 170 24 2.5% SOM 0.55 9.20 0.087 180 24 6.0% SOM 1.20 11 0.210 180 24 6.0% SOM 0.085 3.70 0.013 655 8.10 anes 2.5% SOM 0.200 3.80 0.032 655 8.10 6.0% SOM 0.460 3.80 0.077 655 8.10 anes 1.0% SOM 0.066 2.90 0.0092 67 8.2 2.5% SOM 0.14 3.30 0.0230 699 8.2 2.5% SOM 0.14 3.30 0.0240 70 8.2 2.5% SOM 0.14 3.30 0.0240 70 8.2 2.5% SOM 0.14 3.30 0.0240 70 8.2 2.5% SOM 1.00 1.00 1.40 70 14,00 2.5% SOM 1.00 1.00 144 70 95,00 <	300	440						
	6.0% SOM	2.30	33 3.50 0.0540 70 8.2 Chlorobenzenes Chlorobenzenes 11,000 1,30 46 0.46 5.90 56 11,000 1,30 00 1.00 14 130 13,000 2,000 40 2.40 32 290 14,000 2 3 24 94 2,000 (571) sol 90,000 24,00 5 57 230 4,800 (1370) sol 95,000 36,00 30 130 540 11,000 (3240) sol 98,000 51,00 40 0.44 0.25 30 300 10 00 1.10 0.60 73 300 10 10 0.50 170 300 10 10 11 61 15 4,400 (224) vap 17,000g 36,00 50 150 37 10,000 (540) vap 17,000g 36,00	470					
1,4-Dichlorobenzene	1.0% SOM	61	61	15	4,400 (224) ^{vap}	17,000g	36,000 (224) ^{vap}		
	2.5% SOM	150	150	37	10,000 (540) ^{vap}	17,000 ^g	36,000 (540) ^{vap}		
	6.0% SOM	350	350	88 ^g	25,000 (1280) ^{vap}	17,000 ^g	36,000 (1280) ^{vap}		
1,2,3,-Trichlorobenzene	1.0% SOM	1.50	1.50	4.70	102	1,800	770(134 ^{)vap}		
	2.5% SOM	3.60	3.70	12	250	1,800	1,100(330) ^{vap}		
	6.0% SOM	8.60	8.80	28	590	1,800	1,600(789) ^{vap}		
1,2,4,-Trichlorobenzene	1.0% SOM	2.60	2.60	55	220	15,000	1,700(318) ^{vap}		
	2.5% SOM	6.40	6.40	140	530	17,000	2,600(786) ^{vap}		
	6.0% SOM	15	15	320	1,300	19,000	4,000(1880) ^{vap}		
1,3,5,-Trichlorobenzene	1.0% SOM	0.33	0.33	4.70	23	1,700	380(36.7) ^{vap}		
	2.5% SOM	0.81	0.81	12	55	1,700	590(90.8) ^{vap}		
	6.0% SOM	1.90	1.90	140	130	1,800	860(217) ^{vap}		
vap – GAC presented exce	eeds the vapo	our saturatio	on limit, which is p	resented in	brackets.				

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

LQM CIE	H General	Assessment	Criteria: Volat	ile and Sem	i-Volatile Orga	nic Compou	ınds		
Determinan	ds	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
		1	Chlorobenzen	es (cont.)			1		
1,2,3,4,-	1.0% SOM	15	24	4.40	1,700(122 ^{)vap}	830	1,500(122) ^{vap}		
Tetrachlorobenzene	2.5% SOM	36	56	11	3,080(304) ^{vap}	830	1,600		
	6.0% SOM	78	120	26	4,400(728) ^{vap}	830	1,600		
1,2,3,5,-	1.0% SOM	0.66	0.75	0.38	49(39.4) ^{vap}	78	110(39) ^{vap}		
Tetrachlobenzene	2.5% SOM	1.60	1.90	0.90	120(98.1) ^{vap}	79	120		
	6.0% SOM	3.70	4.30	2.20	240(235) ^{vap}	79	130		
1,2,4, 5,-	1.0% SOM	0.33	0.73	0.06	42(19.7) ^{sol}	13	25		
Tetrachlobenzene	2.5% SOM	0.77	1.70	0.16	72(49.1) ^{sol}	13	26		
	6.0% SOM	1.60	3.50	0.37	96	13	26		
Pentachlrobenzene	1.0% SOM	5.80	19	1.20	640(43.0) ^{sol}	100	190		
	2.5% SOM	12	30	3.10	770(107) ^{sol}	100	190		
	6.0% SOM	22	38	7.00	830	100	190		
Hexachlorobenzene	1.0% SOM	1.80(0.20) ^{vap}	4.10 (0.20) ^{vap}	0.47	110(0.20) ^{vap}	16	30		
	2.5% SOM	3.30(0.50) ^{vap}	5.70 (0.50) ^{vap}	1.10	120	16	30		
	6.0% SOM	4.90	6.70 (1.2) ^{vap}	2.50	120	16	30		
Phenols & Chlorophenols									
BTEX	1.0% SOM	280	750	66	760 ^{dir} (31,000)	760 ^{dir} (11,0 00)	760 ^{dir} (8,600)		
	2.5% SOM	550	1,300	140	1,500 ^{dir} (35,000)	1,500 ^{dir} (11 ,000)	1,500 ^{dir} (9,700)		
	6.0% SOM	1100	2,300	280	3,200 ^{dir} (37,000)	3,200 ^{dir} (11 ,000)	3,200 ^{dir} (11,00 0)		
Chlorophenols (4	1.0% SOM	0.87	94	0.13	3,500	620	1,100		
Congeners)	2.5% SOM	2.00	150	0.30	4,000	620	1,100		
	6.0% SOM	4.50	210	0.70	4,300	620	1,100		
Pentachlorophenols	1.0% SOM	0.22	27(16.4) ^{vap}	0.03	400	60	110		
	2.5% SOM	0.52	29	0.08	400	60	120		
	6.0% SOM	1.20	31	0.19	400	60	120		
			Other	s					
Carbon Disulphide	1.0% SOM	0.14	0.14	4.80	11	11,000	1,300		
	2.5% SOM	0.29	0.29	10	22	11,000	1,900		
	6.0% SOM	0.62	0.62	23	47	12,000	2,700		
Hexachloro-1,3-	1.0% SOM	0.29	0.32	0.25	31	25	48		
Butadiene	2.5% SOM	0.70	0.78	0.61	68	25	50		
	6.0% SOM	1.60	1.80	1.40	120	25	51		
vap – GAC presented	exceeds the	e vapour satura	ation limit, whic	h is presente	ed in brackets.				
^{sol} – GAC presented	exceeds the	soil saturation	n limit, which is	presented in	brackets.				

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds									
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)				
1,1,2 Trichloroethane	1.0% SOM	0.60	0.88	0.28	94				
	2.5% SOM	1.20	1.8	0.61	190				
	6.0% SOM	2 70	3.9	1 40	400				
1,1-Dichloroethane	1.0% SOM	2.40	2.50	9.20	280				
	2.5% SOM	3.90	4.10	17	450				
	6.0% SOM	7.40	7.70	35	850				
1,1-Dichloroethene	1.0% SOM	0.23	0.23	2.80	26				
	2.5% SOM	0.40	0.41	5.60	46				
	6.0% SOM	0.82	0.82	12	92				
1,2,4-Trimethylbenzene	1.0% SOM	0.35	0.41	0.38	42				
	2.5% SOM	0.85	0.99	0.93	99				
	6.0% SOM	2.00	2.30	2.20	220				
1,2-Dichloropropane	1.0% SOM	0.024	0.024	0.62	3.3				
	2.5% SOM	0.042	0.042	1.20	5.9				
	6.0% SOM	0.084	0.085	2.60	12				
2,4-Dimethylphenol	1.0% SOM	19	210	3.10	16000*				
	2.5% SOM	43	410	7.20	24000*				
2.4 Dinitrataluana	6.0% SOM	97	730	17	30000*				
2,4-Dinitrotoluene	1.0% SOM	1.50	170*	0.22	3700*				
	2.5% SOM	3.20	170	0.49	3700*				
	6.0% SOM	7.20	170	1.10	3800*				
2,6-Dinitrotoluene	1.0% SOM	0.78	78	0.12	1900*				
	2.5% SOM	1.70	84	0.27	1900*				
	6.0% SOM	3.90	87	0.61	1900*				
2-Chloronapthalene	1.0% SOM	3.70	3.80	40	390*				
	2.5% SOM	9.20	9.30	98	960*				
	6.0% SOM	22	22	230	2200*				
Biphenyl	1.0% SOM	66*	220*	14	18000*				
	2.5% SOM	160	500*	35	33000*				
	6.0% SOM	360	980*	83	48000*				
Bis (2-ethylhexyl) phthalate	1.0% SOM	280*	2700*	47*	85000*				
	2.5% SOM	610*	2800*	120*	86000*				
	6.0% SOM	1100*	2800*	280*	86000*				
Bromobenzene	1.0% SOM	0.87	0.91	3.2	97				
	2.5% SOM	2.0	2.1	7.6	220				
	6.0% SOM	4.7	4.9	18	520				
Bromodichloromethane	1.0% SOM	0.016	0.019	0.016	2.1				
	2.5% SOM	0.030	0.034	0.032	3.7				
	6.0% SOM	0.061	0.070	0.068	7.6				
Bromoform	1.0% SOM	2.8	5.2	0.95	760				
	2.5% SOM	5.9	11	2.1	1500				
	6.0% SOM	13	23	4.6	3100				
Butyl benzyl phthalate	1.0% SOM	1400*	42000*	220*	940000*				
	2.5% SOM	3300*	44000*	550*	940000*				
	6.0% SOM	7200*	44000*	1300*	950000*				

*soil concentration above saturation limit

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds									
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)				
Chloroethane	1.0% SOM	8.3	8.4	110	960				
	2.5% SOM	11	11	200	1300				
	6.0% SOM	18	18	380	2100				
Chloromethane	1.0% SOM	0.0083	0.0085	0.066	1.0				
	2.5% SOM	0.0098	0.0099	0.13	1.2				
	6.0% SOM	0.013	0.013	0.23	1.6				
Cis 1,2 Dichloroethene	1.0% SOM	0.11	0.12	0.26	14				
	2.5% SOM	0.19	0.20	0.50	24				
	6.0% SOM	0.37	0.39	1.0	47				
Dichloromethane	1.0% SOM	0.58	2.10	0.10	270				
	2.5% SOM	0.98	2.80	0.19	360				
	6.0% SOM	1.70	4.50	0.34	560				
Diethyl Phthalate	1.0% SOM	120*	1800*	19*	150000*				
	2.5% SOM	260*	3500*	41*	220000*				
	6.0% SOM	570*	6300*	94*	290000*				
Di-n-butyl phthalate	1.0% SOM	13*	450*	2.00	15000*				
Di- <i>n</i> -butyl phthalate Di- <i>n</i> -octyl phthalate	2.5% SOM	31*	450*	5.00	15000*				
	6.0% SOM	67*	450*	12	15000*				
Di-n-octyl phthalate	1.0% SOM	2300*	3400*	940*	89000*				
	2.5% SOM	2800*	3400*	2100*	89000*				
	6.0% SOM	3100*	3400*	3900*	89000*				
Hexachloroethane	1.0% SOM	0.20	0.22	0.27	22*				
	2.5% SOM	0.48	0.54	0.67	53*				
	6.0% SOM	1.10	1.30	1.60	120*				
Isopropylbenzene	1.0% SOM	11	12	32	1400*				
	2.5% SOM	27	28	79	3300*				
	6.0% SOM	64	67	190	7700*				
Methyl tert-butyl ether	1.0% SOM	49	73	23	7900				
(MTBE)	2.5% SOM	84	120	44	13000				
	6.0% SOM	160	220	90	24000				
Propylbenzene	1.0% SOM	34	40	34	4100*				
	2.5% SOM	82	97	83	9700*				
	6.0% SOM	190	230	200	21000*				
Styrene	1.0% SOM	8.10	35	1.60	3300*				
	2.5% SOM	19	78	3.70	6500*				
	6.0% SOM	43	170	8.70	11000*				
Total Cresols (2-, 3-, and 4-	1.0% SOM	80	3700	12	160000				
methylphenol)	2.5% SOM	180	5400	27	180000*				
	6.0% SOM	400	6900	63	180000*				
Trans 1,2 Dichloroethene	1.0% SOM	0.19	0.19	0.93	22				
	2.5% SOM	0.34	0.35	1.90	40				
	6.0% SOM	0.70	0.71	0.24	81				
Tributyl tin oxide	1.0% SOM	0.25	1.40	0.042	130*				
	2.5% SOM	0.59	3.10	0.100	180*				
	6.0% SOM	1.30	5.70	0.240	200*				

*soil concentration above saturation limit

	C4SL Low Level of Toxicological Concern											
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)					
	1.0% SOM	0.11	0.16	0.054	12	300	300					
1,2-Dichloroethane	2.5% SOM	0.18	0.24	0.10	17	310	330					
(Ethylene Dichloride)	6.0% SOM	0.31	0.41	0.19	29	310	380					
	1.0% SOM	0.46	0.50	0.89	38	3,800	2,000					
Cis-1,2-Dichloroethene	2.5% SOM	0.78	0.84	1.7	64	3,800	2,400					
	6.0% SOM	1.5	1.6	3.6	120	3,900	3,100					
T	1.0% SOM	0.31	0.32	2	24	3,200	1,400					
letrachioroethene	2.5% SOM	0.70	0.71	4.8	55	3,300	1,900					
(PCE)	6.0% SOM	1.60	1.60	11	130	3,400	2,500					
	1.0% SOM	0.90	0.93	3.70	69	13,000	5,600					
Trans-1,2-Dichloroethene	2.5% SOM	1.60	1.70	7.50	120	13,000	7,000					
	6.0% SOM	3.30	3.40	16	260	13,000	9,100					
	1.0% SOM	0.0093	0.0097	0.032	0.73	76	41					
I richloroethene	2.5% SOM	0.020	0.020	0.072	1.5	78	54					
(ICE)	6.0% SOM	0.043	0.045	0.16	3.4	79	69					
	1.0% SOM	0.0064	0.015	0.0017	1.1	7.8	18					
Vinyi Chloride	2.5% SOM	0.010	0.019	0.0031	1.4	7.8	19					
(Chloroethene)	6.0% SOM	0.017	0.029	0.0058	2.2	7.8	19					

9.6. Asbestos

No asbestos or asbestos containing materials (ACM's) are considered acceptable on-site from a human health perspective. Therefore the GAC for asbestos & ACM's within any imported material should be none detected (ND).

geotechnical and environmental consultants

APPENDIX H: Settlement and Heave Analysis Modelling

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office Wineton House, 37 Horse Fast Banbury, Oxfordshite OX16 GAE. Registered in England No 07052001.

Pdisp Inputs and Outputs

Analysis Options

Pro	ope	rty	Value			
	Ge	eneral				
	Po	isson's ra	0.30000			
	Ma	ax E Ratio	1.50000			
	HI	boundary	-44.00000			
	GS	SA piled r				
	Dis	splaceme	\checkmark			
	B	astic				
	Ela	astic	\checkmark			
	An	alysis Me	Mindlin			
	Le	gacy				
	Ca	lculate H	\sim			
	Stř	ffness	Weighted aver			
	He	ave	~			
	-	Effect of	soil above lo			
		Vertical				
		Horizont	\checkmark			
	Co	onsolidatio	n			
	Co	nsolidation				

Short Term Soil Profile

Laver ref.	Name	Level at top	No of intermediate displacement	Young's	Poisson's	Colour	
cayer ren.		uttop	levels	Тор	Bottom		
		[m]		[kN/m ²]	[kN/m ²]		
Defaults	Layer #	0.000	5	50000	50000	0.200	
1	MG	0.000	5	10000	10000	0.450	
2	KPGM(c)	-1.200	5	24150	24150	0.450	
3	KPGM(g)	-2.200	5	100000	100000	0.300	
4	KPGM(g)	-4.000	5	78000	32000	0.300	
5	LCF	-6.000	5	22500	45000	0.450	
6	LCF	-7.000	5	45000	265500	0.450	

Long Term Soil Profile

l aver ref.	Name	Level at top	No of intermediate displacement	Young's	Poisson's	Colour	
Layerren		urtop	levels	Тор	Bottom		
		[m]		[kN/m²]	[kN/m²]		
Defaults	Layer #	0.000	5	50000	50000	0.200	
1	MG	0.000	5	10000	10000	0.450	
2	KPGM(c)	-1.200	5	18113	18113	0.450	
3	KPGM(g)	-2.200	5	100000	100000	0.300	
4	KPGM(g)	-4.000	5	78000	32000	0.300	
5	LCF	-6.000	5	16875	33750	0.450	
6	LCF	-7.000	5	33750	199125	0.450	

Model 1 Pressures Applied

				Load position			Load value
	Nama			Polygon	Number	Normal	
Load ref.	Name	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	-72.20
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	-72.20
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	-72.20
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	-72.20

Model 2 Pressures Applied

				Load position			Load value
	Name			Polygon	Number	Normal	
Load ref.		Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	30.00
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	30.00
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	30.00
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	30.00

Model 3 Pressures Applied

	Namo				Load value		
				Polygon	Number	Normal	
Load ref.	Name	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	30.00
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	30.00
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	30.00
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	30.00
5	Mass X	-3.800	More	(1,1) (23,1) (23,9.5) (1,9.5) (10.0	1	-72.20

Model 4 Pressures Applied

				Load position			Load value
	Name			Polygon	Number	Normal	
Load ref.		Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	93.00
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	93.00
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	93.00
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	93.00
5	Mass X	-3.800	More	(1,1) (23,1) (23,9.5) (1,9.5) (10.0	1	-72.20
6	Slab	-3.800	More	(0,0) (24,0) (24,10.5) (0,10.5	10.0	1	10.00

Model 5 Pressures Applied

						Load value		
	Nama			Polygon		Number	Normal	
Load ref.		Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)	
		[m]		[m]	[%]		[kN/m ²]	
Defaults	Poly Load #	0.000			10.0	5	0.00	
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	93.00	
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	93.00	
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	93.00	
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	93.00	
5	Mass X	-3.800	More	(1,1) (23,1) (23,9.5) (1,9.5) (10.0	1	-72.20	
6	Slab	-3.800	More	(0,0) (24,0) (24,10.5) (0,10.5	10.0	1	10.00	

Vertical Displacement Contour Plot – Model 1

Vertical Displacement Contour Plot – Model 2

Vertical Displacement Contour Plot – Model 3

Vertical Displacement Contour Plot – Model 4

geotechnical and environmental consultants

APPENDIX I: Waste Hazard Assessment

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office Kineton House, 17 Hose Fax Banbury, Oxfordative OX18 OAE, Registered in England No 07082001

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline [™] classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to: a) understand the origin of the waste b) select the correct List of Waste code(s) c) confirm that the list of determinands, results and sampling plan are fit for purpose d) select and justify the chosen metal species (Appendix B) e) correctly apply moisture correction and other available corrections f) add the meta data for their user-defined substances (Appendix A) g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)								
To aid the reviewer, the labora	atory results, assumptions and justifications manag	ed by the classifier are highlighted in <mark>pale y</mark>	rellow.					
Job name GWPR5909								
Description/Commen	ts							
Project		Site						
GWPR5909		34 Nassau Road SW13 9QE						
Classified by	0	HazWastaOnlinaTM provides a two day bazardous	wasta classification course that course the					
Name: Adam Young	Company: Ground and Water	use of the software and both basic and advanced v has to be renewed every 3 years.	waste classification techniques. Certification					
Date:	2 The long Barn, Norton Farm, Selbourr	HazWasteOnline™ Certification	on: -					
Telephone:	Alton	Course	Date					
	GU34 3NB	Hazardous Waste Classification	-					
Purpose of classificat	tion							
2 - Material Characterisati	ion							
Address of the waste								
34 Nassau Road			Post Code SW13 9QE					
SIC for the process g	iving rise to the waste							
Description of indust	ry/producer giving rise to the waste							
Redevelopment of site								
Description of the spe	ecific process, sub-process and/or a	ctivity that created the waste						
Waste created during the	excavation of soils							
Description of the wa	ste							

Made Ground

Created date: 05 Apr 2024 08:04 GMT

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS0112032024-1.20		Non Hazardous		3
2	WS0212032024-0.20		Non Hazardous		5
3	WS0112032024-2.00		Non Hazardous		8
4	WS0212032024-1.50		Non Hazardous		9
5	WS0212032024-3.00		Non Hazardous		10

Related documents						
# Name	Description					
1 24-009116_HWOL.hwol	i2 Analytical .hwol file used to populate the Job					
Report						

Created by: Adam Young

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	11
Appendix B: Rationale for selection of metal species	12
Appendix C: Version	13

Classification of sample: WS01--12032024-1.20

Sample details

Sample name:	LoW Code:	
WS0112032024-1.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
17%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		Determinand	P Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		number CAS Number	G					MO	
1	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.8 mg/kg	1.923	<3.462 mg/kg	<0.000346 %		<lod< td=""></lod<>
		monohydric phenols	-	4		4	0.0001.0/		1.00
2		P1186		<1 mg/kg		<1 mg/kg	<0.0001 %		<lud< td=""></lud<>
3	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		2 mg/kg	1.884	3.768 mg/kg	0.000377 %		
	1	006-007-00-5							
4	4	boron { boron tribromide } 005-003-00-0 233-657-9 10294-33-4	-	1.7 mg/kg	23.173	32.697 mg/kg	0.00327 %	\checkmark	
5	8	pH		8 pH		8 pH	8pH		
	2								
6		033-001-00-X 231-148-6 7440-38-2		18 mg/kg		14.94 mg/kg	0.00149 %	\checkmark	
7 6	2	cadmium { cadmium sulfide }	1	<0.2 mg/kg	1 295	<0.257 mg/kg	<0.00002.%		
<i>'</i>	Ī	048-010-00-4 215-147-8 1306-23-6		<0.2 mg/kg	1.205	<0.237 mg/kg	<0.00002 /8		LOD
8	4	copper { dicopper oxide; copper (I) oxide }		67 mg/kg	1.126	62.611 mg/kg	0.00626 %	1	
	-	029-002-00-X 215-270-7 1317-39-1							
9 •	~	mercury { mercury }		0.9 mg/kg		0.747 mg/kg	0.0000747 %	\checkmark	
-	A	nickel { nickel dihydroxide }	+						
10	~	028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		24 mg/kg	1.579	31.464 mg/kg	0.00315 %	\checkmark	
11	4	lead {	1	220 mg/kg		182.6 mg/kg	0.0183 %	~	
	0	082-001-00-6							
12	4	seienium { <mark>seienium</mark> }		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
_		vanadium { divanadium pentaoxide: vanadium	-						
13	•	pentoxide }		55 mg/kg	1.785	81.494 mg/kg	0.00815 %	\checkmark	
		023-001-00-8 215-239-8 1314-62-1							
14	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		110 mg/kg	2.469	225.447 mg/kg	0.0225 %	~	

_													
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	8	acenaphthylene	1	1		0.38	ma/ka		0.315	ma/ka	0 0000315 %	./	
			205-917-1	208-96-8								`	
16	0	acenaphthene				0.1	ma/ka		0.083	ma/ka	0 0000083 %	/	
10			201-469-6	83-32-9	-	0.1	iiig/kg		0.000	mg/ng	0.0000000 /0	~	
17	0	anthracene				3	ma/ka		2 /0	ma/ka	0 000249 %	/	
11			204-371-1	120-12-7		5	шу/ку		2.45	шу/ку	0.000249 /8	~	
10		benzo[a]anthracer	ne			5.7	ma/ka		4 721	ma/ka	0 000 473 %		
10		601-033-00-9	200-280-6	56-55-3		5.7	шу/ку		4.731	шу/ку	0.000473 %	~	
10		benzo[a]pyrene; b	enzo[def]chrysene			47	malle		2 001	~~~// <i>.</i> ~	0.00000.0/	,	
19		601-032-00-3	200-028-5	50-32-8		4.7	mg/ĸg		3.901	mg/kg	0.00039 %	\checkmark	
		benzo[b]fluoranthe	ene			<u> </u>	0		5 000		0.000500.0/		
20		601-034-00-4	205-911-9	205-99-2	-	6.1	mg/кg		5.063	mg/kg	0.000506 %	\checkmark	
		benzo[k]fluoranthe	ene	1									
21		601-036-00-5	205-916-6	207-08-9	-	2.3	mg/kg		1.909	mg/kg	0.000191 %	\checkmark	
		benzolahilpervlen	e	1									
22	Ŭ		205-883-8	191-24-2	-	2.6	mg/kg		2.158	mg/kg	0.000216 %	\checkmark	
		chrysene		-									
23		601-048-00-0	205-923-4	218-01-9	-	5.7	mg/kg		4.731	mg/kg	0.000473 %	\checkmark	
		dibenz[a h]anthrac	cene										
24		601-041-00-2	200-181-8	53-70-3	-	0.63	mg/kg		0.523	mg/kg	0.0000523 %	\checkmark	
-		fluoranthene	200 101 0	00100									
25			205-912-4	206-44-0	-	14	mg/kg		11.62	mg/kg	0.00116 %	\checkmark	
-	_	fluorene	200 012 1	200 110									
26	۳		201-695-5	86-73-7	-	0.43	mg/kg		0.357	mg/kg	0.0000357 %	\checkmark	
<u> </u>	-	indeno[123-cd]pvr	ene	0010-1	-								
27	۲		205-803-2	103-30-5	-	2.2	mg/kg		1.826	mg/kg	0.000183 %	\checkmark	
		nanhthalene	203-033-2	199-99-9									
28			202 040 5	01 20 3	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		nhononthrono	202-049-3	91-20-3									
29	0	prienantinene	001 591 5	05 01 0	_	7.2	mg/kg		5.976	mg/kg	0.000598 %	\checkmark	
		Durono.	201-301-3	05-01-0	+								
30	٥	pyrene	004 007 0	120.00.0	_	11	mg/kg		9.13	mg/kg	0.000913 %	\checkmark	
<u> </u>	•		204-921-3	129-00-0	-							\square	
31	44	chromium in chror chromium(III) oxid	nium(III) compound <mark>e</mark> }	* } sł		25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
			215-160-9	1308-38-9						_			
										Total:	0.0733 %		

Key

< ≺LOD

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

CLP: Note 1

Only the metal concentration has been used for classification

Classification of sample: WS02--12032024-0.20

Sample details

Sample name:	LoW Code:	
WS0212032024-0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
15%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		Determinand	> Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index EC Number CAS Number	CLF					MC	
1	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.8 mg/kg	1.923	<3.462 mg/kg	<0.000346 %		<lod< td=""></lod<>
		monohydric phenols	+				0.0004.0/		
2		P1186		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
3	*	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5							
4	4	boron { boron tribromide } 005-003-00-0 233-657-9 10294-33-4	_	1.2 mg/kg	23.173	23.636 mg/kg	0.00236 %	\checkmark	
5	٥	рН		7.7 pH		7.7 pH	7.7 pH		
		PH							
6	4	arsenic { arsenic }		19 mg/kg		16.15 mg/kg	0.00161 %	\checkmark	
	*	cadmium { cadmium sulfide }							
7	-	048-010-00-4 215-147-8 1306-23-6	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
8	Å	copper { dicopper oxide; copper (I) oxide }		33 ma/ka	1 1 2 6	31.581 mg/kg	0.00316 %		
Ľ		029-002-00-X 215-270-7 1317-39-1			1.120			~	
9	4	mercury { mercury }		0.6 mg/kg		0.51 mg/kg	0.000051 %	\checkmark	
		080-001-00-0 231-106-7 /439-97-6	+						
10	~	028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		21 mg/kg	1.579	28.194 mg/kg	0.00282 %	\checkmark	
11	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	160 mg/kg		136 mg/kg	0.0136 %	~	
	•	selenium { selenium }	+						
12	*	034-001-00-2 231-957-4 7782-49-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13	~	vanadium { divanadium pentaoxide; vanadium pentoxide }		49 mg/kg	1.785	74.353 mg/kg	0.00744 %	~	
		023-001-00-8 215-239-8 1314-62-1	-						
14	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		74 mg/kg	2.469	155.319 mg/kg	0.0155 %	~	

www.hazwasteonline.com

#		FU CLP index	Determinand	CAS Number	P Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number			С							M	
15	0	acenaphthylene	005 017 1			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
┝	-	acenanhthene	205-917-1	208-96-8	\vdash								
16	۲	acenaphinene	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17		anthracene				0.16	malka		0.126	ma/ka	0.0000126.8/	,	
			204-371-1	120-12-7		0.16	тід/кд		0.136	тід/кд	0.0000136 %	\checkmark	
18		benzo[a]anthracen	e	50.55.0		1	mg/kg		0.85	mg/kg	0.000085 %	\checkmark	
-		601-033-00-9	200-280-6	56-55-3	-								
19		601-032-00-3	200-028-5	50-32-8		0.84	mg/kg		0.714	mg/kg	0.0000714 %	\checkmark	
20		benzo[b]fluoranthe	ne			1.0			1.00	~~~~// <i>L</i> ~~	0.000136.8/	,	
20		601-034-00-4	205-911-9	205-99-2		1.6	mg/kg		1.36	mg/kg	0.000136 %	\checkmark	
21		benzo[k]fluoranthe	ne			0.68	ma/ka		0 578	ma/ka	0 0000578 %	./	
<u> </u>		601-036-00-5	205-916-6	207-08-9	1							Ŷ	
22	8	benzo[ghi]perylene	e	404.04.0		0.6	mg/kg		0.51	mg/kg	0.000051 %	\checkmark	
\vdash		chrycono	205-883-8	191-24-2	\vdash								
23		601-048-00-0	205-923-4	218-01-9	-	1.3	mg/kg		1.105	mg/kg	0.000111 %	\checkmark	
24		dibenz[a,h]anthrac	ene	-		0 17	ma/ka		0 145	ma/ka	0 0000145 %	1	
<u> </u>		601-041-00-2	200-181-8	53-70-3								*	
25	0	fluoranthene				1.7	mg/kg		1.445	mg/kg	0.000145 %	\checkmark	
-		fluoropo	205-912-4	206-44-0	-								
26	۵	liuorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		indeno[123-cd]pyre	ene	00 10 1									
27			205-893-2	193-39-5		0.52	mg/kg		0.442	mg/kg	0.0000442 %	\checkmark	
28		naphthalene		1		<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		
20		601-052-00-2	202-049-5	91-20-3		<0.05	шу/ку		<0.05	шу/ку	<0.000003 /8		<lod< td=""></lod<>
29	۰	phenanthrene				0.59	mg/kg		0.501	mg/kg	0.0000501 %	\checkmark	
			201-581-5	85-01-8	_								
30	8	pyrene	201-027-3	129-00-0	-	1.7	mg/kg		1.445	mg/kg	0.000145 %	\checkmark	
		benzene	204-321-3	123-00-0	┢								
31		601-020-00-8	200-753-7	71-43-2	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
32	0	ethylbenzene		-		~5	ua/ka		<0.005	ma/ka	<0.000005 %		
52		601-023-00-4	202-849-4	100-41-4		~5	µg/kg		<0.000	iiig/kg	<0.0000003 78		
22		tert-butyl methyl et	her; MTBE;			-5	ua/ka		-0.005	malka	-0.000005.8/		
33		603-181-00-X	216-653-1	1634-04-4		<0	µу∕ку		<0.005	mg/kg	<0.0000003 %		<lod< td=""></lod<>
		xylene			\uparrow								
34		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
-		o-xylene: [1] n-yyle	10-000-7 [4]	3] xvlene [4]	\vdash							\square	
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
36		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
37	۰	TPH (C6 to C40) p	etroleum group		1	<40	ma/ka		<40	ma/ka	<0.004 %		
				TPH	1		iiig/iig			iiig/iig			200
38	4	chromium in chrom chromium(III) oxide	nium(III) compound > }	ds {		24	mg/kg	1.462	35.077	mg/kg	0.00351 %		
-		[210-100-9	100-00-9	1					Total:	0.0558 %	\vdash	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS01--12032024-2.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

-		
Sample name:	LoW Code:	
WS0112032024-2.00	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
3.4%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 3.4% Wet Weight Moisture Correction applied (MC)

#		Determinand			Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		i actor		Value		0360
1	0	pH		PH	_	8.4 pH		8.4 pH	8.4 pH		
		ч.	~			×		Total:	0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS02--12032024-1.50

Sample details

Sample name:	LoW Code:	
WS0212032024-1.50	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
17%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		8 pH		8	рН	8рН		
	Total:											

Key

0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS02--12032024-3.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

-		
Sample name:	LoW Code:	
WS0212032024-3.00	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
2.4%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 2.4% Wet Weight Moisture Correction applied (MC)

#		Determinand			Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP				Value	MC	USEU
1	8	pН		PH		8.3 pH		8.3 pH	8.3 pH		
			~	~			°	Tota	I: 0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Appendix A: Classifier defined and non GB MCL determinands

• monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301, STOT RE 2; H373, Skin Corr. 1B; H314, Skin Corr. 1B; H314 >= 3%, Skin Irrit. 2; H315 1 <= conc. < 3%, Eye Irrit. 2; H319 1 <= conc. < 3%, Aquatic Chronic 2; H411

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

^a arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

GB MCL index number: 033-001-00-X Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Iead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17. Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Report created by Adam Young on 05 Apr 2024

^e fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from ECHA's C&L inventory database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 30 Apr 2020 Hazard Statements: Acute Tox. 4; H302 , Skin Sens. 1; H317 , Eye Irrit. 2; H319

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

Appendix B: Rationale for selection of metal species

chromium in chromium(VI) compounds {chromium(VI) oxide}

Most likely worst case.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Most likely worst case.		
boron {boron tribromide}		
Most likely worst case.		
arsenic {arsenic}		
Most likely worst case.		
cadmium {cadmium sulfide}		
Most likely worst case.		

copper {dicopper oxide; copper (I) oxide}
Most likely worst case.
mercury {mercury}
Most likely worst case.
nickel {nickel dihydroxide}
Most likely worst case.
lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}
Worse case
selenium {selenium}
Most likely worst case.
vanadium {divanadium pentaoxide; vanadium pentoxide}
Most likely worst case.
zinc {zinc sulphate}
Most likely worst case.
chromium in chromium(III) compounds {chromium(III) oxide}
Most likely worst case.
Appendix C: Version
HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2024.96.6000.11109 (05 Apr 2024) HazWasteOnline Database: 2024.95.5999.11108 (04 Apr 2024)
This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/76 of 6 June 2017
13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

GB MCL List v2.0 - version 2.0 of 20th October 2023 GB MCL List v3.0 - version 3.0 of 11th January 2024 GB MCL List v4.0 - version 4.0 of 2nd March 2024

2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: adam.young@groundwater.co.uk

Analytical Report Number : 24-012288

Project / Site name:	34 Nassau Road SW13 9QE	Samples received on:	14/03/2024
Your job number:	GWPR5909	Samples instructed on/ Analysis started on:	04/04/2024
Your order number:	GWPR5909	Analysis completed by:	10/04/2024
Report Issue Number:	1	Report issued on:	10/04/2024
Samples Analysed:	10:1 WAC sample		

Aurestia Signed:

Joanna Wawrzeczko Senior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

waste Acceptance Criteria Analytical H	Results				-		
Report No:		24-012288	B				
					Client:	GANDW	
Location	_	34 Nassau Road S	W13 90F				
Location		54 Hassad Kodd 51115 5QL			Landfill	Wasto Accontanc	o Critoria
Lab Reference (Sample Number)		161662			Lanum	l imits	e criteria
Sampling Date	12/03/2024					Stable Non-	
Samping Date		WS02	•			reactive	
Sample ID		11302	Inert Waste Landfill	HAZARDOUS	Hazardous		
Depth (m)		0.20	Landfill	waste in non- hazardous Landfill	Waste Landfill		
Solid Waste Analysis							
TOC (%)**	1.3				3%	5%	6%
Loss on Ignition (%) **	3.4						10%
BTEX (µg/kg) **	< 5.0				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg) EH 1D CU AL	< 10				500		
Total PAH (WAC-17) (mg/kg)	6.35				100		
pH (units)**	7.5					>6	
Acid Neutralisation Capacity (mmol / kg)	0.76					To be evaluated	To be evaluated
Eluato Analycic					Limit valu	es for compliance le	aching test
	10:1			10:1	Einic valu		cuching test
(BS EN 12457 - 2 preparation utilising end over end leaching		łł			using BS EN	l 12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.00742			0.0742	0.5	2	25
Barium *	0.00316			0.0316	20	100	300
Cadmium *	< 0.000100			< 0.00100	0.04	1	5
Chromium *	< 0.00040			< 0.0040	0.5	10	70
Copper *	0.025			0.25	2	50	100
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2
Molvbdenum *	< 0.000400			< 0.00400	0.5	10	30
Nickel *	0.0014			0.014	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0051			0.051	4	50	200
Chloride *	0.67			6.7	800	15000	25000
Fluoride*	0.30			3.0	10	150	500
Sulphate *	1.6			16	1000	20000	50000
TDS*	27			270	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	15.8			158	500	800	1000
Losch Tost Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.7						
Dry Matter (%)	0.7						
Mointure (%)	15						
Molstare (%)	15						
		<u>├</u>				1	1
		<u>↓</u>			l	I	l
					* 1946	1.0	
Results are expressed on a dry weight basis, after correction for mois	sture content where a	oplicable.			*= UKAS accredite	ed (liquid eluate ana	iysis only)
Stated limits are for guidance only and i2 cannot be held responsible	for any discrepancies	with current legislation			** = MCERTS accr	edited	
Landfill MAC analysis (an alfinally landships test you dts) south ant		a		+ \A/+ /	أحجاج الألحجي والمحرجا مح	Desulations 2011	(

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous

or non-hazardous.

Analytical Report Number : 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
161662	WS02	None Supplied	0.2	Brown clay and loam with gravel and vegetation

Analytical Report Number : 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	ethod imber Wet / Dry Analysis Act Action 005B W I 009B D I 019B D I 031B W I 033B W I 033B W I 033B W I 046B W I 046B D I 058/L088 D/W I 080 W I	Accreditation Status
pH at 20°C in soil	Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Sample Preparation		In-house method	L043B	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	w	NONE
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	w	MCERTS
Total petroleum hydrocarbons by GC-FID/GC MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	w	ISO 17025

Analytical Report Number : 24-012288

Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025
WAC Leachate 10:1		In-house method	L043B	W	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Analytical Report Number : 24-012288

Project / Site name: 34 Nassau Road SW13 9QE

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS02	N/A	S	161662	с	BTEX and/or Volatile organic compounds in soil	L073B	с
WS02	N/A	S	161662	с	PCB's By GC-MS in soil	L027B	с
WS02	N/A	S	161662	с	Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	L064B	с
WS02	N/A	S	161662	С	Total petroleum hydrocarbons by GC-FID/GC-MS HS in soil	L076B/L088	С

Percussion Drilling Log

	ground	l&water									3			
Project N	lame:	34 Nassau	Road		Client: ⁻	ſom Richar	rds			Date:				
Location	: SW1	3 9QE			Contrac	tor:								
Project N	No. : G	WPR5909			Crew N	ame:				Drilling Eq	uipment:			
Boreh	ole Nu WS01	umber	Hole W	e Type /LS		Level		Logged	Ву	Scale Page Nu 1:50 Sheet 1		e Numb	er 1	
Well W	/ater	Sampl	e and li	n Situ Testir	ng	Depth	Level	Legend	Stratum Description					
St	rikes	Depth (m)	Туре	Result	ts	(m)	(m)	g	MADE		ark brown sa	andy gravelly	/	
Well St		Depth (m) 0.20 0.50 0.80 1.00 1.20 2.00 2.00 2.50 3.00 3.00	Type D D SPT D SPT D SPT	Result N=28 (11,7/7 27 (25,24/ N=47 (18,12/11,12	rg ts 7,7,7,7) 27,) 2,12,12)	1.20 1.80 3.00		Legend	MADE CLAY S to sub- chalk (S Orange (KEMP Light bl coarse. rounde MEMBI	Strat GROUND: D Sand is fine. rounded of fli 5%). e brown very TON PARK O rown very sau Gravel is fin d of flint. (KE ER). End of	um Descrip ark brown sa gravel is fine nt (80%), bri sandy CLAY. GRAVEL MEI ndy GRAVEL e to coarse, MPTON PAF Borehole at 3	Andy gravelly to coarse, a ck (15%) and Sand is fine MBER). Sand is fir angular to s RK GRAVEL .000m	/ ingular d	
Hol Depth Bas	le Diame se D	ter De	Casing pth Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling ase Dura	ation	Tool	Depth Top	Inclination Depth Base	and Orientation	n Orient	9 9 10
Remark Roots not	(S ted to 1	.20 ted at 2 90m	bal										AGS	

Percussion Drilling Log

	groun	d&water									0			
Project	Name	: 34 Nassau	Road		Client:	Tom Richaı	ds			Date:				
Locatio	n: SW	13 9QE			Contrac	ctor:								
Project	No. : 0	SWPR5909			Crew N	lame:				Drilling Eq	uipment:			
Bore	hole N WS02	umber	Hole W	e Type /LS		Level		Logged	Ву	S	cale :50	Pag Sh	ge Numboneet 1 of 1	er 1
Well	Water	Samp	le and l	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrir	otion		
5	Strikes	Depth (m)	Туре	Resul	ts	(m)	(m)		MADE					
		0.20	D						to sub-r chalk (5	LAY. Sand is fine. gravel is fine to coarse, angular > sub-rounded of flint (80%), brick (15%) and halk (5%).				
*		0.80 1.00												
		1.20	SPT	N=21 (6,4/4	,5,6,6)	1.20			Orange	brown very	sandy CLAY	. Sand is fir	ie.	
		1.50	D						(KEMP	TON PARK (GRAVEL ME	MBER).		
		2.00	D	27 (25 22)										2 -
		2.00	J SF I	21 (23,22)	21,,,)	2.20			Light br	own very sa	ndy GRAVE	L. Sand is fi	ne to	
		2.50	D						roundee	d of flint. (KE ER).	MPTON PAI	RK GRAVE	L	
		3.00 3.00	D SPT	N=52 (20,11/12,14	2 4,13,13)									3 -
		3.50	D										-	
		4.00	D			4.00				End of	Borehole at 4	.000m		4 -
														-
														-
														5 -
														-
														-
														-
														6 -
														-
														-
														7 -
														-
														-
														8 -
														-
														9 -
														-
														-
														10 -
Н	lole Diam	eter	Casing	Diameter		 	Chiselling				Inclination	and Orientati	on	
Depth Ba	ase [Diameter De	pth Base	Diameter	Depth T	op Depth Ba	ase Dura	ation	Tool	Depth Top	Depth Base	Inclination	Orient	ation
Remar	rks	I			I			1		1	1		·	
Roots no	oted to	1.50. Ground	vater note	ed at 2.80m bę	gl.									
No SPT	at 4.00	m bgl due to s	ands filli	ng up casing.									AUN	

Contamination Letter Report

34 Nassau Road SW13 9QE

On behalf of Tom Richards

Report F	Reference: GWPR5986/CL	R/June 2024	Status: Final
Issue	Prepared By	Checked By	Verified By
V1 02	De	f.C.	F-T. Williams
V1.02	Adam Young BSc (Hons) Geology Engineer	Miltiadis Mellios MSc(Eng) CGeol FGS MIEnvSc GMICE Principal Engineer	Francis Williams MGeol (Hons) FGS CEnv CGeol Director

Site Investigations | Environmental Consultants | Geotechnical Engineers

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office Kineton House, 31 Hose Fait Banbury, Oxfordative OK16 OAE: Registered in England No 07052001

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

	Contamination Letter Report and Remediation Strategy
REPORT REFERENCE	 GWPR5986/CLR/June 2024 V1.02. The conditions and limitations of this contamination report can be viewed within Appendix A, with the aims of the investigation provided within Appendix B. A technical glossary has also been provided within Appendix C. A previous ground investigation report has been undertaken by Ground and Water Limited, this report must be read in conjunction with the previous – GWPR5909/Updated Basement Impact Assessment. This report supersedes the previous version. A full scale Environmental Desk Study and Contamination Assessment including a gas, vapours, radon
	& groundwater risk assessment were not part of the remit of this report; however included within the fee proposal was an allowance to undertake chemical laboratory testing on soil samples recovered from the site to enable recommendations for the safe redevelopment of the site and the protection of site workers, end-users and the public from any potential contamination identified.
SITE DETAILS	The site comprised an 800m ² rectangular shaped plot of land, with a north-east to south-west orientation, located along the south side of Nassau Road. The site was located within Barns, a mainly residential area within The London Borough of Richmond Upon Thames. A Site Location Plan is provided within Figure 1.
PROPOSED DEVELOPMENT	At the time of reporting, June 2024, the proposed development was understood to comprise the construction of a basement under the existing house and a small extension to the rear, to a maximum depth of 3.80m bgl, along with a small lightwell to the front. A pool, pool house and patio are also proposed in the rear garden. The levels on-site were considered to remain the same.
ANTICIPATED GEOLOGY AND HYDROGEOLOGY	The BGS Solid and Drift Geological Map for the area revealed that the site was underlain by the superficial Kempton Park Gravel Member, underlain by the bedrock of the London Clay Formation. Alluvium was noted to be ~148m north-west of the site. An area of artificial ground was noted ~190m south-east of the site. No other superficial deposits, outcrops of other bedrock deposits or areas of Made/Worked Ground were noted within a 250m radius of the site. The DEFRA online maps indicated that the site was located on Secondary A Aquifer associated with the superficial Kempton Park Gravel Member, underlain by Unproductive Strata associated with the London Clay Formation. From analysis of hydrogeological and topographical maps the groundwater table was anticipated to be encountered at shallow to moderate depth within the Kempton Park Gravel Member, capping the impermeable London Clay Formation. Perched water was also likely to be found within the Made Ground, especially after periods of intense or prolonged rainfall. It was considered that the groundwater was flowing westwards, towards the River Thames and in alignment with local topography.
	The nearest surface water feature was observed to be the river Thames, approximately 200m west of

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

	Contamination	Letter Report and Remediat	ion Strategy											
	the site.													
SITE WORKS	Site works were undert Sample Boreholes to 3.0 levels of Lead, Benzo(a) the Made Ground samp Further site works were was undertaken on 24/ 0.80m – 1.20m bgl. A st testing, in order to conf	Site works were undertaken on 08/03/2024 and comprised the drilling of the 2no. Modular Window Sample Boreholes to 3.00m and 6.00m bgl with Standard Penetration Tests at 1.00m intervals. Elevated levels of Lead, Benzo(a)pyrene, Benzo(b)fluoranthene and Dibenz(a,h)anthracene were found within the Made Ground sample WS01/1.20m bgl. Further site works were undertaken in order to establish the spread of contamination across site. This was undertaken on 24/04/2024 and comprised the excavation of 5No. Trial pits to depths between 0.80m – 1.20m bgl. A sample from each of these (at various depths) was taken for contamination testing, in order to confirm the type of remediation required.												
GROUND CONDITIONS ENCOUNTERED	A summary of the ground conditions encountered can be viewed below. The trial hole logs can be seen within Appendix D.													
		Summary of Strata Encount	tered (TP1 – TP5)											
		Summary of Strata Encountered (TP1 – TP5) Strata Top Depth Base Depth Thickness (m bgl) (m bgl) (m)												
	MADE GROUND: Dark fine. gravel is fine to co (80%), brick (15%) and	brown sandy gravelly CLAY. San barse, angular to subrounded of chalk (5%).	nd is Fflint GL	>1.20	>1.20									
GROUNDWATER	No groundwater strikes	were noted in any of the trial pi	its.											
ROOTS	Roots were noted to de It should be noted that i close to trees and/or tre	pth in all of the trail pits. roots may be found to greater de ees that have been removed bot	epths at other locati th within the site an	ons on the site d its close envi	, particularly rons.									
CHEMICAL /	A set of samples (5No	. Made Ground) were submitte	ed to the accredite	ed chemical la	boratory for									
CONTAMINATION	The synopsis for the trial hole locations and their final depth can be seen tabulated below. A trial hole location plan is provided within Figure 1. The table also indicates whether any locations targeted a source of contamination as well as the proposed end-use. The proposed development can be seen in Figure 2.													
		Trial Hole Location S	Synopsis											
	Trial Hole/Final Depth	Sampling Strategy	Propos	ed End-Use										
	WS1/3.00m bgl	Random	Pool/ha	ardstanding										
	WS2/4.00m bgl Random Terrace/hardstanding													
	TP1/1.20m bgl	Random	Terrace/	hardstanding										
	TP2/1.20m bgl Random Soft Landscaping													
	TP3/1.20m bgl	Random	Soft La	inascaping										
	TPE /1.20m bgl	Kandom	Pool/ha	arastanding										
	1P5/1.20m bgi	Random	Soft La	indscaping										

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

Contamination Letter Report and Remediation Strategy

The investigation area totals approximately 221m2 soft landscape and with five sampling locations, given an unknown hotspot shape, the sampling density means that a hotspot with an area of approximately 70.56m2 and a radius of approximately 8.4m would be encountered (CLR 4).

Sampling depths were chosen to reflect the receptor of concern (e.g. human health, controlled waters and vegetation). The remaining samples were scheduled under a random strategy. The receptors relevant to the sampling depths are tabulated below.

	Sun	nmary of Receptors per Sample Depth
	Depth	Receptors
	Shallow Samples (< 0.75m bgl)	 End Users (Residents/Future site visitors) Construction workers during development Site operatives during maintenance works Neighbours and public Vegetation within soft landscaped areas (shallow rooted) Secondary A Aquifer (Kempton Park Gravel Member) Buried Concrete Receiving landfill
	Moderate Samples (0.75 – 1.50m bgl)	 Construction workers during development Site operatives during maintenance works Vegetation within soft landscaped areas (deep rooted) Secondary A Aquifer (Kempton Park Gravel Member) Buried Concrete Receiving landfill Underground services (water pipes)
	Based on the proposed development, the the Generic Assessment Criteria (GAC) for as this was considered the most appro- viewed in Appendix F. The comparison between the laboratory unacceptable risk to future receptors of Benzo(a)pyrene; Benzo(b)fluoranthene; WS1. The remaining determinands were considered to represent an unacceptable receptors remains, mitigation is required	the results of the chemical laboratory testing were compared to or a 'Residential with homegrown produce' land-use scenario, priate land-use scenario. The Soil Assessment Criteria can be y analysis and the assessment criteria indicates that there is an caused by exceedances of the following determinands: Lead; Dibenzo(a,h)anthracene; and Chrysene – within TP1, TP3 and e identified at below the adopted screening value and are not e risk to future receptors. Where an unacceptable risk to future d – this will be outlined later in the report.
ASBESTOS	Asbestos was detected in 2No. samples was undertaken on the sample and indic	s (TP1/0.20 and TP3/0.80), as chrysotile fibres. Quantification cated that asbestos was present at < 0.001%.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

	Contami	ination Letter Rep	port and Remedia	tion Strategy	
	A quantification	ı risk assessment w	as carried out for t	he concentration record	led, in accordance with
	the guidance wi	thin CIRIA 733. The	background, consid	erations taken, and the o	alculations can be seen
	in Appendix G. A	A summary of the re	esults is shown in th	e table below.	
			Asbestos Risk Ass	sessment	
	Sample	Mesothelioma Accumulated Risk (fibres/ml.vear)	Mesothelioma Risk	Lung Cancer Accumulated Risk (fibres/ml.year)	Lung Cancer Risk
	TP1/0.20m	0.00091	Insignificant	0.00065	Insignificant
	TP3/0.80m	0.00091	Insignificant	0.00065	Insignificant
	Based on CIRIA TP3/0.80m bgl considered neco An Asbestos Ma	Table 14.1 for Me were considered t essary with respect	esothelioma and 14 to be insignificant. to asbestos in Mac y should be put in p	4.3 for Lung Cancer, the Therefore, no remedia de Ground. lace so that any potentia	e risk for TP1/0.20 and ation procedures were ally asbestos containing
	materials are ide	entified and remove	ed from site in a sur	table manner to prevent	cross-contamination.
REMEDIATION STRATEGY	Based on the refollowing has be 6No.	esults of the intrusiven identified that r	ve works, chemical equires further acti hin TP1, TP3 au	analyses and risk assess on: nd WS1 were identit	ments undertaken, the fied (Asbestos, Lead,
	Benzo been f	(a)pyrene, Benzo(b ound at an unaccep	fluoranthene, Dibe	enzo(a,h)anthracene and n that requires remediat	Chrysene), these have ion.
	A hotspot removies terrace/hardstaproposed pool/l	val around TP3 is rea nding. In addition f hardstanding.	quired, remediation to this, remediation	is not required around T n is also not required a	P1 due to the proposed round WS1 due to the
	The identified c centred around subsequent bac	ontamination was TP3. In order to m kfill of certified clea	found to be presen itigate against the u n soils should be ur	t in the form of a hotsp unacceptable level, a rec ndertaken.	oot with a radius of 5m duce dig of 800mm and
	It should be no needed for thos	ted that if the exc e areas, with 150m	avation falls into ro m of clean topsoil p	oot protection zones, the laced in these no-dig are	nen adjustment will be eas, if applicable.
	Based on the a methodology sh	vailable informatio ould be undertaker	n within this repor n within any soft lar	t it was proposed that ndscape areas within an	the following remedial 5m radius around TP3:
	 Reduct Validation Placent Validation Validation Full liaison must strategy and/or 	e dig of 800mm; tion of hotspot extenent of 800mm cleation of the clean of the clean of the clean of the clean of the ser.	ent; in capping of soil; capping system by statutory authority, im the site. All work	a suitably trained Grou prior to the implementa s must be undertaken to	nd and Water Limited tion of this remediation o meet their approval.

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

Contamination Letter Report and Remediation Strategy

800mm Reduce Dig

Made Ground should be removed to a minimum depth of 0.80m bgl in an 5m radius centred on TP3 to allow for the placement of clean soils, this must be undertaken on any soft landscape areas on-site within the radius. Samples must be taken from the base and walls of the excavation and tested to enable validation that the unacceptable concentrations have been removed. Should these samples indicate unacceptable concentrations, further removal is required.

Materials should be removed and stockpiled on an impermeable liner with raised edges and covered at all times. This contamination stockpile destined for removal from site should be stored away from imported soils to avoid cross-contamination. Materials to be removed off-site must be classified by carrying out Waste Acceptance Produce (WAP) testing. A registered contractor must undertake the removal of waste. Consignment notes for the removal of waste must be obtained and kept for inclusion within the final validation Report.

800mm Clean Capping of Soil

The resulting void should be backfilled with clean certified soils. It is recommended that at least the top 150mm of the clean capping should comprise suitable topsoil for use as a growing medium. It is a requirement that this should be no less than 100mm thick.

All subsoil and topsoil must be fit for purpose to ensure that the receptors cannot come into contact with determinands that could be detrimental to their health.

Validation

The remediation works outlined above will need to be inspected and independently validated by a Ground and Water Limited Engineer. All excavations will need to be inspected, documented and photographed.

The remediation works should be validated through a site visit, sampled and photographed by a suitably trained Ground and Water Limited Engineer following the 800mm reduce dig, and after placement of the clean soils.

It is required that clean soils will be brought onto site as part of the validation works. Any soil which is to be imported onto the site must undergo chemical analysis to prove that it is suitable for the purpose for which it is intended.

The soil must be fit for purpose and must either be supplied with traceable chemical laboratory test certificates or be tested, prior to placing (ideally) and after placing, to ensure that the future receptors (human health and vegetation) cannot come into contact with compounds that could be detrimental to their health. The compounds that are to be tested for are those given in the Generic Assessment Criteria, which can be viewed in Appendix F of this report.

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

	Contamination Letter Report and Remediation Strategy
WASTE	The excavation of foundations and soils is likely to produce waste which will require classification and then recycling or removal from site
CLASSIFICATION	
	Under the Landfill (England and Wales) Regulations 2002 (as amended), prior to disposal all waste must
	Inert;
	Non-hazardous, or; Hazardous
	The Environment Agency's Hazardous Waste Technical Guidance (WM3) document outlines the methodology for classifying wastes. Once classified the waste can be removed to the appropriately licensed facilities, with some waste requiring pre-treatments prior to disposal.
	Following the investigation, 5No. samples of Made Ground were submitted to the analytical laboratory to undergo a suite of testing for contamination testing, as discussed in the previous sections. Sampling depths were chosen to reflect the receptor of concern, human health, and typically comprised a surface or near surface sample and periodically to 1.00m bgl. Any horizon where olfactory or visual evidence of contamination was present was also sampled.
	Based on a risk phase analysis of the chemical laboratory test results, in accordance with EC Hazardous Waste Directive and undertaken by Ground and Water Limited, all soil samples of Made Ground encountered on-site were NON-HAZARDOUS. The results of the assessment are given within Appendix H.
	It is important to note that whilst we consider our in-house assessment tool to be an accurate interpretation of the requirements of WM3, therefore producing an initial classification in accordance with the guidance, this method classifies soils as either non-hazardous or hazardous and landfill operators have their own assessment tools and can often come to different conclusions. As a result, some landfill operators could refuse to take apparently suitable waste. It is recommended that the receiving landfill views the results of this assessment and the chemical laboratory results to determine their own classification.
	In addition to the samples described above, 2No. samples were scheduled to undergo Waste Acceptance Criteria (WAC) testing with single batch leachate. Both samples were labelled as inert waste.
	Where contaminated soils are to be removed, they should be placed on an impermeable membrane (visqueen or similar) to ensure that no cross-contamination of soils occurs.
DUTY OF CARE	Groundworkers must maintain a good standard of personal hygiene including the wearing of overalls, boots, gloves and eye protectors and the use of dust masks during periods of dry weather.

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

Contamination Letter Report and Remediation Strategy

To prevent exposure to airborne dust by both the general public and construction personnel the site should be kept damp during dry weather and at other times when dust is generated as a result of construction activities.

The site should be securely fenced at all times to prevent unauthorised access. Washing facilities should be provided and eating restricted to mess huts.

FIGURES	9
APPENDIX A: Conditions and Limitations	10
APPENDIX B: Scope of the Investigation	13
APPENDIX C: Technical Glossary	15
APPENDIX D: Trial Hole Logs	16
APPENDIX E: Chemical Laboratory Testing	17
APPENDIX F: Soil Assessment Criteria	18
APPENDIX G: Asbestos Risk Assessment	19
APPENDIX H: Hazard Waste Assessment	20

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX A: Conditions and Limitations

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The report has been prepared on the basis of information, data and materials which were available at the time of writing. Accordingly any conclusions, opinions or judgements made in the report should not be regarded as definitive or relied upon to the exclusion of other information, opinions and judgements.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the client in accordance with their brief; as such these do not necessarily address all aspects of ground behaviour at the site. No liability is accepted for any reliance placed on it by others unless specifically agreed in writing.

Any decisions made by you, or by any organisation, agency or person who has read, received or been provided with information contained in the report ("you" or "the Recipient") are decisions of the Recipient and we will not make, or be deemed to make, any decisions on behalf of any Recipient. We will not be liable for the consequences of any such decisions.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

Any Recipient must take into account any other factors apart from the Report of which they and their experts and advisers are or should be aware. The information, data, conclusions, opinions and judgements set out in the report may relate to certain contexts and may not be suitable in other contexts. It is your responsibility to ensure that you do not use the information we provide in the wrong context.

This report is based on readily available geological records, the recorded physical investigation, the strata observed in the works, together with the results of completed site and laboratory tests. Whilst skill and care has been taken to interpret these conditions likely between or below investigation points, the possibility of other characteristics not revealed cannot be discounted, for which no liability can be accepted. The impact of our assessment on other aspects of the development required evaluation by other involved parties.

The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous in ground activities. The ground conditions have been sampled or monitored in recorded locations and tests for some of the more common chemicals generally expected. Other concentrations of types of chemicals may exist. It was not part of the scope of this report to comment on environment/contaminated land considerations.

The conclusions and recommendations relate to 34 Nassau Road SW13 9QE.

Trial hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sampler borehole implies the specific technique used to produce a trial hole.

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

The depth to roots and/or of desiccation may vary from that found during the investigation. The client is responsible for establishing the depth to roots and/or of desiccation on a plot-by-plot basis prior to the construction of foundations. Where trees are mentioned in the text this means existing trees, recently removed trees (approximately 15 years to full recovery on cohesive soils) and those planned as part of the site landscaping.

Ownership of copyright of all printed material including reports, laboratory test results, trial pit and borehole log sheets, including drillers log sheets, remain with Ground and Water Limited. Licence is for the sole use of the client and may not be assigned, transferred or given to a third party.

Only our client may rely on this report and should this report or any information contained in it be provided to any third party we accept no responsibility to the third party for the contents of this report save to the extent expressly outlined by us in writing in a reliance letter addressed from us to the third party.

Recipients are not permitted to publish this report outside of their organisation without our express written consent.

The aim of the investigation was understood to be to supply the client and their designers with information regarding the ground conditions underlying the site to assist them in preparing an appropriate scheme for development.

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX B: Scope of the Investigation

Registered Officer Hitekon House 31 Horse Fair, Banbury, Oxfoldshile OKI6 64E. Registered in England No 07012001

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

The investigation was to be undertaken to provide parameters for the design of foundations by means of in-situ and laboratory geotechnical testing undertaken on soil samples recovered from trial holes.

A full scale Environmental Desk Study and Contamination Assessment including a gas, vapours, radon & groundwater risk assessment were not part of the remit of this report; however Included within the fee proposal was an allowance to undertake chemical laboratory testing on soil samples recovered from the site to enable recommendations for the safe redevelopment of the site and the protection of site workers, end-users and the public from any potential contamination identified.

The techniques adopted for the investigation were chosen considering the requirements of the client, anticipated ground conditions, and bearing in mind the nature of the site, limitations to site access and other logistical limitations.

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX C: Technical Glossary

Registered Office Hiteron House 31 Horse Fair, Banbury, Oxfordshile OX16 GAE. Registered in England No 07032001

TECHNICAL GLOSSARY

The list of possible definitions within the report may be seen below. Please note that some definitions may not be relevant to this report.

HYDROGEOLOGY:

A **Principal Aquifer** is a layer of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as major aquifer.

Secondary (A) Aquifers consist of deposits with permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as Minor Aquifers.

Secondary (B) Aquifers consist of deposits with predominantly lower permeability layers with may stoke and yield limited amounts of groundwater due to localised features such as fissures, think permeable horizons and weathering. These are generally the water-bearing parts of the former non-aquifers.

Secondary Aquifers (Undifferentiated) are assigned in cases where it has not been possible to attribute either category A or B to a rock type. In most cases, this means that the layer in question has previously been designated as both a minor aquifer and non-aquifer in different locations due to the variable characteristics of the rock type.

Unproductive Strata are rock layers with low permeability that have negligible significance for water supply or river base flow. These were formerly classified as non-aquifers.

FLOOD ZONES:

Environment Agency Flood Zone 2, defined as; land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding.

Environment Agency Flood Zone 3 shows the extent of a river flood with a 1 in 100 (1%0 or greater chance of occurring in any year or a sea flood with a 1 in 200 (0.5%) or greater chance of occurring in any year.

Environment Agency Flood Zone 3 area that benefits from flood defences, defined as; land and property in this flood zone would have a high probability of flooding without the local flood defences. These protect the area against a river flood with a 1% chance of happening each year, or a flood from the sea with a 0.5% chance of happening each year.

GROUNDWATER SOURCE PROTECTION ZONES (SPZS):

Inner Zone (SPZ1): This zone is 50 day travel time of pollutant to source with a 50 metres default minimum radius.

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk **Outer Zone (SPZ2):** This zone is 400 day travel time of pollutant to source. This has a 250 or 500 metres minimum radius around the source depending on the amount of water taken.

Total Catchment (SPZ3): This is the area around a supply source within which all the groundwater ends up at the abstraction point. This is the point from where the water is taken. This could extend some distance from the source point.

Zone of Special Interest (SPZ4): This zone is where local conditions require additional protection.

IN-SITU STRENGTH GEOTECHNICAL TESTING:

Windowless Sample and/or Cable Percussion and/or Rotary Boreholes provide samples of the ground for assessment but they do not give any engineering data. The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. The test uses a thick-walled sample tube, with an outside diameter of 50mm and an inside diameter of 35mm, and a length of around 650mm. This is driven into the ground at the bottom of a borehole by blows from a slide hammer with a weight of 63.5kg falling through a distance of 760mm. The sample tube is driven 150mm into the ground and then the number of blows needed for the tube to penetrate each 75mm up to a depth of 450mm is recorded. The sum of the number of blows is termed the "standard penetration resistance" or the "N-value".

Dynamic Probing involves the driving of a metal cone into the ground via a series of steel rods. These rods are driven from the surface by a hammer system that lifts and drops a 63.5kg (SHDP) hammer onto the top of the rods through a set height, thus ensuring a consistent energy input. The number of hammer blows that are required to drive the cone down by each 100mm increment are recorded. These blow counts then provide a comparative assessment from which correlations have been published, based on dynamic energy, which permits engineering parameters to be generated. (The Dynamic Probe 'Super Heavy' (SHDP) Tests were conducted in accordance with BS 1377; 1990; Part 9, Clause 3.2).

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX D: Trial Hole Logs

Percussion Drilling Log

	ground	l&water									3					
Project N	lame:	34 Nassau	Road		Client: ⁻	ſom Richar	rds			Date:						
Location	: SW1	3 9QE			Contrac	tor:										
Project N	No. : G	WPR5909			Crew N	ame:				Drilling Eq	uipment:					
Boreh	ole Nu WS01	umber	Hole W	e Type /LS		Level		Logged	Ву	S	e Numb	er 1				
Well W	/ater	Sampl	e and li	n Situ Testir	ng	Depth	Level	Legend	Stratum Description							
St	rikes	Depth (m)	Туре	Result	Results		(m)	g	MADE							
Well St		Depth (m) 0.20 0.50 0.80 1.00 1.20 2.00 2.00 2.50 3.00 3.00	Type D D SPT D SPT D SPT	Result N=28 (11,7/7 27 (25,24/ N=47 (18,12/11,12	rg ts 7,7,7,7) 27,) 2,12,12)	1.20 1.80 3.00		Legend	MADE CLAY S to sub- chalk (S Orange (KEMP Light bl coarse. rounde MEMBI	Strat GROUND: D Sand is fine. rounded of fli 5%). e brown very TON PARK O rown very sau Gravel is fin d of flint. (KE ER). End of	um Descrip ark brown sa gravel is fine nt (80%), bri sandy CLAY. GRAVEL MEI ndy GRAVEL e to coarse, MPTON PAF Borehole at 3	Andy gravelly to coarse, a ck (15%) and Sand is fine MBER). Sand is fir angular to s RK GRAVEL .000m	/ ingular d			
Hole Diameter Casing Diameter Depth Base Diameter Depth Base Diameter					Depth To	op Depth Ba	Chiselling ase Dura	ation	Tool	Depth Top	Inclination Depth Base	and Orientation	n Orient	9 9 10		
Remark Roots not	(S ted to 1	.20 ted at 2 90m	bal										AGS			

Percussion Drilling Log

	groun	d&water								<u> </u>	0					
Projec	ct Name	: 34 Nassau	Road		Client:	lient: Tom Richards Date:										
Locati	on: SW	13 9QE			Contrac	ctor:										
Projec	ct No. : 0	GWPR5909			Crew N	ame:				Drilling Equipment:						
Bor	ehole N WS02	umber	Hole W	: Type /LS		Level		Logged	By Scale Page Num 1:50 Sheet 1 o							
Well	Water	Sampl	e and li	n Situ Testir	ng	Depth	Level	Legend		Strat	Stratum Description					
	Strikes	Depth (m)	Туре	Resul	ts	(m)	(m)	9				andy gravel	h.			
		0.20 0.50 0.80 1.00	D D D D						CLAY. S to sub-r chalk (5	Sand is fine. Founded of fli	gravel is fine int (80%), bri	to coarse, ck (15%) ar	angular nd	- - - - - - - - - - - - - - - - - - -		
1.20 SPT N=21 (N=21 (6,4/4	,5,6,6)	1.20			Orange (KEMP	ange brown very sandy CLAY. Sand is fine. EMPTON PARK GRAVEL MEMBER).						
		2.00 2.00	D SPT	27 (25,22/	27,,,)	2.20			Light br	own very sa Gravel is fin	ndy GRAVEI e to coarse.	Sand is fin	ne to sub-	2 —		
		2.50 3.00	D						rounded MEMBE	d of flint. (KE ER).	MPTON PA	RK GRAVEL	-	3 —		
		3.00 3.50	SPT D	N=52 (20,11/12,14	,13,13)									-		
		4.00	D			4.00				End of	Borehole at 4	.000m		4 —		
														-		
														5 —		
														6 -		
														7 -		
														-		
														8 —		
														9 –		
														- - - - - - - - - - - - - - - - - - -		
Depth	Hole Diam Base [eter Dej	Casing oth Base	Diameter Diameter	Depth Te	Depth Ba	Chiselling ase Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientatic	Orientati	ion		
Rema Roots No SP	arks noted to T at 4.00	1.50. Groundw m bgl due to sa	ater note	ed at 2.80m bo	gl.		1	1					AGS			

			Probe No				
			P	robe	Log	DP02	
ground&wa	ter					Sheet 1 of 2	
Project Name: 34	Nassau Road	Project No. GWPR5909	С	Co-ords:		Hole Type DP	
Location: SW	/13 9QE			Scale			
Client: Ten	n Bisharda				Logged By		
				Jales.		<u> </u>	
Depth (m)	4 6 8 10 12 14 16	Blow:	s/100mm 4 26 28	ר 3 <u>30</u> 32	34 36 38 40 42 44 46	48 Torque (Nm)	
2							
3							
4							
14 14							
11							
10							
9							
9							
0			: i		:] :] :] :] :] :] :] :] :] :]		
Remarks:	marks:		500		Cone Base Diameter		
			DPSH-	A	rinai Depth 7.00	AGS	

																Probe No							
											⊃r	ok	e	Ľ	0.	g						DP02	
gro	und&wat	er														<u> </u>						Sheet 2 of 2	
Project Nar	me: 34 I	Nassau R	load			Proj GWI	ect N PR59	lo. 909			Co-ords:									Hole Type DP			
Location:	SW	13 9QE									Lev	el:											Scale 1·25
Client:	Tom	Richard	S								Date	es:										L	ogged By
Depth (m)						Blows/100m						1M 28 30 32 34 26 29 40 42 44 40											Torque (Nm)
	9	4 6	8 10	12 1	4 16	18	20	22	24 :	26	28	30	32	34	36	5 38	3 4	.0	42	44	46	48	
-	8		-																				
-	9																						
-	8		-																				
-	7																						
-	6																						
-	6																						
-																							
-	4	-																					
	4																						
	4																						
	4																						
- 7	4																_					_	_
-	-																						
-																							
-																							
8																							_
-																							
-																							
-																							
-																							
- 9																							
-																							
-																							
- -																							
- -																							
- -																							
Remarks [.]	emarks:				Fall Height 500							Cor	ne F	3ase	Dia	met	er						
. contanto.	narks:			Fall Height 500 Hammer Wt 64			Final Depth 7.00)									
				Pro	be Ty	/pe	DF	PSH	- A												AUD		

Trial Dit Loa

	groun	d&water				Inal Fil Lug												
Projec	roject Name: 34 Nassau Road Client: Tom Richards Date:																	
Locati	Location: SW13 9QE Contractor:																	
Projec	:t No. : (GWPR5986			Crew	Name:				Equipment:								
Loc	ation N TP1	umber	Locatio	on Type ГР		Level		Logg	ed By	Scale 1:25	age Number heet 1 of 1							
Well	Water	Sample	and In	Situ Testin	g	Depth Level	Level	Legend										
	Suikes	Depth (m)) Type	Result	S	(11)	(11)		MADE G	ROUND: Dark brov	vn sandy gr	avelly C	CLAY.					
		0.20 0.50	D						Sand is f rounded	ine. gravel is fine to of flint (80%), brick	o coarse, an (15%) and	gular to chalk (5	o sub- 5%).					
		0.80	D											-				
		1.00	D											1 _				
		1.20	D			1.20				End of Boroby	alo at 1 200n							
		1.20	D			1.20				End of Boreho	ole at 1.200n	1		2				
	Dim	ensions			-	Trencl	n Support	and Comme	ent			Pumpir	ng Data	5 —				
Pit	Length	Pit Widt	<u>h I</u>	Pit Stability	Sho	ring Used			Remarks		Date	Rate	Rema	rks				
Rema	arks	denth	I		1		1											
No gro	undwate	r encounterec	ł.										AGS					

	groun	d&water					11			uy				
Projec	ct Name	: 34 Nassau	l Road		Clier	Client: Tom Richards Date:								
Locati	ion: SW	13 9QE			Cont	ractor:								
Projec	ct No. : (GWPR5986			Crew	/ Name:				Equipment:				
Loo	cation N TP2	umber	Locati	on Type ГР		Level		Logg	ed By	Scale 1:25		Pa Sł	ge Numboneet 1 of	er 1
Well	Water	Sample	e and In	Situ Testin	g	Depth	Level	Legend		Stratum D	escription			
	Suikes	Depth (m) Type	Result	S	(11)	(11)		MADE G	ROUND: Dark brow	vn sandy gr	avelly C	CLAY.	
		0.20	D						Sand is f rounded	ine. gravel is fine to of flint (85%) and b	o coarse, an rick (15%).	gular to	o sub-	
		0.80	D											
		1.00	D											1
		1.20	D			1.20				End of Boreho	ole at 1 200n	<u>ו</u>		
		1.20	D			1.20				End of Boreho	ole at 1.200n	n		2 4
	Dim	ensions				Trans	Sunnart	and Comm	ant		1	Pumpir	na Data	5 —
Pit	DIM Length	Pit Wid	th I	Pit Stability	Sho	ring Used			Remarks		Date	Rate	Ig Data Rema	rks
Rema Roots No gro	arks noted to oundwate	depth.	d.				1				<u> </u>		AGS	3

	groun	d&water							.og				
Projec	ct Name	: 34 Nassau	I Road		Client: Tom	Richards			Date:				
Locati	on: SW	13 9QE			Contractor:								
Projec	ct No. : (GWPR5986			Crew Name	9:			Equipment:				
Loc	cation N TP3	umber	Locatio T	on Type ⁻P	Le	vel	Logg	led By	Scale 1:25		Page Nur Sheet 1	nber of 1	
Well	Water	Sample	e and In	Situ Testing	g Dept	th Level	Legend		Stratum Description				
Well	Water Strikes	Sample Depth (m) 0.20 0.50 0.80 1.00 1.20	image: symbol i image: sym	Situ Testing Results	g Dept s (m)	th Level (m)	Legend	MADE G Sand is rounded	Stratum Des ROUND: Dark brown fine. gravel is fine to co of flint (85%), brick (10 End of Borehole	at 1.200m	elly CLAY. Ilar to sub- alk (5%).		
Pit	Dim Length	ensions Pit Wid	th F	Pit Stability	Tr Shoring Us	ench Suppor	t and Comm	ent Remarks		Pu Date R	umping Data ate Re		
Roots No gro	noted to	depth. r encountered	d.								AC	ŝS	

	groun	d&water					11			uy				
Projec	ct Name	: 34 Nassau	Road		Client	: Tom Ric	hards			Date:				
Locati	on: SW	13 9QE			Contra	actor:								
Projec	ct No. : (GWPR5986			Crew	Name:				Equipment:				
Loo	cation N TP4	umber	Locatio	on Type ГР		Level		Logg	ed By	Scale 1:25		Pa Sł	ge Numboneet 1 of	er 1
Well	Water	Sample	and In	Situ Testin	g	Depth	Level	Legend		Stratum Description				
Well	Water Strikes	Sample Depth (m) 0.20 0.50 0.80 1.00 1.20	and In Type D	Situ Testin Result	g s	Depth (m)	Level (m)	Legend	MADE G Sand is f rounded	Stratum D	escription vn sandy gr o coarse, an (15%) and	n avelly C gular to chalk (S	CLAY. o sub- 5%).	
Pit Rema Roots	Dim Length	ensions Pit Widt	h 1	Pit Stability	Shori	Trencl ing Used	n Support	and Comme	ent Remarks		Date	Pumpir Rate	ng Data Rema	5 —
No gro	undwate	r encountered	d.										AUN	

	groun	d&water					11			ug				
Projec	ct Name	: 34 Nassau	Road		Client: Tom	rds		Date:						
Locati	on: SW	13 9QE			Contractor	:								
Projec	ct No. : (GWPR5986			Crew Nam	e:				Equipment:				
Loo	cation N TP5	umber	Locatio	on Type TP	Le	evel		Logg	ed By	Scale 1:25		Pa Sh	ge Numb neet 1 of	er 1
Well	Water	Sample	e and In	Situ Testing	g Dep	th L	_evel (m)	Legend		Stratum Description				
Well	Water Strikes	Sample Depth (m 0.20 0.50 0.80 1.00 1.20	e and In) Type D D D D	Situ Testing Results	g Dep s (m	th L	Level (m)	Legend	MADE G Sand is f rounded	Stratum D ROUND: Dark brov ine. gravel is fine to of flint (80%), brick	escription vn sandy gr o coarse, an (15%) and	n avelly C gular to chalk (5	CLAY. o sub- 5%).	
Pit	Dim Length	ensions Pit Wid	th I	Pit Stability	T Shoring Us	rench Si sed	upport a	and Comme	ent Remarks		Date	Pumpir Rate	ng Data Rema	5
No gro	undwate	r encountered	d.										AGS	5

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX E: Chemical Laboratory Testing

Registered Office Hiteron House 31 Horse Fait, Banbury, Oxfoldshile OX16 GAE. Registered in England No 07032001

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: adam.young@groundwater.co.uk

Analytical Report Number : 24-009116

Project / Site name:	34 Nassau Road SW13 9QE	Samples received on:	14/03/2024
Your job number:	GWPR5909	Samples instructed on/ Analysis started on:	14/03/2024
Your order number:	GWPR5909	Analysis completed by:	20/03/2024
Report Issue Number:	1	Report issued on:	21/03/2024
Samples Analysed:	5 soil samples		

Signed: A. Cherwinisba

Agnieszka Czerwińska Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: 34 Nassau Road SW13 9QE Your Order No: GWPR5909

Lab Sample Number				145503	145504	145505	145506	145507
Sample Reference				WS01	WS02	WS01	WS02	WS02
Sample Number				None Supplied				
Depth (m)				1.20	0.20	2.00	1.50	3.00
Date Sampled				12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
	<u> </u>	0.1	NONE					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	17	15	3.4	17	2.4
Total mass of sample received	кg	0.1	NONE	0.8	0.7	0.5	0.6	0.4
Asbestos								
Asbestos in Soil Detected/Not Detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	KSZ	KSZ	-	-	-
General Inorganics								
nH (1099)	pH Units	N/A	MCERTS	8	7.7	8.4	8	8.3
Total Cvanide	mg/kg	1	MCERTS	2	< 1.0	-	-	-
Total Sulphate as SO4	%	0.005	MCERTS	-	-	-	0.014	0.008
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	20	27	17	46	25
Water Soluble SO ₄ 16hr extraction (2:1 Leachate						9.44	22	12.2
Equivalent)	mg/l	1.25	MCERTS	-	-	0.44	23	12.5
Water Soluble SO4 16hr extraction (2:1)	mg/l	1.25	MCERTS	10	13.6	-	-	-
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	-	2.1	1
Total Sulphur	mg/kg	50	MCERTS	-	-	-	80	69
Total Sulphur	%	0.005	MCERTS	-	-	-	0.008	0.007
Ammoniacal Nitrogen as NH4+	mg/kg	0.5	MCERTS	-	-	-	< 0.5	< 0.5
Ammonium as NH4+ (10:1 leachate equivalent)	mg/i	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Organic Matter (automated)		0.1	MCERTS	3.8	2.9	-	-	-
Notar Organic Carbon (TOC) - Automated	70 ma/ka	0.1	NONE	2.2	1.7	-	-	-
Water Soluble Nitrate (2:1) as N Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	-	< 2.0	< 2.0
	5,							
Total Phenois			MOEDTO					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	0.38	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	0.1	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	0.43	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	7.2	0.59	-	-	-
Anthracene	mg/kg	0.05	MCERTS	3	0.16	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	14	1.7	-	-	-
Pyrene	mg/kg	0.05	MCERTS	11	1.7	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	5.7	1	-	-	-
Chrysene	mg/kg	0.05	MCERTS	5.7	1.3	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	6.1	1.6	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	2.3	0.68	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	4.7	0.84	-	-	-
Indeno(1,2,3-cd)pyrene mg/kg 0.05 MCERTS			2.2	0.52	-	-	-	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.63	0.17	-	-	-
Benzo(ghi)perylene	iiig/Kg	0.05	PICERTS	2.6	0.6	-	-	-
Total DAH								

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	66.1	10.9	-	-	-

Project / Site name: 34 Nassau Road SW13 9QE Your Order No: GWPR5909

Lab Sample Number			145503	145504	145505	145506	145507	
Sample Reference				WS01	WS02	WS01	WS02	WS02
Sample Number				None Supplied				
Depth (m)				1.20	0.20	2.00	1.50	3.00
Date Sampled				12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	-	-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	19	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.7	1.2	-	-	-
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-	-	-
Chromium (agua regia extractable)	mg/kg	1	MCERTS	25	24	-	-	-
Copper (agua regia extractable)	mg/kg	1	MCERTS	67	33	-	-	-
Lead (agua regia extractable)	mg/kg	1	MCERTS	220	160	-	-	-
Mercury (agua regia extractable)	mg/kg	0.3	MCERTS	0.9	0.6	-	-	-
Nickel (agua regia extractable)	mg/kg	1	MCERTS	24	21	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Vanadium (agua regia extractable)	mg/kg	1	MCERTS	55	49	-	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	74	-	-	-
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	-	4.4	4.2
Magnesium (water soluble)	mg/kg	5	NONE	-	-	-	8.9	8.5
Petroleum Hydrocarbons		0.00	NONE					
TPHCWG - Aliphatic >C5 - C6 Hs_1D_AL	mg/kg	0.02	NONE	-	< 0.020	-	-	-
TPHCWG - Aliphatic > C6 - C8 HS_1D_AL	mg/kg	0.02	NONE	-	< 0.020	-	-	-
TPHCWG - Aliphatic >C8 - C10 HS_1D_AL	mg/kg	0.05	NONE	-	< 0.050	-	-	-
TPHCWG - Aliphatic > C10 - C12 EH_C0_1D_AL	mg/kg	1	MCERTS	-	< 1.0	-	-	-
TPHCWG - Aliphatic > C12 - C10 EH_CU_1D_AL	mg/kg	2	MCEDIC	-	< 2.0	-	-	-
	mg/kg	0	MCEDIC	-	< 8.0	-	-	-
TPHCWG - Aliphatic > C21 - C35 EH_C0_1D_AL	mg/kg	8	MONE	-	< 8.0	-	-	-
	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aliphatic >C5 - C40 EH CU+HS 1D AL	mg/kg	10	NONE	-	< 10	-	-	-
		10	HOHE	-	< 10	-	-	-
TRUCING Aromatic > ECE ECT up up up	malka	0.01	NONE		. 0.010	1	1	
TPHCWG - Aromatic >EC3 - EC3 $\mu_{c,1D}$ and	mg/kg	0.01	NONE	-	< 0.010	-	-	-
	mg/kg	0.01	NONE	-	< 0.010	-	-	-
TPHCWG - Aromatic >EC10 - EC12 FL CL 1D AD	mg/kg	1	MCEPTS	-	< 0.030	-	-	-
	mg/kg	2	MCERTS	-	< 1.0	-	-	-
TPHCWG - Aromatic >EC16 - EC21 sh cli 10 AR	mg/kg	10	MCERTS	-	< 10	-	-	-
TPHCWG - Aromatic > EC21 - EC35 EH CU 1D AR	mg/kg	10	MCERTS		< 10	_	_	
TPHCWG - Aromatic > EC35 - EC40 EH (U 10 AR	ma/ka	10	NONE	_	< 10	_	_	
	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aromatic > EC5 - EC40 FH CUHHS 1D AR	mg/kg	10	NONE	-	< 10	-	-	
	5, 5			-	< 10	-	-	-
TPH Total >C5 - C40 FH CU+HS 1D TOTAL	ma/ka	10	NONE		< 10			
		-0		-	< 10	-	-	-
VOCs								
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	-	< 5.0	-	-	-
Benzene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
Toluene	µg/kg	5	MCERTS	-	< 5.0	-	-	-
Ethylbenzene	µg/kg	5	MCERTS	-	< 5.0	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

p & m-Xylene

o-Xylene

µg/kg

µg/kg

5

5

MCERTS

MCERTS

-

-

< 5.0

< 5.0

-

Analytical Report Number : 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
145503	WS01	None Supplied	1.2	Brown clay and loam with gravel and vegetation
145504	WS02	None Supplied	0.2	Brown clay and loam with gravel and vegetation
145505	WS01	None Supplied	2	Brown sand with gravel
145506	WS02	None Supplied	1.5	Brown sandy clay
145507	WS02	None Supplied	3	Brown sand with gravel

Analytical Report Number : 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES	In-house method based on TRL 447	L038B	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES	In-house method	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES	In-house method	L038B	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	w	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction	L078B	w	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	w	MCERTS

Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	w	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser	In-house method	L082B	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	w	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil [®] , silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: adam.young@groundwater.co.uk

Analytical Report Number : 24-012288

Project / Site name:	34 Nassau Road SW13 9QE	Samples received on:	14/03/2024
Your job number:	GWPR5909	Samples instructed on/ Analysis started on:	04/04/2024
Your order number:	GWPR5909	Analysis completed by:	10/04/2024
Report Issue Number:	1	Report issued on:	10/04/2024
Samples Analysed:	10:1 WAC sample		

Aurestia Signed:

Joanna Wawrzeczko Senior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

waste Acceptance Criteria Analytical H	Results				-		
Report No:		24-012288	B				
					Client:	GANDW	
Location	_	34 Nassau Road S	W13 90F				
Location		54 Na55au Koau 51	W15 5QL		Landfill	Wasto Accontanc	o Critoria
Lab Reference (Sample Number)		161662			Lanum	l imits	e criteria
Sampling Date		12/03/2024				Stable Non-	
Samping Date		WS02	•			reactive	
Sample ID		11302			Inert Waste	HAZARDOUS	Hazardous
Depth (m)		0.20			Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**	1.3				3%	5%	6%
Loss on Ignition (%) **	3.4						10%
BTEX (µg/kg) **	< 5.0				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg) EH 1D CU AL	< 10				500		
Total PAH (WAC-17) (mg/kg)	6.35				100		
pH (units)**	7.5					>6	
Acid Neutralisation Capacity (mmol / kg)	0.76					To be evaluated	To be evaluated
Eluato Analycic					Limit valu	es for compliance le	aching test
	10:1			10:1	Einic valu		cuching test
(BS EN 12457 - 2 preparation utilising end over end leaching					using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
procedure)	mg/l			mg/kg			
Arsenic *	0.00742			0.0742	0.5	2	25
Barium *	0.00316			0.0316	20	100	300
Cadmium *	< 0.000100			< 0.00100	0.04	1	5
Chromium *	< 0.00040			< 0.0040	0.5	10	70
Copper *	0.025			0.25	2	50	100
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2
Molvbdenum *	< 0.000400			< 0.00400	0.5	10	30
Nickel *	0.0014			0.014	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0051			0.051	4	50	200
Chloride *	0.67			6.7	800	15000	25000
Fluoride*	0.30			3.0	10	150	500
Sulphate *	1.6			16	1000	20000	50000
TDS*	27			270	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	15.8			158	500	800	1000
Losch Tost Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.7						
Dry Matter (%)	0.7						
Mointure (%)	15						
Molstare (%)	15						
		<u>├</u>				1	1
		<u>↓</u>			l	I	l
					* 1946	10. 11.	
Results are expressed on a dry weight basis, after correction for mois	sture content where a	oplicable.			*= UKAS accredite	ed (liquid eluate ana	iysis only)
Stated limits are for guidance only and i2 cannot be held responsible	for any discrepancies	with current legislation			** = MCERTS accr	edited	
Landfill MAC analysis (an alfinally landships test you dts) south ant		a		+ \A/+ /	أحجاج الألحجي والمحرجا مح	Desulations 2011	(

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous

or non-hazardous.

Analytical Report Number : 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
161662	WS02	None Supplied	0.2	Brown clay and loam with gravel and vegetation

Analytical Report Number : 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH at 20°C in soil	Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Sample Preparation		In-house method	L043B	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	w	NONE
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	w	MCERTS
Total petroleum hydrocarbons by GC-FID/GC MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	w	ISO 17025

Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025
WAC Leachate 10:1		In-house method	L043B	W	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Project / Site name: 34 Nassau Road SW13 9QE

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS02	N/A	S	161662	с	BTEX and/or Volatile organic compounds in soil	L073B	С
WS02	N/A	S	161662	с	PCB's By GC-MS in soil	L027B	с
WS02	N/A	S	161662	с	Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	L064B	с
WS02	N/A	S	161662	С	Total petroleum hydrocarbons by GC-FID/GC-MS HS in soil	L076B/L088	С

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: adam.young@groundandwater.co.uk

Analytical Report Number : 24-018427

Project / Site name:		Samples received on:	08/05/2024
Your job number:	GWPR5986	Samples instructed on/ Analysis started on:	08/05/2024
Your order number:	GWPR5986	Analysis completed by:	15/05/2024
Report Issue Number:	1	Report issued on:	15/05/2024
Samples Analysed:	4 soil samples - 1 leachate sample		

gin

Signed:

Adam Fenwick Key Account Executive For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 v	weeks from	reporting
leacha	tes - 2 v	weeks from	reporting
waters	s - 2 v	weeks from	reporting
asbest	:os -6 m	nonths from	n reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Your Order No: GWPR5986

Lab Sample Number				192705	192707	192708
Sample Reference	TP1	TP3	TP5			
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.80	1.20
Date Sampled				06/05/2024	06/05/2024	06/05/2024
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Contant	0/-	0.1	NONE	11 7	< 0.1	< 0.1
Stone Content	90	0.1	NONE	11.7	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	12	13
Total mass of sample received	kg	0.1	NONE	1.4	1.4	1.3

Asbestos in Soil Detected/Not Detected	Type	N/A	ISO 17025	Detected	Detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	KWB	KWB	KWB
Actinolite detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Amosite detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Anthophyllite detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Chrysotile detected	Туре	N/A	ISO 17025	Detected	Detected	-
Crocidolite detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Tremolite detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-

Asbestos Containing Material Types Detected (ACM)		N/A	ISO 17025	Loose Fibres	Loose Fibres	-
-						

General Inorganics

pH Units	N/A	MCERTS	8	8.1	8.4
mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
mg/kg	2.5	MCERTS	21	33	52
mg/l	1.25	MCERTS	10.6	16.7	26.1
%	0.1	MCERTS	3.4	3.2	2.8
%	0.1	MCERTS	1.9	1.8	1.6
	pH Units mg/kg mg/kg mg/l %	pH Units N/A mg/kg 1 mg/kg 2.5 mg/l 1.25 % 0.1 % 0.1	pH Units N/A MCERTS mg/kg 1 MCERTS mg/kg 2.5 MCERTS mg/l 1.25 MCERTS % 0.1 MCERTS % 0.1 MCERTS	pH Units N/A MCERTS 8 mg/kg 1 MCERTS < 1.0	pH Units N/A MCERTS 8 8.1 mg/kg 1 MCERTS < 1.0

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0

Speciated PAHs						
Naphthalene	mg/kg	0.05	MCERTS	0.16	1.2	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.09	2.3	0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.49	0.09
Fluorene	mg/kg	0.05	MCERTS	0.06	2.6	0.07
Phenanthrene	mg/kg	0.05	MCERTS	1.1	27	1
Anthracene	mg/kg	0.05	MCERTS	0.24	10	0.2
Fluoranthene	mg/kg	0.05	MCERTS	2.7	42	2.1
Pyrene	mg/kg	0.05	MCERTS	2.4	34	1.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.4	18	0.98
Chrysene	mg/kg	0.05	MCERTS	1.7	18	1.2
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	2	23	1.5
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.86	8	0.57
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.6	18	1.3
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.91	8.6	0.72
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.21	2.1	0.16
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1	9.1	0.82
Coronene	mg/kg	0.05	NONE	-	-	-

Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	16.3	227	12.5

Heavy Metals / Metalloids

Your Order No: GWPR5986

Lab Sample Number		192705	192707	192708		
Sample Reference				TP1	TP3	TP5
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.80	1.20
Date Sampled				06/05/2024	06/05/2024	06/05/2024
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	19	17
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	< 0.2	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	22	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	68	47	49
Lead (aqua regia extractable)	mg/kg	1	MCERTS	330	240	180
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.6	0.6	0.7
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	20	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	50	46	49
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	120	86
Petroleum Hydrocarbons	_					
TPHCWG - Aliphatic >C5 - C6 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	-	< 0.020
TPHCWG - Aliphatic >C6 - C8 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	-	< 0.020
TPHCWG - Aliphatic >C8 - C10 Hs_1D_AL	mg/kg	0.05	NONE	< 0.050	-	< 0.050
TPHCWG - Aliphatic >C10 - C12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	-	< 1.0
TPHCWG - Aliphatic >C12 - C16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	-	3.1
TPHCWG - Aliphatic >C16 - C21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	< 8.0
TPHCWG - Aliphatic >C21 - C35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	17
TPHCWG - Aliphatic >C35 - C40 EH_CU_1D_AL	mg/kg	10	NONE	< 10	-	< 10
TPHCWG - Aliphatic >C5 - C35 EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	-	20
TPHCWG - Aliphatic >C5 - C40 EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	-	20
TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	-	< 0.010
TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	-	< 0.010
TPHCWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	< 0.050	-	< 0.050
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-	< 1.0
TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-	< 2.0
TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	< 10
TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	26
TPHCWG - Aromatic >EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	< 10	-	11

TPH Total >C5 - C40 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	< 10	-	56

10

10

mg/kg

mg/kg

NONE

NONE

< 10

< 10

_

26

36

VOCs						
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	< 5.0	-	< 5.0
Benzene	µg/kg	5	MCERTS	< 5.0	-	< 5.0
Toluene	µg/kg	5	MCERTS	< 5.0	-	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0	-	< 5.0
p & m-Xylene	µg/kg	5	MCERTS	< 5.0	-	< 5.0
o-Xylene	µg/kg	5	MCERTS	< 5.0	-	< 5.0

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR

TPHCWG - Aromatic >EC5 - EC40 EH_CU+HS_1D_AR

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results						
Report No:		24-01842	7				
					Client:	GANDW	
Location							
					Landfill \	Naste Acceptan	e Criteria
Lab Reference (Sample Number)		192706				Limits	
Sampling Date		06/05/202	4			Stable Non-	
Sample ID Depth (m)	0.50				Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	3.0				3%	5%	6%
Loss on Ignition (%) **	7.0						10%
BTEX (µg/kg) **	< 5.0				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg) EH_1D_CU_AL	56				500		
Total PAH (WAC-17) (mg/kg)	22.2				100		
pH (units)**	7.3					>6	
Acid Neutralisation Capacity (mmol / kg)	0.63					To be evaluated	To be evaluated
Eluate Analysis	10.1			10.1	Limit value	s for compliance le	eaching test
(BS EN 12457 - 2 preparation utilising end over end leaching	ma/l			ma/ka	using BS EN 12457-2 at L/S 10 l/kg (mg/k		
procedure)	iiig/i			iiig/ikg			
Arsenic *	0.00313			0.0313	0.5	2	25
Barium *	0.0183			0.183	20	100	300
Cadmium *	< 0.000100			< 0.00100	0.04	1	5
Chromium *	0.00054			0.0054	0.5	10	70
Copper *	0.016			0.16	2	50	100
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2
Molybdenum *	< 0.000400			< 0.00400	0.5	10	30
Nickel *	0.0015			0.015	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	/
	0.012			0.12	4	50	200
	0.54			5.4	10	15000	23000
Sulphato *	1.1			11	1000	20000	5000
TDS*	46			460	4000	60000	10000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	7.31			73.1	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.5						
Dry Matter (%)	86						
Moisture (%)	14						
	1						
Results are expressed on a dry weight basis, after correction for mo	pisture content whe	re applicable.			*= UKAS accredit	ted (liquid eluate ar	nalysis only)
Stated limits are for guidance only and i2 cannot be held responsible	e for any discrepan	cies with current legisla	tion		** = MCERTS acc	redited	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name:

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
192705	TP1	None Supplied	0.2	Brown sand with vegetation and stones
192706	TP2	None Supplied	0.5	Brown loam and sand with gravel and vegetation
192707	TP3	None Supplied	0.8	Brown loam and sand with gravel and vegetation
192708	TP5	None Supplied	1.2	Brown sand with gravel and vegetation

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
pH at 20°C in soil	Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	w	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	w	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	w	ISO 17025
Sample Preparation		In-house method	L043B	w	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	w	NONE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Total petroleum hydrocarbons by GC-FID/GC MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	W	MCERTS
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS
WAC Leachate 10:1		In-house method	L043B	W	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status			
GC	Gas Chromatography	-						
EH	Extractable Hydrocarbons (i.e. everything extra	acted by the solvent(s))						
CU	Clean-up - e.g. by Florisil [®] , silica gel							
1D	GC - Single coil/column gas chromatography							
2D	GC-GC - Double coil/column gas chromatograp	GC-GC - Double coil/column gas chromatography						
Total	Aliphatics & Aromatics							
AL	Aliphatics							
AR	Aromatics							
#1	EH_2D_Total but with humics mathematically	subtracted						
#2	EH 2D Total but with fatty acids mathematically subtracted							
_	Operator - understore to separate acronyms (e	exception for +)						
+	Operator to indicate cumulative e.g. EH+HS_To	otal or EH_CU+HS_Total						

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: adam.young@groundandwater.co.uk

Analytical Report Number : 24-018427

Replaces Analytical Report Number: 24-018427, issue no. 1 Additional analysis undertaken. Asbestos quantification added as per clients request

Project / Site name:		Samples received on:	08/05/2024
Your job number:	GWPR5986	Samples instructed on/ Analysis started on:	08/05/2024
Your order number:	GWPR5986	Analysis completed by:	27/05/2024
Report Issue Number:	2	Report issued on:	03/06/2024
Samples Analysed:	4 soil samples - 1 leachate sample		

Benagnak Signed:

Joanna Szwagrzak Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
eachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report are representative of the samples submitted for analysis.

Your Order No: GWPR5986

Lab Sample Number		192705	192706	192707	192708		
Sample Reference		TP1	TP2	TP3	TP5		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		0.20	0.50	0.80	1.20		
Date Sampled		06/05/2024	06/05/2024	06/05/2024	06/05/2024		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	11.7	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	11.7	14	12	13
Total mass of sample received	ka	0.1	NONE	14	14	12	1.2
Total mass of sample received	5			1.4	1.5	1.4	1.5
Achastas							
Asbestos	Tuno	N/A	ICO 1702E	Datastad		Balantad	No. data da
Asbestos In Soil Detected/Not Detected	N/A	N/A	N/A	Detected	-	Detected	Not-detected
Asbestos Analyst ID	Turno	N/A	ISO 1702E	EWS	-	EWS	KWB
Actinolite detected	Туре	N/A	130 17025	Not-detected	-	Not-detected	-
Amosite detected	Туре	N/A	150 17025	Not-detected	-	Not-detected	-
Anthophyllite detected	Туре	N/A	150 17025	Not-detected	-	Not-detected	-
Chrysotile detected	туре	N/A	150 17025	Detected	-	Detected	-
Crocidolite detected	Type	N/A	ISO 17025	Not-detected	-	Not-detected	-
Tremolite detected	туре	N/A	150 17025	Not-detected	-	Not-detected	-
			100 1000				
Asbestos % by hand picking/weighing	%	0.001	ISO 17025	< 0.001	-	< 0.001	-
Asbestos Containing Material Types Detected (ACM)	Туре	N/A	ISO 17025	Loose Fibres	-	Loose Fibres	-
General Inorganics	nH Units	N/A	MCEPTS		7.2		1
рн (L005B)	pH Units	N/A	MCEDTC	-	7.3	-	-
pH (L099)	pri units	1	MCEDTC	8	-	8.1	8.4
Total Cyanide Water Soluble Sulphate as SOL 16br outraction (3:1)	mg/kg	1	MCEDTC	< 1.0	-	< 1.0	< 1.0
Water Soluble Supriate as SO4 1011 extraction (2.1)	mg/kg	2.5	MCERTS	21	-	33	52
water Soluble SO4 16hr extraction (2:1)	mg/i	1.25	MCERTS	10.6	-	16.7	26.1
Organic Matter (automated)	%	0.1	MCERTS	3.4	-	3.2	2.8
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.9	3	1.8	1.6
Loss on Ignition @ 450°C	% +/-	0.2	MCERTS	-	7	-	-
Acid Neutralisation Capacity	mmol/kg	-9999	NONE	-	0.63	-	-
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
				-		-	
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	0.16	0.08	1.2	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.09	0.15	2.3	0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.49	0.09
Fluorene	mg/kg	0.05	MCERTS	0.06	0.07	2.6	0.07
Phenanthrene	mg/kg	0.05	MCERTS	1.1	1.5	27	1
Anthracene	mg/kg	0.05	MCERTS	0.24	0.3	10	0.2
Eluoranthene	mg/kg	0.05	MCERTS	2.7	3.9	42	2.1
Pvrene	mg/kg	0.05	MCERTS	2.4	3.3	34	1.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.4	1.8	18	0.98
Chrysene	mg/kg	0.05	MCERTS	1.7	2.4	18	1.2
Benzo(b)fluoranthene	mg/kq	0.05	ISO 17025	2	2.4	23	1.5
Benzo(k)fluoranthene	mg/kq	0.05	ISO 17025	- 0.86	13	8	0.57
Benzo(a)pyrene	ma/ka	0.05	MCERTS	1.6	25	18	1.3
Indeno(1,2,3-cd)nyrene	ma/ka	0.05	MCERTS	0.01	1 1	86	0.72
Dihenz(a b)anthracene	ma/ka	0,05	MCERTS	0.91	1.1	2 1	0.72
Benzo(abi)nervlene	ma/ka	0.05	MCERTS	1	13	Q 1	0.10
Coronene	mg/kg	0.05	NONE	-	< 0.05	-	-
					~ 0.00		

Your Order No: GWPR5986

Lab Sample Number				192705	192706	192707	192708
Sample Reference		TP1	TP2	TP3	TP5		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Denth (m)				0.20	0.50	0.80	1.20
Date Sampled				06/05/2024	06/05/2024	06/05/2024	06/05/2024
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
	1	F		Hone Supplied	Hone Supplied	Hone Supplied	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	imit of detection	Accreditation Status				
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	16.3	-	227	12.5
Total WAC-17 PAHs	mg/kg	0.85	NONE	-	22.2	-	-
	•						
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	-	19	17
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	-	< 0.2	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	-	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	-	22	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	68	-	47	49
Lead (aqua regia extractable)	mg/kg	1	MCERTS	330	-	240	180
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.6	-	0.6	0.7
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	-	20	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	50	-	46	49
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	-	120	86
Potroloum Hudrocarbone							
TPHCWG - Aliphatic >C5 - C6 HS 1D AL	ma/ka	0.02	NONE	< 0.020	-	-	< 0.020
TPHCWG - Aliphatic > C6 - C8 HS 1D AI	ma/ka	0.02	NONE	< 0.020			< 0.020
TPHCWG - Aliphatic >C8 - C10 Hs 10 Al	ma/ka	0.05	NONE	< 0.020	-	-	< 0.020
TPHCWG - Aliphatic > C10 - C12 FH CU 1D AL	ma/ka	1	MCERTS	< 1.0			< 1.0
TPHCWG - Aliphatic >C12 - C16 FH CU 1D AL	ma/ka	2	MCERTS	< 2.0	_	_	3.1
TPHCWG - Aliphatic >C16 - C21 EH CU 1D AL	ma/ka	8	MCERTS	< 8.0	-	-	< 8.0
TPHCWG - Aliphatic >C21 - C35 FH (1) ID AI	ma/ka	8	MCERTS	< 8.0	_	_	17
TPHCWG - Aliphatic $>C35 - C40$ FH CU 1D Al	ma/ka	10	NONE	< 10	_	_	< 10
TPHCWG - Aliphatic >C5 - C35 EH CU+HS 1D AL	mg/kg	10	NONE	< 10	-	-	20
TPHCWG - Aliphatic >C5 - C40 EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	-	-	20
				110			20
TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	-	-	< 0.010
TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	-	-	< 0.010
TPHCWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	< 0.050	-	-	< 0.050
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-	-	< 1.0
TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-	-	< 2.0
TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	-	< 10
TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	-	26
TPHCWG - Aromatic >EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	< 10	-	-	11
TPHCWG - Aromatic >EC5 - EC35 EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	-	-	26
TPHCWG - Aromatic >EC5 - EC40 EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	-	-	36
		-		-	-	-	
TPH Total >C5 - C40 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	< 10	-	-	56
Mineral Oil (C10 - C40) EH_CU_1D_AL	mg/kg	10	NONE	-	56	-	-

Your Order No: GWPR5986

Lab Sample Number		192705	192706	192707	192708		
Sample Reference		TP1	TP2	TP3	TP5		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.20	0.50	0.80	1.20
Date Sampled				06/05/2024	06/05/2024	06/05/2024	06/05/2024
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
VOCs							
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	< 5.0	-	-	< 5.0
Benzene	µg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
Toluene	µg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
p & m-Xylene	µg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
o-Xylene	µg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
Total BTEX	µg/kg	5	MCERTS	-	< 5.0	-	-
PCBs by GC-MS							
PCB Congener 28	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	< 0.001	-	-
		-					
Total PCBs	mg/kg	0.007	MCERTS	-	< 0.007	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Results											
Report No:		24-0	18427								
					Client:	GANDW					
Location					1						
Lab Reference (Sample Number)		192	2706		Landfill	Waste Acceptanc	e Criteria				
Sampling Data		06/09	5/2024			Ctable Non					
Sample ID		00/0. T	P2024			reactive					
Depth (m)		0	.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill				
Solid Waste Analysis											
TOC (%)**	3.0				3%	5%	6%				
Loss on Ignition (%) **	7.0						10%				
BTEX (µg/kg) **	< 5.0				6000						
Sum of PCBs (mg/kg) **	< 0.007				1						
Mineral Oil (mg/kg) EH_1D_CU_AL	56				500						
Total PAH (WAC-17) (mg/kg)	22.2				100						
pH (units)**	7.3					>6					
Acid Neutralisation Capacity (mmol / kg)	0.63					To be evaluated	To be evaluated				
Eluate Analysis	10.1			10:1	Limit value	es for compliance le	aching test				
(BS EN 12457 - 2 preparation utilising end over end leaching	10:1			ma/ka	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)						
procedure)	iiig/i		-	iiig/ikg			-				
Arsenic *	0.00313			0.0313	0.5	2	25				
Barium *	0.0183			0.183	20	100	300				
Cadmium *	< 0.000100			< 0.00100	0.04	1	5				
Chromium *	0.00054			0.0054	0.5	10	70				
Copper *	0.016			0.16	2	50	100				
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2				
Molybdenum *	< 0.000400			< 0.00400	0.5	10	30				
Nickel *	0.0015			0.015	0.4	10	40				
Lead *	< 0.0010			< 0.010	0.5	10	50				
Antimony *	< 0.0017			< 0.017	0.06	0.7	5				
Selenium *	< 0.0040			< 0.040	0.1	0.5	7				
Zinc *	0.012			0.12	4	50	200				
Chloride *	0.54			5.4	800	15000	25000				
Fluoride*	0.41			4.1	10	150	500				
Sulphate *	1.1			11	1000	20000	50000				
TDS*	46			460	4000	60000	100000				
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-				
DOC	7.31			73.1	500	800	1000				
Leach Test Information											
Stone Content (%)	< 0.1										
Sample Mass (kg)	1.5										
Dry Matter (%)	86										
Moisture (%)	14										
Results are expressed on a dry weight basis, after correction for moistur	e content where app	licable.			*= UKAS accredite	d (liquid eluate anal	ysis only)				
Stated limits are for guidance only and i2 cannot be held responsible for	any discrepancies w	ith current legislatio	on		** = MCEPTS accord	edited					
					TIGENTS BEEN						

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number:24-018427Project / Site name:Your Order No:GWPR5986

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
192705	TP1	0.20	126	Loose Fibres	Chrysotile	< 0.001	< 0.001
192707	TP3	0.80	129	Loose Fibres	Chrysotile	< 0.001	< 0.001

Both Qualitative and Quantitative Analyses are UKAS accredited.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name:

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
192705	TP1	None Supplied	0.2	Brown sand with vegetation and stones
192706	TP2	None Supplied	0.5	Brown loam and sand with gravel and vegetation
192707	TP3	None Supplied	0.8	Brown loam and sand with gravel and vegetation
192708	TP5	None Supplied	1.2	Brown sand with gravel and vegetation

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	tical Test Name Analytical Method Description		Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
pH at 20°C in soil	Determination of pH in soll by addition of water followed by electrometric measurement	In-house method	L005B	W	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references	HSE Report No: 83/1996, HSG 248 (2021), HSG 264 (2012) & SCA Blue Book (draft)	A006B	D	ISO 17025
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	w	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	w	ISO 17025
Sample Preparation		In-house method	L043B	w	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	W	NONE
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS
Speciated PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	w	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Total petroleum hydrocarbons by GC- FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	W	MCERTS
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	w	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
WAC Leachate 10:1		In-house method	L043B	W	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'F' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil [®] , silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX F: Soil Assessment Criteria

Ground and Water Limited

Soil Guideline Values and Generic Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'. At preliminary risk assessment stage, risks are evaluated qualitatively. As the site investigation progresses to a generic or detailed quantitative risk assessment, data is collected and assessment criteria are utilised to evaluate whether the contaminants represent an unacceptable risk to the identified receptors.

1. Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

- 1) EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
- 2) EA Science Report SC050021/SR3: Updated technical background to the CLEA model.
- 3) EA CLEA Bulletin (2009).
- 4) CLEA software version 1.07 (2015)
- 5) Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

- Do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures;
- Do not cover risks to the environment, such as groundwater, ecosystems or buildings;
- Do not provide a definitive test for telling when human health risks are significant; and
- Are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

1.1. Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models outlined in the following sections.

1.1.1. Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small-terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

1.1.2. Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

1.1.3. Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a threestorey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

2. LQM/CIEH Suitable 4 Use Levels (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J., *The LQM/CIEH S4UL's for Human Health Risk Assessment*. Land Quality Press. 2015

2.1. S4UL Background

The Land Quality Management/Chartered Institute of Environmental Health (LQM/CIEH) S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure,

as calculated by the CLEA software, equals the Health Criteria Value. The S4ULs have been derived for substances based on various generic land use and soil organic matter contents.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2nd edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

2.2. S4UL Land-use

S4UL's have been derived for the basic CLEA land-uses, as described in section 1.2, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi).
- Public Park (POSpark).

2.2.1. Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's - 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

2.2.2. Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

The following LQM/CIEH S4UIs (Copyright Land Quality Management Limited) have been reproduced with permission, to the publication number S4UL3072.

3. Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.07 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

- A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and
- A demonstration of the methodology, via the derivation of C4SLs for six substances arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category

system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

*"*4.21 *The local authority should consider that the following types of land should be placed into Category 4: Human Health:*

(a) Land where no relevant contaminant linkage has been established.

(b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.

(c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.

(d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).

4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a):

"SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of risk-based Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

- By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);
- By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and
- By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

4. CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, *The Soil Generic Assessment Criteria for Human Health Risk Assessment*. **Contaminated** Land: Applications in the Real Environment. 2009.

Within this report, Contaminated Land: Applications in Real Environments (CL:AIRE) provided Generic Assessment Criteria (GAC) in accordance with the CLEA software and the principles outlined previously for a further 35 contaminants sometimes encountered on land affected by contamination.

5. SoBRA Acute GAC

The Society of Brownfield Risk Assessment (SoBRA) identified that most human health risk assessments focus on the chronic risks arising from long-term exposure to specific substances. As chronic risks often occur at lower doses than acute risks, they are often the key drivers, however, in some instances the acute dose may also be an important consideration within risk assessments.

The methodology for deriving the acute GAC were related to two distinct receptor groups:

- Members of the public, where the 'critical' receptor for this group will typically be a female child, which is consistent with CLEA residential and Public Open Space/allotments land-uses;
- Workers involved with excavations. The critical receptor for this group is assumed to be a female working adult, without the use of PPE.

The acute GACs relate to short term exposure of high concentrations of a substance that lead to acute effects. They are not considered to be average exposures across a specific / defined area. As a result, the GACs should be normally be compared with the maximum likely concentration that the individual may be exposed to, and not the average concentration within a specific area.

The SoBRA acute GAC will primarily be used for contaminants that do not currently have any GAC, most notably Cyanide.

6. Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of a GAC is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses, then a DQRA may be undertaken to develop site specific values for relevant soil contaminants.

- Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.
- Developing more accurate parameters using site data.

7. Phytotoxicity

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• BS3882:2015 – Specification for Topsoil

The trigger values are relevant only to those contaminants, where present in excess, have the potential to inhibit plant growth, or kill plants (Cu, Ni and Zn). The criteria have been based on a wide range of planting that are common within a multi-purpose topsoil.

8. Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

CL:AIRE published guidance in 2020, *Guidance in comparing soil contamination data with a critical concentration*, superseding the CL:AIRE/CIEH 2008 report of the same name. The guidance provides ways to assist land contamination stakeholders to apply statistical methods to their data to enable decisions under the legislative framework; either planning system or Part 2A of the Environmental Protection Act 1990.

The use of the statistical tests should only be applied if the following statements are valid for the datasets:

- Averaging areas, as well as the smallest area of concern have been identified on the basis of the CSM, including the desk study and/or the site walkover;
- The sample locations were chosen using a simple random, stratified random or stratified systematic (square, herringbone or triangular grid) sampling pattern, rather than being targeted to locations suspected of being contaminated;
- The sample locations are relatively evenly spread across the area and are not clustered, to avoid giving undue weight to some parts of the site over others in the calculated statistics;
- The analyses do not suggest a hotspot or outlier of contamination that should be treated as a separate zone. This has been established by a histogram and/or a names statistical test;
- The sample locations are all taken from one population (i.e. the same material);
- Where an averaging zone encompasses several averaging areas, analyses do not show a spatial trend or other spatial pattern across that zone; and
- The number of samples has been shown to be sufficient for a statistical analysis.

Any included statistical spreadsheet is based on an in-house method of statistical analysis, in line with those outlined within the CL:AIRE guidance (2020).

Treatment of Hot-Spots

- A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.
- Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

9. Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of the Generic Quantitative Risk Assessment are tabulated in the following pages, where the source of each has been outlined in the previous sections.

9.1. Inorganics

SoBRA – Acute Generic Assessment Criteria									
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
Cyanide	24	24	24	1400	24	24			

9.2. Metals

C4SL Low Level of Toxicological Concern										
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
Lead	< 200	< 310	< 80	< 2300	< 630	< 1300				

	LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals										
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)					
Arsenic	37	40	43	640	79	170					
Beryllium	1.7	1.7	35	12	2.2	63					
Boron	290	11000	45	240000	21000	46000					
Cadmium	11	85	1.9	190	120	532					
Chromium (III)	910	910	18000	8600	1500	33000					
Chromium (VI)	6	6	1.8	33	7.7	220					
Copper	2400	7100	520	68000	12000	44000					
Elemental Mercury	1.2	1.2	21	58	16	30					
Inorganic Mercury	40	56	19	1100	120	240					
Methylmercury	11	15	6	320	40	68					
Nickel	130	180	53	980	230	800					
Selenium	250	430	88	12000	1100	1800					
Vanadium	410	1200	91	9000	2000	5000					
Zinc	3700	40000	620	730000	81000	170000					

Ph	Phytotoxicity (Harmful to Plants) Threshold Trigger Values									
Determinand	Soil pH < 6.0 (mg/kg)	Soil pH 6.0 – 7.0 (mg/kg)	Soil pH > 7.0 (mg/kg)							
Copper	100	135	200							
Nickel	60	75	110							
Zinc	200	200	300							

Notes:

BS3882:2015 – *Specification for Topsoil*. Based on a wide range of common plants that will be exposed to multi-purpose topsoil. Toxicity of contaminant may also be impacted by pH of soils. Site observation of plant vitality may give additional guidance.

CL:AIRE Soil Generic Assessment Criteria Residential **Residential without** Determinand Allotment (mg/kg) Commercial (mg/kg) plant uptake (mg/kg) (mg/kg) ND 550 ND 7500 Antimony ND 1300 22000 Barium ND Molybdenum ND 17000 670 ND ND – Not derived

9.3. Total Petroleum Hydrocarbons (TPHs)

9.3.1. BTEX Compounds

LQM/CIEH Suitable 4 Use Levels – BTEX Compounds									
Determinand	Soil Organic Matter	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Benzene	1.0% SOM	0.087	0.38	0.017	27	72	90		
	2.5% SOM	0.170	0.70	0.034	47	72	100		
	6.0% SOM	0.370	1.40	0.075	90	73	110		
Toluene	1.0% SOM	130	880	22	56000	56000	87000		
	2.5% SOM	290	1900	51	110000	56000	95000		
	6.0% SOM	660	3900	120	180000	56000	100000		
Ethylbenzene	1.0% SOM	47	83	16	5700	24000	17000		
	2.5% SOM	110	190	39	13000	24000	22000		
	6.0% SOM	260	440	91	27000	25000	27000		
o-Xylene	1.0% SOM	60	88	28	6600	41000	17000		
	2.5% SOM	140	210	67	15000	42000	24000		
	6.0% SOM	330	480	160	33000	43000	33000		
m-Xylene	1.0% SOM	59	82	31	6200	41000	17000		
	2.5% SOM	140	190	74	14000	42000	24000		
	6.0% SOM	320	450	170	31000	43000	33000		
p-Xylene	1.0% SOM	56	79	29	5900	41000	17000		
	2.5% SOM	130	180	69	14000	42000	23000		
	6.0% SOM	310	430	160	30000	43000	31000		
SOM = Soil Organic	Matter Content (%)								

9.3.2. Total Petroleum Hydrocarbons – Aliphatic

	LQM/CIEH Suitable 4 Use Levels For TPH										
Alipl	natic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
			1 8, 8,		(0, 0,		(8/ 8/				
EC 5-6	1.0% SOM	42	42	730	3,200 (304) sol	570,000 (304) ^{sol}	95,000 (304) sol				
	2.5% SOM	78	78	1,700	5,900 (558) sol	590,000	130,000 (558) sol				
	6.0% SOM	160	160	3,900	12,000 (1150) ^{sol}	600,000 (1150) ^{sol}	180,000 (1150) sol				
EC >6-8	1.0% SOM	100	100	2,300	7,800 (144) sol	600,000	150,000 (144) sol				
	2.5% SOM	230	230	5,600	17,000 (322) sol	610,000	220,000 (322) sol				
	6.0% SOM	530	530	13,000	40,000 (736) sol	620,000	320,000 (736) sol				
EC >8-10	1.0% SOM	27	27	320	2,000 (78) sol	13,000	14,000 (78) sol				
	2.5% SOM	65	65	770	4,800 (118) vap	13,000	18,000 (118) vap				
	6.0% SOM	150	150	1,700	11,000 (451) vap	13,000	21,000 (451) vap				
EC >10-12	1.0% SOM	130 (48) ^{vap}	130 (48) ^{vap}	2,200	9,700 (48) sol	13,000	21,000 (48) sol				
	2.5% SOM	330 (118) ^{vap}	330 (118) ^{vap}	4,400	23,000 (118) vap	13,000	23,000 (118) vap				
	6.0% SOM	760 (283) ^{vap}	760 (283) ^{vap}	7,300	47,000 (283) vap	13,000	24,000 (283) vap				
EC >12-16	1.0% SOM	1,100 (24) sol	1,100 (24) sol	11,000	59,000 (24) sol	13,000	25,000 (24) sol				
	2.5% SOM	2,400 (59) sol	2,400 (59) sol	13,000	82,000 (59) sol	13,000	25,000 (59) sol				
	6.0% SOM	4,300 (142) sol	4,400 (142) sol	13,000	90,000 (142) sol	13,000	26,000 (142) sol				
EC >16-35	1.0% SOM	65,000 (8.48) sol	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000				
	2.5% SOM	92,000 (21) sol	92,000 (21) sol	270,000	1,700,000	250,000	480,000				
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000				
EC >35-44	1.0% SOM	65,000 (8.48) sol	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000				
	2.5% SOM	92,000 (21) sol	92,000 (21) sol	270,000	1,700,000	250,000	480,000				
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000				
6014 6 110		6 1 1 (0()									

SOM = Soil Organic Matter Content (%)

^{vap} – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.3.3. Total Petroleum Hydrocarbons – Aromatic

LQM/CIEH Suitable 4 Use Levels For TPH									
Aroma	tic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
EC 5-7	1.0% SOM	70	370	13	26,000 (1220) sol	56,000	76,000 (1220 sol		
(Benzene)	2.5% SOM	140	690	27	46,000 (2260) sol	56,000	84,000 (2260) sol		
	6.0% SOM	300	1,400	57	86,000 (4710) sol	56,000	92,000 (4710) sol		
EC >7-8	1.0% SOM	130	860	22	56,000 (869) vap	56,000	87,000 (869) sol		
(Toluene)	2.5% SOM	290	1,800	51	110,000 (1920) sol	56,000	95,000 (1920) sol		
	6.0% SOM	660	3,900	120	180,000 (4360) vap	56,000	100,000 (4360) vap		
EC >8-10	1.0% SOM	34	47	8.6	3,500 (613) ^{vap}	5,000	7,200 (613) ^{vap}		
	2.5% SOM	83	110	21	8,100 (1500) vap	5,000	8,500 (1500) ^{vap}		
	6.0% SOM	190	270	51	17,000 (3850) vap	5,000	9,300 (3580) ^{vap}		
EC >10-12	1.0% SOM	74	250	13	16,000 (364) sol	5,000	9,200 (364) sol		
	2.5% SOM	180	590	31	28,000 (899) sol	5,000	9,700 (889) ^{sol}		
	6.0% SOM	380	1,200	74	34,000 (2150) sol	5,000	10,000		
EC >12-16	1.0% SOM	140	1,800	23	36,000 (169) sol	5,100	10,000		
	2.5% SOM	330	2,300 (419) sol	57	37,000	5,100	10,000		
	6.0% SOM	660	2,500	130	38,000	5,000	10,000		
EC >16-21	1.0% SOM	260	1,900	46	28,000	3,800	7,600		
	2.5% SOM	540	1,900	110	28,000	3,800	7,700		
	6.0% SOM	930	1,900	260	28,000	3,800	7,800		
EC >21-35	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800		
	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800		
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900		
EC >35-44	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800		
	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800		
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900		
EC >44-70	1.0% SOM	1,600	1,900	1,200	28,000	3,800	7,800		
	2.5% SOM	1,800	1,900	2,100	28,000	3,800	7,800		
	6.0% SOM	1,900	1,900	3,000	28,000	3,800	7,900		

SOM = Soil Organic Matter Content (%)

vap – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.4. Polycyclic Aromatic Hydrocarbons (PAHs)

LQM/CIE	LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAHs)								
Determinands		RwHP	RwoHP	Allotment	Commercial	POSresi	POSpark		
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
Acenapthene	1.0% SOM	210	3,000 (57.0) sol	34	84,000(57.0) sol	15,000	29,000		
	2.5% SOM	510	4,700(141) sol	85	97,000(141) sol	15,000	30,000		
	6.0% SOM	1100	6,000(336) sol	200	100,000	15,000	30,000		
Acenapthylene	1.0% SOM	170	2,900(86.1) sol	28	83,000(86.1) sol	15,000	29,000		
	2.5% SOM	420	4,600(212) sol	69	97,000(212) sol	15,000	30,000		
	6.0% SOM	920	6,000(506) sol	160	100,000	15,000	30,000		
Anthracene	1.0% SOM	2,400	31,000(1.17) vap	380	520,000	74,000	150,000		
	2.5% SOM	5,400	35,000	950	540,000	74,000	150,000		
- ()	6.0% SOM	11,000	37,000	2,200	540,000	74,000	150,000		
Benzo(a)anthracene	1.0% SOM	7.20	11	2.90	170	29	49		
	2.5% SOM	11	14	6.50	170	29	56		
	6.0% SOM	13	15	13	180	29	62		
Benzo(a)pyrene	1.0% SOM	2.20	3.20	0.97	35	5.70	11		
	2.5% SOM	2.70	3.20	2.00	35	5.70	12		
	6.0% SOM	3.00	3.20	3.50	36	5.70	13		
Benzo(b)flouranthene	1.0% SOM	2.60	3.90	0.99	44	7.10	13		
	2.5% SOM	3.30	4.00	2.10	44	7.20	15		
	6.0% SOM	3.70	4.00	3.90	45	7.20	16		
Benzo(ghi)perylene	1.0% SOM	320	360	290	3,900	640	1,400		
	2.5% SOM	340	360	470	4,000	640	1,500		
	6.0% SOM	350	360	640	4,000	640	1,600		
Benzo(k)flouranthene	1.0% SOM	77	110	37	1,200	190	370		
	2.5% SOM	93	110	75	1,200	190	410		
	6.0% SOM	100	110	130	1,200	190	440		
Chrysene	1.0% SOM	15	30	4.10	350	57	93		
	2.5% SOM	22	31	9.40	350	57	110		
	6.0% SOM	27	32	19	350	57	120		
Dibenzo(ah)anthracene	1.0% SOM	0.24	0.31	0.14	3.50	0.57	1.10		
	2.5% SOM	0.28	0.32	0.27	3.50	0.57	1.30		
	6.0% SOM	0.30	0.32	0.43	3.60	0.58	1.40		
Flouranthene	1.0% SOM	280	1,500	52	23,000	3,100	6,300		
	2.5% SOM	560	1,600	130	23,000	3,100	6,300		
	6.0% SOM	890	1,600	290	23,000	3,100	6,300		
Flourene	1.0% SOM	170	2,800 (30.9) sol	27	63,000(30.9) sol	9,900	20,000		
	2.5% SOM	400	3,800(76.5) sol	67	68,000	9,900	20,000		
	6.0% SOM	860	4,500(183) sol	160	71,000	9,900	20,000		
Indeno(123-cd)pyrene	1.0% SOM	27	45	9.50	500	82	150		
	2.5% SOM	36	46	21	510	82	170		
	6.0% SOM	41	46	39	510	82	180		
Napthalene	1.0% SOM	15	36	65	1,600	11,000	800		
	2.5% SOM	36	36	130	3,700	15,000	1,200		
	6.0% SOM	85	85	200	8,400	17,000	1,900		
Phenanthrene	1.0% SOM	95	1,300(183) sol	15	22,000	3,100	6,200		
	2.5% SOM	220	1,500	38	22,000	3,100	6,200		
	6.0% SOM	440	1,500	90	23,000	3,100	6,300		
Pyrene	1.0% SOM	620	3,700	110	54,000	7,400	15,000		
	2.5% SOM	1200	3,800	270	54,000	7,400	15,000		
	6.0% SOM	2000	3,800	620	54,000	7,400	15,000		
Coal Tar (Benzo(a)pyrene	1.0% SOM	0.79	1.2	0.32	15	2.20	4.40		
used as marker	2.5% SOM	0.98	1.2	0.67	15	2.20	4.70		
compound)	6.0% SOM	1.10	1.2	1.20	15	2.20	4.80		
	a /a	/ \							

SOM = Soil Organic Matter Content (%)

vap – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

 $^{\rm sol}$ – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.5. Volatile and Semi-volatile Organic Compounds

LQM CIEH Gen	eral Assessn	nent Criteria	: Volatile a	nd Semi-Vo	olatile Organ	ic Compo	ounds				
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
Chloroalkanes & alkenes											
1.2 Dichloroethane	1.0% SOM	0.0071	0.0092	0.0046	0.67	29	21				
,	2.5% SOM	0.011	0.013	0.0083	0.97	29	24				
	6.0% SOM	0.019	0.023	0.016	1.70	29	28				
1,1,2,2 Tetrachloroethane	1.0% SOM	1.60	3.90	0.41	270	1,400	1,800				
	2.5% SOM	3.40	8.00	0.89	550	1,400	2,100				
	6.0% SOM	7.50	17	2.00	1,100	1,400	2,300				
1,1,1,2 Tetrachloroethane	1.0% SOM	1.20	1.50	0.79	110	1,400	1,500				
	2.5% SOM	2.80	3.50	1.90	250	1,400	1,800				
	6.0% SOM	6.40	8.20	4.40	560	1,400	2,100				
Tetrachloroethene	1.0% SOM	0.18	0.18	0.65	19	1,400	810 ^{sol} (424)				
	2.5% SOM	0.39	0.40	1.50	42	1,400	1,100 sol(951)				
	6.0% SOM	0.90	0.92	3.60	95	1.400	1.500				
1,1,1 Trichloroethane	1.0% SOM	8.80	9.00	48	660	140,000	57,000 ^{vap} (1425)				
	2.5% SOM	18	18	110	1,300	140,000	76,000 ^{vap} (2915)				
	6.0% SOM	39	40	240	3,000	140,000	100,000 ^{vap} (6392)				
Tetrachloromethene	1.0% SOM	0.026	0.026	0.45	2.90	890	190				
	2.5% SOM	0.056	0.056	1.00	6.30	920	270				
	6.0% SOM	0.130	0.130	2.40	14	950	400				
Trichloroethene	1.0% SOM	0.016	0.017	0.041	1.20	120	70				
	2.5% SOM	0.034	0.036	0.091	2.60	120	91				
	6.0% SOM	0.075	0.080	0.210	5.70	120	120				
Trichloromethane	1.0% SOM	0.91	1.20	0.42	99	2,500	2,600				
	2.5% SOM	1.70	2.10	0.83	170	2,500	2,800				
	6.0% SOM	3.40	4.20	1.70	350	2,500	3,100				
Vinyl Chloride	1.0% SOM	0.00064	0.00077	0.00055	0.059	3.50	4.80				
	2.5% SOM	0.00087	0.00100	0.00100	0.077	3.50	5.00				
	6.0% SOM	0.00014	0.00150	0.00180	0.120	3.50	5.40				
			Explosives								
2,4,6 Trinitrotoluene	1.0% SOM	1.60	65	0.24	1,000	130	260				
	2.5% SOM	3.70	66	0.58	1,000	130	270				
	6.0% SOM	8.10	66	1.40	1,000	130	270				
RDX	1.0% SOM	120	13,000	17	210,000	26,000	49,000(18.7) ^{sol}				
(Hexogen/Cyclonite/1,3,5-	2.5% SOM	250	13,000	38	210,000	26,000	51,000				
trinitro-1,3,5- triazacyclohexane)	6.0% SOM	540	13,000	85	210,000	27,000	53,000				
HMX (Octogen/1,3,5,7-	1.0% SOM	5.70	67,00	0.86	110,000	13,000	23,000(0.35) ^{vap}				
tetrenitro-1,3,5,7-	2.5% SOM	13	67,00	1.90	110,000	13,000	23,000(0.39) ^{vap}				
tetrazacyclo-octane)	6.0% SOM	26	67,00	3.90	110,000	13,000	24,000(0.48) ^{vap}				
Atrazine	1.0% SOM	3.30	610	0.50	9,300	1,200	2,300				
	2.5% SOM	7.60	620	1.20	9,400	1,200	2,400				
	6.0% SOM	17.40	620	2.70	9,400	1,200	2,400				
vap – GAC presented excee	eds the vapou	r saturation li	mit. which is	presented i	n brackets.						

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Determinand	5	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
			Posticidos				
Aldrin	1.0% SOM	5 70	7 30	3 20	170	10	30
	2.5% SOM	6.60	7.30	6.10	170	18	31
	6.0% SOM	7 10	7.40	9.60	170	18	31
Dieldrin	1.0% SOM	0.97	7.00	0.17	170	18	30
Dicidini	2.5% SOM	2.00	7.00	0.11	170	18	30
	6.0% SOM	3 50	7.30	0.96	170	18	31
Dichloryos	1.0% SOM	0.032	6.40	0.0049	140	16	26
	2.5% SOM	0.066	6.50	0.0100	140	16	26
	6.0% SOM	0 140	6.60	0.0220	140	16	27
Alpha - Endosulfan	1.0% SOM	7 40	160(0.003)vap	1 20	5.600(0.003)vap	1.200	2.400
	2.5% SOM	18	280(0.007)vap	2.90	7,400(0,007) ^{vap}	1.200	2,400
	6.0% SOM	41	410(0.016) ^{vap}	6.80	8,400(0,016) ^{vap}	1.200	2,400
Beta - Endosulfan	1.0% SOM	7.00	190(0.00007) ^{vap}	1.10	6.300(0.00007) ^{vap}	1.200	2,400
	2.5% SOM	17	320(0.0002) ^{vap}	2.70	7.800(0.0002) ^{vap}	1.200	2.400
	6.0% SOM	39	440(0.0004) ^{vap}	6.40	8700	1.200	2.500
Alpha -	1.0% SOM	0.23	6.90	0.035	170	24	47
Hexachlorocyclohexanes	2.5% SOM	0.55	9.20	0.087	180	24	48
· · · · · · · · · · · · · · · · · · ·	6.0% SOM	1.20	11	0.210	180	24	48
Beta -	1.0% SOM	0.085	3.70	0.013	65	8.10	15
Hexachlorocyclohexanes	2.5% SOM	0.200	3.80	0.032	65	8.10	15
	6.0% SOM	0.460	3.80	0.077	65	8.10	16
Gamma -	1.0% SOM	0.06	2.90	0.0092	67	8.2	14
Hexachlorocyclohexanes	2.5% SOM	0.14	3.30	0.0230	69	8.2	15
	6.0% SOM	0.33	3.50	0.0540	70	8.2	15
			Chlorobenzen	es		-	
Chlorobenzene	1.0% SOM	0.46	0.46	5.90	56	11,000	1,300(675) ^{sol}
	2.5% SOM	1.00	1.00	14	130	13,000	2,000(1520) ^{sol}
	6.0% SOM	2.40	2.40	32	290	14.000	2.900
1,2-Dichlorobenzene	1.0% SOM	23	24	94	2,000 (571) sol	90,000	24,000(571) ^{sol}
,	2.5% SOM	55	57	230	4,800 (1370) sol	95,000	36,000(1370)sol
	6.0% SOM	130	130	540	11,000 (3240) sol	98,000	51,000(3240)sol
1,3-Dichlorobenzene	1.0% SOM	0.40	0.44	0.25	30	300	390
	2.5% SOM	1.00	1.10	0.60	73	300	440
	6.0% SOM	2.30	2.50	1.50	170	300	470
1,4-Dichlorobenzene	1.0% SOM	61	61	15	4,400 (224) ^{vap}	17,000g	36,000 (224) ^{vap}
	2.5% SOM	150	150	37	10,000 (540) ^{vap}	17,000 ^g	36,000 (540) ^{vap}
	6.0% SOM	350	350	88 ^g	25,000 (1280) ^{vap}	17,000 ^g	36,000 (1280) ^{vap}
1,2,3,-Trichlorobenzene	1.0% SOM	1.50	1.50	4.70	102	1,800	770(134 ^{)vap}
	2.5% SOM	3.60	3.70	12	250	1,800	1,100(330) ^{vap}
	6.0% SOM	8.60	8.80	28	590	1,800	1,600(789) ^{vap}
1,2,4,-Trichlorobenzene	1.0% SOM	2.60	2.60	55	220	15,000	1,700(318) ^{vap}
	2.5% SOM	6.40	6.40	140	530	17,000	2,600(786) ^{vap}
	6.0% SOM	15	15	320	1,300	19,000	4,000(1880) ^{vap}
1,3,5,-Trichlorobenzene	1.0% SOM	0.33	0.33	4.70	23	1,700	380(36.7) ^{vap}
	2.5% SOM	0.81	0.81	12	55	1,700	590(90.8) ^{vap}
	6.0% SOM	1.90	1.90	140	130	1,800	860(217) ^{vap}
vap – GAC presented exce	eeds the vapo	our saturatio	on limit, which is p	resented in	brackets.		

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

LQM CIE	H General	Assessment	Criteria: Volat	ile and Sem	i-Volatile Orga	nic Compou	ınds		
Determinan	ds	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
		1	Chlorobenzen	es (cont.)			1		
1,2,3,4,-	1.0% SOM	15	24	4.40	1,700(122 ^{)vap}	830	1,500(122) ^{vap}		
Tetrachlorobenzene	2.5% SOM	36	56	11	3,080(304) ^{vap}	830	1,600		
	6.0% SOM	78	120	26	4,400(728) ^{vap}	830	1,600		
1,2,3,5,-	1.0% SOM	0.66	0.75	0.38	49(39.4) ^{vap}	78	110(39) ^{vap}		
Tetrachlobenzene	2.5% SOM	1.60	1.90	0.90	120(98.1) ^{vap}	79	120		
	6.0% SOM	3.70	4.30	2.20	240(235) ^{vap}	79	130		
1,2,4, 5,-	1.0% SOM	0.33	0.73	0.06	42(19.7) ^{sol}	13	25		
Tetrachlobenzene	2.5% SOM	0.77	1.70	0.16	72(49.1) ^{sol}	13	26		
	6.0% SOM	1.60	3.50	0.37	96	13	26		
Pentachlrobenzene	1.0% SOM	5.80	19	1.20	640(43.0) ^{sol}	100	190		
	2.5% SOM	12	30	3.10	770(107) ^{sol}	100	190		
	6.0% SOM	22	38	7.00	830	100	190		
Hexachlorobenzene	1.0% SOM	1.80(0.20) ^{vap}	4.10 (0.20) ^{vap}	0.47	110(0.20) ^{vap}	16	30		
	2.5% SOM	3.30(0.50) ^{vap}	5.70 (0.50) ^{vap}	1.10	120	16	30		
	6.0% SOM	4.90	6.70 (1.2) ^{vap}	2.50	120	16	30		
Phenols & Chlorophenols									
BTEX	1.0% SOM	280	750	66	760 ^{dir} (31,000)	760 ^{dir} (11,0 00)	760 ^{dir} (8,600)		
	2.5% SOM	550	1,300	140	1,500 ^{dir} (35,000)	1,500 ^{dir} (11 ,000)	1,500 ^{dir} (9,700)		
	6.0% SOM	1100	2,300	280	3,200 ^{dir} (37,000)	3,200 ^{dir} (11 ,000)	3,200 ^{dir} (11,00 0)		
Chlorophenols (4	1.0% SOM	0.87	94	0.13	3,500	620	1,100		
Congeners)	2.5% SOM	2.00	150	0.30	4,000	620	1,100		
	6.0% SOM	4.50	210	0.70	4,300	620	1,100		
Pentachlorophenols	1.0% SOM	0.22	27(16.4) ^{vap}	0.03	400	60	110		
	2.5% SOM	0.52	29	0.08	400	60	120		
	6.0% SOM	1.20	31	0.19	400	60	120		
			Other	s					
Carbon Disulphide	1.0% SOM	0.14	0.14	4.80	11	11,000	1,300		
	2.5% SOM	0.29	0.29	10	22	11,000	1,900		
	6.0% SOM	0.62	0.62	23	47	12,000	2,700		
Hexachloro-1,3-	1.0% SOM	0.29	0.32	0.25	31	25	48		
Butadiene	2.5% SOM	0.70	0.78	0.61	68	25	50		
	6.0% SOM	1.60	1.80	1.40	120	25	51		
vap – GAC presented	exceeds the	e vapour satura	ation limit, whic	h is presente	ed in brackets.				
^{sol} – GAC presented	exceeds the	soil saturation	n limit, which is	presented in	brackets.				

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds									
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)				
1,1,2 Trichloroethane	1.0% SOM	0.60	0.88	0.28	94				
	2.5% SOM	1.20	1.8	0.61	190				
	6.0% SOM	2 70	3.9	1 40	400				
1,1-Dichloroethane	1.0% SOM	2.40	2.50	9.20	280				
	2.5% SOM	3.90	4.10	17	450				
	6.0% SOM	7.40	7.70	35	850				
1,1-Dichloroethene	1.0% SOM	0.23	0.23	2.80	26				
	2.5% SOM	0.40	0.41	5.60	46				
	6.0% SOM	0.82	0.82	12	92				
1,2,4-Trimethylbenzene	1.0% SOM	0.35	0.41	0.38	42				
	2.5% SOM	0.85	0.99	0.93	99				
	6.0% SOM	2.00	2.30	2.20	220				
1,2-Dichloropropane	1.0% SOM	0.024	0.024	0.62	3.3				
	2.5% SOM	0.042	0.042	1.20	5.9				
	6.0% SOM	0.084	0.085	2.60	12				
2,4-Dimethylphenol	1.0% SOM	19	210	3.10	16000*				
	2.5% SOM	43	410	7.20	24000*				
	6.0% SOM	97	730	17	30000*				
2,4-Dinitrotoluene	1.0% SOM	1.50	170*	0.22	3700*				
	2.5% SOM	3.20	170	0.49	3700*				
	6.0% SOM	7.20	170	1.10	3800*				
2,6-Dinitrotoluene	1.0% SOM	0.78	78	0.12	1900*				
,	2.5% SOM	1.70	84	0.27	1900*				
	6.0% SOM	3.90	87	0.61	1900*				
2-Chloronapthalene	1.0% SOM	3.70	3.80	40	390*				
	2.5% SOM	9.20	9.30	98	960*				
	6.0% SOM	22	22	230	2200*				
Biphenyl	1.0% SOM	66*	220*	14	18000*				
	2.5% SOM	160	500*	35	33000*				
	6.0% SOM	360	980*	83	48000*				
Bis (2-ethylhexyl) phthalate	1.0% SOM	280*	2700*	47*	85000*				
	2.5% SOM	610*	2800*	120*	86000*				
	6.0% SOM	1100*	2800*	280*	86000*				
Bromobenzene	1.0% SOM	0.87	0.91	3.2	97				
	2.5% SOM	2.0	2.1	7.6	220				
	6.0% SOM	4.7	4.9	18	520				
Bromodichloromethane	1.0% SOM	0.016	0.019	0.016	2.1				
	2.5% SOM	0.030	0.034	0.032	3.7				
	6.0% SOM	0.061	0.070	0.068	7.6				
Bromoform	1.0% SOM	2.8	5.2	0.95	760				
	2.5% SOM	5.9	11	2.1	1500				
	6.0% SOM	13	23	4.6	3100				
Butyl benzyl phthalate	1.0% SOM	1400*	42000*	220*	940000*				
	2.5% SOM	3300*	44000*	550*	940000*				
	6.0% SOM	7200*	44000*	1300*	950000*				

*soil concentration above saturation limit

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds											
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)						
Chloroethane	1.0% SOM	8.3	8.4	110	960						
	2.5% SOM	11	11	200	1300						
	6.0% SOM	18	18	380	2100						
Chloromethane	1.0% SOM	0.0083	0.0085	0.066	1.0						
	2.5% SOM	0.0098	0.0099	0.13	1.2						
	6.0% SOM	0.013	0.013	0.23	1.6						
Cis 1,2 Dichloroethene	1.0% SOM	0.11	0.12	0.26	14						
	2.5% SOM	0.19	0.20	0.50	24						
	6.0% SOM	0.37	0.39	1.0	47						
Dichloromethane	1.0% SOM	0.58	2.10	0.10	270						
	2.5% SOM	0.98	2.80	0.19	360						
	6.0% SOM	1.70	4.50	0.34	560						
Diethyl Phthalate	1.0% SOM	120*	1800*	19*	150000*						
	2.5% SOM	260*	3500*	41*	220000*						
	6.0% SOM	570*	6300*	94*	290000*						
Di-n-butyl phthalate	1.0% SOM	13*	450*	2.00	15000*						
	2.5% SOM	31*	450*	5.00	15000*						
	6.0% SOM	67*	450*	12	15000*						
Di-n-octyl phthalate	1.0% SOM	2300*	3400*	940*	89000*						
	2.5% SOM	2800*	3400*	2100*	89000*						
	6.0% SOM	3100*	3400*	3900*	89000*						
Hexachloroethane	1.0% SOM	0.20	0.22	0.27	22*						
	2.5% SOM	0.48	0.54	0.67	53*						
	6.0% SOM	1.10	1.30	1.60	120*						
Isopropylbenzene	1.0% SOM	11	12	32	1400*						
	2.5% SOM	27	28	79	3300*						
	6.0% SOM	64	67	190	7700*						
Methyl tert-butyl ether	1.0% SOM	49	73	23	7900						
(MTBE)	2.5% SOM	84	120	44	13000						
	6.0% SOM	160	220	90	24000						
Propylbenzene	1.0% SOM	34	40	34	4100*						
	2.5% SOM	82	97	83	9700*						
	6.0% SOM	190	230	200	21000*						
Styrene	1.0% SOM	8.10	35	1.60	3300*						
	2.5% SOM	19	78	3.70	6500*						
	6.0% SOM	43	170	8.70	11000*						
Total Cresols (2-, 3-, and 4-	1.0% SOM	80	3700	12	160000						
methylphenol)	2.5% SOM	180	5400	27	180000*						
	6.0% SOM	400	6900	63	180000*						
Trans 1,2 Dichloroethene	1.0% SOM	0.19	0.19	0.93	22						
	2.5% SOM	0.34	0.35	1.90	40						
	6.0% SOM	0.70	0.71	0.24	81						
Tributyl tin oxide	1.0% SOM	0.25	1.40	0.042	130*						
	2.5% SOM	0.59	3.10	0.100	180*						
	6.0% SOM	1.30	5.70	0.240	200*						

*soil concentration above saturation limit

	C4SL Low Level of Toxicological Concern										
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
	1.0% SOM	0.11	0.16	0.054	12	300	300				
1,2-Dichloroethane	2.5% SOM	0.18	0.24	0.10	17	310	330				
(Ethylene Dichloride)	6.0% SOM	0.31	0.41	0.19	29	310	380				
	1.0% SOM	0.46	0.50	0.89	38	3,800	2,000				
Cis-1,2-Dichloroethene	2.5% SOM	0.78	0.84	1.7	64	3,800	2,400				
	6.0% SOM	1.5	1.6	3.6	120	3,900	3,100				
Tatus ablaus athaus	1.0% SOM	0.31	0.32	2	24	3,200	1,400				
letrachioroethene	2.5% SOM	0.70	0.71	4.8	55	3,300	1,900				
(PCE)	6.0% SOM	1.60	1.60	11	130	3,400	2,500				
	1.0% SOM	0.90	0.93	3.70	69	13,000	5,600				
Trans-1,2-Dichloroethene	2.5% SOM	1.60	1.70	7.50	120	13,000	7,000				
	6.0% SOM	3.30	3.40	16	260	13,000	9,100				
	1.0% SOM	0.0093	0.0097	0.032	0.73	76	41				
I richloroethene	2.5% SOM	0.020	0.020	0.072	1.5	78	54				
(ICE)	6.0% SOM	0.043	0.045	0.16	3.4	79	69				
	1.0% SOM	0.0064	0.015	0.0017	1.1	7.8	18				
Vinyi Chloride	2.5% SOM	0.010	0.019	0.0031	1.4	7.8	19				
(Chloroethene)	6.0% SOM	0.017	0.029	0.0058	2.2	7.8	19				

9.6. Asbestos

No asbestos or asbestos containing materials (ACM's) are considered acceptable on-site from a human health perspective. Therefore the GAC for asbestos & ACM's within any imported material should be none detected (ND).

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX G: Asbestos Risk Assessment

Registered Officer Hineton House 31 Horse Fair, Banbury, Oxfoldshile OKI6 64E. Registered in England No 07012001

Asbestos Risk Assessment (CIRIA733)

Site information	Trial Hole		TP1 and TP3								
	Depth (m bgi)	0.2 and 0.80						<u> </u>			
	Abestos type		Chrysotile			Amosite		1	Crocidolite		
Asbestos Type	Kasbestos		1.3			1.7			2.0		
Considerations	Soil Concentration		0.001								
	(Quantification Result in %)	0.001									
Soil Type	Soil Type	Sand	Sandy Clay	Clay	Sand	Sandy Clay	Clay	Sand	Sandy Clay	Clay	
Considerations	Ksoil	2.9	1.7	0.93	2.9	1.7	0.93	2.9	1.7	0.93	
Considerations	Enter the relevant from the above		1.7								
	Koverall		1.6			1.6			1.6		
Constants	Dust Concentration (mg/m3)		0.1			0.1		0.1			
CONSIGNIS	Dry Conditions Exposure (hrs)		750			750		1	750		
	Occupation hours in a year	1920				1920			1920		
	fibre/ml per mg/m3		0.00138								
Colculation Posults	fibre/ml		0.000138								
Calculation Results	fibre/ml.hr		0.104								
	fibre/ml.year		0.000054								
	Age (exposure commences)		0			0			0		
Mesothelioma	Risk persists for (Years)		60			60		1	60		
Accumulated Risk	Cummulative Age Adjustment Factor		16.8			16.8			16.8		
	fibre/ml.year (cumulative)		0.00091								
Lung Cancer	Risk persists for (Years)		60			60			60		
Accumulated Risk	fibre/ml.year (cumulative)		0.00065								
		BACK	GROUND								

This asbestos risk assessment has been undertaken in accordance with the guidance within CIRIA733.

The fibre concentration within the airborne soil dust (in fibres/ml per mg/m3) was calculated based on the results of Addison et al 1988.

The airborne concentration of soil dust (0.1mg/m3) was based on ambient urban dust levels and ART modelling.

The dry conditions exposure (750hrs) was based upon regional meteorological data suggesting 150hrs of dry conditions per year, when applied over a 5-year segment this equates to 750hours.

The occupational hours per year (1920hrs) is based on a 40-hour working week and 48 working weeks in a year.

A worst-case exposure scenario has been considered for residents, groundworkers or generally end-users. This was based on the risk persisting for a period of 60 years, accumulated in 5-year increments. As the risk of mesothelioma is age dependent, this considered the exposure commencing at age 0 with the relevant age adjustment factor applied for each 5-year increment.

Based on the above considerations, the following equations have been used:

((Kasbestostype x Ksoil) ÷ Koverall) x Soil Concentration = fibre/ml per mg/m3

Fibre/ml per mg/m3 x Dust Concentration = fibre/ml

(f/ml x Dry Conditions Exposure (hrs)) = fibre/ml.hr

Fibre/ml.hr ÷ occupational hours per year = fibre/ml.year

Mesothelioma: fibre/ml.year x 16.8 (cumulative age adjustment factor for 60 years)

Lung Cancer: fibre/ml.year x 12 (60 years in 5-year increments)

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB

0333 600 1221 engulries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX H: Hazard Waste Assessment

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline [™] classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to: a) understand the origin of the waste b) select the correct List of Waste code(s) c) confirm that the list of determinands, results and sampling plan are fit for purpose d) select and justify the chosen metal species (Appendix B) e) correctly apply moisture correction and other available corrections f) add the meta data for their user-defined substances (Appendix A) g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)										
To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.										
Job name GWPR5909										
Description/Commen	ts									
Project		Site								
GWPR5909		34 Nassau Road SW13 9QE								
Classified by	0	HazWastaOnlinaTM provides a two day bazardous	wasta classification course that course the							
Name: Adam Young	Company: Ground and Water	use of the software and both basic and advanced waste classification techniques. Certificati has to be renewed every 3 years.								
Date:	2 The long Barn, Norton Farm, Selbourr	HazWasteOnline™ Certification	on: -							
Telephone:	Alton	Course	Date							
	GU34 3NB	Hazardous Waste Classification	-							
Purpose of classificat	tion									
2 - Material Characterisati	ion									
Address of the waste										
34 Nassau Road			Post Code SW13 9QE							
SIC for the process g	iving rise to the waste									
Description of indust	ry/producer giving rise to the waste									
Redevelopment of site										
Description of the spe	ecific process, sub-process and/or a	ctivity that created the waste								
Waste created during the	excavation of soils									
Description of the wa	ste									

Made Ground

Created date: 05 Apr 2024 08:04 GMT

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS0112032024-1.20		Non Hazardous		3
2	WS0212032024-0.20		Non Hazardous		5
3	WS0112032024-2.00		Non Hazardous		8
4	WS0212032024-1.50		Non Hazardous		9
5	WS0212032024-3.00		Non Hazardous		10

Related documents							
# Name	Description						
1 24-009116_HWOL.hwol	i2 Analytical .hwol file used to populate the Job						
Report							

Created by: Adam Young

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	11
Appendix B: Rationale for selection of metal species	12
Appendix C: Version	13

Classification of sample: WS01--12032024-1.20

Sample details

Sample name:	LoW Code:	
WS0112032024-1.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
17%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		Determinand	P Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		number CAS Number	G					MO	
1	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.8 mg/kg	1.923	<3.462 mg/kg	<0.000346 %		<lod< td=""></lod<>
		monohydric phenols	-	4		4	0.0001.0/		1.00
2		P1186		<1 mg/kg		<1 mg/kg	<0.0001 %		<lud< td=""></lud<>
3	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		2 mg/kg	1.884	3.768 mg/kg	0.000377 %		
	1	006-007-00-5							
4	4	boron { boron tribromide } 005-003-00-0 233-657-9 10294-33-4	-	1.7 mg/kg	23.173	32.697 mg/kg	0.00327 %	\checkmark	
5	8	pH		8 pH		8 pH	8pH		
	2								
6		033-001-00-X 231-148-6 7440-38-2		18 mg/kg		14.94 mg/kg	0.00149 %	\checkmark	
7 6	2	cadmium { cadmium sulfide }	1	<0.2 mg/kg	1 295	<0.257 mg/kg	<0.00002.%		
<i>'</i>	Ī	048-010-00-4 215-147-8 1306-23-6		<0.2 mg/kg	1.205	<0.237 mg/kg	<0.00002 /8		LOD
8	4	copper { dicopper oxide; copper (I) oxide }		67 mg/kg	1.126	62.611 mg/kg	0.00626 %	1	
	-	029-002-00-X 215-270-7 1317-39-1							
9 •	~	mercury { mercury }		0.9 mg/kg		0.747 mg/kg	0.0000747 %	\checkmark	
	A	nickel { nickel dihydroxide }	+						
10	~	028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		24 mg/kg	1.579	31.464 mg/kg	0.00315 %	\checkmark	
11	4	lead {	1	220 mg/kg		182.6 mg/kg	0.0183 %	~	
	0	082-001-00-6							
12	4	seienium { <mark>seienium</mark> }		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
_		vanadium { divanadium pentaoxide: vanadium	-						
13	•	pentoxide }		55 mg/kg	1.785	81.494 mg/kg	0.00815 %	\checkmark	
		023-001-00-8 215-239-8 1314-62-1							
14	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		110 mg/kg	2.469	225.447 mg/kg	0.0225 %	~	

_													
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	8	acenaphthylene	1	1		0.38	ma/ka		0.315	ma/ka	0 0000315 %	./	
			205-917-1	208-96-8								`	
16	0	acenaphthene				0.1	ma/ka		0.083	ma/ka	0 0000083 %	/	
10			201-469-6	83-32-9	-	0.1	iiig/kg		0.000	mg/ng	0.0000000 /0	~	
17	0	anthracene				3	ma/ka		2 /0	ma/ka	0 000249 %	/	
11			204-371-1	120-12-7		5	шу/ку		2.45	шу/ку	0.000249 /8	~	
10		benzo[a]anthracer	ne			5.7	ma/ka		4 721	ma/ka	0 000 473 %		
10		601-033-00-9	200-280-6	56-55-3		5.7	mg/kg		4.731	шу/ку	0.000473 %	~	
10		benzo[a]pyrene; b	enzo[def]chrysene			47	4.7		2 001	~~~// <i>.</i> ~	0.00000.0/	\checkmark	
19		601-032-00-3	200-028-5	50-32-8		4.7	mg/ĸg		3.901	mg/kg	0.00039 %		
		benzo[b]fluoranthe	ene			0		5 000		0.000500.0/			
20		601-034-00-4	205-911-9	205-99-2	-	6.1	mg/кg		5.063	mg/kg	0.000506 %	\checkmark	
		benzo[k]fluoranthe	ene	1									
21		601-036-00-5	205-916-6	207-08-9	-	2.3	mg/kg		1.909	mg/kg	0.000191 %	\checkmark	
		benzolahilpervlen	e	1									
22	Ŭ		205-883-8	191-24-2	-	2.6	mg/kg		2.158	mg/kg	0.000216 %	\checkmark	
		chrysene		-							0.000.472.9/		
23		601-048-00-0	205-923-4	218-01-9	-	5.7	mg/kg		4.731	mg/kg	0.000473 %	\checkmark	
		dibenz[a,h]anthracene				0.00 (1							
24		601-041-00-2	200-181-8	53-70-3	-	0.63 m	mg/kg		0.523 r	mg/kg	0.0000523 %	\checkmark	
-		fluoranthene	200 101 0	00100								++	
25			205-912-4	206-44-0	-	14	mg/kg		11.62	mg/kg	0.00116 %	\checkmark	
-	_	fluorene	200 012 1	200 110									
26	۳		201-695-5	86-73-7	-	0.43	mg/kg		0.357	mg/kg	0.0000357 %	\checkmark	
<u> </u>	-	indeno[123-cd]pvr	ene	0010-1	-								
27	۲		205-803-2	103-30-5	-	2.2	mg/kg		1.826	mg/kg	0.000183 %	\checkmark	
		nanhthalene	203-033-2	199-99-9									
28			202 040 5	01 20 3	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		nhononthrono	202-049-3	91-20-3									
29	0	prienantinene	001 591 5	05 01 0	_	7.2	mg/kg		5.976	mg/kg	0.000598 %	\checkmark	
		Durono.	201-301-3	05-01-0	+								
30	٥	pyrene	004 007 0	120.00.0	_	11	mg/kg		9.13	mg/kg	0.000913 %	\checkmark	
<u> </u>	•		204-921-3	129-00-0	-							\square	
31	44	chromium in chror chromium(III) oxid	nium(III) compound <mark>e</mark> }	* } sł		25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
			215-160-9	1308-38-9						_			
										Total:	0.0733 %		

Key

⊲ <LOD

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

CLP: Note 1

Only the metal concentration has been used for classification

Classification of sample: WS02--12032024-0.20

Sample details

Sample name:	LoW Code:	
WS0212032024-0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
15%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		Determinand	> Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index EC Number CAS Number	CLF					MC	
1	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.8 mg/kg	1.923	<3.462 mg/kg	<0.000346 %		<lod< td=""></lod<>
		monohydric phenols	+				0.0004.0/		
2		P1186		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
3	*	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
		006-007-00-5							
4	4	boron { boron tribromide } 005-003-00-0 233-657-9 10294-33-4	_	1.2 mg/kg	23.173	23.636 mg/kg	0.00236 %	\checkmark	
5	٥	рН		7.7 pH		7.7 pH	7.7 pH		
		PH							
6	4	arsenic { arsenic }		19 mg/kg		16.15 mg/kg	0.00161 %	\checkmark	
	*	cadmium { cadmium sulfide }							
7	-	048-010-00-4 215-147-8 1306-23-6	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
8	Å	copper { dicopper oxide; copper (I) oxide }		33 ma/ka	1 1 2 6	31.581 mg/kg	0.00316 %		
Ľ		029-002-00-X 215-270-7 1317-39-1			1.120			~	
9	4	mercury { mercury }		0.6 mg/kg		0.51 mg/kg	0.000051 %	\checkmark	
		080-001-00-0 231-106-7 /439-97-6	+						
10	~	028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		21 mg/kg	1.579	28.194 mg/kg	0.00282 %	\checkmark	
11	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	160 mg/kg		136 mg/kg	0.0136 %	~	
	•	selenium { selenium }	+						
12	*	034-001-00-2 231-957-4 7782-49-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13	~	vanadium { divanadium pentaoxide; vanadium pentoxide }		49 mg/kg	1.785	74.353 mg/kg	0.00744 %	~	
		023-001-00-8 215-239-8 1314-62-1	-						
14	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		74 mg/kg	2.469	155.319 mg/kg	0.0155 %	~	

www.hazwasteonline.com

#		Determinand ELLCLP index EC Number CAS Number		ed data	Conv. Factor Compound conc.		Classification value	C Applied	Conc. Not Used				
		number			С							M	
15	0	acenaphthylene	005 017 1			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
\vdash	-	acenanhthene	205-917-1	208-96-8	\vdash								
16	۲	acenaphinene	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17		anthracene			1	0.16	malka		0.126	ma/ka	0.0000126.8/	,	
			204-371-1	120-12-7		0.16	тід/кд		0.130	тід/кд	0.0000136 %	~	
18		benzo[a]anthracen	e	50.55.0		1	mg/kg		0.85	mg/kg	0.000085 %	\checkmark	
-		601-033-00-9	200-280-6	56-55-3	-								
19		601-032-00-3	200-028-5	50-32-8		0.84	mg/kg		0.714	mg/kg	0.0000714 %	\checkmark	
20		benzo[b]fluoranthe	ne			1.0			1.00	~~~~// <i>.</i> ~~	0.000136.8/	,	
20		601-034-00-4	205-911-9	205-99-2		1.6	mg/kg		1.36	mg/kg	0.000136 %	\checkmark	
21		benzo[k]fluoranthe	ne			0.68	ma/ka		0 578	ma/ka	0 0000578 %	./	
<u> </u>		601-036-00-5	205-916-6	207-08-9	1							Ŷ	
22	8	benzo[ghi]perylene	e	404.04.0		0.6	mg/kg		0.51	mg/kg	0.000051 %	\checkmark	
\vdash		chrycono	205-883-8	191-24-2	\vdash								
23		601-048-00-0	205-923-4	218-01-9	-	1.3	mg/kg		1.105	mg/kg	0.000111 %	\checkmark	
24		dibenz[a,h]anthrac	ene	-		0 17	ma/ka		0 145	ma/ka	0 0000145 %	1	
<u> </u>		601-041-00-2	200-181-8	53-70-3								*	
25	0	fluoranthene				1.7	mg/kg		1.445	mg/kg	0.000145 %	\checkmark	
-		fluoropo	205-912-4	206-44-0	-								
26	۵	liuorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		indeno[123-cd]pyre	ene	00 10 1									
27	205-893-2 193-39-5			0.52	mg/kg		0.442	mg/kg	0.0000442 %	\checkmark			
28		naphthalene		1		<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		
20		601-052-00-2	202-049-5	91-20-3		<0.05	шу/ку		<0.05	шу/ку	<0.000003 /8		<lod< td=""></lod<>
29	۰	phenanthrene				0.59	mg/kg		0.501	mg/kg	0.0000501 %	\checkmark	
			201-581-5	85-01-8	_								
30	8	pyrene	201-027-3	129-00-0	-	1.7	mg/kg		1.445	mg/kg	0.000145 %	\checkmark	
		benzene	204-321-3	123-00-0	┢								
31		601-020-00-8	200-753-7	71-43-2	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
32	0	ethylbenzene		-		~5	ua/ka		<0.005	ma/ka	<0.000005 %		
52		601-023-00-4	202-849-4	100-41-4		~5	µg/kg		<0.000	iiig/kg	<0.0000003 78		
22		tert-butyl methyl et	her; MTBE;			-5	ua/ka		-0.005	malka	-0.000005.8/		
33		603-181-00-X	216-653-1	1634-04-4		<0	µу∕ку		<0.005	mg/kg	<0.0000003 %		<lod< td=""></lod<>
		xylene			\uparrow								
34		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
-		o-xylene: [1] n-yyle	10-000-7 [4]	3] xvlene [4]	\vdash							\square	
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
36		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
37	۰	TPH (C6 to C40) p	etroleum group		1	<40	ma/ka		<40	ma/ka	<0.004 %		
				TPH	1		iiig/iig			iiig/iig			200
38	4	chromium in chrom chromium(III) oxide	nium(III) compound > }	1308-38.0		24	mg/kg	1.462	35.077	mg/kg	0.00351 %		
-		¥15-160-9 [1308-38-9								Total:	0.0558 %	\vdash	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS01--12032024-2.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
WS0112032024-2.00	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
3.4%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 3.4% Wet Weight Moisture Correction applied (MC)

#		Determinand		Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not	
		EU CLP index number	EC Number	CAS Number	CLP				Value S		Used
1	0	pH		PH	_	8.4 pH		8.4 pH	8.4 pH		
		х.	~					Total	0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS02--12032024-1.50

Sample details

Sample name:	LoW Code:	
WS0212032024-1.50	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
17%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Comp	ound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pН		PH		8 pH		8	рН	8рН		
									Total:	0%		

Key

0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS02--12032024-3.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

-		
Sample name:	LoW Code:	
WS0212032024-3.00	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
2.4%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 2.4% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP				D N N N N N N N N N N N N N N N N N N N		
1	8	pН		PH		8.3 pH		8.3 pH	8.3 pH		
			~	~			°	Tota	I: 0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Appendix A: Classifier defined and non GB MCL determinands

• monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301, STOT RE 2; H373, Skin Corr. 1B; H314, Skin Corr. 1B; H314 >= 3%, Skin Irrit. 2; H315 1 <= conc. < 3%, Eye Irrit. 2; H319 1 <= conc. < 3%, Aquatic Chronic 2; H411

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

^a arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

GB MCL index number: 033-001-00-X Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Iead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17. Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Report created by Adam Young on 05 Apr 2024

[•] fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from ECHA's C&L inventory database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 30 Apr 2020 Hazard Statements: Acute Tox. 4; H302 , Skin Sens. 1; H317 , Eye Irrit. 2; H319

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

Appendix B: Rationale for selection of metal species

chromium in chromium(VI) compounds {chromium(VI) oxide}

Most likely worst case.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Most likely worst case.		
boron {boron tribromide}		
Most likely worst case.		
arsenic {arsenic}		
Most likely worst case.		
cadmium {cadmium sulfide}		
Most likely worst case.		

copper {dicopper oxide; copper (I) oxide}
Most likely worst case.
mercury {mercury}
Most likely worst case.
nickel {nickel dihydroxide}
Most likely worst case.
lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}
Worse case
selenium {selenium}
Most likely worst case.
vanadium {divanadium pentaoxide; vanadium pentoxide}
Most likely worst case.
zinc {zinc sulphate}
Most likely worst case.
chromium in chromium(III) compounds {chromium(III) oxide}
Most likely worst case.
Appendix C: Version
HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2024.96.6000.11109 (05 Apr 2024) HazWasteOnline Database: 2024.95.5999.11108 (04 Apr 2024)
This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/76 of 6 June 2017
13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

GB MCL List v2.0 - version 2.0 of 20th October 2023 GB MCL List v3.0 - version 3.0 of 11th January 2024 GB MCL List v4.0 - version 4.0 of 2nd March 2024

2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline [™] classifies legislation and the rules and o not assessed). It is the respon a) understand the origin o b) select the correct List o c) confirm that the list of d d) select and justify the ch e) correctly apply moisture f) add the meta data for th g) check that the classifica	waste as either hazardous or non-hazardous ba data defined in the current UK or EU technical guid nsibility of the classifier named below to: if the waste of Waste code(s) leterminands, results and sampling plan are fit for nosen metal species (Appendix B) e correction and other available corrections neir user-defined substances (Appendix A) ation engine is suitable with respect to the national	sed on its chemical composition, related lance (Appendix C) (note that HP 9 Infectious i purpose destination of the waste (Appendix C)	s
To aid the reviewer, the labora	atory results, assumptions and justifications manag	ed by the classifier are highlighted in <mark>pale yello</mark>	w.
Job name GWPR5986			
Description/Commen	ts		
Project		Site	
GWPR5986		34 Nassau Road SW13 9QE	
Classified by			
Name: Adam Young Date: 22 May 2024 09:17 GMT Telephone:	Company: Ground and Water 2 The long Barn, Norton Farm, Selbourr Road, Alton GU34 3NB	HazWasteOnline™ provides a two day, hazardous was use of the software and both basic and advanced wast has to be renewed every 3 years. HazWasteOnline™ Certification: Course Hazardous Waste Classification	te classification course that covers the e classification techniques. Certification Date -
Purpose of classification	tion		
2 - Material Characterisat	ion		
Address of the waste			
34 Nassau Road		F	Post Code SW13 9QE
SIC for the process g	iving rise to the waste		
Description of indust	ry/producer giving rise to the waste		
Redevelopment of site			
Description of the sp	ecific process, sub-process and/or a	ctivity that created the waste	
Waste created during exc	avation of soils		
Description of the wa	ste		

Made Ground

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	TP106052024-0.20		Non Hazardous		3
2	TP206052024-0.50		Non Hazardous		6
3	TP306052024-0.80		Non Hazardous		8
4	TP506052024-1.20		Non Hazardous		10
Rela	ted documents				

# Na	ame	Description
1 <mark>24</mark>	-018427_HWOL.hwol	i2 Analytical .hwol file used to populate the Job

Report

Created by: Adam Young

Created date: 22 May 2024 09:17 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	13
Appendix B: Rationale for selection of metal species	15
Appendix C: Version	15

Classification of sample: TP1--06052024-0.20

Sample details

Sample name:	LoW Code:	
TP106052024-0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
14% (wet weight correction)	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		Determinand	P Note	User entered data	Conv. Factor	Compound conc.	Classification value	: Applied	Conc. Not Used
		number	Ы					ž	
1	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.8 mg/kg	1.923	<3.462 mg/kg	<0.000346 %		<lod< th=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	-					-	
2		P1186		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5						_	
4	۲	pH		8 pH		8 pH	8pH		
5	4	boron { boron tribromide }		1.1 ma/ka	23 173	21.922 ma/ka	0.00219 %		
Ľ		005-003-00-0 233-657-9 10294-33-4			20.170	21.322 mg/kg	0.00210 //	Ŷ	
6	4	arsenic { • arsenic }		22 mg/kg		18.92 mg/kg	0.00189 %	\checkmark	
		cadmium { cadmium sulfide }	_ 1				<0.00002 %	H	
7	**	048-010-00-4 215-147-8 1306-23-6		<0.2 mg/kg	1.285	<0.257 mg/kg			<lod< td=""></lod<>
8	2	copper { dicopper oxide; copper (I) oxide }		68 ma/ka	1 1 26	65.842 mg/kg	0.00658.%		
		029-002-00-X 215-270-7 1317-39-1			1.120	03.042 mg/kg	0.00030 /8	~	
9	4	mercury { mercury }		1.6 mg/kg		1.376 mg/kg	0.000138 %	1	
		080-001-00-0 231-106-7 7439-97-6						Ľ	
10	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 024-348-1 [2] 11113-74-9 [2]		21 mg/kg	1.579	28.526 mg/kg	0.00285 %	~	
11	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	330 mg/kg		283.8 mg/kg	0.0284 %	~	
		082-001-00-6	1						
12	4	selenium { selenium }		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13		034-001-00-2 231-957-4 /782-49-2	-					-	
	44	pentoxide }		50 mg/kg	1.785	76.763 mg/kg	0.00768 %	\checkmark	
<u> </u>		023-001-00-8 215-239-8 1314-62-1	_						
14	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		110 mg/kg	2.469	233.595 mg/kg	0.0234 %	~	

www.hazwasteonline.com

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	0	acenaphthylene	205-917-1	208-96-8	-	0.09	mg/kg		0.0774	mg/kg	0.00000774 %	\checkmark	
16	8	acenaphthene	200 011 1	200 00 0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		anthracene	201-469-6	83-32-9	-								
17			204-371-1	120-12-7		0.24	mg/kg		0.206	mg/kg	0.0000206 %	\checkmark	
18		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		1.4	mg/kg		1.204	mg/kg	0.00012 %	\checkmark	
19		benzo[a]pyrene; be	enzo[def]chrysene	F0 22 8		1.6	mg/kg		1.376	mg/kg	0.000138 %	\checkmark	
		benzo[b]fluoranthe	200-028-5 ne	50-32-8		2			4 70	~~~//c	0.000170.0/	,	
20		601-034-00-4	205-911-9	205-99-2			mg/kg		1.72	mg/kg	0.000172 %	\checkmark	
21		benzo[k]fluoranthe	ne			0.86	mg/kg		0.74	mg/kg	0.000074 %	\checkmark	
		601-036-00-5	205-916-6	207-08-9	-								
22	8	benzolgnijberviene	205-883-8	191-24-2		1	mg/kg		0.86	mg/kg	0.000086 %	\checkmark	
23		chrysene 601-048-00-0	205-923-4	218-01-9	_	1.7	mg/kg		1.462	mg/kg	0.000146 %	\checkmark	
24		dibenz[a,h]anthrac	ene	E2 70 2		0.21	mg/kg		0.181	mg/kg	0.0000181 %	\checkmark	
25	0	fluoranthene	200-181-8	53-70-3		2.7	ma/ka		2.322	ma/ka	0.000232 %	J	
			205-912-4	206-44-0	_					5.5		•	
26	0	fluorene	201-695-5	86-73-7		0.06	mg/kg		0.0516	mg/kg	0.00000516 %	\checkmark	
27	0	indeno[123-cd]pyrene			0.91	ma/ka		0 783	ma/ka	0 0000783 %	./		
			205-893-2	193-39-5	1		iiig/kg		0.700	iiig/itg	0.0000700 //	~	
28		naphthalene 601-052-00-2	202-049-5	91-20-3		0.16	mg/kg		0.138	mg/kg	0.0000138 %	\checkmark	
29	0	phenanthrene	201-581-5	85-01-8		1.1	mg/kg		0.946	mg/kg	0.0000946 %	\checkmark	
30	0	pyrene				2.4	mg/kg		2.064	mg/kg	0.000206 %	\checkmark	
-		benzene	204-927-3	129-00-0									
31		601-020-00-8	200-753-7	71-43-2		<5	µg/кg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
32	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
33		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane	1		<5	µg/ka		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
34		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		o-xylene; [1] p-xyle	ene; [2] m-xylene; [3] xylene [4]									
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
36		toluene			<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
37		601-021-00-3 203-625-9 108-88-3 TPH (C6 to C40) petroleum group Image: Comparison of the case of the		╞	<40	mg/ka		<40	mg/ka	<0.004 %		<lod< td=""></lod<>	
Ľ				TPH	1		59			5.5			
38	4	chromium in chrom chromium(III) oxide	nium(III) compound e } 215-160-9	1308-38 0		22	mg/kg	1.462	32.154	mg/kg	0.00322 %		
\vdash	L	l	£10-100-9	1300-30-3						Total:	0.0825 %	-	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
٥	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP2--06052024-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
TP206052024-0.50	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
14%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	рН				7.3	pН		7.3	pН	7.3 pH	-	
				PH						-		<u> </u>	
2	0	acenaphthylene				0.15	mg/kg		0.129	mg/kg	0.0000129 %	1	
			205-917-1	208-96-8								Ľ	
3	8	acenaphthene	201-469-6	83-32-9	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	anthracene									-			
4	204-371-1 120-12-7		-	0.3	mg/kg		0.258	mg/kg	0.0000258 %	\checkmark			
	_	benzolalanthracen	<u>e</u>	120 12 1								-	
5		601-033-00-9	200-280-6	56-55-3	-	1.8	mg/kg		1.548	mg/kg	0.000155 %	\checkmark	
	_	benzolalovrene: be	enzoldeflchrvsene									1	
6		601-032-00-3 200-028-5 50-32-8			-	2.5	mg/kg		2.15	mg/kg	0.000215 %	\checkmark	
_		benzolbìfluoranthene											
7		601-034-00-4	205-911-9	205-99-2	1	2.4	mg/kg		2.064	mg/kg	0.000206 %	\checkmark	
	benzo[k]fluoranthene			1									
8		601-036-00-5 205-916-6 207-08-9			1.3	mg/kg		1.118	mg/kg	0.000112 %	\checkmark		
		benzo[ghi]perylene	9	l	\uparrow	1.0	0		4.440	0	0.000110.0/		
9	-		205-883-8	191-24-2	-	1.3	mg/kg		1.118	mg/kg	0.000112 %	\checkmark	
40		chrysene				0.4			0.004		0.000000.0/		
10		601-048-00-0	205-923-4	218-01-9	-	2.4	mg/kg		2.064	mg/kg	0.000206 %	\checkmark	
		dibenz[a,h]anthrac	ene			0.00			0.004		0.0000004.0/		
11		601-041-00-2	200-181-8	53-70-3		0.26	mg/kg		0.224	mg/kg	0.0000224 %	\checkmark	
12		fluoranthene	·			2.0	malka		2.254	ma/ka	0.000225.0/	,	
12			205-912-4	206-44-0		3.9	тід/кд		3.354	тід/кд	0.000335 %	\checkmark	
12	0	fluorene	·	·		0.07	ma/ka		0.0602	ma/ka	0.0000602.9/	,	
13			201-695-5	86-73-7	1	0.07	шу/ку		0.0602	тту/ку	0.0000002 %	\checkmark	
14	0	indeno[123-cd]pyre	ene	·		1 1	ma/ka		0.046	ma/ka	0.000046.9/	,	
14			205-893-2	193-39-5		1.1	iiig/kg		0.940	шу/ку	0.0000940 /8	~	
15		naphthalene				0.08	ma/ka		0.0688	ma/ka	0 00000688 %	1	
10		601-052-00-2	202-049-5	91-20-3		0.00	iiig/kg		0.0000	iiig/kg	0.00000000 /0	Ŷ	
16	phenanthrene		1.5	ma/ka		1 29	ma/ka	0 000129 %	./				
			201-581-5	85-01-8	1		ing/ing				3.000120 /0	Ŷ	
17		pyrene				33	ma/ka		2 838	ma/ka	0.000284 %	./	
			204-927-3	129-00-0		0.0			2.000		3.00020.70	ř	

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18		benzene 601-020-00-8	200-753-7	71-43-2		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
19	8	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
20		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
21		o-xylene; [1] p-xyle 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	[3] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
22		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
23	8	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<0.007	mg/kg		<0.007	mg/kg	<0.000007 %		<lod< th=""></lod<>
24	8	coronene	205-881-7	191-07-1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
						·				Total:	0.00194 %	Г	

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Determinand defined or amended by HazWasteOnline (see Appendix A) <LOD Below limit of detection

Classification of sample: TP3--06052024-0.80

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
TP306052024-0.80	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
12%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP	Fac		Factor			value	MC /	Used
1	4	chromium in chron <mark>oxide</mark> }	nium(VI) compound	ds {		<1.8	mg/kg	1.923	<3.462	mg/kg	<0.000346 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
2	۵	monohydric pheno	ls	D4400		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< th=""></lod<>
	•			P1186	-								
3	~	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5											
4	0	рН		PH	_	8.1	рН		8.1	pН	8.1 pH		
-	æ	boron { boron tribre	omide }	r · ·		0.0		00.470	4.005		0.000.400.8/		1.00
5	~	005-003-00-0	233-657-9	10294-33-4		<0.2	mg/кg	23.173	<4.635	mg/ĸg	<0.000463 %		<lod< td=""></lod<>
6	4	arsenic { arseni	c }	7440.29.2		19	mg/kg		16.72	mg/kg	0.00167 %	\checkmark	
		cadmium { cadmiu	m sulfide }	7440-36-2									
7	•	048-010-00-4	215-147-8	1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
	æ	copper { dicopper	oxide; copper (I) o	<mark>(ide</mark> }		47		1 1 2 6	40 507	ma/ka	0.00466.8/	,	
8	~	029-002-00-X	215-270-7	1317-39-1		47	mg/кg	1.126	46.567	mg/ĸg	0.00466 %	\checkmark	
9	4	mercury { mercury	}	~		0.6	ma/ka		0.528	ma/ka	0 0000528 %	./	
Ľ		080-001-00-0	231-106-7	7439-97-6								Ŷ	
10	4	nickel { nickel dihy	droxide }			20		1 570	07 700	m a /l ca	0.00078.9/	,	
10		028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		20	ту/ку	1.579	27.799	тід/кд	0.00278 %	~	
11	4	lead { [●] lead com specified elsewher	pounds with the ex e in this Annex (wo	ception of those prst case) }	1	240	mg/kg		211.2	mg/kg	0.0211 %	\checkmark	
		082-001-00-6			_								
12	4	selenium { seleniu	m }	7792 40 2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		034-001-00-2 231-957-4 7782-49-2		-									
13	**	pentoxide }	alan pondondo, v			46	mg/kg	1.785	72.264	mg/kg	0.00723 %	\checkmark	
		023-001-00-8	215-239-8	1314-62-1		40				0.0			
14	4	zinc { zinc sulphate }	1		120	malka	2 460	260 759	malka	0.0261.9/	,		
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		120	тg/кg	2.469	200.758	тд/кд	0.0261 %	V	

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	8	acenaphthylene	1	1		2.2	ma/ka		2 024	ma/ka	0.000202.94		
15			205-917-1	208-96-8		2.5	шу/ку		2.024	iiig/kg	0.000202 /8	V	
16	8	acenaphthene				0.49	ma/ka		0 431	ma/ka	0 0000431 %	1	
10			201-469-6	83-32-9		0.+5	ing/kg		0.401	iiig/kg	0.0000401 /0	~	
17	0	anthracene				10	ma/ka		8.8	ma/ka	0 00088 %	1	
			204-371-1	120-12-7								Ň	
18		benzo[a]anthracer	e			18	ma/ka		15 84	ma/ka	0 00158 %	1	
		601-033-00-9	200-280-6	56-55-3			ing/kg					Ň	
19		benzo[a]pyrene; be	enzo[def]chrysene			18	ma/ka		15 84	ma/ka	0 00158 %	1	
	601-032-00-3 200-028-5 50-32-8											ľ	
20		benzo[b]fluoranthe	ene			23	ma/ka		20 24	ma/ka	0 00202 %	1	
20		601-034-00-4	205-911-9	205-99-2		20	ing/kg		20.21	iiig/iig	0.00202 /0	ľ	
21		benzo[k]fluoranthe	ne			8	ma/ka		7 04	ma/ka	0 000704 %	./	
		601-036-00-5	205-916-6	207-08-9			ing/kg			iiig/iig		Ň	
22		benzo[ghi]perylene	e			9.1	ma/ka		8 008	ma/ka	0 000801 %	1	
			205-883-8	191-24-2			ing/kg			iiig/iig		Ň	
23	23	chrysene				18	ma/ka		15 84	ma/ka	0 00158 %	1	
20		601-048-00-0	205-923-4	218-01-9		10	ing/kg		10.01	iiig/iig	0.00100 /0	×	
24		dibenz[a,h]anthrac	ene			21	ma/ka		1 848	ma/ka	0 000185 %	1	
24		601-041-00-2	200-181-8	53-70-3		2.1	ing/kg		1.040	iiig/kg	0.000100 %	×	
25		fluoranthene				42	ma/ka		36.96	ma/ka	0.0037 %	./	
20			205-912-4	206-44-0		72	ing/kg		00.00	iiig/kg	0.0007 //	×.	
26		fluorene				2.6	ma/ka		2 288	ma/ka	0 000229 %	1	
20			201-695-5	86-73-7		2.0	ing/kg		2.200	iiig/kg	0.000223 /0	×.	
27		indeno[123-cd]pyre	ene			86	ma/ka		7 568	ma/ka	0 000757 %	1	
21			205-893-2	193-39-5		0.0	ing/kg		7.500	iiig/kg	0.000707 %	×.	
28		naphthalene				12	ma/ka		1 056	ma/ka	0.000106 %	1	
20		601-052-00-2	202-049-5	91-20-3		1.2	ing/kg		1.000	iiig/kg	0.000100 %	×.	
29		phenanthrene				27	ma/ka		23.76	ma/ka	0 00238 %	1	
20			201-581-5	85-01-8		21	ing/kg		20.70	iiig/kg	0.00200 /0	v	
30	8	• pyrene		34	ma/ka		29 92	ma/ka	0 00299 %	./			
		204-927-3 129-00-0		<u> </u>	mg/ng		20.02			Ŷ			
31	4	chromium in chron chromium(III) oxide	nium(III) compound e }	ls {		22	mg/kg	1.462	32.154	mg/kg	0.00322 %		
<u> </u>		<u> </u>	F12-100-3	1000-00-9						Total:	0.0878 %	-	

ŀ	(
	ve v	

User supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Only the metal concentration has been used for classification

Classification of sample: TP5--06052024-1.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

•		
Sample name:	LoW Code:	
TP506052024-1.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
13%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		Deter	minand		Note	User entere	d data	Conv.	Compound	conc.	Classification	Applied	Conc. Not
		EU CLP index EC N number	Number	CAS Number	CLP	Fa		Factor			value	MC /	Used
1	4	chromium in chromium(VI) <mark>oxide</mark> }	compound	s {		<1.8	mg/kg	1.923	<3.462	mg/kg	<0.000346 %		<lod< th=""></lod<>
<u> </u>		024-001-00-0 215-607	'-8	1333-82-0	_								
2	۲	mononyaric phenois		D1196		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	cyanides { ^a salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5											
4	8	pH		PH	-	8.4	рН		8.4	pН	8.4 pH		
5	4	boron { boron tribromide }			0.6	mg/kg	23.173	12.096	mg/kg	0.00121 %	\checkmark		
	æ												
6	~	033-001-00-X 231-148	3-6	7440-38-2		17	mg/kg		14.79	mg/kg	0.00148 %	\checkmark	
7	4	cadmium { cadmium sulfide	; }	1206 22 6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
	-9	copper { dicopper oxide: co	pper (I) ox	ide }									
8	•••	029-002-00-X 215-270)-7	1317-39-1		49	mg/kg	1.126	47.997	mg/kg	0.0048 %	\checkmark	
٩	4	mercury { mercury }				0.7	ma/ka		0 609	ma/ka	0 0000609 %	/	
Ľ		080-001-00-0 231-106	6-7	7439-97-6			iiig/itg		0.000	iiig/itg	0.0000000 //	~	
10	4	nickel { nickel dihydroxide } 028-008-00-X 235-008	8-5 [1]	12054-48-7 [1]	-	20	mg/kg	1.579	27.483	mg/kg	0.00275 %	\checkmark	
11	4	lead { lead compounds v specified elsewhere in this	vith the exe Annex (wo	ception of those rst case) }	1	180	mg/kg		156.6	mg/kg	0.0157 %	~	
		082-001-00-6											
12	4	selenium { selenium }	· .	7792 40 2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
13	4	vanadium { divanadium pentaoxide; vanadium pentoxide }				49	mg/kg	1.785	76.102	mg/kg	0.00761 %	~	
		023-001-00-8 215-239	9-8	1314-62-1	-								
14	4	zinc { zinc sulphate } 030-006-00-9 231-793 231-793	9-3 [1] 9-3 [2]	7446-19-7 [1] 7733-02-0 [2]	_	86	mg/kg	2.469	184.753	mg/kg	0.0185 %	\checkmark	

#		EU CLP index	Determinand U CLP index EC Number CAS Number		LP Note	User entered data		Conv. Factor	Compound conc.		Classification value	C Applied	Conc. Not Used
		number			Ū							Σ	
15	0	acenaphthylene	205-017-1	208-96-8		0.05	mg/kg		0.0435	mg/kg	0.00000435 %	\checkmark	
16		acenaphthene	200 017 1	200 30 0	\vdash	0.00	malka		0.0792	malka	0 0000783 %		
10		-	201-469-6	83-32-9		0.09	тід/кд		0.0783	тід/кд	0.0000783 %	\checkmark	
17	٥	anthracene	004 074 4	400.40.7		0.2	mg/kg		0.174	mg/kg	0.0000174 %	\checkmark	
		benzo[a]anthracen	1204-371-1 Ie	120-12-7					0.050				
18		601-033-00-9 200-280-6 56-55-3				0.98	mg/kg		0.853	mg/kg	0.0000853 %	\checkmark	
19		benzo[a]pyrene; be	20[a]pyrene; benzo[def]chrysene 1.3 mg/kg 1.131 mg/kg						mg/kg	0.000113 %	\checkmark		
		benzo[b]fluoranthe	200-028-5	p0-32-8	\vdash								
20		601-034-00-4	205-911-9	205-99-2		1.5	mg/kg		1.305	mg/kg	0.000131 %	\checkmark	
21		benzo[k]fluoranthe	ne			0.57	ma/ka		0.496	ma/ka	0 0000496 %	,	
21		601-036-00-5	205-916-6	207-08-9		0.57	iiig/kg		0.430	iiig/kg	0.0000490 78	~	
22	۲	benzo[ghi]perylene		1.0.1.0.1.0		0.82	mg/kg		0.713	mg/kg	0.0000713 %	\checkmark	
		205-883-8 191-24-2			-								
23		601-048-00-0	205-923-4	218-01-9		1.2	mg/kg		1.044	mg/kg	0.000104 %	\checkmark	
24		dibenz[a,h]anthrac	ene	10.00		0.16	mg/kg		0.139	mg/kg	0.0000139 %	<	
_		601-041-00-2	200-181-8	53-70-3	-								
25		205-912-4 206-44-0				2.1	mg/kg		1.827	mg/kg	0.000183 %	\checkmark	
26	۰	fluorene	1			0.07	ma/ka		0.0600	ma/ka	0,0000609 %	,	
20			201-695-5	86-73-7			iiig/ikg		0.0005			~	
27	indeno[123-cd]pyrene				0.72	mg/kg		0.626	mg/kg	0.0000626 %	\checkmark		
		naphthalene	205-893-2	193-39-5									
28		601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
29	0	phenanthrene	b01 591 5	95 01 9		1	mg/kg		0.87	mg/kg	0.000087 %	\checkmark	
		pyrene	201-561-5	05-01-0					4 500		0.000457.0/		
30			204-927-3	129-00-0		1.8	mg/кg		1.566	mg/kg	0.000157 %	\checkmark	
31		benzene				<5	µq/kq		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	_								
32	•	601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
33		tert-butyl methyl et	her; MTBE;			~5	ua/ka		<0.005	ma/ka	<0.000005 %		
00		2-memoxy-2-memypropane 603-181-00-X 216-653-1 1634-04-4				~0	Pg/Ng		<0.000	ng/kg	<0.0000005 %		~200
34		xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 406-42-2 [2]				ua/ka		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
			203-536-5 [2] 203-576-3 [3] 215-535-7 [4]	108-38-3 [3] 1330-20-7 [4]									
		o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]				-							
35		601-022-00-9	202-422-2 [1] 203-396-5 [2]	106-42-3 [2]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
			203-576-3 [3] 215-535-7 [4]	108-38-3 [3] 1330-20-7 [4]									
20		toluene	0 000 / [7]		\square	۶.	ug///~		10.005	maller	-0.000005.0/		4.00
30		601-021-00-3	203-625-9	108-88-3		<0	µу/кд		<0.005	mg/kg	<0.0000005 %		<lud< td=""></lud<>
37	۵	TPH (C6 to C40) p	etroleum group	Трц		57	mg/kg		49.59	mg/kg	0.00496 %	\checkmark	
\vdash	<u>_</u>		 		\vdash								
38	~	chromium in chrom chromium(III) oxide	215-160-9	1308-38-9		24	mg/kg	1.462	35.077	mg/kg	0.00351 %		
										Total:	0.0624 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Worst case

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00496%)

Appendix A: Classifier defined and non GB MCL determinands

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301, STOT RE 2; H373, Skin Corr. 1B; H314, Skin Corr. 1B; H314 >= 3%, Skin Irrit. 2; H315 1 <= conc. < 3%, Eye Irrit. 2; H319 1 <= conc. < 3%, Aquatic Chronic 2; H411

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

^a arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

GB MCL index number: 033-001-00-X Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Iead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17. Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

HazWasteOnline[™]

Report created by Adam Young on 22 May 2024

^e fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from ECHA's C&L inventory database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 30 Apr 2020 Hazard Statements: Acute Tox. 4; H302 , Skin Sens. 1; H317 , Eye Irrit. 2; H319

• polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

GB MCL index number: 602-039-00-4 Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied. Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

[®] coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en Data source date: 16 Jun 2014

Hazard Statements: STOT SE 2; H371

Appendix B: Rationale for selection of metal species

chromium in chromium(VI) compounds {chromium(VI) oxide}
Most likely worst case.
cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}
Most likely worst case.
boron {boron tribromide}
Most likely worst case.
arsenic {arsenic}
Most likely worst case.
cadmium {cadmium sulfide}
Most likely worst case.
copper {dicopper oxide; copper (I) oxide}
Most likely worst case.
mercury {mercury}
Most likely worst case.
nickel {nickel dihydroxide}
Most likely worst case.
lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}
Worst case
selenium {selenium}
Most likely worst case.
vanadium {divanadium pentaoxide; vanadium pentoxide}
Most likely worst case.
zinc {zinc sulphate}
Most likely worst case.
chromium in chromium(III) compounds {chromium(III) oxide}
Most likely worst case.
Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2024.142.6063.11222 (21 May 2024) HazWasteOnline Database: 2024.142.6063.11222 (21 May 2024)

Report created by Adam Young on 22 May 2024

This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021 GB MCL List v2.0 - version 2.0 of 20th October 2023 GB MCL List v3.0 - version 3.0 of 11th January 2024 GB MCL List v4.0 - version 4.0 of 2nd March 2024

APPENDIX D RISK ASSESSMENT

DESIGNERS RISK ASSESSMENT								STAGE: Design TW Contract	Contract: Temporary Wo		
REF NO.	ACTIVITY / HAZARDS / RISK		RISK	PERSONS WHO WILL BE AFFECTED			CTED	RISK CONTROL MEASURES COMMENT/DESIGN INTERVENTION	RESIDUAL / PARTICULAR RISK / INSTRUCTION		
		YES	ON	Public	Const Person	Third Parties	Others		YES	ON	
1.0.	Site Access / Use of mobile plant on site Particular Risk: Work in or adjacent to a live area where contact and interaction with users, staff, public or traffic is possible Hazard: Accident involving vehicles accessing site to or from public road and / or within the delivery area, pedestrian; setting down, unloading and transportation of materials to and from delivery areas	V		×	V V			 Size of materials and waste components to be considered in delivery and kept within manageable modules. Timing of deliveries will require to be planned. Size, weight and practicality of handling of materials specified considered in design and materials capable of ease of manual or mechanical handling selected where feasible. Existing neighbouring properties and boundaries to be protected during construction of the new development. 		•	
1.1	Pedestrian Traffic Particular Risk: Work in or adjacent to live area where contact and interaction with users, staff, public or traffic is possible (Hazard: Injury to pedestrians arising from vehicular movement in delivery area, operations and/ or from construction waste or debris).	~		~	×			 Material selection considered in design to facilitate smaller lightweight components and assemblies. 	~	•	
1.2	Welfare / First Aid Facility. Contractor to provide first aid facilities and management. (Hazard: Impact on general health and wellbeing)	~			~			 Welfare / First Aid facilities to be provided. 	✓	•	
1.3	Access for Emergency Services (Hazard: Delay in access to or for emergency services)	~			v			Construct permanent access points	~	•	
1.4	Presence of contaminants /hazardous materials within the existing site.	~			~	~		 Contractor to test existing soils in situ and carry out testing. 	~	•	
1.5	Existing/adjoining services (known/unknown)	~			✓ 			 Not possible to eliminate by design but hazard substantially reduced by review and identification of all services on site prior to construction works commencement Existing services to be diverted/removed prior to structural works. CCTV survey to be undertaken to confirm drainage. 	~	•	

NFORMATION / CONTROL OF RESIDUAL RISK TO BE PASSED ON TO AFFECTED PERSONS VIA RISK REGISTER

CONTRACTOR / OTHER PARTY INTERVENTION

- Contractor to prepare detailed construction traffic management assessment and method statements. Contractor to secure immediate site and delivery area access and to provide appropriate warning signage.
- Contractor to determine requirements and design scaffolding to suit.
- Contractor to implement management restriction on manual handling
- Contractor to implement protection measures to the adjacent structures during the construction of the new works.

Plan to segregate pedestrian and vehicular / plant traffic. Segregate and protect all waste storage. Provide signage and warning signs

Contractor to assess and provide facilities in accordance with Legislative requirements.

Contractor to assess existing emergency access arrangements and develop site specific Safety Plan for management of this.

All findings and reports on cleansing and residual contamination to be passed to client

Buried services below basement slab and behind walls to be identified on drawings Contractor to scan for buried/ concealed services prior to any works.

DESIGNERS RISK ASSESSMENT								STAGE: Design TW Contract	Contract: Temporary Wo		
REF NO.	ACTIVITY / HAZARDS / RISK		RISK	PERSONS WHO WILL BE AFFECTED				RISK CONTROL MEASURES COMMENT/DESIGN INTERVENTION	RESIDUAL / PARTICULAR RISK INSTRUCTION		IN
		YES	Q	Public	Const Person	Third Parties	Others		YES	ON	
1.6	Presence of adjoining buildings becoming unstable during works	×						 Only partially possible to eliminate hazard by design and construction methodology planning. Topographical survey of the existing buildings undertaken. Original drawings reviewed where available. Trial pits and exploratory works to be undertaken to establish existing structural makeup/ foundation layout and develop construction methodology to reduce risk of damage to adjoining structures. 	✓		•
1.7	Construction of concrete and Reinforcement steel Particular Risk: Work involving the assembly or dismantling of heavy prefabricated components (Hazard: Manual handling and transportation of pre-cast concrete stair units and erection of same)	×			✓	~	~	 Reinforcement cages to be designed so that they are made to manageable lengths and weights. 	✓		•
1.8	Accidental Damage Particular Risk: Work in or adjacent to a live area where interface public or traffic is possible (Hazard: Damage to neighbouring buildings, property, persons and/or services, trees)	Ý		~	Ý	V		 Dilapidation survey Design takes Particular care at abutment of new works with neighbouring buildings or services. Design has identified no basement in adjoining buildings. 			•
1.9	Manual Handling (Hazard: Muscular/ skeletal or abrasive / impact injury to construction operatives, third parties or others				~		~	 Design allows for mechanical rather than manual lifting where possible. 	✓		•

NFORMATION / CONTROL OF RESIDUAL RISK TO BE PASSED ON TO AFFECTED PERSONS VIA RISK REGISTER

CONTRACTOR / OTHER PARTY INTERVENTION

- Contractor to undertake pre construction condition survey of all adjoining buildings and provide information on foundation works
- Topographical survey of the existing buildings to be provided
- Site investigation report to be provided
- Contractor to undertake movement monitoring to establish if the buildings are undergoing movement.

Contractor to plan work safely and advise on optimum sizes.

Contractor to provide adequate access to site for machinery for delivery of units.

Contractor to survey and assess site constraints and plan work safely.

Contractor to carry out pre-construction 'dilapidation' survey of immediate site area and monitor works.

- Contractor to carry out pre-construction survey of structures and allow for continuous monitoring during construction.
- Contractor to maintain safe working environment during the works with respect to personnel and the existing structures.
- Contractor to maintain safe working site and protect scaffolding where used.

Contractor to plan site to facilitate mechanical lifting where possible.

Assess risks to third parties and others in proximity to activity.

DESIGNERS RISK ASSESSMENT								STAGE: Design TW Contract	Contract: Temporary Wo		
REF NO. ACTIVITY / HAZARDS / RISK			RISK	PERSONS WHO WILL BE AFFECTED			CTED	RISK CONTROL MEASURES COMMENT/DESIGN INTERVENTION	RESIDUAL / PARTICULAR RISK / INSTRUCTION		IN
		YES	QN	Public	Const Person	Third Parties	Others		YES	Q	
2.0	Noise and Vibration Particular Risk: Work in or adjacent to an area of building and basement where contact and interaction with pile breaking (Hazard: Injury to construction operatives, third parties or others	 ✓ 		√	✓	✓	✓	 Process to isolates vibration from mechanical v plant. 	✓		•
2.1	Work exposing persons at work to risk from unplanned collapse (e.g. temporary loadings of existing floors with materials) (Hazard: Injury to construction operatives)	~			~			 Temporary floor loading information to be v provided to the contractor. 	✓		•
2.2	Work placing of shuttering and reinforcement and concrete							 Operatives to wear Hi-vis clothing. Machinery to use hazard beacons and reversing klaxon in operation. Bend reinforcement off-site 	✓		•
2.3	Activity: Works to or adjacent to sumps and pumps etc. Particular Risk: Work in proximity to live existing services which could harm workers (Hazard: Injury to construction operatives from moving equipment parts and gases)	~			v		✓ 	 Design provides adequate installation and maintenance access. Gas detection equipment to be used prior to maintaining equipment 	✓ 		•

NFORMATION / CONTROL OF RESIDUAL RISK TO BE PASSED ON TO AFFECTED PERSONS VIA RISK REGISTER

CONTRACTOR / OTHER PARTY INTERVENTION

- Contractor to assess noisy activities and provide all operatives with ear protection. Contractor to monitor and assess noisy activities for compliance with the statutory requirements.
- Contractor to prepare appropriate work method statements and temporary works design as necessary.
- Competent machinery Operators & Banksmen to be provided. Operatives to be provided with appropriate PPE
- Works to or adjacent these installations to be carried out or controlled by suitably qualified mechanical fitter or electrician.
- Status of installations to be labelled and installations should be secured at all times. Provide for safe maintenance access.