

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: adam.young@groundwater.co.uk

Analytical Report Number : 24-009116

Project / Site name:	34 Nassau Road SW13 9QE	Samples received on:	14/03/2024
Your job number:	GWPR5909	Samples instructed on/ Analysis started on:	14/03/2024
Your order number:	GWPR5909	Analysis completed by:	20/03/2024
Report Issue Number:	1	Report issued on:	21/03/2024
Samples Analysed:	5 soil samples		

Signed: A. Gerwinska

Agnieszka Czerwińska Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 24-009116

Project / Site name: 34 Nassau Road SW13 9QE Your Order No: GWPR5909

Lab Sample Number		145503	145504	145505	145506	145507		
Sample Reference				WS01	WS02	WS01	WS02	WS02
Sample Number				None Supplied				
Denth (m)	Denth (m)						1 50	3.00
Date Sampled				12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Time Taken				None Supplied				
	1	-		None Supplied				
Analytical Parameter (Soil Analysis)	Units	imit of detection	Accreditation Status					
Change Combont	0/-	0.1	NONE	.01	. 0.1	.01	. 0.1	. 0.1
Stone Content	70 0/	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	1/	15	3.4	1/	2.4
I otal mass of sample received	кy	0.1	NONL	0.8	0.7	0.5	0.6	0.4
Asbestos								
Asbestos in Soil Detected/Not Detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-	-	-
Asbestos Analyst ID	N/A	N/A	N/A	KSZ	KSZ	-	-	-
General Inorganics								
pH (L099)	pH Units	N/A	MCERTS	8	7.7	8.4	8	8.3
Total Cyanide	mg/kg	1	MCERTS	2	< 1.0	-	-	-
Total Sulphate as SO ₄	%	0.005	MCERTS	-	-	-	0.014	0.008
Water Soluble Sulphate as SO4 16hr extraction (2:1)	mg/kg	2.5	MCERTS	20	27	17	46	25
Water Soluble SO ₄ 16hr extraction (2:1 Leachate	ma/l	1 25	MCEDTS	-	-	8.44	23	12.3
Water Soluble SO (16br outraction (2:1)	mg/l	1.25	MCEDTS	10	12.0	-	-	
Water Soluble SO4 1011 extraction (2:1)	mg/l	1.25	MCEDIC	10	13.6	-	-	-
water Soluble Chloride (2:1) (leachate equivalent)	mg/i	0.5	MCERTS	-	-	-	2.1	1
	nig/kg	50 0.00F	MCEDIC	-	-	-	0.000	69
	70 ma/ka	0.005	MCERTS	-	-	-	0.008	0.007
Ammoniacai Nitrogen as NH4+	nig/kg	0.5	MCERTS	-	-	-	< 0.5	< 0.5
Ammonium as NH4+ (10:1 leachate equivalent)	mg/i	0.05	MCERTS	-	-	-	< 0.05	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	3.8	2.9	-	-	-
Total Organic Carbon (TOC) - Automated	%	0.1	MONE	2.2	1.7	-	-	-
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	-	< 2.0	< 2.0
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	-	< 2.0	< 2.0
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	0.38	< 0.05	-	-	-
Acenaphthene	mg/kg	0.05	MCERTS	0.1	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	0.43	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	7.2	0.59	-	-	-
Anthracene	mg/kg	0.05	MCERTS	3	0.16	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	14	1.7	-	-	-
Pyrene	mg/kg	0.05	MCERTS	11	1.7	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	5.7	1	-	-	-
Chrysene	mg/kg	0.05	MCERTS	5.7	1.3	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	6.1	1.6	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	2.3	0.68	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	4.7	0.84	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.2	0.52	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.63	0.17	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	2.6	0.6	-	-	-
Total PAH								

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	66.1	10.9	-	-	-

Analytical Report Number: 24-009116

Project / Site name: 34 Nassau Road SW13 9QE Your Order No: GWPR5909

Lab Sample Number	145503	145504	145505	145506	145507			
Sample Reference				WS01	WS02	WS01	WS02	WS02
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.20	0.20	2.00	1.50	3.00
Date Sampled				12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids	-	-	-					
Arsenic (agua regia extractable)	mg/kg	1	MCERTS	18	19	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.7	1.2	-	-	-
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	24	-	-	-
Copper (agua regia extractable)	mg/kg	1	MCERTS	67	33	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	220	160	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	0.6	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	21	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	55	49	-	-	-
Zinc (agua regia extractable)	mg/kg	1	MCERTS	110	74	-	-	
			l	110	/1			
Magnesium (leachate equivalent)	ma/l	2.5	NONE	-	_	-	44	4 2
Magnesium (water soluble)	mg/kg	5	NONE		-	-	89	8.5
Petroleum Hydrocarbons	ma/ka	0.02	NONE		< 0.020			
	mg/kg	0.02	NONE	-	< 0.020	-	-	-
TPHCWG - Aliphatic >C0 - C0 hs_10_AL	mg/kg	0.02	NONE	-	< 0.020	-	-	-
	mg/kg	0.05	MCERTS	-	< 0.050	-	-	-
	mg/kg	2	MCERTS	-	< 2.0	-	-	-
TPHCWG - Aliphatic >C16 - C21 str cl. 10 Al	mg/kg	8	MCERTS	-	< 2.0	-	-	-
TPHCWG - Aliphatic >C21 - C35 FH CL 1D AL	ma/ka	8	MCERTS	-	< 8.0	-	-	-
TPHCWG - Aliphatic >C35 - C40 EH CU 1D AL	ma/ka	10	NONE	-	< 10	_	_	
	ma/ka	10	NONE		< 10	_	_	
TPHCWG - Aliphatic >C5 - C40 EH_CU+HS_1D_AL	mg/kg	10	NONE		< 10			
	5, 5				< 10			
TPHCWG - Aromatic >EC5 - EC7 HS 1D AR	ma/ka	0.01	NONE	_	< 0.010	_	_	_
TPHCWG - Aromatic > EC7 - EC8 Hs 1D AP	ma/ka	0.01	NONE		< 0.010			
TPHCWG - Aromatic > EC3 - EC10 Hs 1D AR	ma/ka	0.01	NONE		< 0.010			-
TPHCWG - Aromatic > EC10 - EC12 FH CU 1D AR	ma/ka	1	MCERTS	-	< 1.0	-	-	-
TPHCWG - Aromatic > EC12 - EC16 FH CU 1D AR	ma/ka	2	MCERTS	-	< 2.0	-	-	-
TPHCWG - Aromatic > EC16 - EC21 FH CU 1D AR	ma/ka	10	MCERTS	-	< 10	-	-	-
TPHCWG - Aromatic >EC21 - EC35 EH CU 1D AR	ma/ka	10	MCERTS	-	< 10	-	-	-
TPHCWG - Aromatic >EC35 - EC40 FH CU 1D AR	ma/ka	10	NONE	-	< 10	-	-	-
TPHCWG - Aromatic >EC5 - EC35 FH CU+HS 1D AR	ma/ka	10	NONE	-	< 10	-	-	-
TPHCWG - Aromatic >EC5 - EC40 EH_CU+HS_1D_AR	mg/kg	10	NONE		< 10	-	-	
			l		< 10			
TPH Total >C5 - C40 FH CU+HS 1D TOTAL	ma/ka	10	NONE		< 10			
				-	< 10	-	-	-
VOCs								
MTRE (Mothyd Tortion: Rubd Ethor)	ua/ka	5	NONE		~ = 0			
Renzene	µg/kg	5	MCERTS	-	< 5.U < E 0	-	-	
Toluene	10/ka	5	MCERTS	-	< 5.0	_	_	-
Ethylbenzene	µa/ka	5	MCERTS	-	< 5.0	-	-	
	-91.19	• Ŭ			- 5.0			

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

p & m-Xylene

o-Xylene

µg/kg

µg/kg

5

5

MCERTS

MCERTS

-

-

< 5.0

< 5.0

-

Analytical Report Number : 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *	
145503	WS01	None Supplied	1.2	Brown clay and loam with gravel and vegetation	
145504	WS02	None Supplied	0.2	Brown clay and loam with gravel and vegetation	
145505	WS01	None Supplied	2	Brown sand with gravel	
145506	WS02	None Supplied	1.5	Brown sandy clay	
145507	WS02	None Supplied	3	Brown sand with gravel	

Analytical Report Number : 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos identification in Soil Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques		A001B	D	ISO 17025
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES	In-house method based on TRL 447	L038B	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES	In-house method	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES	In-house method	L038B	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	w	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction	L078B	w	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	w	MCERTS

Analytical Report Number : 24-009116

Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	w	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser	In-house method	L082B	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	w	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

geotechnical and environmental consultants

APPENDIX G: Soil Assessment Criteria

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office: Kineton House, 31 Horse Fair, Banbury, Oxfordshire OX16 0AE Registered in England No. 07032001

Ground and Water Limited

Soil Guideline Values and Generic Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'. At preliminary risk assessment stage, risks are evaluated qualitatively. As the site investigation progresses to a generic or detailed quantitative risk assessment, data is collected and assessment criteria are utilised to evaluate whether the contaminants represent an unacceptable risk to the identified receptors.

1. Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

- 1) EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
- 2) EA Science Report SC050021/SR3: Updated technical background to the CLEA model.
- 3) EA CLEA Bulletin (2009).
- 4) CLEA software version 1.07 (2015)
- 5) Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

- Do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures;
- Do not cover risks to the environment, such as groundwater, ecosystems or buildings;
- Do not provide a definitive test for telling when human health risks are significant; and
- Are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

1.1. Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models outlined in the following sections.

1.1.1. Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small-terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

1.1.2. Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

1.1.3. Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a threestorey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

2. LQM/CIEH Suitable 4 Use Levels (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J., *The LQM/CIEH S4UL's for Human Health Risk Assessment*. Land Quality Press. 2015

2.1. S4UL Background

The Land Quality Management/Chartered Institute of Environmental Health (LQM/CIEH) S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure,

as calculated by the CLEA software, equals the Health Criteria Value. The S4ULs have been derived for substances based on various generic land use and soil organic matter contents.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2nd edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

2.2. S4UL Land-use

S4UL's have been derived for the basic CLEA land-uses, as described in section 1.2, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi).
- Public Park (POSpark).

2.2.1. Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's - 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

2.2.2. Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

The following LQM/CIEH S4UIs (Copyright Land Quality Management Limited) have been reproduced with permission, to the publication number S4UL3072.

3. Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.07 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

- A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and
- A demonstration of the methodology, via the derivation of C4SLs for six substances arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category

system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

*"*4.21 *The local authority should consider that the following types of land should be placed into Category 4: Human Health:*

(a) Land where no relevant contaminant linkage has been established.

(b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.

(c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.

(d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).

4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a):

"SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of risk-based Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

- By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);
- By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and
- By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

4. CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, *The Soil Generic Assessment Criteria for Human Health Risk Assessment*. **Contaminated** Land: Applications in the Real Environment. 2009.

Within this report, Contaminated Land: Applications in Real Environments (CL:AIRE) provided Generic Assessment Criteria (GAC) in accordance with the CLEA software and the principles outlined previously for a further 35 contaminants sometimes encountered on land affected by contamination.

5. SoBRA Acute GAC

The Society of Brownfield Risk Assessment (SoBRA) identified that most human health risk assessments focus on the chronic risks arising from long-term exposure to specific substances. As chronic risks often occur at lower doses than acute risks, they are often the key drivers, however, in some instances the acute dose may also be an important consideration within risk assessments.

The methodology for deriving the acute GAC were related to two distinct receptor groups:

- Members of the public, where the 'critical' receptor for this group will typically be a female child, which is consistent with CLEA residential and Public Open Space/allotments land-uses;
- Workers involved with excavations. The critical receptor for this group is assumed to be a female working adult, without the use of PPE.

The acute GACs relate to short term exposure of high concentrations of a substance that lead to acute effects. They are not considered to be average exposures across a specific / defined area. As a result, the GACs should be normally be compared with the maximum likely concentration that the individual may be exposed to, and not the average concentration within a specific area.

The SoBRA acute GAC will primarily be used for contaminants that do not currently have any GAC, most notably Cyanide.

6. Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of a GAC is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses, then a DQRA may be undertaken to develop site specific values for relevant soil contaminants.

- Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.
- Developing more accurate parameters using site data.

7. Phytotoxicity

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

• BS3882:2015 – Specification for Topsoil

The trigger values are relevant only to those contaminants, where present in excess, have the potential to inhibit plant growth, or kill plants (Cu, Ni and Zn). The criteria have been based on a wide range of planting that are common within a multi-purpose topsoil.

8. Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

CL:AIRE published guidance in 2020, *Guidance in comparing soil contamination data with a critical concentration,* superseding the CL:AIRE/CIEH 2008 report of the same name. The guidance provides ways to assist land contamination stakeholders to apply statistical methods to their data to enable decisions under the legislative framework; either planning system or Part 2A of the Environmental Protection Act 1990.

The use of the statistical tests should only be applied if the following statements are valid for the datasets:

- Averaging areas, as well as the smallest area of concern have been identified on the basis of the CSM, including the desk study and/or the site walkover;
- The sample locations were chosen using a simple random, stratified random or stratified systematic (square, herringbone or triangular grid) sampling pattern, rather than being targeted to locations suspected of being contaminated;
- The sample locations are relatively evenly spread across the area and are not clustered, to avoid giving undue weight to some parts of the site over others in the calculated statistics;
- The analyses do not suggest a hotspot or outlier of contamination that should be treated as a separate zone. This has been established by a histogram and/or a names statistical test;
- The sample locations are all taken from one population (i.e. the same material);
- Where an averaging zone encompasses several averaging areas, analyses do not show a spatial trend or other spatial pattern across that zone; and
- The number of samples has been shown to be sufficient for a statistical analysis.

Any included statistical spreadsheet is based on an in-house method of statistical analysis, in line with those outlined within the CL:AIRE guidance (2020).

Treatment of Hot-Spots

- A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.
- Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

9. Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of the Generic Quantitative Risk Assessment are tabulated in the following pages, where the source of each has been outlined in the previous sections.

9.1. Inorganics

SoBRA – Acute Generic Assessment Criteria								
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Cyanide	24	24	24	1400	24	24		

9.2. Metals

C4SL Low Level of Toxicological Concern								
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Lead	< 200	< 310	< 80	< 2300	< 630	< 1300		

LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals								
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Arsenic	37	40	43	640	79	170		
Beryllium	1.7	1.7	35	12	2.2	63		
Boron	290	11000	45	240000	21000	46000		
Cadmium	11	85	1.9	190	120	532		
Chromium (III)	910	910	18000	8600	1500	33000		
Chromium (VI)	6	6	1.8	33	7.7	220		
Copper	2400	7100	520	68000	12000	44000		
Elemental Mercury	1.2	1.2	21	58	16	30		
Inorganic Mercury	40	56	19	1100	120	240		
Methylmercury	11	15	6	320	40	68		
Nickel	130	180	53	980	230	800		
Selenium	250	430	88	12000	1100	1800		
Vanadium	410	1200	91	9000	2000	5000		
Zinc	3700	40000	620	730000	81000	170000		

Phytotoxicity (Harmful to Plants) Threshold Trigger Values									
Determinand	Soil pH < 6.0 (mg/kg)	Soil pH 6.0 – 7.0 (mg/kg)	Soil pH > 7.0 (mg/kg)						
Copper	100	135	200						
Nickel	60	75	110						
Zinc	200	200	300						

Notes:

BS3882:2015 – *Specification for Topsoil*. Based on a wide range of common plants that will be exposed to multi-purpose topsoil. Toxicity of contaminant may also be impacted by pH of soils. Site observation of plant vitality may give additional guidance.

CL:AIRE Soil Generic Assessment Criteria								
Determinand	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)				
Antimony	ND	550	ND	7500				
Barium	ND	1300	ND	22000				
Molybdenum	ND	670	ND	17000				
ND – Not derived								

9.3. Total Petroleum Hydrocarbons (TPHs)

9.3.1. BTEX Compounds

LQM/CIEH Suitable 4 Use Levels – BTEX Compounds								
Determinand	Soil Organic	RwHP	RwoHP	Allotment	Commercial	POSresi	POSpark	
	Matter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Benzene	1.0% SOM	0.087	0.38	0.017	27	72	90	
	2.5% SOM	0.170	0.70	0.034	47	72	100	
	6.0% SOM	0.370	1.40	0.075	90	73	110	
Toluene	1.0% SOM	130	880	22	56000	56000	87000	
	2.5% SOM	290	1900	51	110000	56000	95000	
	6.0% SOM	660	3900	120	180000	56000	100000	
Ethylbenzene	1.0% SOM	47	83	16	5700	24000	17000	
	2.5% SOM	110	190	39	13000	24000	22000	
	6.0% SOM	260	440	91	27000	25000	27000	
o-Xylene	1.0% SOM	60	88	28	6600	41000	17000	
	2.5% SOM	140	210	67	15000	42000	24000	
	6.0% SOM	330	480	160	33000	43000	33000	
m-Xylene	1.0% SOM	59	82	31	6200	41000	17000	
	2.5% SOM	140	190	74	14000	42000	24000	
	6.0% SOM	320	450	170	31000	43000	33000	
p-Xylene	1.0% SOM	56	79	29	5900	41000	17000	
	2.5% SOM	130	180	69	14000	42000	23000	
	6.0% SOM	310	430	160	30000	43000	31000	
SOM = Soil Organic	Matter Content (%)							

9.3.2. Total Petroleum Hydrocarbons – Aliphatic

LQM/CIEH Suitable 4 Use Levels For TPH								
atic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
1.0% SOM	42	42	730	3,200 (304) sol	570,000 (304) sol	95,000 (304) sol		
2.5% SOM	78	78	1,700	5,900 (558) sol	590,000	130,000 (558) sol		
6.0% SOM	160	160	3,900	12,000 (1150) ^{sol}	600,000 (1150) ^{sol}	180,000 (1150) _{sol}		
1.0% SOM	100	100	2,300	7,800 (144) sol	600,000	150,000 (144) sol		
2.5% SOM	230	230	5,600	17,000 (322) sol	610,000	220,000 (322) sol		
6.0% SOM	530	530	13,000	40,000 (736) sol	620,000	320,000 (736) sol		
1.0% SOM	27	27	320	2,000 (78) sol	13,000	14,000 (78) sol		
2.5% SOM	65	65	770	4,800 (118) ^{vap}	13,000	18,000 (118) vap		
6.0% SOM	150	150	1,700	11,000 (451) vap	13,000	21,000 (451) vap		
1.0% SOM	130 (48) ^{vap}	130 (48) ^{vap}	2,200	9,700 (48) sol	13,000	21,000 (48) sol		
2.5% SOM	330 (118) ^{vap}	330 (118) ^{vap}	4,400	23,000 (118) vap	13,000	23,000 (118) vap		
6.0% SOM	760 (283) ^{vap}	760 (283) ^{vap}	7,300	47,000 (283) vap	13,000	24,000 (283) vap		
1.0% SOM	1,100 (24) sol	1,100 (24) sol	11,000	59,000 (24) sol	13,000	25,000 (24) sol		
2.5% SOM	2,400 (59) sol	2,400 (59) sol	13,000	82,000 (59) sol	13,000	25,000 (59) sol		
6.0% SOM	4,300 (142) sol	4,400 (142) sol	13,000	90,000 (142) sol	13,000	26,000 (142) sol		
1.0% SOM	65,000 (8.48) sol	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000		
2.5% SOM	92,000 (21) sol	92,000 (21) sol	270,000	1,700,000	250,000	480,000		
6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000		
1.0% SOM	65,000 (8.48) sol	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000		
2.5% SOM	92,000 (21) sol	92,000 (21) sol	270,000	1,700,000	250,000	480,000		
6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000		
	1.0% SOM 2.5% SOM 6.0% SOM 1.0% SOM 2.5% SOM	LQM RwHP (mg/kg) 1.0% SOM 42 2.5% SOM 78 6.0% SOM 160 1.0% SOM 100 2.5% SOM 230 6.0% SOM 530 1.0% SOM 27 2.5% SOM 27 2.5% SOM 65 6.0% SOM 130 1.0% SOM 130 1.0% SOM 130 (48) vap 2.5% SOM 330 (118) vap 6.0% SOM 1300 (42) sol 1.0% SOM 1,100 (24) sol 2.5% SOM 2,400 (59) sol 6.0% SOM 4,300 (142) sol 1.0% SOM 65,000 (8.48) sol 2.5% SOM 92,000 (21) sol 6.0% SOM 110,000 1.0% SOM 65,000 (8.48) sol 2.5% SOM 92,000 (21) sol 6.0% SOM 110,000 1.0% SOM 65,000 (8.48) sol 2.5% SOM 92,000 (21) sol 6.0% SOM 110,000	LQM/CIEH Suitable RwHP (mg/kg) RwoHP (mg/kg) 1.0% SOM 42 42 2.5% SOM 78 78 6.0% SOM 160 160 1.0% SOM 230 230 6.0% SOM 230 230 6.0% SOM 530 530 1.0% SOM 27 27 2.5% SOM 65 65 6.0% SOM 150 150 1.0% SOM 130 (48) vap 330 (118) vap 2.5% SOM 330 (118) vap 330 (118) vap 6.0% SOM 130 (23) vap 760 (283) vap 6.0% SOM 1,100 (24) sol 1,100 (24) sol 1.0% SOM 1,100 (24) sol 1,100 (24) sol 1.0% SOM 4,300 (142) sol 4,400 (142) sol 1.0% SOM 65,000 (8.48) sol 65,000 (8.48) sol 2.5% SOM 92,000 (21) sol 92,000 (21) sol 6.0% SOM 110,000 110,000 1.0% SOM 65,000 (8.48) sol 65,000 (8.48) sol 2.5% SOM 92,0	LQM/CIEH Suitable 4 Use Level atic RwHP (mg/kg) RwoHP (mg/kg) Allotment (mg/kg) 1.0% SOM 42 42 730 2.5% SOM 78 78 1,700 6.0% SOM 160 160 3,900 1.0% SOM 100 100 2,300 2.5% SOM 230 230 5,600 6.0% SOM 230 230 5,600 6.0% SOM 530 13,000 13,000 1.0% SOM 27 27 320 2.5% SOM 65 65 770 6.0% SOM 130 (48) vap 130 (48) vap 2,200 2.5% SOM 330 (118) vap 330 (118) vap 4,400 6.0% SOM 1,100 (24) soi 1,100 (24) soi 11,000 2.5% SOM 2,400 (59) soi 2,400 (59) soi 13,000 1.0% SOM 1,100 (24) soi 1,1000 11,000 2.5% SOM 2,400 (59) soi 2,400 (59) soi 13,000 1.0% SOM 65,000 (8.48) soi <	LQM/CIEH Suitable 4 Use Levels For TPH atic RwHP (mg/kg) RwoHP (mg/kg) Allotment (mg/kg) Commercial (mg/kg) 1.0% SOM 42 42 730 3,200 (304) sol 2.5% SOM 78 78 1,700 5,900 (558) sol 6.0% SOM 160 160 3,900 12,000 (1150) sol 1.0% SOM 100 100 2,300 7,800 (144) sol 2.5% SOM 230 230 5,600 17,000 (322) sol 6.0% SOM 530 530 13,000 40,000 (736) sol 1.0% SOM 27 27 320 2,000 (78) sol 1.0% SOM 150 150 1,700 11,000 (451) vap 6.0% SOM 130 (48) vap 330 (118) vap 4,400 23,000 (118) vap 1.0% SOM 130 (48) vap 330 (118) vap 4,400 23,000 (142) sol 1.0% SOM 130 (142) sol 1,100 (24) sol 11,000 59,000 (24) sol 2.5% SOM 330 (118) vap 330 (118) vap 4,400 23,000 (142) sol	LQM/CIEH Suitable 4 Use Levels For TPH atic RwHP (mg/kg) RwoHP (mg/kg) Allotment (mg/kg) Commercial (mg/kg) POSresi (mg/kg) 1.0% SOM 42 42 730 3,200 (304) sol 570,000 (304) sol 2.5% SOM 78 78 1,700 5,900 (558) sol 590,000 6.0% SOM 160 160 3,900 12,000 (1150) sol 600,000 1.0% SOM 100 100 2,300 7,800 (144) sol 600,000 2.5% SOM 230 5,600 17,000 (322) sol 610,000 6.0% SOM 530 530 13,000 40,000 (736) sol 620,000 1.0% SOM 27 27 320 2,000 (78) sol 13,000 2.5% SOM 65 65 770 4,800 (118) vap 13,000 1.0% SOM 150 1,700 11,000 (451) vap 13,000 2.5% SOM 330 (118) vap 330 (118) vap 4,400 23,000 (118) vap 13,000 2.5% SOM 760 (283) vap 760 (283) vap <t< th=""></t<>		

SOM = Soil Organic Matter Content (%)

^{vap} – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.3.3. Total Petroleum Hydrocarbons – Aromatic

LQM/CIEH Suitable 4 Use Levels For TPH									
Aroma	tic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
EC 5-7	1.0% SOM	70	370	13	26,000 (1220) sol	56,000	76,000 (1220 sol		
(Benzene)	2.5% SOM	140	690	27	46,000 (2260) sol	56,000	84,000 (2260) sol		
	6.0% SOM	300	1,400	57	86,000 (4710) sol	56,000	92,000 (4710) sol		
EC >7-8	1.0% SOM	130	860	22	56,000 (869) vap	56,000	87,000 (869) sol		
(Toluene)	2.5% SOM	290	1,800	51	110,000 (1920) sol	56,000	95,000 (1920) sol		
	6.0% SOM	660	3,900	120	180,000 (4360) vap	56,000	100,000 (4360) vap		
EC >8-10	1.0% SOM	34	47	8.6	3,500 (613) ^{vap}	5,000	7,200 (613) ^{vap}		
	2.5% SOM	83	110	21	8,100 (1500) vap	5,000	8,500 (1500) ^{vap}		
	6.0% SOM	190	270	51	17,000 (3850) vap	5,000	9,300 (3580) ^{vap}		
EC >10-12	1.0% SOM	74	250	13	16,000 (364) sol	5,000	9,200 (364) sol		
	2.5% SOM	180	590	31	28,000 (899) sol	5,000	9,700 (889) ^{sol}		
	6.0% SOM	380	1,200	74	34,000 (2150) sol	5,000	10,000		
EC >12-16	1.0% SOM	140	1,800	23	36,000 (169) sol	5,100	10,000		
	2.5% SOM	330	2,300 (419) sol	57	37,000	5,100	10,000		
	6.0% SOM	660	2,500	130	38,000	5,000	10,000		
EC >16-21	1.0% SOM	260	1,900	46	28,000	3,800	7,600		
	2.5% SOM	540	1,900	110	28,000	3,800	7,700		
	6.0% SOM	930	1,900	260	28,000	3,800	7,800		
EC >21-35	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800		
	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800		
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900		
EC >35-44	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800		
	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800		
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900		
EC >44-70	1.0% SOM	1,600	1,900	1,200	28,000	3,800	7,800		
	2.5% SOM	1,800	1,900	2,100	28,000	3,800	7,800		
	6.0% SOM	1,900	1,900	3,000	28,000	3,800	7,900		

SOM = Soil Organic Matter Content (%)

vap – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.4. Polycyclic Aromatic Hydrocarbons (PAHs)

DeterminabyRwith Rwith RwithRwith Rwith RwithComment Rwith RwithPhysic Rwith RwithPhysic Rwith RwithPhysic Rwith RwithPhysic Rwith RwithPhysic Rwith RwithPhysic Rwith RwithPhysic Rwith RwithPhysic Rwith RwithPhysic Rwith	LQM/CIEH Suitable 4 Use Levels For Polycyclic Aromatic Hydrocarbons (PAHs)							
Acenapthene 1.0% SOM 210 3.000 (57.0) ¹⁰⁰ 34 8.4,000(57.0) ¹⁰⁰ 15,000 30,000 2.5% SOM 510 4,700(141) ¹⁰⁰ 200 100,000 15,000 30,000 Acenapthylene 1.0% SOM 170 2,900(8:1) ¹⁰⁰ 200 97,000(12) ¹⁰⁰ 15,000 30,000 Acenapthylene 1.0% SOM 2,00 6,000(506) ¹⁰⁰ 160 100,000 15,000 30,000 Anthracene 1.0% SOM 2,400 31,000(1,17) ¹⁰⁰ 38.0 520,000 74,000 150,000 Benzo(a)partnacene 1.0% SOM 72,00 11 2.30 540,000 74,000 150,000 Benzo(a)pyrene 1.0% SOM 2.00 3.10 2.00 57.70 11.01 Benzo(b)flouranthene 1.0% SOM 2.00 3.30 2.00 3.50 3.60 3.70 4.10 3.50 Benzo(b)flouranthene 1.0% SOM 3.70 4.00 3.50 3.60 3.70 1.20 1.10	Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
Accouption 2.5%	Acenanthene	1.0% SOM	210	3 000 (57 0) sol	34	84 000(57 0) sol	15 000	29.000
EDX SDM 100 6,00(13) 00 100,000 15,000 30,000 Acenapthylen 10% SOM 170 2,900(86.1)** 28 83,000(86.1)** 150.00 30,000 Acenapthylen 10% SOM 920 6,000(56)** 160 100,000 15,000 30,000 Anthracen 2.5% SOM 920 6,000(56)** 160 100,000 74,000 150,000 Anthracen 2.5% SOM 5,400 3,700 2,200 540,000 74,000 150,000 Benzo(s)pyrene 10.0% SOM 2.20 11 2.90 170 2.9 56 G/M SOM 11.00 3.700 2.200 350 5.70 11 2.5% SOM 110 14 4.650 170 2.9 56 G/M SOM 2.20 3.20 2.00 35 5.70 11 2.5% SOM 3.00 2.20 3.50 4.60 3.00 4.00 4.00 4.00 4.00 4.00	Accuaptione	2.5% SOM	510	A 700(1/1) sol	85	97 000(1/11) sol	15,000	30,000
Acenapthylene 100 2000(100) 2000 2000(100) 15,000 29,000 25% SOM 420 4,600(212) 69 97,000(121) 15,000 30,000 Acenapthylene 1,0% SOM 2,00 31,000 150,000 150,000 150,000 Acenapthylene 1,0% SOM 2,400 31,000(1,17) *** 380 520,000 74,000 150,000 Benzo(a)anthracene 1,0% SOM 7.20 11 2.90 170 29 49 2,5% SOM 11 144 6.50 170 29 62 Benzo(a)pyrene 2,5% SOM 3,00 3,00 350 350 5,70 112 2,5% SOM 3,00 3,00 3,00 4,00 2,10 4,44 7,20 15 6,0% SOM 3,00 3,00 4,00 2,10 4,44 7,20 15 6,0% SOM 3,00 3,60 6,40 4,000 6,40 1,600 2,5% SOM 3,00		6.0% SOM	1100	6,000(336) sol	200	100 000	15,000	30,000
Name parties 2.5% SOM 4.20 4.600(212)*** 6.09 97,00(212)*** 15,000 30,000 Anthracene 1.0% SOM 2.400 35,000 37,000 150 100,000 150,000 30,000 Sex SOM 5,400 33,000 950 540,000 74,000 150,000 Composition 0.0% SOM 11.00 37,000 22,00 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Benzo(b)flouranthen 1.0% SOM 2.20 3.20 3.50 357.0 111 Eine Som 3.20 3.00 2.00 3.50 5.70 13.0 Benzo(b)flouranthen 1.0% SOM 3.20 3.00 2.00 3.50 6.00 13.00 Benzo(b)flouranthen 1.0% SOM 3.20 3.60 2.00	Acenanthylene	1.0% SOM	170	2 900(86 1) sol	28	83 000(86 1) sol	15,000	29,000
6.0% SOM 920 6,000(S06)*** 160 100,002,1 15,000 15,000 Anthracene 1.0% SOM 2,400 33,000(1.17)*** 380 520,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Benzo(a)pyrene 1.0% SOM 7.20 3.20 0.97 35 5.70 11 2.5% SOM 3.00 3.20 2.00 35 5.70 13 Benzo(b)ptorent 1.0% SOM 2.60 3.90 0.99 44 7.10 13 1.0% SOM 3.00 4.00 2.10 44 7.20 15 6.0% SOM 3.00 3.60 640 4,000 640 1,600 2.5% SOM 390 110 75 1,200 190 370 2.5% SOM 393 110	ricenapinylene	2.5% SOM	420	4 600(212) sol	69	97 000(212) sol	15,000	30,000
Anthracene 1.0% SOM 2.400 31,000(1.17) *** 380 520,000 74,000 150,000 E.9% SOM 5,400 35,000 950 540,000 74,000 150,000 Benzo(a)anthracene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Benzo(a)pyrene 1.0% SOM 7.20 11 2.90 540,000 74,000 150,000 Benzo(a)pyrene 1.0% SOM 7.20 3.20 0.97 35 5.70 11 Benzo(b)flouranthene 1.0% SOM 3.00 3.20 3.50 36 5.70 13 Benzo(b)flouranthene 1.0% SOM 3.00 4.00 3.90 44 7.10 13 Benzo(b)flouranthene 1.0% SOM 320 360 290 3.900 640 1,400 SSM SOM 3.00 1.00 37 1.200 190 410 Benzo(b)flouranthene 1.0% SOM 350 57 110 37 1.200		6.0% SOM	920	6,000(506) sol	160	100.000	15,000	30,000
Initiation 2.5% SOM 5,400 35,000 950 540,000 74,000 150,000 Benzo(a)anthracene 10% SOM 7.20 11 2.90 570,000 74,000 150,000 Benzo(a)anthracene 2.9% SOM 11 14 6.50 170 29 56 6.0% SOM 13 15 13 180 29 66 6.0% SOM 2.00 3.20 0.97 35 5.70 11 2.5% SOM 5.00 3.00 3.20 2.00 35 5.70 12 6.0% SOM 3.00 3.20 3.00 4.40 7.10 13 2.5% SOM 3.70 4.00 3.90 44 7.10 13 2.5% SOM 3.70 4.00 3.90 440 1,600 1,600 2.5% SOM 3.70 4.00 3.90 6.40 1,600 1,600 2.5% SOM 3.70 1.10 37 1,200 190 440	Anthracene	1.0% SOM	2 400	31 000(1 17) vap	380	520,000	74 000	150,000
Energi bit in the solution of the solut	, and a define	2.5% SOM	5 400	35,000	950	540,000	74 000	150,000
Berxo(a)anthracene		6.0% SOM	11 000	37,000	2 200	540,000	74 000	150,000
1.1. 1.1 1.4 6.50 1.70 2.9 56 Benzo(a)pyrene 2.5% SOM 1.3 1.5 1.3 1.80 2.9 6.6 Benzo(a)pyrene 2.5% SOM 2.00 3.20 2.007 3.5 5.70 1.1 Benzo(b)flouranthen 1.0% SOM 2.00 3.20 2.00 3.5 5.70 1.3 Benzo(b)flouranthen 1.0% SOM 2.60 3.90 0.99 4.4 7.10 1.3 Benzo(ghi)perylene 1.0% SOM 3.70 4.00 3.90 640 1.400 2.5% SOM 3.00 3.60 640 4.000 640 1.600 Benzo(ghi)perylene 1.0% SOM 3.50 3.60 640 4.000 640 1.600 Benzo(sh)flouranthene 1.0% SOM 3.0 1.10 3.7 1.200 190 440 Chrysene 1.0% SOM 3.0 1.10 3.5 5.7 110 Chrysene 1.0% SOM	Benzo(a)anthracene	1.0% SOM	7.20	11	2.90	170	29	49
Benzo(a)pyrene 1.0% SOM 1.3 1.5 1.3 1.8 1.2 1.5 Benzo(a)pyrene 1.0% SOM 2.20 3.20 0.97 35 5.70 11 Benzo(b)flouranthene 1.0% SOM 3.00 3.20 2.00 35 5.70 12 Benzo(b)flouranthene 1.0% SOM 3.00 4.00 2.10 4.44 7.20 13 Benzo(gh)flouranthene 1.0% SOM 3.70 4.00 3.90 45 7.20 16 Benzo(gh)flouranthene 1.0% SOM 3.70 4.00 3.90 45 7.20 16 Benzo(k)flouranthene 1.0% SOM 3.70 360 640 4.000 640 1,500 Chrysene 1.0% SOM 3.50 360 640 4.000 440 1.00 Chrysene 1.0% SOM 0.24 0.31 0.14 3.50 S.7 110 2.5% SOM 2.20 31 9.40 3.50 0.57 1.00 <th></th> <td>2 5% SOM</td> <td>11</td> <td>14</td> <td>6 50</td> <td>170</td> <td>29</td> <td>56</td>		2 5% SOM	11	14	6 50	170	29	56
Benzo(a)pyrene 1.0% SOM 2.20 3.20 0.97 35 5.70 11 2.5% SOM 2.70 3.20 3.00 350 350 5.70 12 6.0% SOM 3.00 3.20 3.50 366 5.70 13 Benzo(b)flouranthene 1.0% SOM 2.60 3.90 0.99 44 7.10 13 Benzo(ghi)perylene 1.0% SOM 3.20 3.60 4.00 4.00 6.40 1,600 Benzo(k)flouranthene 1.0% SOM 320 360 640 4,000 640 1,500 Benzo(k)flouranthene 1.0% SOM 77 110 37 1,200 190 410 2.5% SOM 93 110 75 1,200 190 440 Chrysene 1.0% SOM 77 110 37 1,200 190 440 Chrysene 1.0% SOM 0.24 0.31 0.14 350 57 120 Dibenzo(a)a)antrice <t< th=""><th></th><td>6.0% SOM</td><td>13</td><td>15</td><td>13</td><td>180</td><td>29</td><td>62</td></t<>		6.0% SOM	13	15	13	180	29	62
Linktery FM 2.5% SOM 2.70 3.20 2.00 35 5.70 12 6.0% SOM 3.00 3.20 3.50 36 5.70 13 Benzo(b)flouranthen 1.0% SOM 3.30 4.00 2.10 444 7.20 15 6.0% SOM 3.70 4.00 3.90 455 7.20 16 Benzo(ghi)peryten 2.5% SOM 3.40 3.60 470 4,000 640 1,500 Benzo(k)flouranthen 1.0% SOM 320 360 470 4,000 640 1,600 Benzo(k)flouranthen 1.0% SOM 370 110 37 1,200 190 410 2.5% SOM 30 100 1110 130 1,200 190 440 1.0% SOM 152 30 4.10 350 57 120 Dibenzo(a)nanthracen 1.0% SOM 22 31 9.40 350 57 120 Dibenzo(a)nanthracen 1.0% SOM	Benzo(a)pyrene	1.0% SOM	2.20	3.20	0.97	35	5.70	11
Benzo(b)flouranthene 6.0% SOM 3.00 3.20 3.50 3.60 5.70 13 Benzo(b)flouranthene 1.0% SOM 2.60 3.90 0.99 44 7.10 13 Benzo(ghi)perylene 2.5% SOM 3.30 4.00 3.90 45 7.20 16 Benzo(ghi)perylene 1.0% SOM 320 360 290 3,900 640 1,600 Benzo(ghi)perylene 1.0% SOM 320 360 640 4,000 640 1,600 Benzo(k)flouranthene 1.0% SOM 370 110 37 1,200 190 440 Chrysene 1.0% SOM 77 110 37 1,200 190 440 Chrysene 1.0% SOM 100 110 130 1,200 190 440 Chrysene 1.0% SOM 22 31 940 350 57 110 G/M SOM 0.27 32 19 350 57 120	2011-0(#/þ): 0110	2 5% SOM	2 70	3 20	2 00	35	5 70	12
Benzo(b)flourantheen 1.0% SOM 2.60 3.90 0.99 44 7.10 13 2.5% SOM 3.30 4.00 2.10 444 7.20 15 6.0% SOM 3.70 4.00 3.90 45 7.20 16 Benzo(ghi)perylene 1.0% SOM 320 360 290 3,900 640 1,400 2.5% SOM 340 360 290 3,900 640 1,600 Benzo(k)flourantheen 1.0% SOM 370 110 37 1,200 190 410 6.0% SOM 0.30 110 130 1,200 190 440 2.5% SOM 93 110 75 1,200 190 440 6.0% SOM 15 300 4.10 350 57 110 6.0% SOM 0.24 0.31 0.44 3.50 57 1.30 6.0% SOM 0.28 0.32 0.43 3.60 0.57 1.30 1.		6.0% SOM	3.00	3.20	3.50	36	5.70	13
Image: biol biol biol biol biol biol biol biol	Benzo(b)flouranthene	1.0% SOM	2.60	3.90	0.99	44	7.10	13
Los of bots Los of bots <thlos bots<="" of="" th=""> <thlos bots<="" of="" th=""></thlos></thlos>	Denizo(b)nourantinene	2.5% SOM	3 30	4 00	2 10	44	7 20	15
Benzo(ghi)perylene 1.0% 0.0% 3.20 3.60 2.0% 3.60 6.40 1.40 2.5% SOM 340 360 470 4,000 640 1,500 6.0% SOM 340 360 640 4,000 640 1,600 Benzo(k)flouranthene 1.0% SOM 93 110 75 1,200 190 410 6.0% SOM 100 110 130 1,200 190 440 Chrysene 1.0% SOM 12 31 9.40 350 57 120 Dibenzo(ah)anthracen 1.0% SOM 2.2 31 0.40 350 57 120 Dibenzo(ah)anthracen 1.0% SOM 2.24 0.31 0.14 3.50 0.57 1.10 2.5% SOM 0.32 0.43 3.60 0.58 1.40 1.0% SOM 2.80 1,500 52 23,000 3,100 6,300		6.0% SOM	3.70	4.00	3.90	45	7.20	16
Locked shifts of the second	Benzo(ghi)pervlene	1.0% SOM	320	360	290	3.900	640	1.400
6.0% SOM3503606404,0006401,600Benzo(k)flouranthen1.0% SOM77110371,2001903702.5% SOM93110751,2001904406.0% SOM1001101301,200190440Chrysene1.0% SOM15304.1035057932.5% SOM2.2319.40350571106.0% SOM0.240.310.143505.71102.5% SOM0.280.320.273.500.571.306.0% SOM0.240.310.143.500.571.306.0% SOM0.280.320.273.500.571.306.0% SOM0.281,5005223,0003,1006,3006.0% SOM2801,5005223,0003,1006,3006.0% SOM8901,60012023,0003,1006,30072.5% SOM56160013023,0003,1006,30072.5% SOM3604,500(183) sol6768,0009,90020,00010deno(123-cd)pyren1.0% SOM2.7459,50500821502.5% SOM3604,500(183) sol16071,0009,90020,00010deno(123-cd)pyren1.0% SOM2.302.64.10190(76.4) sol4,9001,200(76.4) sol10deno(123-cd)pyren <td< th=""><td rowspan="2"></td><td>2.5% SOM</td><td>340</td><td>360</td><td>470</td><td>4,000</td><td>640</td><td>1.500</td></td<>		2.5% SOM	340	360	470	4,000	640	1.500
Benzo(k)flouranthee 1.0% SOM 77 110 37 1,200 100 370 2.5% SOM 93 110 75 1,200 190 410 6.0% SOM 100 110 130 1,200 190 440 Chrysene 1.0% SOM 15 30 4.10 350 57 93 2.5% SOM 2.2 31 9.40 350 57 110 6.0% SOM 2.2 31 9.40 350 57 120 Dibenzo(ah)anthracene 1.0% SOM 0.24 0.31 0.14 3.50 0.57 1.30 6.0% SOM 0.28 0.32 0.43 3.60 0.58 1.40 Flouranthene 1.0% SOM 2.80 1.500 52 23,000 3,100 6,300 2.5% SOM 0.60 1,600 130 23,000 3,100 6,300 2.5% SOM 160 3,800(76.5) sol 67 68,000 9,900 20,000		6.0% SOM	350	360	640	4,000	640	1,600
Link (a), data (b), a) Link (b), a) <thlink (b),="" a)<="" th=""> Link (b), a) Link</thlink>	Benzo(k)flouranthene	1.0% SOM	77	110	37	1,200	190	370
Image: body set in the set in th		2.5% SOM	93	110	75	1,200	190	410
Chrysene 1.0% SOM 1.1 3.0 4.10 3.50 5.7 9.3 2.5% SOM 2.2 3.1 9.40 350 5.7 1.10 6.0% SOM 2.7 3.2 1.9 3.50 5.7 1.20 Dibenzo(ah)anthracene 1.0% SOM 0.24 0.31 0.14 3.50 5.7 1.20 2.5% SOM 0.28 0.32 0.27 3.50 0.57 1.10 6.0% SOM 0.30 0.32 0.43 3.60 0.58 1.40 6.0% SOM 560 1,500 52 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 6.0% SOM 880 4,500(183) sol 27 63,000(30.9) sol 9,900 20,000 1.0% SOM 27 45 9.50 500 82 150 5.		6.0% SOM	100	110	130	1.200	190	440
2.5% SOM 22 31 9.40 350 57 110 6.0% SOM 27 32 19 350 57 120 Dibenzo(ah)anthracene 1.0% SOM 0.24 0.31 0.14 3.50 0.57 1.10 2.5% SOM 0.28 0.32 0.43 3.60 0.58 1.40 6.0% SOM 0.280 1,500 52 23,000 3,100 6,300 6.0% SOM 560 1,600 130 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 6.0% SOM 170 2,800 (30.9) sol 27 63,000(30.9) sol 9,900 20,000 2.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 2.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 1.04eno(123-cd)pyrene 1.0% SOM 2.7 45 9.50 500 82 150	Chrysene	1.0% SOM	15	30	4.10	350	57	93
6.0% SOM27321935057120Dibenzo(ah)anthracen1.0% SOM0.240.310.143.500.571.102.5% SOM0.280.320.273.500.571.306.0% SOM0.300.320.433.600.581.40Flouranthene1.0% SOM2801,5005223,0003,1006,3006.0% SOM8901,60013023,0003,1006,3006.0% SOM8901,60029023,0003,1006,300Flourene1.0% SOM1702,800 (30.9) sol2763,000(30.9) sol9,90020,0001.06 SOM8604,500(183) sol6768,0009,90020,000Indeno(123-cd)pyrene1.0% SOM27459.50500821506.0% SOM41446639510821706.0% SOM2.302.64.10190 (76.4) sol4,9001,200(76.4) solNapthalene1.0% SOM2.302.610460 (183) sol4,9003,000Phenanthrene1.0% SOM1.301.3241,100 (432) sol4,9003,000Phenanthrene1.0% SOM2.003,80015022,0003,1006,2000.0% SOM1.301.5003822,0003,1006,2000.0% SOM1.301.5003822,0003,1006,2001.0% SOM2.003,800 <th>,</th> <td>2.5% SOM</td> <td>22</td> <td>31</td> <td>9.40</td> <td>350</td> <td>57</td> <td>110</td>	,	2.5% SOM	22	31	9.40	350	57	110
Dibenzo(ah)anthracene 1.0% SOM 0.24 0.31 0.14 3.50 0.57 1.10 2.5% SOM 0.28 0.32 0.27 3.50 0.57 1.30 6.0% SOM 0.30 0.32 0.43 3.60 0.58 1.40 Flouranthene 1.0% SOM 280 1,500 52 23,000 3,100 6,300 2.5% SOM 560 1,600 130 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 6.0% SOM 170 2,800 (30.9) sol 27 63,000(30.9) sol 9,900 20,000 1.06 SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 1.06 SOM 27 45 9.50 500 82 150 2.5% SOM 360 4.60 21 510 82 150 <		6.0% SOM	27	32	19	350	57	120
2.5% SOM0.280.320.273.500.571.306.0% SOM0.300.320.433.600.581.40Flouranthene1.0% SOM2801,5005223,0003,1006,3002.5% SOM5601,60013023,0003,1006,3006.0% SOM8901,60029023,0003,1006,300Flourene1.0% SOM1702,800 (30.9) sol2763,000(30.9) sol9,90020,0002.5% SOM44003,800(76.5) sol6768,0009,90020,0002.5% SOM44003,800(76.5) sol6768,0009,90020,0002.5% SOM45004,500(183) sol16071,0009,90020,0002.5% SOM8604,500(183) sol16071,0009,90020,0001.04 SOM27459.50500821502.5% SOM36646621510821201.05 SOM2.302.305.61049001,200(76.4) sol2.5% SOM2.305.610460 (183) sol4,9003,0001.06 SOM13313241,100 (132) sol4,9003,000Phenanthrene1.0% SOM2201,5003822,0003,1006,2002.5% SOM2203,70011054,0007,40015,0002.5% SOM2203,80062054,0007,40015,000 <t< th=""><th>Dibenzo(ah)anthracene</th><td>1.0% SOM</td><td>0.24</td><td>0.31</td><td>0.14</td><td>3.50</td><td>0.57</td><td>1.10</td></t<>	Dibenzo(ah)anthracene	1.0% SOM	0.24	0.31	0.14	3.50	0.57	1.10
6.0% SOM0.300.320.433.600.581.40Flouranthene1.0% SOM2801,5005223,0003,1006,3002.5% SOM5601,60013023,0003,1006,3006.0% SOM8901,60029023,0003,1006,3006.0% SOM1702,800 (30.9) sol2763,000(30.9) sol9,90020,0002.5% SOM4003,800(76.5) sol6768,0009,90020,0006.0% SOM8604,500(183) sol16071,0009,90020,000Indeno(123-cd)pyrene1.0% SOM3646210510821506.0% SOM3604.503.6055.0550821506.0% SOM4114639510821200(76.4) sol6.0% SOM5.605.6100460 (183) sol4,9001,200(76.4) sol2.5% SOM5.605.6100460 (183) sol4,9003,000Phenanthrene1.0% SOM1.313241,100 (432) sol4,9003,000Phenanthrene1.0% SOM2201,5003822,0003,1006,2000.0% SOM21003,80027054,0007,40015,0000.0% SOM20003,80027054,0007,40015,0000.0% SOM0.791.20.3254,0007,40015,0000.0% SOM0.0791.20.3254,0		2.5% SOM	0.28	0.32	0.27	3.50	0.57	1.30
Flouranthene 1.0% SOM 280 1,500 52 23,000 3,100 6,300 2.5% SOM 560 1,600 130 23,000 3,100 6,300 6.0% SOM 890 1,600 290 23,000 3,100 6,300 Flourene 1.0% SOM 170 2,800 (30.9) sol 27 63,000(30.9) sol 9,900 20,000 2.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 6.0% SOM 860 4,500(183) sol 160 71,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 27 45 9,500 500 82 150 2.5% SOM 360 46 21 510 82 170 6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,900(183) sol 2.5% SOM 5.60 1.3 13		6.0% SOM	0.30	0.32	0.43	3.60	0.58	1.40
2.5% SOM5601,60013023,0003,1006,3006.0% SOM89001,60029023,0003,1006,300Flourene1.0% SOM1702,800 (30.9) sol2763,000(30.9) sol9,90020,0002.5% SOM40003,800(76.5) sol6768,0009,90020,0006.0% SOM8604,500(183) sol16071,0009,90020,0006.0% SOM27459,500500821502.5% SOM364621510821706.0% SOM414639510821807.0% SOM2.302.64.10190 (76.4) sol4,9001,200(76.4) sol8.0% SOM41331241,100 (432) sol4,9003,0009.0% SOM13313241,100 (432) sol4,9003,0009.0% SOM2201,5003822,0003,1006,2009.0% SOM2201,5003822,0003,1006,2009.0% SOM2201,50038027,003,1006,2009.0% SOM4401,5003822,0003,1006,2009.0% SOM6203,80027054,0007,40015,0009.0% SOM62003,80062054,0007,40015,0009.0% SOM0.791.20.32152.204,409.0% SOM60.9%3,80062054	Flouranthene	1.0% SOM	280	1,500	52	23,000	3,100	6,300
6.0% SOM8901,60029023,0003,1006,300Flourene1.0% SOM1702,800 (30.9) sol2763,000(30.9) sol9,90020,0002.5% SOM44003,800(76.5) sol6768,0009,90020,0006.0% SOM8604,500(183) sol16071,0009,90020,000Indeno(123-cd)pyrene1.0% SOM27459.50500821502.5% SOM364621510821706.0% SOM41463951082180Napthalene1.0% SOM2.302.64.10190 (76.4) sol4,9001,200(76.4) sol6.0% SOM5.605.6010460 (183) sol4,9003,00031006,200Phenanthrene1.0% SOM2201,5003822,0003,1006,2006.0% SOM4401,5003822,0003,1006,2006.0% SOM4401,5009023,0003,1006,2006.0% SOM12003,80027054,0007,40015,000Pyrene1.0% SOM20003,80027054,0007,40015,000Coal Tar (Benzo(a)pyrene1.0% SOM0.791.20.32152.204,40used as marker2.5% SOM0.981.20.67152.204,4006.0% SOM1.101.21.201502.204,80 <th></th> <td>2.5% SOM</td> <td>560</td> <td>1,600</td> <td>130</td> <td>23,000</td> <td>3,100</td> <td>6,300</td>		2.5% SOM	560	1,600	130	23,000	3,100	6,300
Flourene 1.0% SOM 170 2,800 (30.9) sol 27 63,000(30.9) sol 9,900 20,000 2.5% SOM 400 3,800(76.5) sol 67 68,000 9,900 20,000 6.0% SOM 860 4,500(183) sol 160 71,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 36 46 21 510 82 170 6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22		6.0% SOM	890	1,600	290	23,000	3,100	6,300
2.5% SOM 4400 3,800(76.5) sol 667 68,000 9,900 20,000 Indeno(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 360 4,500(183) sol 160 71,000 9,900 20,000 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 36 46 21 510 82 180 6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 4400 1,500 90 23,000 3,100 6,300	Flourene	1.0% SOM	170	2,800 (30.9) sol	27	63,000(30.9) sol	9,900	20,000
6.0% SOM8604,500(183) sol16071,0009,90020,000Indeno(123-cd)pyrene1.0% SOM27459.50500821502.5% SOM364621510821706.0% SOM41463951082180Napthalene1.0% SOM2.302.64.10190 (76.4) sol4,9001,200 (76.4) sol2.5% SOM5.605.610460 (183) sol4,9001,900 (183) sol6.0% SOM1313241,100 (432) sol4,9003,000Phenanthrene1.0% SOM951,300 (183) sol22,0003,1006,2002.5% SOM2201,5003822,0003,1006,2006.0% SOM4401,5009023,0003,1006,300Pyrene1.0% SOM6203,70011054,0007,40015,0006.0% SOM12003,80062054,0007,40015,0005.5% SOM0.791.20.32152.204.400.01 Tar (Benzo(a)pyrene1.0% SOM0.791.20.32152.204.40used as marker compound)5.5% SOM0.981.20.67152.204.80		2.5% SOM	400	3,800(76.5) sol	67	68,000	9,900	20,000
Indeno(123-cd)pyrene 1.0% SOM 27 45 9.50 500 82 150 2.5% SOM 36 46 21 510 82 170 6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,300 2.5% SOM 440 1,500 90 23,000 3,100 6,300 2.5% SOM 620 3,700 110 54,000 7,400 <th></th> <td>6.0% SOM</td> <td>860</td> <td>4,500(183) sol</td> <td>160</td> <td>71,000</td> <td>9,900</td> <td>20,000</td>		6.0% SOM	860	4,500(183) sol	160	71,000	9,900	20,000
2.5% SOM 36 46 21 510 82 170 $6.0%$ SOM 41 46 39 510 82 180 Napthalene $1.0%$ SOM 2.30 2.6 4.10 190 (76.4) sol $4,900$ $1,200$ (76.4) sol $2.5%$ SOM 5.60 5.6 10 460 (183) sol $4,900$ $1,900$ (183) sol $6.0%$ SOM 13 13 24 $1,100$ (432) sol $4,900$ $3,000$ Phenanthrene $1.0%$ SOM 95 $1,300$ (183) sol 15 $22,000$ $3,100$ $6,200$ $2.5%$ SOM 220 $1,500$ 38 $22,000$ $3,100$ $6,200$ $6.0%$ SOM 440 $1,500$ 90 $23,000$ $3,100$ $6,300$ Pyrene $1.0%$ SOM 620 $3,700$ 110 $54,000$ $7,400$ $15,000$ $6.0%$ SOM 1200 $3,800$ 620 $54,000$ $7,400$ $15,000$ Coal Tar (Benzo(a) pyrene $1.0%$ SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker $2.5%$ SOM 0.98 1.2 0.67 15 2.20 4.80	Indeno(123-cd)pyrene	1.0% SOM	27	45	9.50	500	82	150
6.0% SOM 41 46 39 510 82 180 Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 0.79 1.2 0.32 15		2.5% SOM	36	46	21	510	82	170
Napthalene 1.0% SOM 2.30 2.6 4.10 190 (76.4) sol 4,900 1,200(76.4) sol 2.5% SOM 5.60 5.60 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 1200 3,800 620 54,000 7,400 15,000 6.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 <td< th=""><th></th><td>6.0% SOM</td><td>41</td><td>46</td><td>39</td><td>510</td><td>82</td><td>180</td></td<>		6.0% SOM	41	46	39	510	82	180
2.5% SOM 5.60 5.6 10 460 (183) sol 4,900 1,900(183) sol 6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 2.5% SOM 1200 3,800 620 54,000 7,400 15,000 6.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 6.0% SOM 1.10 1.2 1.20 15 2.20	Napthalene	1.0% SOM	2.30	2.6	4.10	190 (76.4) ^{sol}	4,900	1,200(76.4) sol
6.0% SOM 13 13 24 1,100 (432) sol 4,900 3,000 Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 6.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 6.0% SOM 1.10 1.2 1.20 15 2.20 4.8		2.5% SOM	5.60	5.6	10	460 (183) sol	4,900	1,900(183) sol
Phenanthrene 1.0% SOM 95 1,300(183) sol 15 22,000 3,100 6,200 2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 coal Tar (Benzo(a)pyren 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67 15 2.20 4.80 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80		6.0% SOM	13	13	24	1,100 (432) sol	4,900	3,000
2.5% SOM 220 1,500 38 22,000 3,100 6,200 6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 Coal Tar (Benzo(a)pyrene 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80	Phenanthrene	1.0% SOM	95	1,300(183) sol	15	22,000	3,100	6,200
6.0% SOM 440 1,500 90 23,000 3,100 6,300 Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 Coal Tar (Benzo(a)pyren used as marker compound) 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40		2.5% SOM	220	1,500	38	22,000	3,100	6,200
Pyrene 1.0% SOM 620 3,700 110 54,000 7,400 15,000 2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 Coal Tar (Benzo(a)pyrene 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 used as marker 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80		6.0% SOM	440	1,500	90	23,000	3,100	6,300
2.5% SOM 1200 3,800 270 54,000 7,400 15,000 6.0% SOM 2000 3,800 620 54,000 7,400 15,000 Coal Tar (Benzo(a)pyren used as marker 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 6.0% SOM 0.98 1.2 0.67 15 2.20 4.70 compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80	Pyrene	1.0% SOM	620	3,700	110	54,000	7,400	15,000
6.0% SOM 2000 3,800 620 54,000 7,400 15,000 Coal Tar (Benzo(a)pyrene used as marker 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 Compound) 6.0% SOM 0.98 1.2 0.67 15 2.20 4.70 compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80		2.5% SOM	1200	3,800	270	54,000	7,400	15,000
Coal Tar (Benzo(a)pyrene used as marker 1.0% SOM 0.79 1.2 0.32 15 2.20 4.40 compound) 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80		6.0% SOM	2000	3,800	620	54,000	7,400	15,000
used as marker compound) 2.5% SOM 0.98 1.2 0.67 15 2.20 4.70 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80	Coal Tar (Benzo(a)pyrene	1.0% SOM	0.79	1.2	0.32	15	2.20	4.40
compound) 6.0% SOM 1.10 1.2 1.20 15 2.20 4.80	used as marker	2.5% SOM	0.98	1.2	0.67	15	2.20	4.70
	compound)	6.0% SOM	1.10	1.2	1.20	15	2.20	4.80

SOM = Soil Organic Matter Content (%)

vap – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

 $^{\rm sol}$ – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.5. Volatile and Semi-volatile Organic Compounds

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds							
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
		Chloro	alkanes & all	enes			
1,2 Dichloroethane	1.0% SOM	0.0071	0.0092	0.0046	0.67	29	21
	2.5% SOM	0.011	0.013	0.0083	0.97	29	24
	6.0% SOM	0.019	0.023	0.016	1.70	29	28
1,1,2,2 Tetrachloroethane	1.0% SOM	1.60	3.90	0.41	270	1,400	1,800
	2.5% SOM	3.40	8.00	0.89	550	1,400	2,100
	6.0% SOM	7.50	17	2.00	1,100	1,400	2,300
1,1,1,2 Tetrachloroethane	1.0% SOM	1.20	1.50	0.79	110	1,400	1,500
	2.5% SOM	2.80	3.50	1.90	250	1,400	1,800
	6.0% SOM	6.40	8.20	4.40	560	1,400	2,100
Tetrachloroethene	1.0% SOM	0.18	0.18	0.65	19	1,400	810 ^{sol} (424)
	2.5% SOM	0.39	0.40	1.50	42	1.400	1.100 sol(951)
	6.0% SOM	0.90	0.92	3.60	95	1 400	1 500
1,1,1 Trichloroethane	1.0% SOM	8.80	9.00	48	660	140,000	57,000 vap(1425)
	2.5% SOM	18	18	110	1,300	140,000	76,000 vap(2915)
	6.0% SOM	39	40	240	3,000	140,000	100,000 ^{vap} (6392)
Tetrachloromethene	1.0% SOM	0.026	0.026	0.45	2.90	890	190
	2.5% SOM	0.056	0.056	1.00	6.30	920	270
	6.0% SOM	0.130	0.130	2.40	14	950	400
Trichloroethene	1.0% SOM	0.016	0.017	0.041	1.20	120	70
	2.5% SOM	0.034	0.036	0.091	2.60	120	91
	6.0% SOM	0.075	0.080	0.210	5.70	120	120
Trichloromethane	1.0% SOM	0.91	1.20	0.42	99	2,500	2,600
	2.5% SOM	1.70	2.10	0.83	170	2,500	2,800
	6.0% SOM	3.40	4.20	1.70	350	2.500	3.100
Vinyl Chloride	1.0% SOM	0.00064	0.00077	0.00055	0.059	3.50	4.80
,	2.5% SOM	0.00087	0.00100	0.00100	0.077	3.50	5.00
	6.0% SOM	0.00014	0.00150	0.00180	0.120	3.50	5.40
	1		Explosives			1	
2,4,6 Trinitrotoluene	1.0% SOM	1.60	65	0.24	1,000	130	260
,,,	2.5% SOM	3.70	66	0.58	1.000	130	270
	6.0% SOM	8.10	66	1.40	1.000	130	270
RDX	1.0% SOM	120	13.000	17	210.000	26.000	49.000(18.7) ^{sol}
(Hexogen/Cyclonite/1.3.5-	2.5% SOM	250	13.000	38	210.000	26.000	51.000
trinitro-1,3,5-	6.0% SOM	540	13,000	85	210,000	27,000	53,000
HMX (Octogen/1 3 5 7-	1.0% SOM	5 70	67.00	0.86	110 000	13 000	23 000(0 35)vap
tetrenitro-1.3.5.7-	2.5% SOM	12	67.00	1 90	110,000	13,000	23 000(0.30)vap
tetrazacyclo-octane)	6.0% SOM	26	67,00	3.90	110,000	13,000	24 000(0.33)
Atrazino	1.0% \$0.04	3 30	610	0.50	9 300	1 200	2 200
	2.5% \$0.14	7.60	620	1.20	9,300	1 200	2,300
	6.0% SOM	17.00	620	2 70	9,400	1 200	2,400
^{vap} – GAC presented excee	ds the vanou	r saturation li	mit which is	nresented in	h brackets	1,200	2,400

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

LQM CIEH	General Ass	sessment C	riteria: Volatile	and Semi-	Volatile Organic	Compour	lds		
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Pesticides									
Aldrin	1.0% SOM	5.70	7.30	3.20	170	18	30		
	2.5% SOM	6.60	7.40	6.10	170	18	31		
	6.0% SOM	7.10	7.50	9.60	170	18	31		
Dieldrin	1.0% SOM	0.97	7.00	0.17	170	18	30		
	2.5% SOM	2.00	7.30	0.41	170	18	30		
	6.0% SOM	3.50	7.40	0.96	170	18	31		
Dichlorvos	1.0% SOM	0.032	6.40	0.0049	140	16	26		
	2.5% SOM	0.066	6.50	0.0100	140	16	26		
	6.0% SOM	0.140	6.60	0.0220	140	16	27		
Alpha - Endosulfan	1.0% SOM	7.40	160(0.003) ^{vap}	1.20	5,600(0.003) ^{vap}	1,200	2,400		
	2.5% SOM	18	280(0.007) ^{vap}	2.90	7,400(0.007) ^{vap}	1,200	2,400		
	6.0% SOM	41	410(0.016) ^{vap}	6.80	8,400(0.016) ^{vap}	1,200	2,400		
Beta - Endosulfan	1.0% SOM	7.00	190(0.00007) ^{vap}	1.10	6,300(0.00007) ^{vap}	1,200	2,400		
	2.5% SOM	17	320(0.0002) ^{vap}	2.70	7,800(0.0002) ^{vap}	1,200	2,400		
	6.0% SOM	39	440(0.0004) ^{vap}	6.40	8700	1,200	2,500		
Alpha -	1.0% SOM	0.23	6.90	0.035	170	24	47		
Hexachlorocyclohexanes	2.5% SOM	0.55	9.20	0.087	180	24	48		
-	6.0% SOM	1.20	11	0.210	180	24	48		
Beta -	1.0% SOM	0.085	3.70	0.013	65	8.10	15		
Hexachlorocyclohexanes	2.5% SOM	0.200	3.80	0.032	65	8.10	15		
	6.0% SOM	0.460	3.80	0.077	65	8.10	16		
Gamma -	1.0% SOM	0.06	2.90	0.0092	67	8.2	14		
Hexachlorocyclohexanes	2.5% SOM	0.14	3.30	0.0230	69	8.2	15		
,	6.0% SOM	0.33	3.50	0.0540	70	8.2	15		
			Chlorobenzen	es		-			
Chlorobenzene	1.0% SOM	0.46	0.46	5.90	56	11.000	1.300(675) ^{sol}		
	2.5% SOM	1.00	1.00	14	130	13.000	2.000(1520) ^{sol}		
	6.0% SOM	2.40	2.40	32	290	14.000	2.900		
1.2-Dichlorobenzene	1.0% SOM	23	24	94	2 000 (571) sol	90,000	24 000(571) ^{sol}		
	2.5% SOM	55	57	230	4,800 (1370) sol	95,000	36.000(1370)sol		
	6.0% SOM	130	130	540	11,000 (3240) sol	98.000	51.000(3240) ^{sol}		
1.3-Dichlorobenzene	1.0% SOM	0.40	0.44	0.25	30	300	390		
2,5 5161101050120112	2.5% SOM	1.00	1 10	0.60	73	300	440		
	6.0% SOM	2 30	2.50	1 50	170	300	470		
1.4-Dichlorobenzene	1.0% SOM	61	61	15	4 400 (224)vap	17 000g	36 000 (224)vap		
2,1 Diemorovenzene	2.5% SOM	150	150	37	10 000 (540) ^{vap}	17,000 ^g	36,000 (540) ^{vap}		
	6.0% SOM	350	350	88g	25,000 (1280) ^{vap}	17,000g	36,000 (1280) ^{vap}		
1.2.3Trichlorobenzene	1.0% SOM	1.50	1.50	4.70	102	1.800	770(134)vap		
1,2,0, 11101101000120112	2.5% SOM	3.60	3 70	12	250	1,800	1 100(330) ^{vap}		
	6.0% SOM	8.60	8.80	28	590	1 800	1 600(789)vap		
1 2 4 -Trichlorobenzene	1.0% SOM	2.60	2.60	55	220	15 000	1 700(318)vap		
	2.5% \$0M	6.40	6.40	1/10	520	17 000	2 600(786)vap		
	6.0% SOM	15	15	320	1 300	19 000	4 000(1880)vap		
135-Trichlorohenzeno	1.0% \$0.14	0.55	0.33	J 70	2,300	1 700	380(36 7)vap		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.5% 5014	0.55	0.55	4.70	23	1,700	500(30.7)**P		
	6.0% SOM	1 00	1 90	1/0	120	1 800	860(217)vap		
		1.50	L.30	I +0	hraekete	1,000	000(217)		

^{sol} – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

LQM CIEH General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds									
Determinan	ds	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Chlorobenzenes (cont.)									
1,2,3,4,-	1.0% SOM	15	24	4.40	1,700(122 ^{)vap}	830	1,500(122) ^{vap}		
Tetrachlorobenzene	2.5% SOM	36	56	11	3,080(304) ^{vap}	830	1,600		
	6.0% SOM	78	120	26	4,400(728) ^{vap}	830	1,600		
1,2,3,5,-	1.0% SOM	0.66	0.75	0.38	49(39.4) ^{vap}	78	110(39) ^{vap}		
Tetrachlobenzene	2.5% SOM	1.60	1.90	0.90	120(98.1) ^{vap}	79	120		
	6.0% SOM	3.70	4.30	2.20	240(235) ^{vap}	79	130		
1,2,4, 5,-	1.0% SOM	0.33	0.73	0.06	42(19.7) ^{sol}	13	25		
Tetrachlobenzene	2.5% SOM	0.77	1.70	0.16	72(49.1) ^{sol}	13	26		
	6.0% SOM	1.60	3.50	0.37	96	13	26		
Pentachlrobenzene	1.0% SOM	5.80	19	1.20	640(43.0) ^{sol}	100	190		
	2.5% SOM	12	30	3.10	770(107) ^{sol}	100	190		
	6.0% SOM	22	38	7.00	830	100	190		
Hexachlorobenzene	1.0% SOM	1.80(0.20) ^{vap}	4.10 (0.20) ^{vap}	0.47	110(0.20) ^{vap}	16	30		
	2.5% SOM	3.30(0.50) ^{vap}	5.70 (0.50) ^{vap}	1.10	120	16	30		
	6.0% SOM	4.90	6.70 (1.2) ^{vap}	2.50	120	16	30		
Phenols & Chlorophenols									
BTEX	1.0% SOM	280	750	66	760 ^{dir} (31,000)	760 ^{dir} (11,0 00)	760 ^{dir} (8,600)		
	2.5% SOM	550	1,300	140	1,500 ^{dir} (35,000)	1,500 ^{dir} (11 ,000)	1,500 ^{dir} (9,700)		
	6.0% SOM	1100	2,300	280	3,200 ^{dir} (37,000)	3,200 ^{dir} (11 ,000)	3,200 ^{dir} (11,00 0)		
Chlorophenols (4	1.0% SOM	0.87	94	0.13	3,500	620	1,100		
Congeners)	2.5% SOM	2.00	150	0.30	4,000	620	1,100		
	6.0% SOM	4.50	210	0.70	4,300	620	1,100		
Pentachlorophenols	1.0% SOM	0.22	27(16.4) ^{vap}	0.03	400	60	110		
	2.5% SOM	0.52	29	0.08	400	60	120		
	6.0% SOM	1.20	31	0.19	400	60	120		
			Other	s					
Carbon Disulphide	1.0% SOM	0.14	0.14	4.80	11	11,000	1,300		
	2.5% SOM	0.29	0.29	10	22	11,000	1,900		
	6.0% SOM	0.62	0.62	23	47	12,000	2,700		
Hexachloro-1,3-	1.0% SOM	0.29	0.32	0.25	31	25	48		
Butadiene	2.5% SOM	0.70	0.78	0.61	68	25	50		
	6.0% SOM	1.60	1.80	1.40	120	25	51		
vap – GAC presented	exceeds the	e vapour satur	ation limit, whic	h is presente	ed in brackets.				
^{sol} – GAC presented	exceeds the	soil saturation	n limit, which is	presented in	brackets.				

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds								
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)			
1,1,2 Trichloroethane	1.0% SOM	0.60	0.88	0.28	94			
	2.5% SOM	1.20	1.8	0.61	190			
	6.0% SOM	2.70	3.9	1.40	400			
1,1-Dichloroethane	1.0% SOM	2.40	2.50	9.20	280			
	2.5% SOM	3.90	4.10	17	450			
	6.0% SOM	7.40	7.70	35	850			
1,1-Dichloroethene	1.0% SOM	0.23	0.23	2.80	26			
	2.5% SOM	0.40	0.41	5.60	46			
	6.0% SOM	0.82	0.82	12	92			
1,2,4-Trimethylbenzene	1.0% SOM	0.35	0.41	0.38	42			
	2.5% SOM	0.85	0.99	0.93	99			
	6.0% SOM	2.00	2.30	2.20	220			
1,2-Dichloropropane	1.0% SOM	0.024	0.024	0.62	3.3			
	2.5% SOM	0.042	0.042	1.20	5.9			
	6.0% SOM	0.084	0.085	2.60	12			
2,4-Dimethylphenol	1.0% SOM	19	210	3.10	16000*			
	2.5% SOM	43	410	7.20	24000*			
	6.0% SOM	97	730	17	30000*			
2,4-Dinitrotoluene	1.0% SOM	1.50	170*	0.22	3700*			
	2.5% SOM	3.20	170	0.49	3700*			
	6.0% SOM	7.20	170	1.10	3800*			
2,6-Dinitrotoluene	1.0% SOM	0.78	78	0.12	1900*			
	2.5% SOM	1.70	84	0.27	1900*			
	6.0% SOM	3.90	87	0.61	1900*			
2-Chloronapthalene	1.0% SOM	3.70	3.80	40	390*			
	2.5% SOM	9.20	9.30	98	960*			
	6.0% SOM	22	22	230	2200*			
Biphenyl	1.0% SOM	66*	220*	14	18000*			
	2.5% SOM	160	500*	35	33000*			
	6.0% SOM	360	980*	83	48000*			
Bis (2-ethylhexyl) phthalate	1.0% SOM	280*	2700*	47*	85000*			
	2.5% SOM	610*	2800*	120*	86000*			
	6.0% SOM	1100*	2800*	280*	86000*			
Bromobenzene	1.0% SOM	0.87	0.91	3.2	97			
	2.5% SOM	2.0	2.1	7.6	220			
	6.0% SOM	4.7	4.9	18	520			
Bromodichloromethane	1.0% SOM	0.016	0.019	0.016	2.1			
	2.5% SOM	0.030	0.034	0.032	3.7			
	6.0% SOM	0.061	0.070	0.068	7.6			
Bromoform	1.0% SOM	2.8	5.2	0.95	760			
	2.5% SOM	5.9	11	2.1	1500			
	6.0% SOM	13	23	4.6	3100			
Butyl benzyl phthalate	1.0% SOM	1400*	42000*	220*	940000*			
	2.5% SOM	3300*	44000*	550*	940000*			
	6.0% SOM	7200*	44000*	1300*	950000*			

*soil concentration above saturation limit

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

CL:AIRE General Assessment Criteria: Volatile and Semi-Volatile Organic Compounds								
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)			
Chloroethane	1.0% SOM	8.3	8.4	110	960			
	2.5% SOM	11	11	200	1300			
	6.0% SOM	18	18	380	2100			
Chloromethane	1.0% SOM	0.0083	0.0085	0.066	1.0			
	2.5% SOM	0.0098	0.0099	0.13	1.2			
	6.0% SOM	0.013	0.013	0.23	1.6			
Cis 1,2 Dichloroethene	1.0% SOM	0.11	0.12	0.26	14			
	2.5% SOM	0.19	0.20	0.50	24			
	6.0% SOM	0.37	0.39	1.0	47			
Dichloromethane	1.0% SOM	0.58	2.10	0.10	270			
	2.5% SOM	0.98	2.80	0.19	360			
	6.0% SOM	1.70	4.50	0.34	560			
Diethyl Phthalate	1.0% SOM	120*	1800*	19*	150000*			
-	2.5% SOM	260*	3500*	41*	220000*			
	6.0% SOM	570*	6300*	94*	290000*			
Di-n-butyl phthalate	1.0% SOM	13*	450*	2.00	15000*			
	2.5% SOM	31*	450*	5.00	15000*			
	6.0% SOM	67*	450*	12	15000*			
Di-n-octyl phthalate	1.0% SOM	2300*	3400*	940*	89000*			
	2.5% SOM	2800*	3400*	2100*	89000*			
	6.0% SOM	3100*	3400*	3900*	89000*			
Hexachloroethane	1.0% SOM	0.20	0.22	0.27	22*			
	2.5% SOM	0.48	0.54	0.67	53*			
	6.0% SOM	1.10	1.30	1.60	120*			
Isopropylbenzene	1.0% SOM	11	12	32	1400*			
	2.5% SOM	27	28	79	3300*			
	6.0% SOM	64	67	190	7700*			
Methyl tert-butyl ether	1.0% SOM	49	73	23	7900			
(MTBE)	2.5% SOM	84	120	44	13000			
	6.0% SOM	160	220	90	24000			
Propylbenzene	1.0% SOM	34	40	34	4100*			
	2.5% SOM	82	97	83	9700*			
	6.0% SOM	190	230	200	21000*			
Styrene	1.0% SOM	8.10	35	1.60	3300*			
	2.5% SOM	19	78	3.70	6500*			
	6.0% SOM	43	170	8.70	11000*			
Total Cresols (2-, 3-, and 4-	1.0% SOM	80	3700	12	160000			
methylphenol)	2.5% SOM	180	5400	27	180000*			
	6.0% SOM	400	6900	63	180000*			
Trans 1,2 Dichloroethene	1.0% SOM	0.19	0.19	0.93	22			
	2.5% SOM	0.34	0.35	1.90	40			
	6.0% SOM	0.70	0.71	0.24	81			
Tributyl tin oxide	1.0% SOM	0.25	1.40	0.042	130*			
	2.5% SOM	0.59	3.10	0.100	180*			
	6.0% SOM	1.30	5.70	0.240	200*			

*soil concentration above saturation limit

C4SL Low Level of Toxicological Concern								
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)	
	1.0% SOM	0.11	0.16	0.054	12	300	300	
1,2-Dichloroethane	2.5% SOM	0.18	0.24	0.10	17	310	330	
(Ethylene Dichloride)	6.0% SOM	0.31	0.41	0.19	29	310	380	
	1.0% SOM	0.46	0.50	0.89	38	3,800	2,000	
Cis-1,2-Dichloroethene	2.5% SOM	0.78	0.84	1.7	64	3,800	2,400	
	6.0% SOM	1.5	1.6	3.6	120	3,900	3,100	
	1.0% SOM	0.31	0.32	2	24	3,200	1,400	
	2.5% SOM	0.70	0.71	4.8	55	3,300	1,900	
(PCE)	6.0% SOM	1.60	1.60	11	130	3,400	2,500	
	1.0% SOM	0.90	0.93	3.70	69	13,000	5,600	
Trans-1,2-Dichloroethene	2.5% SOM	1.60	1.70	7.50	120	13,000	7,000	
	6.0% SOM	3.30	3.40	16	260	13,000	9,100	
T ut also an address a	1.0% SOM	0.0093	0.0097	0.032	0.73	76	41	
	2.5% SOM	0.020	0.020	0.072	1.5	78	54	
(TCE)	6.0% SOM	0.043	0.045	0.16	3.4	79	69	
	1.0% SOM	0.0064	0.015	0.0017	1.1	7.8	18	
Vinyi Chloride	2.5% SOM	0.010	0.019	0.0031	1.4	7.8	19	
(Chloroethene)	6.0% SOM	0.017	0.029	0.0058	2.2	7.8	19	

9.6. Asbestos

No asbestos or asbestos containing materials (ACM's) are considered acceptable on-site from a human health perspective. Therefore the GAC for asbestos & ACM's within any imported material should be none detected (ND).

geotechnical and environmental consultants

APPENDIX H: Settlement and Heave Analysis Modelling

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office: Kineton House, 31 Horse Fair, Banbury, Oxfordshire OX16 0AE Registered in England No. 07032001

Pdisp Inputs and Outputs

Analysis Options

Pro	ope	rty	Value			
	Ge	eneral				
	Po	isson's ra	0.30000			
	Ma	ax E Ratio	1.50000			
	HI	boundary	-44.00000			
	GS	SA piled r				
	Dis	splaceme	\checkmark			
	B	astic				
	Ela	astic	\checkmark			
	An	alysis Me	Mindlin			
	Le	gacy				
	Ca	lculate H	\sim			
	Stř	ffness	Weighted aver			
	He	ave	~			
	-	Effect of	soil above lo			
		Vertical				
		Horizont	\checkmark			
	Co	onsolidatio	n			
	Co	nsolidation				

Short Term Soil Profile

Laver ref	Name	Level intermediate at top displacement		Young's	Young's modulus		Colour
Luyer ten	levels		Тор	Bottom			
		[m]		[kN/m ²]	[kN/m ²]		
Defaults	Layer #	0.000	5	50000	50000	0.200	
1	MG	0.000	5	10000	10000	0.450	
2	KPGM(c)	-1.200	5	24150	24150	0.450	
3	KPGM(g)	-2.200	5	100000	100000	0.300	
4	KPGM(g)	-4.000	5	78000	32000	0.300	
5	LCF	-6.000	5	22500	45000	0.450	
6	LCF	-7.000	5	45000	265500	0.450	

Long Term Soil Profile

l aver ref	Name	Level at top	No of intermediate displacement	Young's	modulus	Poisson's	Colour
Luyer ten		urtop	levels	Тор	Bottom	Tutto	
		[m]		[kN/m²]	[kN/m²]		
Defaults	Layer #	0.000	5	50000	50000	0.200	
1	MG	0.000	5	10000	10000	0.450	
2	KPGM(c)	-1.200	5	18113	18113	0.450	
3	KPGM(g)	-2.200	5	100000	100000	0.300	
4	KPGM(g)	-4.000	5	78000	32000	0.300	
5	LCF	-6.000	5	16875	33750	0.450	
6	LCF	-7.000	5	33750	199125	0.450	

Model 1 Pressures Applied

			Load position				Load value
	News			Polygon		Number	Normal
Load ref.	Name	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	-72.20
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	-72.20
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	-72.20
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	-72.20

Model 2 Pressures Applied

					Load value		
	Name		Polygon		Number	Normal	
Load ref.	Name	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	30.00
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	30.00
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	30.00
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	30.00

Model 3 Pressures Applied

				Load position			Load value
	Nama		Polygon			Number	Normal
Load ref.	Name	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	30.00
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	30.00
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	30.00
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	30.00
5	Mass X	-3.800	More	(1,1) (23,1) (23,9.5) (1,9.5) (10.0	1	-72.20

Model 4 Pressures Applied

				Load position	osition		Load value
	Nama			Number	Normal		
Load ref.	Name	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	93.00
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	93.00
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	93.00
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	93.00
5	Mass X	-3.800	More	(1,1) (23,1) (23,9.5) (1,9.5) (10.0	1	-72.20
6	Slab	-3.800	More	(0,0) (24,0) (24,10.5) (0,10.5	10.0	1	10.00

Model 5 Pressures Applied

				Load position		Load value	
	Nama		Polygon			Number	
Load ref.	Name	Z (level)	Wizard	Coordinates	Rectangle tolerance	of rectangles	(local z)
		[m]		[m]	[%]		[kN/m ²]
Defaults	Poly Load #	0.000			10.0	5	0.00
1	Retaining Wall 1	-3.800	More	(0,0) (24,0) (23,1) (1,1) (0,0)	10.0	11	93.00
2	Retaining Wall 2	-3.800	More	(24,0) (24,10.5) (23,9.5) (23,	10.0	11	93.00
3	Retaining Wall 3	-3.800	More	(24,10.5) (0,10.5) (1,9.5) (23	10.0	11	93.00
4	Retainin Wall 4	-3.800	More	(0,10.5) (0,0) (1,1) (1,9.5) (0,	10.0	11	93.00
5	Mass X	-3.800	More	(1,1) (23,1) (23,9.5) (1,9.5) (10.0	1	-72.20
6	Slab	-3.800	More	(0,0) (24,0) (24,10.5) (0,10.5	10.0	1	10.00

Vertical Displacement Contour Plot – Model 1

Vertical Displacement Contour Plot – Model 2

Vertical Displacement Contour Plot – Model 3

Vertical Displacement Contour Plot – Model 4

geotechnical and environmental consultants

APPENDIX I: Waste Hazard Assessment

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk groundandwater.co.uk

Registered Office: Kineton House, 31 Horse Fair, Banbury, Oxfordshire OX16 0AE Registered in England No. 07032001

HazWasteOnline[™]

Waste Classification Report

HazWasteOnline™ classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to: a) understand the origin of the waste b) select the correct List of Waste code(s) c) confirm that the list of determinands, results and sampling plan are fit for purpose d) select and justify the chosen metal species (Appendix B) e) correctly apply moisture correction and other available corrections f) add the meta data for their user-defined substances (Appendix A) g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)								
To aid the reviewer, the labora	tory results, assumptions and justifications manag	ed by the classifier are highlighted in <mark>pale ye</mark>	llow.					
Job name								
GWFR5909								
Description/Commen	:S							
Project		Site						
GWPR5909		34 Nassau Road SW13 9QE						
Classified by								
Name: Adam Young Date: 05 Apr 2024 08:04 GMT Telephone:	Company: Ground and Water 2 The long Barn, Norton Farm, Selbourn Road, Alton GU34 3NB	HazWasteOnline [™] provides a two day, hazardous w use of the software and both basic and advanced we has to be renewed every 3 years. HazWasteOnline [™] Certificatio Course Hazardous Waste Classification	aste classification course that covers the set classification techniques. Certification n: - Date					
Purpose of classificat	ion							
Purpose of classificat 2 - Material Characterisati	ion on							
Purpose of classificat 2 - Material Characterisati Address of the waste	ion on							
Purpose of classificat 2 - Material Characterisati Address of the waste 34 Nassau Road	ion on		Post Code SW13 9QE					
Purpose of classificat 2 - Material Characterisati Address of the waste 34 Nassau Road SIC for the process g	ion on ving rise to the waste		Post Code SW13 9QE					
Purpose of classificat 2 - Material Characterisati Address of the waste 34 Nassau Road SIC for the process gi Description of industi Redevelopment of site	ion on ving rise to the waste ry/producer giving rise to the waste		Post Code SW13 9QE					
Purpose of classificat 2 - Material Characterisati Address of the waste 34 Nassau Road SIC for the process gi Description of industi Redevelopment of site	ion on ving rise to the waste ry/producer giving rise to the waste		Post Code SW13 9QE					
Purpose of classificat 2 - Material Characterisati Address of the waste 34 Nassau Road SIC for the process gi Description of industi Redevelopment of site Description of the spe	ion on ving rise to the waste ry/producer giving rise to the waste ecific process, sub-process and/or a	ctivity that created the waste	Post Code SW13 9QE					
Purpose of classificat 2 - Material Characterisati Address of the waste 34 Nassau Road SIC for the process g Description of industa Redevelopment of site Description of the spo Waste created during the	ion on ving rise to the waste ry/producer giving rise to the waste ecific process, sub-process and/or a excavation of soils	ctivity that created the waste	Post Code SW13 9QE					

Made Ground

Created date: 05 Apr 2024 08:04 GMT

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS0112032024-1.20		Non Hazardous		3
2	WS0212032024-0.20		Non Hazardous		5
3	WS0112032024-2.00		Non Hazardous		8
4	WS0212032024-1.50		Non Hazardous		9
5	WS0212032024-3.00		Non Hazardous		10

Related documents	
# Name	Description
1 24-009116_HWOL.hwol	i2 Analytical .hwol file used to populate the Job
Report	

Created by: Adam Young

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	11
Appendix B: Rationale for selection of metal species	12
Appendix C: Version	13

Classification of sample: WS01--12032024-1.20

Sample details

Sample name:	LoW Code:	
WS0112032024-1.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
17% (wet weight correction)	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05 03)
		,

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		Determinand		Note	User entered	l data	Conv. Factor	Compound con	c.	Classification value	Applied	Conc. Not Used
		EU CLP index EC Number CAS number	Number	CLF							MC	
1	4	chromium in chromium(VI) compounds { chronoxide }	mium(VI)		<1.8	mg/kg	1.923	<3.462 m	g/kg	<0.000346 %		<lod< td=""></lod<>
_		monohvdric phenols	-0									
2		P1186			<1	mg/kg		<1 m	g/kg	<0.0001 %		<lod< td=""></lod<>
3	*	cyanides { salts of hydrogen cyanide with th exception of complex cyanides such as ferroc ferricyanides and mercuric oxycyanide and the specified elsewhere in this Annex }	ne yanides, ose		2	mg/kg	1.884	3.768 m	g/kg	0.000377 %		
		006-007-00-5										
4	4	boron {	3-4		1.7	mg/kg	23.173	32.697 m	g/kg	0.00327 %	\checkmark	
5	8	pH			8	pН		8 pH	ł	8pH		
		Ph									-	
6		arsenic { ^e arsenic } 033-001-00-X	3-2		18	mg/kg		14.94 m	g/kg	0.00149 %	\checkmark	
7	æ	cadmium { cadmium sulfide }		1	<0.2	ma/ka	1 295	<0.257 m	a/ka	<0.00002.9%		
'		048-010-00-4 215-147-8 1306-23	3-6	<u> </u>	<0.2	iiig/kg	1.205	<0.237 m	y/ky	<0.00002 /8		LOD
8	4	copper { dicopper oxide; copper (I) oxide }			67	mg/kg	1.126	62.611 m	g/kg	0.00626 %	1	
	•	029-002-00-X 215-270-7 1317-39)-1									
9	44	mercury { mercury }	7-6		0.9	mg/kg		0.747 m	g/kg	0.0000747 %	\checkmark	
	A	nickel { nickel dihydroxide }	-0									
10	~	028-008-00-X 235-008-5 [1] 12054-4 234-348-1 [2] 11113-7	8-7 [1] '4-9 [2]		24	mg/kg	1.579	31.464 m	g/kg	0.00315 %	\checkmark	
11	4	lead { lead compounds with the exception of specified elsewhere in this Annex (worst case	of those) }	1	220	mg/kg		182.6 m	g/kg	0.0183 %	~	
		selenium / selenium)									\vdash	
12		034-001-00-2 231-957-4 7782-49)-2		<1	mg/kg		<1 m	g/kg	<0.0001 %		<lod< td=""></lod<>
13	4	vanadium { divanadium pentaoxide; vanadium	I		55	ma/ka	1 785	81 /0/ m	a/ka	0.00815 %		
10		023-001-00-8 215-239-8 1314-62	2-1		00	ing/kg	1.705	01.404 11	9/119	0.00010 /0		
	æ	zinc { zinc sulphate }										
14		030-006-00-9 231-793-3 [1] 7446-19 231-793-3 [2] 7733-02)-7 [1] 2-0 [2]		110	mg/kg	2.469	225.447 m	g/kg	0.0225 %	\checkmark	

www.hazwasteonline.com

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	0	acenaphthylene				0.38	mg/kg		0.315	mg/kg	0.0000315 %	\checkmark	
			205-917-1	208-96-8									
16	0	acenaphthene				0.1	ma/ka		0.083	mg/kg	0.0000083 %	1	
			201-469-6	83-32-9									
17	0	anthracene				3	ma/ka		2.49	mg/kg	0.000249 %	1	
			204-371-1	120-12-7						0.0		-	
18		benzo[a]anthracer	ne			5.7	ma/ka		4.731	mg/kg	0.000473 %	1	
		601-033-00-9	200-280-6	56-55-3						0 0		-	
19		benzo[a]pyrene; b	enzo[def]chrysene			4.7	ma/ka		3.901	mg/kg	0.00039 %	1	
		601-032-00-3	200-028-5	50-32-8			0.0			0 0			
20		benzo[b]fluoranthe	ene			6.1	ma/ka		5.063	ma/ka	0.000506 %	1	
		601-034-00-4	205-911-9	205-99-2								•	
21		benzo[k]fluoranthe	ene			2.3	ma/ka		1.909	ma/ka	0.000191 %	1	
		601-036-00-5	205-916-6	207-08-9								*	
22	0	benzo[ghi]perylen	e			2.6	ma/ka		2,158	ma/ka	0.000216 %	1	
			205-883-8	191-24-2								Ň	
23		chrysene				57	ma/ka		4 731	ma/ka	0 000473 %		
_		601-048-00-0	205-923-4	218-01-9								~	
24		dibenz[a,h]anthrac	cene			0.63	ma/ka		0.523	ma/ka	0 0000523 %		
27		601-041-00-2	200-181-8	53-70-3		0.00	iiig/kg		0.020	iiig/itg	0.0000020 /0	~	
25	0	fluoranthene				14	ma/ka		11.62	ma/ka	0.00116.%		
20			205-912-4	206-44-0		14	iiig/kg		11.02	iiig/kg	0.00110 /8	~	
26	0	fluorene				0.43	ma/ka		0 357	ma/ka	0 0000357 %	/	
20			201-695-5	86-73-7		0.45	шу/ку		0.557	iiig/kg	0.00000007 /8	~	
27	0	indeno[123-cd]pyr	ene			2.2	ma/ka		1 826	ma/ka	0 000183 %	/	
21			205-893-2	193-39-5		2.2	iiig/kg		1.020	iiig/kg	0.000103 78	~	
28		naphthalene				<0.05	ma/ka		<0.05	ma/ka	<0.00005 %		
20		601-052-00-2	202-049-5	91-20-3		<0.05	шу/ку		<0.05	iiig/kg	<0.000000 78		
20		phenanthrene				7.2	ma/ka		5.076	ma/ka	0.000508.%		
23			201-581-5	85-01-8		1.2	шу/ку		5.570	iiig/kg	0.000330 78	~	
30	8	pyrene				11	ma/ka		0.12	ma/ka	0 000913 %		
0			204-927-3	129-00-0			шу/ку		5.15	iiig/kg	0.000313 /8	~	
31	4	chromium in chror <mark>chromium(III) oxid</mark>	nium(III) compound e }	ds {		25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
			215-160-9	1308-38-9						Total	0.0722.9/		
1										TOIDI.	0.0733 70	1	

Key

⊲ <LOD User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration Below limit of detection

CLP: Note 1

Only the metal concentration has been used for classification

Classification of sample: WS02--12032024-0.20

Sample details

Sample name:	LoW Code:	
WS0212032024-0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
15%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	number chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<1.8 mg/kg	1.923	<3.462 mg/kg	<0.000346 %	2	<lod< td=""></lod<>
2	8	monohydric phenols P1186		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
3	*	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< td=""></lod<>
4	*	boron { boron tribromide } 005-003-00-0 233-657-9 10294-33-4		1.2 mg/kg	23.173	23.636 mg/kg	0.00236 %	1	
5		рН		7.7 pH		7.7 pH	7.7 pH		
6	\$	arsenic { arsenic }		19 mg/kg		16.15 mg/kg	0.00161 %	~	
7	\$	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6	1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
8	~	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		33 mg/kg	1.126	31.581 mg/kg	0.00316 %	~	
9	\$	mercury { mercury } 080-001-00-0 231-106-7 7439-97-6		0.6 mg/kg		0.51 mg/kg	0.000051 %	~	
10	ę.	nickel { <mark>nickel dihydroxide</mark> } 028-008-00-X		21 mg/kg	1.579	28.194 mg/kg	0.00282 %	~	
11	*	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	160 mg/kg		136 mg/kg	0.0136 %	~	
12	4	selenium { selenium } 034-001-00-2 231-957-4 7782-49-2		<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13	*	vanadium { divanadium pentaoxide; vanadium pentoxide } 023-001-00-8 215-239-8 1314-62-1		49 mg/kg	1.785	74.353 mg/kg	0.00744 %	~	
14	*	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		74 mg/kg	2.469	155.319 mg/kg	0.0155 %	~	

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15		acenaphthylene	205-917-1	208-96-8	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
16	8	acenaphthene	bad 400 0			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
17	0	anthracene	201-469-6	83-32-9		0.16	ma/ka		0 136	ma/ka	0.0000136 %	1	
		benzolalanthracen	204-371-1 e	120-12-7	-				0.100			×	
18		601-033-00-9	200-280-6	56-55-3		1	mg/kg		0.85	mg/kg	0.000085 %	\checkmark	
19		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		0.84	mg/kg		0.714	mg/kg	0.0000714 %	\checkmark	
20		benzo[b]fluoranthe	ne			1.6	mg/kg		1.36	mg/kg	0.000136 %	\checkmark	
		601-034-00-4 benzo[k]fluoranthe	205-911-9	205-99-2	-							-	
21		601-036-00-5	205-916-6	207-08-9		0.68	mg/kg		0.578	mg/kg	0.0000578 %	\checkmark	
22	0	benzo[ghi]perylene	205-883-8	191-24-2		0.6	mg/kg		0.51	mg/kg	0.000051 %	\checkmark	
23		chrysene 601-048-00-0	205-923-4	218-01-9	_	1.3	mg/kg		1.105	mg/kg	0.000111 %	\checkmark	
24		dibenz[a,h]anthrac	ene	F0 70 0		0.17	mg/kg		0.145	mg/kg	0.0000145 %	\checkmark	
25	۵	fluoranthene	200-181-8	53-70-3		1.7	mg/kg		1.445	mg/kg	0.000145 %	1	
		<i>4</i>	205-912-4	206-44-0	_							-	
26	۵	fluorene	201-695-5	86-73-7		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27	0	indeno[123-cd]pyre	ene			0.52	ma/ka		0 442	ma/ka	0 0000442 %	1	
<u> </u>			205-893-2	193-39-5	1							Ľ	
28		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
29	0	phenanthrene	201-581-5	85-01-8	_	0.59	mg/kg		0.501	mg/kg	0.0000501 %	\checkmark	
30	8	pyrene	204-927-3	129-00-0		1.7	mg/kg		1.445	mg/kg	0.000145 %	\checkmark	
31		benzene	204-327-5	123-00-0		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 ethylbenzene	200-753-7	71-43-2	-				0.005		0.0000005.0/	-	1.00
32		601-023-00-4	202-849-4	100-41-4	_	<5	µд/кд		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
33		2-methoxy-2-methy	ner; MTBE; ylpropane	4624.04.4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
34		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
35		o-xylene; [1] p-xyle 601-022-00-9	ene; [2] m-xylene; 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	[3] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
36		toluene	203 625 0	109 89 2		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
37	0	TPH (C6 to C40) p	etroleum group			<40	mg/kg		<40	mg/kg	<0.004 %		<lod< td=""></lod<>
38	4	chromium in chron <mark>chromium(III) oxide</mark>	nium(III) compound) 215-160-9	ds { • 1308-38-9		24	mg/kg	1.462	35.077	mg/kg	0.00351 %		
										Total:	0.0558 %	1	L

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS01--12032024-2.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS0112032024-2.00	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
3.4%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 3.4% Wet Weight Moisture Correction applied (MC)

#			Determinand			User entered data	Conv. Factor	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 actor				Useu
1	0	pН		PH	_	8.4 pH		8.4 pH	8.4 pH		
			~			×		Total	0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS02--12032024-1.50

Sample details

Sample name:	LoW Code:	
WS0212032024-1.50	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
17%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Comp	ound conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		8 pH		8	рН	8рН		
									Total:	0%		

Key

0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS02--12032024-3.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

-		
Sample name:	LoW Code:	
WS0212032024-3.00	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
2.4%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(wet weight correction)		03)

Hazard properties

None identified

Determinands

Moisture content: 2.4% Wet Weight Moisture Correction applied (MC)

#			Determinand			User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 00101		Value		USEU
1	0	pH		РН		8.3 pH		8.3 pH	8.3 pH		
								Total	0%		

Key 0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Appendix A: Classifier defined and non GB MCL determinands

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301, STOT RE 2; H373, Skin Corr. 1B; H314, Skin Corr. 1B; H314 >= 3%, Skin Irrit. 2; H315 1 <= conc. < 3%, Eye Irrit. 2; H319 1 <= conc. < 3%, Aquatic Chronic 2; H411

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

^a arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

GB MCL index number: 033-001-00-X Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Iead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17. Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015

Report created by Adam Young on 05 Apr 2024

^e fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from ECHA's C&L inventory database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 30 Apr 2020 Hazard Statements: Acute Tox. 4; H302 , Skin Sens. 1; H317 , Eye Irrit. 2; H319

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

Appendix B: Rationale for selection of metal species

chromium in chromium(VI) compounds {chromium(VI) oxide}

Most likely worst case.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Most likely worst case.		
boron {boron tribromide}		
Most likely worst case.		
arsenic {arsenic}		
Most likely worst case.		
cadmium {cadmium sulfide}		
Most likely worst case.		

copper {dicopper oxide; copper (I) oxide}
Most likely worst case.
mercury {mercury}
Most likely worst case.
nickel {nickel dihydroxide}
Most likely worst case.
lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}
Worse case
selenium {selenium}
Most likely worst case.
vanadium {divanadium pentaoxide; vanadium pentoxide}
Most likely worst case.
zinc {zinc sulphate}
Most likely worst case.
chromium in chromium(III) compounds {chromium(III) oxide}
Most likely worst case.
Appendix C: Version
HazWasteOnline Classification Engine Version: 2024.96.6000.11109 (05 Apr 2024) HazWasteOnline Database: 2024.95.5999.11108 (04 Apr 2024)
This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015
Sth ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

GB MCL List v2.0 - version 2.0 of 20th October 2023 GB MCL List v3.0 - version 3.0 of 11th January 2024 GB MCL List v4.0 - version 4.0 of 2nd March 2024

2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB Environmental Science

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: adam.young@groundwater.co.uk

Analytical Report Number : 24-012288

Project / Site name:	34 Nassau Road SW13 9QE	Samples received on:	14/03/2024
Your job number:	GWPR5909	Samples instructed on/ Analysis started on:	04/04/2024
Your order number:	GWPR5909	Analysis completed by:	10/04/2024
Report Issue Number:	1	Report issued on:	10/04/2024
Samples Analysed:	10:1 WAC sample		

Dewradeo Signed:

Joanna Wawrzeczko Senior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils- 4 weeks from reportingleachates- 2 weeks from reportingwaters- 2 weeks from reportingasbestos- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Re	esults						
Report No:	24-012288						
				Client:	GANDW		
Location		34 Nassau Road SW13 90F					
Location		54 110500 1000 51115 5QL		Landfill	Waste Accentanc	e Criteria	
Lab Reference (Sample Number)		161662			Limits		
Sampling Date		12/03/2024			Stable Non-		
Sample ID		WS02			reactive		
Depth (m)		0.20		Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	1.3			3%	5%	6%	
Loss on Ignition (%) **	3.4					10%	
BTEX (µg/kg) **	< 5.0			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg) EH_1D_CU_AL	< 10			500			
Total PAH (WAC-17) (mg/kg)	6.35			100			
pH (units)**	7.5				>6		
Acid Neutralisation Capacity (mmol / kg)	0.76				To be evaluated	To be evaluated	
Eluate Analysis	10.1		10.1	Limit valu	es for compliance le	aching test	
	10.1		10.1	using PC EN	12457 2 at 1/6 10	1/kg (mg/kg)	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg		12457-2 at L/5 10	о i/ку (iiiy/кg)	
Arsenic *	0.00742		0.0742	0.5	2	25	
Barium *	0.00316		0.0316	20	100	300	
Cadmium *	< 0.000100		< 0.00100	0.04	1	5	
Chromium *	< 0.00040		< 0.0040	0.5	10	70	
Copper *	0.025		0.25	2	50	100	
Mercury *	< 0.000500		< 0.00500	0.01	0.2	2	
Molybdenum *	< 0.000400		< 0.00400	0.5	10	30	
Nickel *	0.0014		0.014	0.4	10	40	
Lead *	< 0.0010		< 0.010	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0051		0.051	4	50	200	
Chloride *	0.67		6.7	800	15000	25000	
Fluoride*	0.30		3.0	10	150	500	
Sulphate *	1.6		16	1000	20000	50000	
TDS*	27		270	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
рос	15.8		158	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.7						
Dry Matter (%)	85						
Moisture (%)	15						
Results are expressed on a dry weight basis, after correction for moistu	ire content where a	applicable.		*= UKAS accredite	ed (liquid eluate ana	lysis only)	
Stated limits are for guidance only and i2 cannot be held responsible for	r any discrepancie	s with current legislation		** = MCERTS accr	edited		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous

or non-hazardous.

Analytical Report Number : 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
161662	WS02	None Supplied	0.2	Brown clay and loam with gravel and vegetation

Analytical Report Number : 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH at 20°C in soil	Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Sample Preparation		In-house method	L043B	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	W	NONE
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons by GC-FID/GC MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	ISO 17025

Analytical Report Number : 24-012288

Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025
WAC Leachate 10:1		In-house method	L043B	W	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Analytical Report Number : 24-012288

Project / Site name: 34 Nassau Road SW13 9QE

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS02	N/A	S	161662	с	BTEX and/or Volatile organic compounds in soil	L073B	С
WS02	N/A	S	161662	с	PCB's By GC-MS in soil	L027B	с
WS02	N/A	S	161662	с	Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	L064B	с
WS02	N/A	S	161662	С	Total petroleum hydrocarbons by GC-FID/GC-MS HS in soil	L076B/L088	С