

Contamination Letter Report

34 Nassau Road SW13 9QE

On behalf of Tom Richards

Report F	Status: Final						
Issue	Prepared By	Checked By	Verified By				
V1.02	Des	AM	S-T. Williams				
V1.U2	Adam Young BSc (Hons) Geology Engineer	Miltiadis Mellios MSc(Eng) CGeol FGS MIEnvSc GMICE Principal Engineer	Francis Williams MGeol (Hons) FGS CEnv CGeol Director				

Site Investigations | Environmental Consultants | Geotechnical Engineers

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

	Contamination Letter Report and Remediation Strategy
REPORT REFERENCE	GWPR5986/CLR/June 2024 V1.02. The conditions and limitations of this contamination report can be viewed within Appendix A, with the aims of the investigation provided within Appendix B. A technical glossary has also been provided within Appendix C.
	A previous ground investigation report has been undertaken by Ground and Water Limited, this report must be read in conjunction with the previous – GWPR5909/Updated Basement Impact Assessment.
	This report supersedes the previous version.
	A full scale Environmental Desk Study and Contamination Assessment including a gas, vapours, radon & groundwater risk assessment were not part of the remit of this report; however Included within the fee proposal was an allowance to undertake chemical laboratory testing on soil samples recovered from the site to enable recommendations for the safe redevelopment of the site and the protection of site workers, end-users and the public from any potential contamination identified.
SITE DETAILS	The site comprised an 800m ² rectangular shaped plot of land, with a north-east to south-west orientation, located along the south side of Nassau Road. The site was located within Barns, a mainly residential area within The London Borough of Richmond Upon Thames. A Site Location Plan is provided within Figure 1.
PROPOSED DEVELOPMENT	At the time of reporting, June 2024, the proposed development was understood to comprise the construction of a basement under the existing house and a small extension to the rear, to a maximum depth of 3.80m bgl, along with a small lightwell to the front.
	A pool, pool house and patio are also proposed in the rear garden.
	The levels on-site were considered to remain the same.
ANTICIPATED GEOLOGY AND HYDROGEOLOGY	The BGS Solid and Drift Geological Map for the area revealed that the site was underlain by the superficial Kempton Park Gravel Member, underlain by the bedrock of the London Clay Formation. Alluvium was noted to be ~148m north-west of the site. An area of artificial ground was noted ~190m south-east of the site. No other superficial deposits, outcrops of other bedrock deposits or areas of Made/Worked Ground were noted within a 250m radius of the site.
	The DEFRA online maps indicated that the site was located on Secondary A Aquifer associated with the superficial Kempton Park Gravel Member, underlain by Unproductive Strata associated with the London Clay Formation.
	From analysis of hydrogeological and topographical maps the groundwater table was anticipated to be encountered at shallow to moderate depth within the Kempton Park Gravel Member, capping the impermeable London Clay Formation. Perched water was also likely to be found within the Made Ground, especially after periods of intense or prolonged rainfall. It was considered that the groundwater was flowing westwards, towards the River Thames and in alignment with local topography.
	The nearest surface water feature was observed to be the river Thames, approximately 200m west of

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

	Contamination L	etter Report and Remediation S	trategy									
	the site.		01									
SITE WORKS	Site works were undertaken on 08/03/2024 and comprised the drilling of the 2no. Modular Window Sample Boreholes to 3.00m and 6.00m bgl with Standard Penetration Tests at 1.00m intervals. Elevated levels of Lead, Benzo(a)pyrene, Benzo(b)fluoranthene and Dibenz(a,h)anthracene were found within the Made Ground sample WS01/1.20m bgl. Further site works were undertaken in order to establish the spread of contamination across site. This was undertaken on 24/04/2024 and comprised the excavation of 5No. Trial pits to depths between 0.80m – 1.20m bgl. A sample from each of these (at various depths) was taken for contamination											
	testing, in order to confirm	m the type of remediation required.										
GROUND CONDITIONS ENCOUNTERED	A summary of the ground conditions encountered can be viewed below. The trial hole logs can be see within Appendix D.											
		Summary of Strata Encountered	(TP1 – TP5)									
		Strata	Top Depth (m bgl)	Base Depth (m bgl)	Thickness (m)							
	MADE GROUND: Dark brown sandy gravelly CLAY. Sand is fine. gravel is fine to coarse, angular to subrounded of flint (80%), brick (15%) and chalk (5%).											
GROUNDWATER		vere noted in any of the trial pits.		'	'							
ROOTS		h in all of the trail pits. ots may be found to greater depths s that have been removed both witl										
CHEMICAL / CONTAMINATION A set of samples (5No. Made Ground) were submitted to the accredited chemical labor analysis. The results can be viewed in Appendix E. The synopsis for the trial hole locations and their final depth can be seen tabulated below. A location plan is provided within Figure 1. The table also indicates whether any locations t source of contamination as well as the proposed end-use. The proposed development can be Figure 2.												
		Trial Hole Location Synops	sis	_	_							
	Trial Hole/Final Depth	Sampling Strategy	Propos	ed End-Use								
	WS1/3.00m bgl	Random		ardstanding								
	WS2/4.00m bgl	Random		hardstanding								
	TP1/1.20m bgl	Random		hardstanding								
	TP2/1.20m bgl	Random		indscaping								
	TP3/1.20m bgl	Random		indscaping								
	TP4/1.20m bgl	Random		ardstanding								
	TP5/1.20m bgl	Random	Soft La	ındscaping								

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

Contamination Letter Report and Remediation Strategy

The investigation area totals approximately 221m2 soft landscape and with five sampling locations, given an unknown hotspot shape, the sampling density means that a hotspot with an area of approximately 70.56m2 and a radius of approximately 8.4m would be encountered (CLR 4).

Sampling depths were chosen to reflect the receptor of concern (e.g. human health, controlled waters and vegetation). The remaining samples were scheduled under a random strategy. The receptors relevant to the sampling depths are tabulated below.

Summa	ry of Receptors per Sample Depth
Depth	Receptors
Shallow Samples (< 0.75m bgl)	 End Users (Residents/Future site visitors) Construction workers during development Site operatives during maintenance works Neighbours and public Vegetation within soft landscaped areas (shallow rooted) Secondary A Aquifer (Kempton Park Gravel Member) Buried Concrete Receiving landfill
Moderate Samples (0.75 – 1.50m bgl)	 Construction workers during development Site operatives during maintenance works Vegetation within soft landscaped areas (deep rooted) Secondary A Aquifer (Kempton Park Gravel Member) Buried Concrete Receiving landfill Underground services (water pipes)

Based on the proposed development, the results of the chemical laboratory testing were compared to the Generic Assessment Criteria (GAC) for a *'Residential with homegrown produce'* land-use scenario, as this was considered the most appropriate land-use scenario. The Soil Assessment Criteria can be viewed in Appendix F.

The comparison between the laboratory analysis and the assessment criteria indicates that there is an unacceptable risk to future receptors caused by exceedances of the following determinands: Lead; Benzo(a)pyrene; Benzo(b)fluoranthene; Dibenzo(a,h)anthracene; and Chrysene – within TP1, TP3 and WS1. The remaining determinands were identified at below the adopted screening value and are not considered to represent an unacceptable risk to future receptors. Where an unacceptable risk to future receptors remains, mitigation is required – this will be outlined later in the report.

ASBESTOS

Asbestos was detected in 2No. samples (TP1/0.20 and TP3/0.80), as chrysotile fibres. Quantification was undertaken on the sample and indicated that asbestos was present at < 0.001%.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

Contamination Letter Report and Remediation Strategy

A quantification risk assessment was carried out for the concentration recorded, in accordance with the guidance within CIRIA 733. The background, considerations taken, and the calculations can be seen in Appendix G. A summary of the results is shown in the table below.

Asbestos Risk Assessment												
Sample	Mesothelioma Accumulated Risk (fibres/ml.year)	Mesothelioma Risk	Lung Cancer Accumulated Risk (fibres/ml.year)	Lung Cancer Risk								
TP1/0.20m	0.00091	Insignificant	0.00065	Insignificant								
TP3/0.80m	0.00091	Insignificant	0.00065	Insignificant								

Based on CIRIA Table 14.1 for Mesothelioma and 14.3 for Lung Cancer, the risk for TP1/0.20 and TP3/0.80m bgl were considered to be insignificant. Therefore, no remediation procedures were considered necessary with respect to asbestos in Made Ground.

An **Asbestos Management Strategy** should be put in place so that any potentially asbestos containing materials are identified and removed from site in a suitable manner to prevent cross-contamination.

REMEDIATION STRATEGY

Based on the results of the intrusive works, chemical analyses and risk assessments undertaken, the following has been identified that requires further action:

• 6No. contaminants within TP1, TP3 and WS1 were identified (Asbestos, Lead, Benzo(a)pyrene, Benzo(b)fluoranthene, Dibenzo(a,h)anthracene and Chrysene), these have been found at an unacceptable concentration that requires remediation.

A hotspot removal around TP3 is required, remediation is not required around TP1 due to the proposed terrace/hardstanding. In addition to this, remediation is also not required around WS1 due to the proposed pool/hardstanding.

The identified contamination was found to be present in the form of a hotspot with a radius of 5m centred around TP3. In order to mitigate against the unacceptable level, a reduce dig of 800mm and subsequent backfill of certified clean soils should be undertaken.

It should be noted that if the excavation falls into root protection zones, then adjustment will be needed for those areas, with 150mm of clean topsoil placed in these no-dig areas, if applicable.

Based on the available information within this report it was proposed that the following remedial methodology should be undertaken within any soft landscape areas within an 5m radius around TP3:

- Reduce dig of 800mm;
- Validation of hotspot extent;
- Placement of 800mm clean capping of soil;
- Validation of the clean capping system by a suitably trained Ground and Water Limited engineer.

Full liaison must be made with the statutory authority, prior to the implementation of this remediation strategy and/or removal of soils from the site. All works must be undertaken to meet their approval.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

Contamination Letter Report and Remediation Strategy

800mm Reduce Dig

Made Ground should be removed to a minimum depth of 0.80m bgl in an 5m radius centred on TP3 to allow for the placement of clean soils, this must be undertaken on any soft landscape areas on-site within the radius. Samples must be taken from the base and walls of the excavation and tested to enable validation that the unacceptable concentrations have been removed. Should these samples indicate unacceptable concentrations, further removal is required.

Materials should be removed and stockpiled on an impermeable liner with raised edges and covered at all times. This contamination stockpile destined for removal from site should be stored away from imported soils to avoid cross-contamination. Materials to be removed off-site must be classified by carrying out Waste Acceptance Produce (WAP) testing. A registered contractor must undertake the removal of waste. Consignment notes for the removal of waste must be obtained and kept for inclusion within the final validation Report.

800mm Clean Capping of Soil

The resulting void should be backfilled with clean certified soils. It is recommended that at least the top 150mm of the clean capping should comprise suitable topsoil for use as a growing medium. It is a requirement that this should be no less than 100mm thick.

All subsoil and topsoil must be fit for purpose to ensure that the receptors cannot come into contact with determinands that could be detrimental to their health.

Validation

The remediation works outlined above will need to be inspected and independently validated by a Ground and Water Limited Engineer. All excavations will need to be inspected, documented and photographed.

The remediation works should be validated through a site visit, sampled and photographed by a suitably trained Ground and Water Limited Engineer following the 800mm reduce dig, and after placement of the clean soils.

It is required that clean soils will be brought onto site as part of the validation works. Any soil which is to be imported onto the site must undergo chemical analysis to prove that it is suitable for the purpose for which it is intended.

The soil must be fit for purpose and must either be supplied with traceable chemical laboratory test certificates or be tested, prior to placing (ideally) and after placing, to ensure that the future receptors (human health and vegetation) cannot come into contact with compounds that could be detrimental to their health. The compounds that are to be tested for are those given in the Generic Assessment Criteria, which can be viewed in Appendix F of this report.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

Contamination Letter Report and Remediation Strategy

WASTE CLASSIFICATION

The excavation of foundations and soils is likely to produce waste which will require classification and then recycling or removal from site.

Under the Landfill (England and Wales) Regulations 2002 (as amended), prior to disposal all waste must be classified as;

- Inert;
- Non-hazardous. or:
- Hazardous.

The Environment Agency's Hazardous Waste Technical Guidance (WM3) document outlines the methodology for classifying wastes. Once classified the waste can be removed to the appropriately licensed facilities, with some waste requiring pre-treatments prior to disposal.

Following the investigation, 5No. samples of Made Ground were submitted to the analytical laboratory to undergo a suite of testing for contamination testing, as discussed in the previous sections. Sampling depths were chosen to reflect the receptor of concern, human health, and typically comprised a surface or near surface sample and periodically to 1.00m bgl. Any horizon where olfactory or visual evidence of contamination was present was also sampled.

Based on a risk phase analysis of the chemical laboratory test results, in accordance with EC Hazardous Waste Directive and undertaken by Ground and Water Limited, all soil samples of Made Ground encountered on-site were NON-HAZARDOUS. The results of the assessment are given within Appendix H.

It is important to note that whilst we consider our in-house assessment tool to be an accurate interpretation of the requirements of WM3, therefore producing an initial classification in accordance with the guidance, this method classifies soils as either non-hazardous or hazardous and landfill operators have their own assessment tools and can often come to different conclusions. As a result, some landfill operators could refuse to take apparently suitable waste. It is recommended that the receiving landfill views the results of this assessment and the chemical laboratory results to determine their own classification.

In addition to the samples described above, 2No. samples were scheduled to undergo Waste Acceptance Criteria (WAC) testing with single batch leachate. Both samples were labelled as inert waste.

Where contaminated soils are to be removed, they should be placed on an impermeable membrane (visqueen or similar) to ensure that no cross-contamination of soils occurs.

DUTY OF CARE

Groundworkers must maintain a good standard of personal hygiene including the wearing of overalls, boots, gloves and eye protectors and the use of dust masks during periods of dry weather.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

Contamination Letter Report and Remediation Strategy

To prevent exposure to airborne dust by both the general public and construction personnel the site should be kept damp during dry weather and at other times when dust is generated as a result of construction activities.

The site should be securely fenced at all times to prevent unauthorised access. Washing facilities should be provided and eating restricted to mess huts.

FIGURES	9
APPENDIX A: Conditions and Limitations	10
APPENDIX B: Scope of the Investigation	13
APPENDIX C: Technical Glossary	15
APPENDIX D: Trial Hole Logs	16
APPENDIX E: Chemical Laboratory Testing	17
APPENDIX F: Soil Assessment Criteria	18
APPENDIX G: Asbestos Risk Assessment	19
APPENDIX H: Hazard Waste Assessment	20

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

FIGURES

- Site boundary
- Hand excavated trial pit
- WindowlessSamplerBorehole

May 2024
Figure 1 – Trial Hole Location Plan
GWPR5986

Site boundary

34 Nassau Road SW13 9QE	
	May 2024
Figure 2 – Proposed Development	GWPR5986

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX A: Conditions and Limitations

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The report has been prepared on the basis of information, data and materials which were available at the time of writing. Accordingly any conclusions, opinions or judgements made in the report should not be regarded as definitive or relied upon to the exclusion of other information, opinions and judgements.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the client in accordance with their brief; as such these do not necessarily address all aspects of ground behaviour at the site. No liability is accepted for any reliance placed on it by others unless specifically agreed in writing.

Any decisions made by you, or by any organisation, agency or person who has read, received or been provided with information contained in the report ("you" or "the Recipient") are decisions of the Recipient and we will not make, or be deemed to make, any decisions on behalf of any Recipient. We will not be liable for the consequences of any such decisions.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

Any Recipient must take into account any other factors apart from the Report of which they and their experts and advisers are or should be aware. The information, data, conclusions, opinions and judgements set out in the report may relate to certain contexts and may not be suitable in other contexts. It is your responsibility to ensure that you do not use the information we provide in the wrong context.

This report is based on readily available geological records, the recorded physical investigation, the strata observed in the works, together with the results of completed site and laboratory tests. Whilst skill and care has been taken to interpret these conditions likely between or below investigation points, the possibility of other characteristics not revealed cannot be discounted, for which no liability can be accepted. The impact of our assessment on other aspects of the development required evaluation by other involved parties.

The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous in ground activities. The ground conditions have been sampled or monitored in recorded locations and tests for some of the more common chemicals generally expected. Other concentrations of types of chemicals may exist. It was not part of the scope of this report to comment on environment/contaminated land considerations.

The conclusions and recommendations relate to 34 Nassau Road SW13 9QE.

Trial hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sampler borehole implies the specific technique used to produce a trial hole.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

The depth to roots and/or of desiccation may vary from that found during the investigation. The client is responsible for establishing the depth to roots and/or of desiccation on a plot-by-plot basis prior to the construction of foundations. Where trees are mentioned in the text this means existing trees, recently removed trees (approximately 15 years to full recovery on cohesive soils) and those planned as part of the site landscaping.

Ownership of copyright of all printed material including reports, laboratory test results, trial pit and borehole log sheets, including drillers log sheets, remain with Ground and Water Limited. Licence is for the sole use of the client and may not be assigned, transferred or given to a third party.

Only our client may rely on this report and should this report or any information contained in it be provided to any third party we accept no responsibility to the third party for the contents of this report save to the extent expressly outlined by us in writing in a reliance letter addressed from us to the third party.

Recipients are not permitted to publish this report outside of their organisation without our express written consent.

The aim of the investigation was understood to be to supply the client and their designers with information regarding the ground conditions underlying the site to assist them in preparing an appropriate scheme for development.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX B: Scope of the Investigation

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

The investigation was to be undertaken to provide parameters for the design of foundations by means of in-situ and laboratory geotechnical testing undertaken on soil samples recovered from trial holes.

A full scale Environmental Desk Study and Contamination Assessment including a gas, vapours, radon & groundwater risk assessment were not part of the remit of this report; however Included within the fee proposal was an allowance to undertake chemical laboratory testing on soil samples recovered from the site to enable recommendations for the safe redevelopment of the site and the protection of site workers, end-users and the public from any potential contamination identified.

The techniques adopted for the investigation were chosen considering the requirements of the client, anticipated ground conditions, and bearing in mind the nature of the site, limitations to site access and other logistical limitations.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX C: Technical Glossary

geotechnical and environmental consultants

TECHNICAL GLOSSARY

The list of possible definitions within the report may be seen below. Please note that some definitions may not be relevant to this report.

HYDROGEOLOGY:

A **Principal Aquifer** is a layer of rock or drift deposits that have high intergranular and/or fracture permeability - meaning they usually provide a high level of water storage. They may support water supply and/or river base flow on a strategic scale. In most cases, principal aquifers are aquifers previously designated as major aquifer.

Secondary (A) Aquifers consist of deposits with permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as Minor Aquifers.

Secondary (B) Aquifers consist of deposits with predominantly lower permeability layers with may stoke and yield limited amounts of groundwater due to localised features such as fissures, think permeable horizons and weathering. These are generally the water-bearing parts of the former non-aquifers.

Secondary Aquifers (Undifferentiated) are assigned in cases where it has not been possible to attribute either category A or B to a rock type. In most cases, this means that the layer in question has previously been designated as both a minor aquifer and non-aquifer in different locations due to the variable characteristics of the rock type.

Unproductive Strata are rock layers with low permeability that have negligible significance for water supply or river base flow. These were formerly classified as non-aquifers.

FLOOD ZONES:

Environment Agency Flood Zone 2, defined as; land having between a 1 in 100 and 1 in 1,000 annual probability of river flooding; or land having between a 1 in 200 and 1 in 1,000 annual probability of sea flooding.

Environment Agency Flood Zone 3 shows the extent of a river flood with a 1 in 100 (1%0 or greater chance of occurring in any year or a sea flood with a 1 in 200 (0.5%) or greater chance of occurring in any year.

Environment Agency Flood Zone 3 area that benefits from flood defences, defined as; land and property in this flood zone would have a high probability of flooding without the local flood defences. These protect the area against a river flood with a 1% chance of happening each year, or a flood from the sea with a 0.5% chance of happening each year.

GROUNDWATER SOURCE PROTECTION ZONES (SPZS):

Inner Zone (SPZ1): This zone is 50 day travel time of pollutant to source with a 50 metres default minimum radius.

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB 0333 600 1221 enquiries@groundandwater.co.uk **groundandwater.co.uk**

geotechnical and environmental consultants

Outer Zone (SPZ2): This zone is 400 day travel time of pollutant to source. This has a 250 or 500 metres minimum radius around the source depending on the amount of water taken.

Total Catchment (SPZ3): This is the area around a supply source within which all the groundwater ends up at the abstraction point. This is the point from where the water is taken. This could extend some distance from the source point.

Zone of Special Interest (SPZ4): This zone is where local conditions require additional protection.

IN-SITU STRENGTH GEOTECHNICAL TESTING:

Windowless Sample and/or Cable Percussion and/or Rotary Boreholes provide samples of the ground for assessment but they do not give any engineering data. The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil. The test uses a thick-walled sample tube, with an outside diameter of 50mm and an inside diameter of 35mm, and a length of around 650mm. This is driven into the ground at the bottom of a borehole by blows from a slide hammer with a weight of 63.5kg falling through a distance of 760mm. The sample tube is driven 150mm into the ground and then the number of blows needed for the tube to penetrate each 75mm up to a depth of 450mm is recorded. The sum of the number of blows is termed the "standard penetration resistance" or the "N-value".

Dynamic Probing involves the driving of a metal cone into the ground via a series of steel rods. These rods are driven from the surface by a hammer system that lifts and drops a 63.5kg (SHDP) hammer onto the top of the rods through a set height, thus ensuring a consistent energy input. The number of hammer blows that are required to drive the cone down by each 100mm increment are recorded. These blow counts then provide a comparative assessment from which correlations have been published, based on dynamic energy, which permits engineering parameters to be generated. (The Dynamic Probe 'Super Heavy' (SHDP) Tests were conducted in accordance with BS 1377; 1990; Part 9, Clause 3.2).

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX D: Trial Hole Logs

Percussion Drilling Log

Projec	ct Name	: 34 Nass	au Roa	ad		Client: 7	โom Richaı	rds					Date:				
ocati	ion: SW	13 9QE				Contrac	tor:										
Projec	ct No. : C	GWPR590)9			Crew N	ame:						Drilling Eq	uipment:			
Bor	ehole N WS01		ŀ		Type LS		Level			Log	ged	Ву		cale :50		e Number	
Well	Water	Sar		nd In	Situ Testir	_	Depth	L	evel	Lege	end			um Descrip			
	Strikes	Depth (m) Ty	уре	Resul	ts	(111)	-	(111)	*****	****	MADE (GROUND: D	ark brown sa	andy gravelly	1	_
Well	Strikes	Depth (0.20 0.50 0.80 1.00 1.20 2.00 2.50 3.00 3.00	m) Ty	ype D D D D D PT D D PT	N=28 (11,7/2) 27 (25,24/2) N=47 (18,12/11,12)	7,7,7,7)	(m) 1.20 1.80 3.00		(m)	Lege	ena	CLAY. S to sub-re chalk (5 Orange (KEMP1 Light bre coarse.	GROUND: Diand is fine. ounded of fli %). brown very FON PARK (CON	um Descrip lark brown sa gravel is fine nt (80%), bri sandy CLAY. GRAVEL MEI ndy GRAVEL e to coarse, MPTON PAF	andy gravelly to coarse, a ck (15%) and Sand is fine MBER). Sand is fine angular to si RK GRAVEL	ngular d	1
																	10 -
Depth	Hole Diame	eter Diameter	Ca Depth Ba		Diameter Diameter	Depth To	p Depth B		iselling Dura	tion		Tool	Depth Top	Inclination Depth Base	and Orientation	Orienta	
			Борат Б	200	Siamotor	2 Spin II	- Dopar D	200	Suid	2011			23541 100	2 5711 2436		CHOILE	
Dam'	arko														1		

Remarks

Roots noted to 1.20

Groundwater noted at 2.90m bgl

Percussion Drilling Log

			1																	
Projec	t Name	e: 34 Nass	au Ro	ad		Client: T	om Richar	ds					Date:							
.ocati	on: SW	/13 9QE				Contrac	tor:													
Projec	t No. :	GWPR590	09			Crew Na	ame:						Drilling Eq	uipment:						
Bor	ehole N	Number 2			Type LS		Level			Log	ged	Ву	Scale Page Number 1:50 Sheet 1 of 1							
Well	Water				Situ Testin		Depth (m)		vel	Lege	nd		Strati	um Descrip						
	Strikes Hole Dian	Depth (0.20 0.50 0.80 1.00 1.50 2.00 2.50 3.00 3.50 4.00	(m) T	Type D D D D SPT D D SPT D Casing t	N=21 (6,4/4 27 (25,22/3 N=52 (20,11/12,14	,5,6,6)	(m) 1.20 2.20	Chise	n) Durat			CLAY. S to sub-re chalk (5' Orange (KEMPT)	BROUND: Do and is fine. o bounded of flin %). brown very s ON PARK G bwn very sar Gravel is fine of flint. (KEI R).	ark brown sa gravel is fine int (80%), brid sandy CLAY. sandy GRAVEL e to coarse, i MPTON PAR	Sand is fine. Sand is fine. Sand is fine. Sand is fine.	ngular e to	2 — — — — — — — — — — — — — — — — — — —			
_ 					2.41110401	Jopan 10	- John De		_ ural				20pm 10p	200011 0000		Jiionik				

Remarks

Roots noted to 1.50. Groundwater noted at 2.80m bgl.

No SPT at 4.00m bgl due to sands filling up casing.

9 ground&water									Probe Log													Probe No DP02 Sheet 1 of 2				
Project Nan	ne: 34	Vassa	u Ro	ad					Project No. GWPR5909						ords:									Hole Type DP		
Location:	SW	13 9C	Œ					•						Leve	el:										Scale 1:25	
Client:	Ton		Dates:									Logged By														
Depth (m)	2	4 6	8	3 10	12	2 1	4 1	6 1	18 2		3low				30	32	34	36	38	3 4	0 4	42 <i>4</i>	14 <i>'</i>	46	48 	Torque (Nm)
- 1 - 1 1	14 14 11 10 10 9 9 9 8								Fall Ham			50					-		Base		met		700			AGS
									Ham Prob				PSH-	. A			Fin	al [)epth	1		7	.00			AGS
									100	, c 1)	, he	טר	υП·	^												

9I	und&water		Probe No DP02 Sheet 2 of 2	
Project Nan		Project No. GWPR5909	Co-ords:	Hole Type DP
Location:	SW13 9QE		Level:	Scale 1:25
Client:	Tom Richards		Dates:	Logged By
Depth (m)	2 4 6 8 10 12 14 16	Blows/100r		Torque (Nm)
	9 8 8			
	9 8 8 7 6			
6	6 5 5			
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
7	5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			
8				
9				
Remarks:		Fall Height 500	Cone Base Diameter	
		Hammer Wt 64 Probe Type DPSI	-	AGS

Projec	ct Name:	34 Nass	sau R	oad		Clier	nt: Tom Rich	hards			Date:							
ocati	ion: SW1	13 9QE				Cont	ractor:											
		WPR59				Crew	v Name:				Equipment:							
Loc	cation Nu TP1	umber			on Type TP		Level		Logg	jed By	Scale 1:25		ndy gravelly CLAY. se, angular to sub- o) and chalk (5%).					
Mall	Water	Sam	ple a		Situ Testing	,	Depth	Level	Lagand			corintion		11000 1 01	İ			
vveii	Strikes	Depth	(m)	Туре	Results		(m)	(m)	Legend	MADE OD				OL AV				
Well			(m)	nd In	Situ Testing		Depth (m)	Level (m)	Legend	MADE GRO Sand is fine rounded of	Stratum De	n sandy g coarse, a 15%) and	iravelly ngular t I chalk (CLAY.	2			
															4 -			
															-			
															-			
															-			
															-			
															5 -			
	Dime	ensions					Trench	Support	and Comm	ent ent			Pump	ing Data				
Pit	Length	Pit \	Nidth		Pit Stability	Sho	oring Used			Remarks		Date	Rate	Rema	rks			
Rema	arks																	

Roots noted to depth.

			1												
Projec	t Name:	34 Nass	sau Ro	oad		Clie	nt: Tom Ricl	hards			Date:				
.ocati	on: SW	13 9QE				Con	itractor:								
Projec	t No. : 0	SWPR59	86			Crev	w Name:				Equipment:				
Loc	ation No	umber	L		on Type ГР		Level		Logg	jed By	Scale 1:25			ge Numb heet 1 of	
Well	Water				Situ Testi		Depth	Level	Legend		Stratum De	scription			
10/-11	TP2		ple ar	1	ГР		T 1	Level (m)		MADE GRO	1:25	n sandy g coarse, a ck (15%)	ravelly (cLAY.	
	Di-	anaiss -					Texas	Summer's	and Co	ont			Dr. no	ng Dot-	5 —
	Length	ensions Pit V	Vidth	1	Pit Stability	Sh	Trench oring Used	Support	and Comm	ent Remarks		Date	Pumpii Rate	ng Data Rema	arks
Rema	ırks	•										1			

Roots noted to depth.

Project Name: 34 Nassau Road	Clien	t: Tom Rich	ards			Date:					
ocation: SW13 9QE	Conti	ractor:									
Project No. : GWPR5986		/ Name:				Equipment:					
Location Number Location Typ TP3 TP	ре	Level		Logg	ed By	Scale 1:25			ge Numbe heet 1 of 1		
Well Water Sample and In Situ 1		Depth	Level	Legend			scription			•	
vveii C	Festing Results	1.20	Level (m)	Legend	MADE GRO Sand is fine rounded of t	Stratum Des DUND: Dark brown . gravel is fine to of flint (85%), brick (** End of Borehole	n sandy gi ∞arse, ar 10%) and	ravelly (CLAY. o sub- 5%).	2 2	
Dimensions Dit Longth Dit Width Dit Sto	hility CL -	Trench	Support a	and Comme	ent Pomorko		Dota	Pumpi	ng Data	rke	
Pit Length Pit Width Pit Sta	ibility Sho	ring Used			Remarks		Date	Rate	Remar	rks	

Roots noted to depth.

	ground	Jawatei													
Project I	Name:	34 Nass	sau Ro	oad		Clie	ent: Tom Rich	nards			Date:				
ocation	n: SW1	13 9QE				Со	ntractor:								
Project I	No. : G	SWPR59	86			Cre	ew Name:				Equipment:				
Locat	tion Nu	umber	L		on Type		Level		Logg	jed By	Scale 1:25			ge Numb	
Well S	Vater trikes				Situ Test		Depth (m)	Level (m)	Legend		Stratum De	scription	ı		
Well S	trikes	Depth 0.20 0.50 0.80 1.00 1.20	(m)	Type D D D D D			1.20	(m)	Legend	Sand is fir	Stratum De ROUND: Dark brown ne. gravel is fine to o of flint (80%), brick (n sandy g coarse, a 15%) and	ravelly (ngular to l chalk (f	sub-	2
			_												5 -
D:# !		ensions	مادلم (۱۸		Dit Ctabilit	0	Trench	Support	and Comm	ent Pemerks		Data	Pumpir	ng Data	rko
Pit Le Remarl		Pit \	Vidth	·	Pit Stability	S	horing Used			Remarks		Date	Rate	Rema	arks
villali													1		

Roots noted to depth.

Projec	ct Name: 34 Nassau Road					Clier	nt: Tom Rich	hards			Date:					
.ocati	on: SW	13 9QE				Cont	tractor:									
		SWPR59				Crev	v Name:				Equipment:					
Loc	cation No TP5	umber			on Type ГР		Level		Logg	jed By	Scale 1:25				Numbe	
Well	Water	Sam	ple a		Situ Testinç		Depth	Level	Legend			scription		01100		
Well	Water Strikes	Sam Depth 0.20 0.50 1.00 1.20	(m)	nd In Type D D D	Results		Depth (m)	Level (m)	Legend	MADE GROSand is fine rounded of	Stratum De. DUND: Dark brown a. gravel is fine to offlint (80%), brick (1	n sandy g coarse, a 15%) and	ravelly ngular I chalk	y CLA's to sult to sul	7.	2
	Dime	ensions					Trench	Support	and Commo	ent			Pum	ping D	ata	
Pit	Length	Pit \	Width	-	Pit Stability	Sho	oring Used			Remarks		Date	Rate		Remar	ks
Rema	arks													_		

Roots noted to depth.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX E: Chemical Laboratory Testing

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire **GU34 3NB**

e: adam.young@groundwater.co.uk

Your order number:

i2 Analytical Ltd. 7 Woodshots Meadow, Croxlev Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 24-009116

Project / Site name: 34 Nassau Road SW13 9QE Samples received on: 14/03/2024

Your job number: **GWPR5909** Samples instructed on/

Analysis started on:

Analysis completed by:

14/03/2024

20/03/2024

Report Issue Number: Report issued on: 21/03/2024

Samples Analysed: 5 soil samples

Signed: A. Gerwinska

Agnieszka Czerwińska Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting soils

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

GWPR5909

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

Your Order No: GWPR5909

Lab Sample Number				145503	145504	145505	145506	145507
Sample Reference				WS01	WS02	WS01	WS02	WS02
Sample Number				None Supplied				
Depth (m)				1.20	0.20	2.00	1.50	3.00
Date Sampled				12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
S	0/	0.1	NONE	2.1				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE NONE	17	15	3.4	17	2.4
Total mass of sample received	kg	0.1	INOINE	0.8	0.7	0.5	0.6	0.4
Admin .								
Asbestos	T	NI/A	100 17025	Not detected	No. data da		1	ı
Asbestos in Soil Detected/Not Detected	Type N/A	N/A	ISO 17025	Not-detected	Not-detected	-	-	-
Asbestos Analyst ID	IN/A	N/A	N/A	KSZ	KSZ	-	-	-
General Inorganics	1			T		T	ı	
pH (L099)	pH Units	N/A	MCERTS	8	7.7	8.4	8	8.3
Total Cyanide	mg/kg	1	MCERTS	2	< 1.0	-	-	-
Total Sulphate as SO ₄	%	0.005	MCERTS	-	-	-	0.014	0.008
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO ₄ 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	20	27	17	46	25
Equivalent)	mg/l	1.25	MCERTS	-	-	8.44	23	12.3
Water Soluble SO ₄ 16hr extraction (2:1)	mg/l	1.25	MCERTS	10	13.6	-	_	_
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	-	2.1	1
Total Sulphur	mg/kg	50	MCERTS	_	_	-	80	69
Total Sulphur	%	0.005	MCERTS	_	_	_	0.008	0.007
Ammoniacal Nitrogen as NH ₄ +	mg/kg	0.5	MCERTS	_	_	-	< 0.5	< 0.5
Ammonium as NH ₄ + (10:1 leachate equivalent)	mg/l	0.05	MCERTS	_	_	-	< 0.05	< 0.05
Organic Matter (automated)	%	0.1	MCERTS	3.8	2.9	-	-	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	2.2	1.7	-	_	_
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	_	< 2.0	< 2.0
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	-	< 2.0	< 2.0
- 11 Pi	-		<u> </u>				<u></u>	<u></u>
Total Phenois	ma/ka	1	MCERTS				ı	ı
Total Phenols (monohydric)	mg/kg	1	PICERTS	< 1.0	< 1.0	-	-	-
C. Carlotte Annua								
Speciated PAHs	ma #	0.05	MCEDIC	. 0.05	. 0.05		1	I
Naphthalene	mg/kg	0.05	MCERTS MCERTS	< 0.05	< 0.05	-	-	-
Acenaphthylene	mg/kg	0.05	MCERTS	0.38	< 0.05	-	-	-
Acenaphthene	mg/kg			0.1	< 0.05	-	-	-
Fluorene	mg/kg	0.05	MCERTS	0.43	< 0.05	-	-	-
Phenanthrene	mg/kg	0.05	MCERTS	7.2	0.59	-	-	-
Anthracene	mg/kg	0.05	MCERTS	3	0.16	-	-	-
Fluoranthene	mg/kg	0.05	MCERTS	14	1.7	-	-	-
Pyrene	mg/kg	0.05	MCERTS	11	1.7	-	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	5.7	1	-	-	-
Chrysene	mg/kg	0.05	MCERTS	5.7	1.3	-	-	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	6.1	1.6	-	-	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	2.3	0.68	-	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	4.7	0.84	-	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	2.2	0.52	-	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS MCERTS	0.63	0.17	-	-	-
Benzo(ghi)perylene	mg/kg	0.05	PICERIO	2.6	0.6	-	-	-
T. J. Paul								
Total PAH	n	0.0	ICO 17025		1		Г	ı
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	66.1	10.9	-	-	-

Analytical Report Number: 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

Your Order No: GWPR5909

Lab Sample Number				145503	145504	145505	145506	145507
Sample Reference				WS01	WS02	WS01	WS02	WS02
Sample Number				None Supplied				
Depth (m)				1.20	0.20	2.00	1.50	3.00
Date Sampled				12/03/2024	12/03/2024	12/03/2024	12/03/2024	12/03/2024
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	19	-	-	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.7	1.2	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-	-	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-	-	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	25	24	-	-	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	67	33	-	-	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	220	160	-	-	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	0.6	-	-	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	24	21	-	-	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-	-	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	55	49	-	_	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	74	-	-	_
. (
Magnesium (leachate equivalent)	mg/l	2.5	NONE	_	_	_	4.4	4.2
Magnesium (water soluble)	mg/kg	5	NONE	_	_	_	8.9	8.5
· lag. cora. (· lace. oolab.o)	<u>I</u>						0.5	0.5
Petroleum Hydrocarbons								
TPHCWG - Aliphatic >C5 - C6 HS_1D_AL	mg/kg	0.02	NONE	-	< 0.020	-	-	-
TPHCWG - Aliphatic > C6 - C8 Hs_1D_AL	mg/kg	0.02	NONE		< 0.020		-	
TPHCWG - Aliphatic > C8 - C10 HS_1D_AL	mg/kg	0.05	NONE		< 0.050			
TPHCWG - Aliphatic >C10 - C12 EH_CU_1D_AL	mg/kg	1	MCERTS	-	< 1.0			_
TPHCWG - Aliphatic >C12 - C16 EH_CU_1D_AL	mg/kg	2	MCERTS	_	< 2.0			_
TPHCWG - Aliphatic >C16 - C21 EH_CU_1D_AL	mg/kg	8	MCERTS		< 8.0	-	-	
TPHCWG - Aliphatic >C21 - C35 EH_CU_1D_AL	mg/kg	8	MCERTS		< 8.0			
TPHCWG - Aliphatic >C35 - C40 EH_CU_1D_AL	mg/kg	10	NONE		< 10	-	-	
TPHCWG - Aliphatic >C5 - C35 EH CU+HS_1D_AL	mg/kg	10	NONE			-		
TPHCWG - Aliphatic >C5 - C40 EH_CU+HS_1D_AL	mg/kg	10	NONE		< 10		-	-
Titleve /mphade / es e la manajajak	mg/kg	10	HOHE	-	< 10	-	-	-
TRUCKIC A FOR FOR								1
TPHCWG - Aromatic >EC5 - EC7 Hs_1D_AR	mg/kg	0.01	NONE	-	< 0.010	-	-	-
TPHCWG - Aromatic > EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	-	< 0.010	-	-	-
TPHCWG - Aromatic > EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	-	< 0.050	-	-	-
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	-	< 1.0	-	-	-
TPHCWG - Aromatic > EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	< 2.0	-	-	-
TPHCWG - Aromatic > EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	-	< 10	-	-	-
TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	-	< 10	-	-	-
TPHCWG - Aromatic >EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aromatic > EC5 - EC35 EH_CU+HS_1D_AR	mg/kg	10	NONE	-	< 10	-	-	-
TPHCWG - Aromatic >EC5 - EC40 EH_CU+HS_1D_AR	mg/kg	10	NONE	-	< 10	-	-	-
TOUT 1 1 05 040					•			1
TPH Total >C5 - C40 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	-	< 10	-	-	-
VOCs					_			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	-	< 5.0	-	-	-
Benzene	μg/kg	5	MCERTS	-	< 5.0	-	-	-
Toluene	μg/kg	5	MCERTS	-	< 5.0	-	-	-
Ethylbenzene	μg/kg	5	MCERTS	-	< 5.0	-	-	-
p & m-Xylene	μg/kg	5	MCERTS	-	< 5.0	-	-	-
o-Xylene	μg/kg	5	MCERTS	-	< 5.0	-	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number : 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
145503	WS01	None Supplied	1.2	Brown clay and loam with gravel and vegetation
145504	WS02	None Supplied	0.2	Brown clay and loam with gravel and vegetation
145505	WS01	None Supplied	2	Brown sand with gravel
145506	WS02	None Supplied	1.5	Brown sandy clay
145507	WS02	None Supplied	3	Brown sand with gravel

Analytical Report Number: 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

	ı	1			
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES	In-house method based on TRL 447	L038B	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES	In-house method	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES	In-house method	L038B	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction	L078B	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	W	MCERTS
<u> </u>	1				

Analytical Report Number : 24-009116 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser	In-house method	L082B	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082B	w	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

	List of The Carter on year of the Carter of
Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB

e: adam.young@groundwater.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 24-012288

Project / Site name: 34 Nassau Road SW13 9QE Samples received on: 14/03/2024

Your job number: GWPR5909 Samples instructed on/

Analysis started on:

04/04/2024

Your order number: GWPR5909 Analysis completed by: 10/04/2024

Report Issue Number: 1 Report issued on: 10/04/2024

Samples Analysed: 10:1 WAC sample

Signed:

Joanna Wawrzeczko Senior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Dewradio

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:	lesults	24-012288					
				Client:	GANDW		
Location	34	l Nassau Road SW13 9Q	E				
Lab Reference (Sample Number)		464663		Landfill	Waste Acceptanc	e Criteria	
		161662			Limits		
Sampling Date		12/03/2024 WS02			Stable Non- reactive		
Sample ID Depth (m)		0.20		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil	
Solid Waste Analysis							
TOC (%)**	1.3			3%	5%	6%	
Loss on Ignition (%) **	3.4					10%	
BTEX (μg/kg) **	< 5.0			6000			
Sum of PCBs (mg/kg) ** Minoral Oil (mg/kg)	< 0.007 < 10			1 500			
Mineral Oil (mg/kg) _{EH_1D_CU_AL} Fotal PAH (WAC-17) (mg/kg)	6.35			100			
oH (units)**	7.5				>6		
Acid Neutralisation Capacity (mmol / kg)	0.76				To be evaluated	To be evaluate	
	0.70				1		
Eluate Analysis	10:1		10:1		es for compliance le		
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l	<u> </u>	mg/kg	using BS E	N 12457-2 at L/S 10	l/kg (mg/kg)	
Arsenic *	0.00742		0.0742	0.5	2	25	
Barium *	0.00316		0.0316	20	100	300	
Cadmium *	< 0.000100		< 0.00100	0.04	1	5	
Chromium *	< 0.00040		< 0.0040	0.5	10	70	
Copper *	0.025		0.25	2	50	100	
Mercury *	< 0.000500		< 0.00500	0.01	0.2	2	
4olybdenum *	< 0.000400		< 0.00400	0.5	10	30	
Nickel *	0.0014		0.014	0.4	10	40	
_ead *	< 0.0010		< 0.010	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0051 0.67		0.051	4 800	50	200 25000	
Chloride * Fluoride*	0.87		6.7 3.0	10	15000 150	500	
Sulphate *	1.6		16	1000	20000	50000	
TDS*	27		270	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	15.8		158	500	800	1000	
each Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.7						
Ory Matter (%)	85						
Moisture (%)	15						
	1			1	1	1	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and

EA Guidance WM3.
This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Stated limits are for guidance only and i2 cannot be held responsible for any discrepancies with current legislation

Analytical Report Number: 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
161662	WS02	None Supplied	0.2	Brown clay and loam with gravel and vegetation

Analytical Report Number: 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

				1	
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH at 20°C in soil	Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	w	NONE
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	w	ISO 17025
Sample Preparation		In-house method	L043B	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	W	NONE
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons by GC-FID/GC- MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	ISO 17025

Analytical Report Number: 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025
WAC Leachate 10:1		In-house method	L043B	W	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Sample Deviation Report

Analytical Report Number: 24-012288 Project / Site name: 34 Nassau Road SW13 9QE

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

RCy. u 110 s	key. a No sampling date b incorrect container a molaring time a medaspace e remperature									
Sample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation			
WS02	N/A	S	161662	С	BTEX and/or Volatile organic compounds in soil	L073B	С			
WS02	N/A	S	161662	С	PCB's By GC-MS in soil	L027B	С			
WS02	N/A	S	161662	С	Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	L064B	С			
WS02	N/A	S	161662	С	Total petroleum hydrocarbons by GC-FID/GC-MS HS in soil	L076B/L088	С			

Ground and Water Ltd□
2 The Long Barn
Norton Farm
Selbourne Road
Alton
Hampshire
GU34 3NB

e: adam.young@groundandwater.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 24-018427

Project / Site name: Samples received on: 08/05/2024

Your job number: GWPR5986 Samples instructed on/

Analysis started on:

08/05/2024

Your order number: GWPR5986 Analysis completed by: 15/05/2024

Report Issue Number: 1 Report issued on: 15/05/2024

Samples Analysed: 4 soil samples - 1 leachate sample

Signed:

Adam Fenwick Key Account Executive

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Your Order No: GWPR5986

Lab Sample Number				192705	192707	192708
Sample Reference				TP1	TP3	TP5
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.80	1.20
Date Sampled				06/05/2024	06/05/2024	06/05/2024
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	11.7	.01	.01
	%	0.01	NONE	11.7	< 0.1 12	< 0.1
Moisture Content	kg	0.01	NONE	14		13
Total mass of sample received	ĸg	0.1	NONE	1.4	1.4	1.3
Asbestos					1	ı
Asbestos in Soil Detected/Not Detected	Туре	N/A	ISO 17025	Detected	Detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	KWB	KWB	KWB
Actinolite detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Amosite detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Anthophyllite detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Chrysotile detected	Туре	N/A	ISO 17025	Detected	Detected	-
Crocidolite detected	Type	N/A	ISO 17025	Not-detected	Not-detected	-
Fremolite detected	Type	N/A	ISO 17025	Not-detected	Not-detected	-
Asbestos Containing Material Types Detected (ACM)	Туре	N/A	ISO 17025	Loose Fibres	Loose Fibres	-
oH (L099) Fotal Cyanide	pH Units mg/kg	N/A 1	MCERTS MCERTS	8 < 1.0	8.1 < 1.0	8.4 < 1.0
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	21	33	52
Water Soluble SO ₄ 16hr extraction (2:1)	mg/l	1.25	MCERTS	10.6	16.7	26.1
Organic Matter (automated)	%	0.1	MCERTS	3.4	3.2	2.8
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.9	1.8	1.6
Total Phenols						
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
					·	
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	0.16	1.2	< 0.05
	mg/kg	0.05	MCERTS	0.09	2.3	0.05
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.49	0.09
Fluorene	mg/kg	0.05	MCERTS	0.06	2.6	0.09
Phenanthrene	mg/kg	0.05	MCERTS	1.1	2.0	1
Anthracene	mg/kg	0.05	MCERTS	0.24	10	0.2
Fluoranthene	mg/kg	0.05	MCERTS	2.7	42	2.1
Pyrene	mg/kg	0.05	MCERTS	2.4	34	1.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.4	18	0.98
Chrysene	mg/kg	0.05	MCERTS	1.7	18	1.2
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	2	23	1.5
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.86	8	0.57
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.6	18	1.3
indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.91	8.6	0.72
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.21	2.1	0.16
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1	9.1	0.82
Coronene	mg/kg	0.05	NONE	-	-	-
February DALL						
Focal PAH Speciated Total EPA-16 PAHs	ma/ka	0.8	ISO 17025	16.3	227	12.5
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	16.3	227	12.5

Heavy Metals / Metalloids

Your Order No: GWPR5986

Lab Sample Number				192705	192707	192708
Sample Reference				TP1	TP3	TP5
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.80	1.20
Date Sampled				06/05/2024	06/05/2024	06/05/2024
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	19	17
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	< 0.2	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	22	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	68	47	49
Lead (aqua regia extractable)	mg/kg	1	MCERTS	330	240	180
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.6	0.6	0.7
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	20	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	50	46	49
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	120	86
Petroleum Hydrocarbons TPHCWG - Aliphatic >C5 - C6 HS_1D_AL TPHCWG - Aliphatic >C6 - C8 HS_1D_AL	mg/kg	0.02	NONE NONE	< 0.020 < 0.020	-	< 0.020 < 0.020
TPHCWG - Aliphatic >C8 - C10 HS_1D_AL	mg/kg	0.05	NONE	< 0.050	-	< 0.050
TPHCWG - Aliphatic >C10 - C12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	-	< 1.0
TPHCWG - Aliphatic >C12 - C16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	-	3.1
TPHCWG - Aliphatic >C16 - C21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	< 8.0
TPHCWG - Aliphatic >C21 - C35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	-	17
TPHCWG - Aliphatic >C35 - C40 EH_CU_1D_AL	mg/kg	10	NONE	< 10	=	< 10
TPHCWG - Aliphatic >C5 - C35 EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	1	20
TPHCWG - Aliphatic >C5 - C40 EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	-	20
TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	-	< 0.010
TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	-	< 0.010
TPHCWG - Aromatic >EC8 - EC10 Hs_1D_AR	mg/kg	0.05	NONE	< 0.050	-	< 0.050
TPHCWG - Aromatic > EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-	< 1.0
TPHCWG - Aromatic > EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-	< 2.0
TPHCWG - Aromatic > EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	< 10
TPHCWG - Aromatic > EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	26
TPHCWG - Aromatic > ECS - EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	< 10	-	11
TPHCWG - Aromatic > EC5 - EC35 EH_CU+HS_1D_AR TPHCWG - Aromatic > EC5 - EC40 EH_CU+HS_1D_AR	mg/kg mg/kg	10 10	NONE NONE	< 10	-	26
TITIOWS - AIOINGUC /LCS - LCTU EH_CU+HS_ID_AR	ilig/kg	10	INUINE	< 10	-	36
TPH Total >C5 - C40 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	< 10	_	56
VOCs	9,1.9			< 10	-	30
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	=	< 5.0
Benzene	μg/kg	5	MCERTS	< 5.0	-	< 5.0
Toluene	μg/kg	5	MCERTS	< 5.0	-	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	-	< 5.0
p & m-Xylene	μg/kg	5	MCERTS	< 5.0	-	< 5.0
o-Xylene	μg/kg	5	MCERTS	< 5.0	_	< 5.0

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		24-0	18427					
					Client:	GANDW		
Location								
Lab Reference (Sample Number)		19:	2706		Landfill	e Criteria		
Compling Date			5/2024			Stable Non-		
Sampling Date Sample ID			P2			reactive		
Depth (m)			.50		Inert Waste Landfill			
Solid Waste Analysis								
ГОС (%)**	3.0				3%	5%	6%	
Loss on Ignition (%) **	7.0						10%	
BTEX (µg/kg) **	< 5.0				6000			
Sum of PCBs (mg/kg) **	< 0.007	ļ			1			
Mineral Oil (mg/kg) _{EH_1D_CU_AL}	56		1		500			
Total PAH (WAC-17) (mg/kg)	22.2			1	100			
pH (units)**	7.3					>6		
Acid Neutralisation Capacity (mmol / kg)	0.63					To be evaluated	To be evaluate	
Eluate Analysis	10:1			10:1	Limit values for compliance le			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg			
Arsenic *	0.00313			0.0313	0.5	2	25	
Barium *	0.0183			0.183	20	100	300	
Cadmium *	< 0.000100			< 0.00100	0.04	1	5	
Chromium *	0.00054			0.0054	0.5	10	70	
Copper *	0.016			0.16	2	50	100	
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2	
Molybdenum *	< 0.000400			< 0.00400	0.5	10	30	
Nickel *	0.0015			0.015	0.4	10	40	
Lead *	< 0.0010			< 0.010	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.012			0.12	4 800	50	200 25000	
Chloride * Fluoride*	0.54			5.4 4.1	10	15000 150	500	
Sulphate *	1.1	 	1	11	1000	20000	50000	
TDS*	46	 	+	460	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	7.31			73.1	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.5	 		1				
Dry Matter (%)	86	 	-	1				
Moisture (%)	14							
Results are expressed on a dry weight basis, after correction for mo	aistuus santantuubs	L vec applicable			*= TIKAS accredi	ted (liquid eluate ar	nalysis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number: 24-018427 Project / Site name:

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
192705	TP1	None Supplied	0.2	Brown sand with vegetation and stones
192706	TP2	None Supplied	0.5	Brown loam and sand with gravel and vegetation
192707	TP3	None Supplied	0.8	Brown loam and sand with gravel and vegetation
192708	TP5	None Supplied	1.2	Brown sand with gravel and vegetation

Analytical Report Number: 24-018427 Project / Site name:

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	W	MCERTS
Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
	In-house method	L043B	W	NONE
Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	W	NONE
	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques Determination of pH in soil by addition of water followed by electrometric measurement Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method) Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method) Moisture content, determined gravimetrically (up to 30°C) Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight Determination of PCB by extraction with hexane followed by GC-MS Determination of total dissolved solids in water by electrometric measurement Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser Determination of metals in soil by aqua-regia digestion followed by ICP-OES Determination of metals in soil by aqua-regia digestion followed by ICP-OES Sulphate, water soluble, in soil (16hr extraction) Determination of metals in leachate by acidification followed by ICP-OES	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques Determination of pH in soil by addition of water followed by in-house method dectrometric measurement Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method) Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method) Moisture content, determined gravimetrically (up to 30°C) In-house method Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as 96 dry weight Determination of PCB by extraction with hexane followed by GC-MS Determination of PCB by extraction with hexane followed by GC-MS Determination of total dissolved solids in water by electrometric measurement Determination of flooride in leachate by 1:1-ratio with a buffer solution followed by Ion Selective Electrode Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser Determination of metals in soil by aqua-regia digestion followed by ICP-OES Determination of metals in soil by aqua-regia digestion followed by ICP-OES Sulphate, water soluble, in soil (16hr extraction) In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg 8. Eaton Determination of water soluble boron in soil by hot water extract followed by ICP-OES Sulphate, water soluble, in soil (16hr extraction) In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste	Analytical Method Description Abstotos Identification with the use of polarised light microscopy in conjunction with dispension staining techniques Determination of pH in soil by addition of water followed by in-house method based on HSG 248, 2021 A001B Determination of organic matter in soil by oddising with potassium dichromate followed by thation with iron (II) Determination of organic matter in soil by oddising with potassium dichromate followed by thation with iron (II) Determination of organic matter in soil by oddising with potassium dichromate followed by thation with iron (II) Determination of organic matter in soil by oddising with potassium dichromate followed by thation with iron (II) Standard preparation for all samples unless otherwise detailed. Convimetric determination of stone > 10 mm as % dry weight. Determination of PCB by extraction with hexane followed by GC-NS Determination of total dissolved solids in water by electrometric measurement Determination of fluoride in leachate by 1:1/ratio with a buffer solubion followed by Ion Selective Electrode Determination of fluoride in leachate by 1:1/ratio with a buffer solubion followed by Ion Selective Electrode Determination of metals in soil by aqua-regia digestion followed by ICP-OES Determination of metals in soil by aqua-regia digestion followed by ICP-OES Determination of metals in leachate by acqua-regia digestion followed by ICP-OES In-house method based on MEWAN 2006 Methods for the Determination of Metals in Soil In-house method based on MEWAN 2006 Methods for the Determination of metals in leachate by acqua-regia digestion followed by ICP-OES Determination of metals in leachate by acqua-regia digestion followed by ICP-OES In-house method based on MEWAN 2006 Methods for the Determination of Metals in Soil In-house method based on MEWAN 2006 Methods for the Determination of metals in Soil In-house method based on Second Site Properties version 3 Determination of metals in leachate by acqua-regia digestion followed by I	Analysis (abester (laterification with the use of polarised light microscopy in conjunction with dispersion staining techniques Determination of pit in soil by addition of water followed by in-house method based on HSG 248, 2021 Determination of organic matter in soil by oxidising with potessium dichromate followed by transformation of organic matter in soil by oxidising with potessium dichromate followed by transformation of organic matter in soil by oxidising with potessium dichromate followed by transformation of organic matter in soil by oxidising with potessium dichromate followed by transformation of organic matter in soil by oxidising with potessium dichromate followed by transformation of organic matter in soil by oxidising with potessium dichromate followed by transformation of transformation of organic matter in soil by oxidising with potessium dichromate followed by transformation of the soil by oxidising with potessium dichromate followed by transformation of the soil by oxidising with potessium dichromate followed by transformation of the soil by oxidising with potessium dichromate followed by transformation of soil by oxidising with potessium dichromate followed by transformation of soil by oxidising with read to the soil by oxidising with potessium dichromate followed by oxidising with potessium dichromate followed by oxidising with potessium dichromate followed by oxidising with read with read w

Project / Site name:

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS
Speciated EPA-16 PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Total petroleum hydrocarbons by GC-FID/GC MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	W	MCERTS
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS
WAC Leachate 10:1		In-house method	L043B	W	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector

Project / Site name:

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
GC	Gas Chromatography		_		
EH	Extractable Hydrocarbons (i.e. everything	extracted by the solvent(s))			
CU	Clean-up - e.g. by Florisil®, silica gel				
1D	GC - Single coil/column gas chromatograp	hy			
2D	GC-GC - Double coil/column gas chromato	ography			
Total	Aliphatics & Aromatics				
AL	Aliphatics				
AR	Aromatics				
#1	EH_2D_Total but with humics mathematic	EH_2D_Total but with humics mathematically subtracted			
#2	EH_2D_Total but with fatty acids mathem	EH_2D_Total but with fatty acids mathematically subtracted			
_	Operator - understore to separate acrony	ms (exception for +)			
+	Operator to indicate cumulative e.g. EH+F	IS Total or EH CU+HS Total			

Ground and Water Ltd 2 The Long Barn Norton Farm Selbourne Road Alton Hampshire GU34 3NB i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: adam.young@groundandwater.co.uk e: reception@i2analytical.com

Analytical Report Number: 24-018427

Replaces Analytical Report Number: 24-018427, issue no. 1 Additional analysis undertaken. Asbestos quantification added as per clients request

Project / Site name: Samples received on: 08/05/2024

Your job number: GWPR5986 Samples instructed on/ 08/05/2024

Analysis started on:

Your order number: GWPR5986 Analysis completed by: 27/05/2024

Report Issue Number: 2 Report issued on: 03/06/2024

Samples Analysed: 4 soil samples - 1 leachate sample

Signed:

Joanna Szwagrzak Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils -4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Your Order No: GWPR5986

Lab Sample Number				192705	192706	192707	192708
Sample Reference Sample Number	TP1	TP2	TP3	TP5			
		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)			0.20	0.50	0.80	1.20	
Date Sampled				06/05/2024	06/05/2024	06/05/2024	06/05/2024
Time Taken			1	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
	0/	0.1	NONE				
Stone Content	%	0.1	NONE	11.7	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	14	14	12	13
Total mass of sample received	kg	0.1	NONE	1.4	1.5	1.4	1.3
Asbestos							
Asbestos in Soil Detected/Not Detected	Туре	N/A	ISO 17025	Detected	-	Detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	EWS	-	EWS	KWB
Actinolite detected	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-
Amosite detected	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-
Anthophyllite detected	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-
Chrysotile detected	Туре	N/A	ISO 17025	Detected	-	Detected	-
Crocidolite detected	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	-
Tremolite detected	Туре	N/A	ISO 17025	Not-detected	-	Not-detected	_
	1						
Asbestos % by hand picking/weighing	%	0.001	ISO 17025	< 0.001	-	< 0.001	-
Asbestos Containing Material Types Detected (ACM)	Type	N/A	ISO 17025	Loose Fibres	-	Loose Fibres	-
General Inorganics							
pH (L005B)	pH Units	N/A	MCERTS	-	7.3	-	-
pH (L099)	pH Units	N/A	MCERTS	8	-	8.1	8.4
Total Cyanide	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	21	-	33	52
Water Soluble SO ₄ 16hr extraction (2:1)	mg/l	1.25	MCERTS	10.6	-	16.7	26.1
Organic Matter (automated)	%	0.1	MCERTS	3.4	-	3.2	2.8
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.9	3	1.8	1.6
Loss on Ignition @ 450°C	%	0.2	MCERTS	-	7	-	-
Acid Neutralisation Capacity	mmol/kg	-9999	NONE	-	0.63	-	-
Total Phonois							
lotal Phenois							
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Total Phenois Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
	mg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0
Total Phenols (monohydric)	mg/kg	0.05	MCERTS MCERTS	< 1.0	- 0.08	< 1.0	< 1.0
Total Phenols (monohydric) Speciated PAHs							
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene	mg/kg	0.05	MCERTS	0.16	0.08	1.2	< 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene	mg/kg mg/kg	0.05	MCERTS MCERTS	0.16 0.09	0.08 0.15	1.2 2.3	< 0.05 0.05
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	0.16 0.09 < 0.05	0.08 0.15 < 0.05	1.2 2.3 0.49	< 0.05 0.05 0.09
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	0.16 0.09 < 0.05 0.06	0.08 0.15 < 0.05 0.07	1.2 2.3 0.49 2.6	< 0.05 0.05 0.09 0.07
Total Phenols (monohydric) Speciated PAHs Naphthalene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	0.16 0.09 < 0.05 0.06	0.08 0.15 < 0.05 0.07 1.5	1.2 2.3 0.49 2.6 27	< 0.05 0.05 0.09 0.07
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24	0.08 0.15 < 0.05 0.07 1.5 0.3	1.2 2.3 0.49 2.6 27	< 0.05 0.05 0.09 0.07 1 0.2
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24 2.7	0.08 0.15 < 0.05 0.07 1.5 0.3 3.9	1.2 2.3 0.49 2.6 27 10 42	< 0.05 0.05 0.09 0.07 1 0.2 2.1
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24 2.7 2.4	0.08 0.15 < 0.05 0.07 1.5 0.3 3.9 3.3	1.2 2.3 0.49 2.6 27 10 42 34	< 0.05 0.05 0.09 0.07 1 0.2 2.1 1.8
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pryrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24 2.7 2.4 1.4	0.08 0.15 < 0.05 0.07 1.5 0.3 3.9 3.3 1.8	1.2 2.3 0.49 2.6 27 10 42 34	< 0.05 0.05 0.09 0.07 1 0.2 2.1 1.8 0.98
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24 2.7 2.4 1.4 1.7	0.08 0.15 < 0.05 0.07 1.5 0.3 3.9 3.3 1.8 2.4	1.2 2.3 0.49 2.6 27 10 42 34 18	< 0.05 0.05 0.09 0.07 1 0.2 2.1 1.8 0.98 1.2
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24 2.7 2.4 1.4 1.7	0.08 0.15 < 0.05 0.07 1.5 0.3 3.9 3.3 1.8 2.4 2.4	1.2 2.3 0.49 2.6 27 10 42 34 18 18	< 0.05 0.05 0.09 0.07 1 0.2 2.1 1.8 0.98 1.2 1.5
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24 2.7 2.4 1.4 1.7 2 0.86 1.6	0.08 0.15 < 0.05 0.07 1.5 0.3 3.9 3.3 1.8 2.4 2.4 1.3 2.5	1.2 2.3 0.49 2.6 27 10 42 34 18 18 23 8	< 0.05 0.05 0.09 0.07 1 0.2 2.1 1.8 0.98 1.2 1.5 0.57 1.3
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24 2.7 2.4 1.4 1.7 2 0.86 1.6 0.91	0.08 0.15 < 0.05 0.07 1.5 0.3 3.9 3.3 1.8 2.4 2.4 1.3 2.5 1.1	1.2 2.3 0.49 2.6 27 10 42 34 18 23 8 18 8.6	< 0.05 0.05 0.09 0.07 1 0.2 2.1 1.8 0.98 1.2 1.5 0.57 1.3 0.72
Total Phenols (monohydric) Speciated PAHs Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	0.16 0.09 < 0.05 0.06 1.1 0.24 2.7 2.4 1.4 1.7 2 0.86 1.6	0.08 0.15 < 0.05 0.07 1.5 0.3 3.9 3.3 1.8 2.4 2.4 1.3 2.5	1.2 2.3 0.49 2.6 27 10 42 34 18 18 23 8	< 0.05 0.05 0.09 0.07 1 0.2 2.1 1.8 0.98 1.2 1.5 0.57 1.3

Your Order No: GWPR5986

Lab Sample Number				192705	192706	192707	192708
Sample Reference				TP1	TP2	TP3	TP5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.20	0.50	0.80	1.20
Date Sampled				06/05/2024	06/05/2024	06/05/2024	06/05/2024
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Time Tuken		-		None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	16.3	-	227	12.5
Total WAC-17 PAHs	mg/kg	0.85	NONE	-	22.2	-	-
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	22	-	19	17
Boron (water soluble)	mg/kg	0.2	MCERTS	1.1	-	< 0.2	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	-	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	-	22	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	68	-	47	49
Lead (aqua regia extractable)	mg/kg	1	MCERTS	330	_	240	180
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.6	_	0.6	0.7
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	_	20	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	_	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	50	_	46	49
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	110	_	120	86
. (
Petroleum Hydrocarbons							
TPHCWG - Aliphatic >C5 - C6 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	_	_	< 0.020
TPHCWG - Aliphatic >C6 - C8 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	_	_	< 0.020
TPHCWG - Aliphatic >C8 - C10 HS_1D_AL	mg/kg	0.05	NONE	< 0.050	_	_	< 0.050
TPHCWG - Aliphatic >C10 - C12 EH_CU_ID_AL	mg/kg	1	MCERTS	< 1.0	_	_	< 1.0
TPHCWG - Aliphatic >C12 - C16 EH_CU_ID_AL	mg/kg	2	MCERTS	< 2.0	_	-	3.1
TPHCWG - Aliphatic >C16 - C21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	_	_	< 8.0
TPHCWG - Aliphatic >C21 - C35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	_	_	17
TPHCWG - Aliphatic >C35 - C40 EH_CU_1D_AL	mg/kg	10	NONE	< 10	_	-	< 10
TPHCWG - Aliphatic >C5 - C35 EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	_	_	20
TPHCWG - Aliphatic >C5 - C40 EH_CU+HS_ID_AL	mg/kg	10	NONE	< 10	_	_	20
				- 10			20
TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	_	_	< 0.010
TPHCWG - Aromatic > EC7 - EC8 HS_ID_AR	mg/kg	0.01	NONE	< 0.010	_	_	< 0.010
TPHCWG - Aromatic > EC8 - EC10 HS_ID_AR	mg/kg	0.05	NONE	< 0.050	_	-	< 0.050
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	_	-	< 1.0
TPHCWG - Aromatic >EC12 - EC16 EH_CU_ID_AR	mg/kg	2	MCERTS	< 2.0	_	-	< 2.0
TPHCWG - Aromatic > EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	_	_	< 10
TPHCWG - Aromatic > EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10			26
TPHCWG - Aromatic >EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	< 10		-	11
TPHCWG - Aromatic > EC5 - EC35 EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	_	_	26
TPHCWG - Aromatic >EC5 - EC40 EH_CU+HS_ID_AR	mg/kg	10	NONE	< 10		-	36
a comment of the second	5, 19	-		< 10		-	30
TPH Total >C5 - C40 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	. 10	I		F.C
	9/ 1/9			< 10	-	-	56
Mineral Oil (C10 - C40) EH_CU_1D_AL	mg/kg	10	NONE				
Initial at Oil (C10 - C70) EH_C0_10_AL	пу/кд	10	INOINE	-	56	-	-

Your Order No: GWPR5986

Lab Sample Number	.ab Sample Number						192708
Sample Reference				TP1	TP2	TP3	TP5
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.20	0.50	0.80	1.20
Date Sampled				06/05/2024	06/05/2024	06/05/2024	06/05/2024
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
VOCs							
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	-	-	< 5.0
Benzene	μg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
Toluene	μg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
p & m-Xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
o-Xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	-	< 5.0
Total BTEX	μg/kg	5	MCERTS	_	< 5.0	_	_
PCBs by GC-MS	•						
PCB Congener 28	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	< 0.001	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	< 0.001	-	-
Takel DCDs	mg/kg	0.007	MCERTS		0.007		
Total PCBs	mg/kg	0.007	PICERTS	-	< 0.007	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical R	esults							
Report No:		24-0	18427					
					Client:	GANDW		
Location								
Lab Reference (Sample Number)		10	2706		Landfill	Waste Acceptanc	e Criteria	
			2706			Limits		
Sampling Date			5/2024			Stable Non-		
Sample ID		1	TP2		Inert Waste	reactive HAZARDOUS	Hazardous	
Depth (m)		0	.50		Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis								
TOC (%)**	3.0				3%	5%	6%	
Loss on Ignition (%) **	7.0				-		10%	
BTEX (µg/kg) **	< 5.0				6000			
Sum of PCBs (mg/kg) **	< 0.007				1			
Mineral Oil (mg/kg) _{EH_1D_CU_AL}	56			ļ	500			
Total PAH (WAC-17) (mg/kg)	22.2				100			
pH (units)**	7.3					>6		
Acid Neutralisation Capacity (mmol / kg)	0.63					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit valu	es for compliance le	eaching test	
	10.1			10.1	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using bo Er	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)		
Arsenic *	0.00313			0.0313	0.5	2	25	
Barium *	0.0183			0.183	20	100	300	
Cadmium *	< 0.000100			< 0.00100	0.04	1	5	
Chromium *	0.00054			0.0054	0.5	10	70	
Copper *	0.016			0.16	2	50	100	
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2	
Molybdenum *	< 0.000400			< 0.00400	0.5	10	30	
Nickel *	0.0015			0.015	0.4	10	40	
Lead *	< 0.0010			< 0.010	0.5	10	50	
Antimony *	< 0.0017			< 0.017	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.012			0.12	4	50	200	
Chloride *	0.54			5.4	800	15000	25000	
Fluoride*	0.41			4.1	10	150	500	
Sulphate *	1.1			11	1000	20000	50000	
TDS*	46			460	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	7.31			73.1	500	800	1000	
Leach Test Information								
reach rest thioringtion	+		+	 		+		
Stone Content (%)	< 0.1		1	 	 	1		
Sample Mass (kg)	1.5			 	 			
Dry Matter (%)	86		+	 	 	+	1	
Moisture (%)	14			 	 			
. 10.5001 0 (70)	17		+	 	 	+	1	
				 	 			
			1	1	1	1	1	
Doculto are everyweed on a dry unight having offer compating of the compat	use content ····-	alicable			*- IIVAC !**	nd (liquid cluster : 1	usis anlu)	
Results are expressed on a dry weight basis, after correction for moist						ed (liquid eluate anal	уыз опіу)	
Stated limits are for guidance only and i2 cannot be held responsible for	or any discrepancies v	vith current legislation	on		** = MCERTS accr	edited		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project / Site name:

Your Order No: GWPR5986

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
192705	TP1	0.20	126	Loose Fibres	Chrysotile	< 0.001	< 0.001
192707	TP3	0.80	129	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name:

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
192705	TP1	None Supplied	0.2	Brown sand with vegetation and stones
192706	TP2	None Supplied	0.5	Brown loam and sand with gravel and vegetation
192707	TP3	None Supplied	0.8	Brown loam and sand with gravel and vegetation
192708	TP5	None Supplied	1.2	Brown sand with gravel and vegetation

Project / Site name:

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
pH at 20°C in soil	Determination of pH in soil by addition of water followed by electrometric measurement	In-house method	L005B	W	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references	HSE Report No: 83/1996, HSG 248 (2021), HSG 264 (2012) & SCA Blue Book (draft)	A006B	D	ISO 17025
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	W	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025
Sample Preparation		In-house method	L043B	W	NONE

Project / Site name:

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	W	NONE
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS
Speciated PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Total petroleum hydrocarbons by GC- FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	W	MCERTS
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	MCERTS
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser	In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS

Project / Site name:

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
WAC Leachate 10:1		In-house method	L043B	w	NONE

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX F: Soil Assessment Criteria

Ground and Water Limited

Soil Guideline Values and Generic Assessment Criteria

The Contaminated Land Regime reflects the UK Government's stated objectives of achieving sustainable development through the 'suitable for use approach'. At preliminary risk assessment stage, risks are evaluated qualitatively. As the site investigation progresses to a generic or detailed quantitative risk assessment, data is collected and assessment criteria are utilised to evaluate whether the contaminants represent an unacceptable risk to the identified receptors.

1. Contaminated Land Exposure Assessment Model (CLEA)

Current United Kingdom risk assessment practice is based on the Contaminated Land Exposure Assessment Model (CLEA).

The CLEA Guidance comprises the following documents:

- 1) EA Science Report SC050021/SR2: Human health toxicological assessment of contaminants in soil.
- 2) EA Science Report SC050021/SR3: Updated technical background to the CLEA model.
- 3) EA CLEA Bulletin (2009).
- 4) CLEA software version 1.07 (2015)
- 5) Toxicological reports and SGV technical notes.

The CLEA guidance and tools:

- Do not cover other types of risk to humans, such as fire, suffocation or explosion, or short-term and acute exposures;
- Do not cover risks to the environment, such as groundwater, ecosystems or buildings;
- Do not provide a definitive test for telling when human health risks are significant; and
- Are not a legal requirement in assessing land contamination risks. They are not part of the legal regime for Part 2A of the Environmental Protection Act 1990.

The CLEA guidance derives soil concentrations of contaminants above which (in the opinion of the EA) there may be a concern that warrants further investigation. It does not provide a definitive test for establishing that the risk is significant.

1.1. Land-use Scenarios

The CLEA model uses a range of standard land-use scenarios to develop conceptual exposure models outlined in the following sections.

1.1.1. Residential (with home grown produce) (RwHP)

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small-terraced house.

A sub-set of this land-use is residential apartments with communal landscaped gardens where the consumption of home grown vegetables will not occur. (Residential without homegrown produce (RwoHP)).

1.1.2. Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

1.1.3. Commercial/Industrial

The generic scenario assumes a typical commercial or light industrial property comprising a threestorey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

2. LQM/CIEH Suitable 4 Use Levels (S4UL)

For derivation of these S4UL reference must be made to:

Nathanial, P., McCaffrey, C., Gillet, A., Ogden, R., Nathanial, J., *The LQM/CIEH S4UL's for Human Health Risk Assessment*. **Land Quality Press**. 2015

2.1. S4UL Background

The Land Quality Management/Chartered Institute of Environmental Health (LQM/CIEH) S4UL for a given land use is the concentration of the contaminant in soil at which the predicted daily exposure,

as calculated by the CLEA software, equals the Health Criteria Value. The S4ULs have been derived for substances based on various generic land use and soil organic matter contents.

The final output for each contaminant represents a synthesis of new toxicological (and fate and transport) reviews published since the preparation of the 2nd edition LQM/CIEH GAC's (Nathanial et al., 2009).

In the derivation of LQM/CIEH S4UL's the principles of 'minimal' or 'tolerable' risk enshrined in SR2, which has not been withdrawn, has been maintained.

2.2. S4UL Land-use

S4UL's have been derived for the basic CLEA land-uses, as described in section 1.2, and for two new land uses:

- Public Open Spaces near Residential Housing (POSresi).
- Public Park (POSpark).

2.2.1. Public Open Spaces near Residential Housing (POSresi)

Includes the predominantly grassed areas adjacent to high density housing, the central green area on many 1930's – 1970's housing estates, and smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soils with planting. It is assumed that the close proximity to the place of residence will allow tracking back of soil to occur.

2.2.2. Public Park (POSpark)

An area of open space, usually owned and maintained by the local authority, provided for recreational uses including family visists and picnics, children's play area, informal sporting activities (not a dedicated sports pitch), and dog walking. It is assumed that tracking back of soils into places of residence will be negligible.

The following LQM/CIEH S4UIs (Copyright Land Quality Management Limited) have been reproduced with permission, to the publication number S4UL3072.

3. Category 4 Screening Levels (C4SLs)

In the case of Lead, no SGV or GAC has been published to date. This is likely to be due to the toxicity review that is currently being undertaken by the Environment Agency. In the absence of updated toxicity information the SGV derived using CLEA 1.07 methodology and related toxicity will be used.

The overall objective of the C4SLs research project was to assist the provision of technical guidance in support of Defra's revised Statutory Guidance (SG) for Part 2A of the Environmental Protection Act 1990 (Part 2A) (Defra, 2012a). Specifically, the project aimed to deliver:

- A methodology for deriving C4SLs for four generic land-uses comprising residential, commercial, allotments and public open space; and
- A demonstration of the methodology, via the derivation of C4SLs for six substances arsenic, benzene, benzo(a)pyrene, cadmium, chromium (VI) and lead.

To help achieve a more targeted approach to identifying and managing contaminated land in relation to the risk (or possibility) of harm to human health, the revised SG presented a new four category

system for considering land under Part 2A, ranging from Category 4, where there is no risk that land poses a significant possibility of significant harm (SPOSH), or the level of risk is low, to Category 1, where the risk that land poses a significant possibility of significant harm (SPOSH) is unacceptably high. More specific guidance on what type of land should be considered as Category 4 (Human Health) is provided in Paragraphs 4.21 and 4.22 of the revised SG, as follows:

- "4.21 The local authority should consider that the following types of land should be placed into Category 4: Human Health:
- (a) Land where no relevant contaminant linkage has been established.
- (b) Land where there are only normal levels of contaminants in soil, as explained in Section 3 of this Guidance.
- (c) Land that has been excluded from the need for further inspection and assessment because contaminant levels do not exceed relevant generic assessment criteria in accordance with Section 3 of this Guidance, or relevant technical tools or advice that may be developed in accordance with paragraph 3.30 of this Guidance.
- (d) Land where estimated levels of exposure to contaminants in soil are likely to form only a small proportion of what a receptor might be exposed to anyway through other sources of environmental exposure (e.g. in relation to average estimated national levels of exposure to substances commonly found in the environment, to which receptors are likely to be exposed in the normal course of their lives).
- 4.22 The local authority may consider that land other than the types described in paragraph 4.21 should be placed into Category 4: Human Health if following a detailed quantitative risk assessment it is satisfied that the level of risk posed is sufficiently low."

The C4SLs are intended as "relevant technical tools" (in relation to Paragraph 4.21(c)) to help local authorities and others when deciding to stop further assessment of a site, on the grounds that it falls within Category 4 (Human Health).

The Impact Assessment (IA), which accompanied the revised SG (Defra, 2012b) provides further information on the nature and potential role of the C4SLs. Paragraph 47(h) of the IA states that:

"The new statutory guidance will bring about a situation where the current SGVs/GACs are replaced with more pragmatic (but still strongly precautionary) Category 4 screening levels (C4SLs) which will provide a higher simple test for deciding that land is suitable for use and definitely not contaminated land."

A key distinction between the Soil Guideline Values (SGVs) and the C4SLs is the level of risk that they describe. As described by the Environment Agency (2009a):

"SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health."

The implication of Paragraph 47(h) of the IA is that minimal risk is well within Category 4 and that the C4SLs should describe a higher level of risk which, whilst not minimal, can still be considered low enough to allow a judgement to be made that land containing substances at, or below, the C4SLs would typically fall within Category 4. This reflects Paragraph 4.20 of the revised SG, which states:

"4.20 The local authority should not assume that land poses a significant possibility of significant harm if it considers that there is no risk or that the level of risk posed is low. For the purposes of this Guidance, such land is referred to as a "Category 4: Human Health" case. The authority may decide that the land is a Category 4: Human Health case as soon as it considers it has evidence to this effect, and this may happen at any stage during risk assessment including the early stages."

C4SLs, therefore, should not be viewed as "SPOSH levels" and they should not be used as a legal trigger for the determination of land under Part 2A.

The generic screening values referred to before usually take the form of risk-based Soil Guideline Values (SGVs) or other Generic Assessment Criteria (GACs) that are most typically derived using the Environment Agency's Contaminated Land Exposure Assessment (CLEA) model, as described in the Environment Agency's SR2, SR3 and SR7 reports (EA, 2009b & c; EA, 2008). It is anticipated that C4SLs will be used in a similar manner; as generic screening criteria that can be used within a GQRA, albeit describing a higher level of risk than the SGVs.

The suggested approach to the development of C4SLs consists of the retention and use of the CLEA framework, modified according to considerations of the underlying science within the context of Defra's policy objectives relating to the revised SG. Within this context, it is suggested that the development of C4SLs may be achieved in one of three ways, namely:

- By modifying the toxicological parameters used within CLEA (while maintaining current exposure parameters);
- By modifying the exposure parameters embedded within CLEA (while maintaining current toxicological "minimal risk" interpretations); and
- By modifying both toxicological and exposure parameters.

There is also a suggested check on "other considerations" (e.g., background levels, epidemiological data, sources of uncertainty) within the approach, applicable to all three options.

It is suggested that a new term is defined for the toxicological guidance values associated with the derivation of C4SLs – a Low Level of Toxicological Concern (LLTC). A LLTC should represent an intake of low concern that remains suitably protective of health, and definitely does not approach an intake level that could be defined as SPOSH.

4. CL:AIRE Generic Assessment Criteria (GAC)

For derivation of the CL:AIRE Generic Assessment Criteria (GAC) reference should be made to the following report:

CL:AIRE, *The Soil Generic Assessment Criteria for Human Health Risk Assessment*. **Contaminated Land: Applications in the Real Environment**. 2009.

Within this report, Contaminated Land: Applications in Real Environments (CL:AIRE) provided Generic Assessment Criteria (GAC) in accordance with the CLEA software and the principles outlined previously for a further 35 contaminants sometimes encountered on land affected by contamination.

5. SoBRA Acute GAC

The Society of Brownfield Risk Assessment (SoBRA) identified that most human health risk assessments focus on the chronic risks arising from long-term exposure to specific substances. As chronic risks often occur at lower doses than acute risks, they are often the key drivers, however, in some instances the acute dose may also be an important consideration within risk assessments.

The methodology for deriving the acute GAC were related to two distinct receptor groups:

- Members of the public, where the 'critical' receptor for this group will typically be a female child, which is consistent with CLEA residential and Public Open Space/allotments land-uses;
- Workers involved with excavations. The critical receptor for this group is assumed to be a female working adult, without the use of PPE.

The acute GACs relate to short term exposure of high concentrations of a substance that lead to acute effects. They are not considered to be average exposures across a specific / defined area. As a result, the GACs should be normally be compared with the maximum likely concentration that the individual may be exposed to, and not the average concentration within a specific area.

The SoBRA acute GAC will primarily be used for contaminants that do not currently have any GAC, most notably Cyanide.

6. Detailed Quantitative Risk Assessments (DQRA)

Where the adoption of a GAC is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses, then a DQRA may be undertaken to develop site specific values for relevant soil contaminants.

- Establishing the plausibility that generic exposure pathways exist in practice by measurement and observation.
- Developing more accurate parameters using site data.

7. Phytotoxicity

CLEA guidance only addresses human health toxicity; assessment of plant toxicity (phytotoxicity) is based on threshold trigger values obtained from the following source:

BS3882:2015 – Specification for Topsoil

The trigger values are relevant only to those contaminants, where present in excess, have the potential to inhibit plant growth, or kill plants (Cu, Ni and Zn). The criteria have been based on a wide range of planting that are common within a multi-purpose topsoil.

8. Statistical Tests

DEFRA R&D Publication CLR 7 (DOE 1994) addressed the statistical treatment of test results and their comparison to Soil Guideline Values.

Consideration must be given to the appropriate area of land to be considered termed the critical averaging area.

For a communal open space or commercial land-use, the critical averaging area will depend on the proposed layout. For a residential use with private gardens the averaging area is the individual plot.

It may be appropriate to compare the upper 95th percentile concentration with the Soil Guideline Value, subject to applying a statistical test to establish that the range of concentrations are reasonably consistent and belonging to the same underlying distribution of data.

CL:AIRE published guidance in 2020, *Guidance in comparing soil contamination data with a critical concentration,* superseding the CL:AIRE/CIEH 2008 report of the same name. The guidance provides ways to assist land contamination stakeholders to apply statistical methods to their data to enable decisions under the legislative framework; either planning system or Part 2A of the Environmental Protection Act 1990.

The use of the statistical tests should only be applied if the following statements are valid for the datasets:

- Averaging areas, as well as the smallest area of concern have been identified on the basis of the CSM, including the desk study and/or the site walkover;
- The sample locations were chosen using a simple random, stratified random or stratified systematic (square, herringbone or triangular grid) sampling pattern, rather than being targeted to locations suspected of being contaminated;
- The sample locations are relatively evenly spread across the area and are not clustered, to avoid giving undue weight to some parts of the site over others in the calculated statistics;
- The analyses do not suggest a hotspot or outlier of contamination that should be treated as a separate zone. This has been established by a histogram and/or a names statistical test;
- The sample locations are all taken from one population (i.e. the same material);
- Where an averaging zone encompasses several averaging areas, analyses do not show a spatial trend or other spatial pattern across that zone; and
- The number of samples has been shown to be sufficient for a statistical analysis.

Any included statistical spreadsheet is based on an in-house method of statistical analysis, in line with those outlined within the CL:AIRE guidance (2020).

Treatment of Hot-Spots

- A statistical test is applied to establish whether the data is a part of a single set, or whether data outliers are present.
- Provided that the data is based on random sampling and no distinct contamination source was present at the sampling location, the hot-spot(s) may be excluded and the mean of the remaining data assessed.

9. Ground and Water Limited Soil Assessment Criteria

The Soil Assessment Criteria used in the preparation of the Generic Quantitative Risk Assessment are tabulated in the following pages, where the source of each has been outlined in the previous sections.

9.1. Inorganics

SoBRA – Acute Generic Assessment Criteria									
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)				
Cyanide	24	24	24	1400	24	24			

9.2. Metals

C4SL Low Level of Toxicological Concern									
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)			
Lead	< 200	< 310	< 80	< 2300	< 630	< 1300			

	LQM/CIEH Suitable 4 Use Levels – Metals and Semi-metals										
Determinand	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)					
Arsenic	37	40	43	640	79	170					
Beryllium	1.7	1.7	35	12	2.2	63					
Boron	290	11000	45	240000	21000	46000					
Cadmium	11	85	1.9	190	120	532					
Chromium (III)	910	910	18000	8600	1500	33000					
Chromium (VI)	6	6	1.8	33	7.7	220					
Copper	2400	7100	520	68000	12000	44000					
Elemental Mercury	1.2	1.2	21	58	16	30					
Inorganic Mercury	40	56	19	1100	120	240					
Methylmercury	11	15	6	320	40	68					
Nickel	130	180	53	980	230	800					
Selenium	250	430	88	12000	1100	1800					
Vanadium	410	1200	91	9000	2000	5000					
Zinc	3700	40000	620	730000	81000	170000					

Phytotoxicity (Harmful to Plants) Threshold Trigger Values									
Determinand	Soil pH < 6.0 (mg/kg)	Soil pH 6.0 – 7.0 (mg/kg)	Soil pH > 7.0 (mg/kg)						
Copper	100	135	200						
Nickel	60	75	110						
Zinc	200	200	300						

Notes

BS3882:2015 – *Specification for Topsoil*. Based on a wide range of common plants that will be exposed to multi-purpose topsoil. Toxicity of contaminant may also be impacted by pH of soils.

Site observation of plant vitality may give additional guidance.

CL:AIRE Soil Generic Assessment Criteria									
Determinand	Residential (mg/kg)	Residential without plant uptake (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)					
Antimony	ND	550	ND	7500					
Barium	ND	1300	ND	22000					
Molybdenum	ND	670	ND	17000					
ND – Not derived									

9.3. Total Petroleum Hydrocarbons (TPHs)

9.3.1. BTEX Compounds

LQM/CIEH Suitable 4 Use Levels – BTEX Compounds									
Determinand	Soil Organic Matter	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
Benzene	1.0% SOM	0.087	0.38	0.017	27	72	90		
	2.5% SOM	0.170	0.70	0.034	47	72	100		
	6.0% SOM	0.370	1.40	0.075	90	73	110		
Toluene	1.0% SOM	130	880	22	56000	56000	87000		
	2.5% SOM	290	1900	51	110000	56000	95000		
	6.0% SOM	660	3900	120	180000	56000	100000		
Ethylbenzene	1.0% SOM	47	83	16	5700	24000	17000		
	2.5% SOM	110	190	39	13000	24000	22000		
	6.0% SOM	260	440	91	27000	25000	27000		
o-Xylene	1.0% SOM	60	88	28	6600	41000	17000		
	2.5% SOM	140	210	67	15000	42000	24000		
	6.0% SOM	330	480	160	33000	43000	33000		
m-Xylene	1.0% SOM	59	82	31	6200	41000	17000		
	2.5% SOM	140	190	74	14000	42000	24000		
	6.0% SOM	320	450	170	31000	43000	33000		
p-Xylene	1.0% SOM	56	79	29	5900	41000	17000		
	2.5% SOM	130	180	69	14000	42000	23000		
	6.0% SOM	310	430	160	30000	43000	31000		
SOM = Soil Organic	Matter Content (%)							

9.3.2. Total Petroleum Hydrocarbons – Aliphatic

	LQM/CIEH Suitable 4 Use Levels For TPH									
Alipl	natic	RwHP	RwoHP	Allotment	Commercial	POSresi	POSpark			
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
EC 5-6	1.0% SOM	42	42	730	3,200 (304) sol	570,000 (304) sol	95,000 (304) sol			
-555	2.5% SOM	78	78	1,700	5,900 (558) sol	590,000	130,000 (558) sol			
	6.0% SOM	160	160	3,900		600,000 (1150)sol	180,000 (1150)			
EC >6-8	1.0% SOM	100	100	2,300	7,800 (144) sol	600,000	150,000 (144) sol			
	2.5% SOM	230	230	5,600	17,000 (322) sol	610,000	220,000 (322) sol			
	6.0% SOM	530	530	13,000	40,000 (736) sol	620,000	320,000 (736) sol			
EC >8-10	1.0% SOM	27	27	320	2,000 (78) sol	13,000	14,000 (78) sol			
	EC >8-10		65	770	4,800 (118) vap	13,000	18,000 (118) vap			
	6.0% SOM	150	150	1,700	11,000 (451) vap	13,000	21,000 (451) vap			
EC >10-12	1.0% SOM	130 (48) vap	130 (48) vap	2,200	9,700 (48) sol	13,000	21,000 (48) sol			
	2.5% SOM	330 (118) vap	330 (118) vap	4,400	23,000 (118) vap	13,000	23,000 (118) vap			
	6.0% SOM	760 (283) vap	760 (283) vap	7,300	47,000 (283) vap	13,000	24,000 (283) vap			
EC >12-16	1.0% SOM	1,100 (24) sol	1,100 (24) sol	11,000	59,000 (24) sol	13,000	25,000 (24) sol			
	2.5% SOM	2,400 (59) sol	2,400 (59) sol	13,000	82,000 (59) sol	13,000	25,000 (59) sol			
	6.0% SOM	4,300 (142) sol	4,400 (142) sol	13,000	90,000 (142) sol	13,000	26,000 (142) sol			
EC >16-35	1.0% SOM	65,000 (8.48) sol	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000			
	2.5% SOM	92,000 (21) sol	92,000 (21) sol	270,000	1,700,000	250,000	480,000			
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000			
EC >35-44	1.0% SOM	65,000 (8.48) sol	65,000 (8.48) sol	260,000	1,600,000	250,000	450,000			
	2.5% SOM	92,000 (21) sol	92,000 (21) sol	270,000	1,700,000	250,000	480,000			
	6.0% SOM	110,000	110,000	270,000	1,800,000	250,000	490,000			

SOM = Soil Organic Matter Content (%)

vap – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

 $^{^{\}rm sol}$ – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.3.3. Total Petroleum Hydrocarbons – Aromatic

LQM/CIEH Suitable 4 Use Levels For TPH									
Aroma	tic	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)		
EC 5-7	1.0% SOM	70	370	13	26,000 (1220) sol	56,000	76,000 (1220 sol		
(Benzene)	2.5% SOM	140	690	27	46,000 (2260) sol	56,000	84,000 (2260) sol		
	6.0% SOM	300	1,400	57	86,000 (4710) sol	56,000	92,000 (4710) sol		
EC >7-8	1.0% SOM	130	860	22	56,000 (869) vap	56,000	87,000 (869) sol		
(Toluene)	2.5% SOM	290	1,800	51	110,000 (1920) sol	56,000	95,000 (1920) sol		
	6.0% SOM	660	3,900	120	180,000 (4360) vap	56,000	100,000 (4360) vap		
EC >8-10	1.0% SOM	34	47	8.6	3,500 (613) vap	5,000	7,200 (613) vap		
	2.5% SOM	83	110	21	8,100 (1500) vap	5,000	8,500 (1500) vap		
	6.0% SOM	190	270	51	17,000 (3850) vap	5,000	9,300 (3580) vap		
EC >10-12	1.0% SOM	74	250	13	16,000 (364) sol	5,000	9,200 (364) sol		
	2.5% SOM	180	590	31	28,000 (899) sol	5,000	9,700 (889) sol		
	6.0% SOM	380	1,200	74	34,000 (2150) sol	5,000	10,000		
EC >12-16	1.0% SOM	140	1,800	23	36,000 (169) sol	5,100	10,000		
	2.5% SOM	330	2,300 (419) sol	57	37,000	5,100	10,000		
	6.0% SOM	660	2,500	130	38,000	5,000	10,000		
EC >16-21	1.0% SOM	260	1,900	46	28,000	3,800	7,600		
	2.5% SOM	540	1,900	110	28,000	3,800	7,700		
	6.0% SOM	930	1,900	260	28,000	3,800	7,800		
EC >21-35	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800		
	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800		
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900		
EC >35-44	1.0% SOM	1,100	1,900	370	28,000	3,800	7,800		
	2.5% SOM	1,500	1,900	820	28,000	3,800	7,800		
	6.0% SOM	1,700	1,900	1,600	28,000	3,800	7,900		
EC >44-70	1.0% SOM	1,600	1,900	1,200	28,000	3,800	7,800		
	2.5% SOM	1,800	1,900	2,100	28,000	3,800	7,800		
	6.0% SOM	1,900	1,900	3,000	28,000	3,800	7,900		

SOM = Soil Organic Matter Content (%)

vap – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

 $^{^{\}rm sol}$ – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.4. Polycyclic Aromatic Hydrocarbons (PAHs)

Determinands			RwoHP	Allotment	Commercial	POSresi	POSpark
	RwHP (mg/kg			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Acenapthene	1.0% SOM	210	3,000 (57.0) sol	34	84,000(57.0) sol	15,000	29,000
-	2.5% SOM	510	4,700(141) sol	85	97,000(141) sol	15,000	30,000
	6.0% SOM	1100	6,000(336) sol	200	100,000	15,000	30,000
Acenapthylene	1.0% SOM	170	2,900(86.1) sol	28	83,000(86.1) sol	15,000	29,000
	2.5% SOM	420	4,600(212) sol	69	97,000(212) sol	15,000	30,000
	6.0% SOM	920	6,000(506) sol	160	100,000	15,000	30,000
Anthracene	1.0% SOM	2,400	31,000(1.17) vap	380	520,000	74,000	150,000
	2.5% SOM	5,400	35,000	950	540,000	74,000	150,000
	6.0% SOM	11,000	37,000	2,200	540,000	74,000	150,000
Benzo(a)anthracene	1.0% SOM	7.20	11	2.90	170	29	49
	2.5% SOM	11	14	6.50	170	29	56
	6.0% SOM	13	15	13	180	29	62
Benzo(a)pyrene	1.0% SOM	2.20	3.20	0.97	35	5.70	11
· · · · · ·	2.5% SOM	2.70	3.20	2.00	35	5.70	12
	6.0% SOM	3.00	3.20	3.50	36	5.70	13
Benzo(b)flouranthene	1.0% SOM	2.60	3.90	0.99	44	7.10	13
` '	2.5% SOM	3.30	4.00	2.10	44	7.20	15
2 (12)	6.0% SOM	3.70	4.00	3.90	45	7.20	16
Benzo(ghi)perylene	1.0% SOM	320	360	290	3,900	640	1,400
10 //- /	2.5% SOM	340	360	470	4,000	640	1,500
	6.0% SOM	350	360	640	4,000	640	1,600
Benzo(k)flouranthene	1.0% SOM	77	110	37	1,200	190	370
,	2.5% SOM	93	110	75	1,200	190	410
	6.0% SOM	100	110	130	1,200	190	440
Chrysene	1.0% SOM	15	30	4.10	350	57	93
,	2.5% SOM	22	31	9.40	350	57	110
	6.0% SOM	27	32	19	350	57	120
Dibenzo(ah)anthracene	1.0% SOM	0.24	0.31	0.14	3.50	0.57	1.10
	2.5% SOM	0.28	0.32	0.27	3.50	0.57	1.30
	6.0% SOM	0.30	0.32	0.43	3.60	0.58	1.40
Flouranthene	1.0% SOM	280	1,500	52	23,000	3,100	6,300
	2.5% SOM	560	1,600	130	23,000	3,100	6,300
	6.0% SOM	890	1,600	290	23,000	3,100	6,300
Flourene	1.0% SOM	170	2,800 (30.9) sol	27	63,000(30.9) sol	9,900	20,000
riourene	2.5% SOM	400	3,800(76.5) sol	67	68,000	9,900	20,000
	6.0% SOM	860	4,500(183) sol	160	71,000	9,900	20,000
Indeno(123-cd)pyrene	1.0% SOM	27	45	9.50	500	82	150
macho(115 ca/pyrene	2.5% SOM	36	46	21	510	82	170
	6.0% SOM	41	46	39	510	82	180
Napthalene	1.0% SOM	15	36	65	1,600	11,000	800
Napthalene	2.5% SOM	36	36	130	3,700	15,000	1,200
	6.0% SOM	85	85	200	8,400	17,000	1,900
Phenanthrene	1.0% SOM	95	1,300(183) sol	15			
rnenanunene	2.5% SOM	220	1,500(183) 557	38	22,000 22,000	3,100 3,100	6,200 6,200
	6.0% SOM	440	1,500	90	23,000	3,100	6,300
Pyrene	1.0% SOM	620	3,700	110	54,000	7,400	15,000
Pyrene							-
	2.5% SOM	1200	3,800	270	54,000	7,400	15,000
	6.0% SOM	2000	3,800	620	54,000	7,400	15,000
Seel Ten (Devent)	1 00/ 00*						
Coal Tar (Benzo(a)pyrene used as marker	1.0% SOM 2.5% SOM	0.79 0.98	1.2	0.32 0.67	15 15	2.20	4.40 4.70

SOM = Soil Organic Matter Content (%)

 $^{^{\}mathrm{vap}}$ – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

 $^{^{\}rm sol}$ – GAC presented exceeds the soil saturation limit, which is presented in brackets.

9.5. Volatile and Semi-volatile Organic Compounds

Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)					
Chloroalkanes & alkenes												
1,2 Dichloroethane	1.0% SOM	0.0071	0.0092	0.0046	0.67	29	21					
	2.5% SOM	0.011	0.013	0.0083	0.97	29	24					
	6.0% SOM	0.019	0.023	0.016	1.70	29	28					
1,1,2,2 Tetrachloroethane	1.0% SOM	1.60	3.90	0.41	270	1,400	1,800					
	2.5% SOM	3.40	8.00	0.89	550	1,400	2,100					
	6.0% SOM	7.50	17	2.00	1,100	1,400	2,300					
1,1,1,2 Tetrachloroethane	1.0% SOM	1.20	1.50	0.79	110	1,400	1,500					
	2.5% SOM	2.80	3.50	1.90	250	1,400	1,800					
	6.0% SOM	6.40	8.20	4.40	560	1,400	2,100					
Tetrachloroethene	1.0% SOM	0.18	0.18	0.65	19	1,400	810 sol(424)					
	2.5% SOM	0.39	0.40	1.50	42	1,400	1,100 sol(951)					
	6.0% SOM	0.90	0.92	3.60	95	1,400	1,500					
1,1,1 Trichloroethane	1.0% SOM	8.80	9.00	48	660	140,000	57,000 ^{vap} (1425)					
	2.5% SOM	18	18	110	1,300	140,000	76,000 ^{vap} (2915)					
	6.0% SOM	39	40	240	3,000	140,000	100,000 ^{vap} (6392)					
Tetrachloromethene	1.0% SOM	0.026	0.026	0.45	2.90	890	190					
	2.5% SOM	0.056	0.056	1.00	6.30	920	270					
	6.0% SOM	0.130	0.130	2.40	14	950	400					
Trichloroethene	1.0% SOM	0.016	0.017	0.041	1.20	120	70					
	2.5% SOM	0.034	0.036	0.091	2.60	120	91					
	6.0% SOM	0.075	0.080	0.210	5.70	120	120					
Trichloromethane	1.0% SOM	0.91	1.20	0.42	99	2,500	2,600					
	2.5% SOM	1.70	2.10	0.83	170	2,500	2,800					
	6.0% SOM	3.40	4.20	1.70	350	2,500	3,100					
Vinyl Chloride	1.0% SOM	0.00064	0.00077	0.00055	0.059	3.50	4.80					
	2.5% SOM	0.00087	0.00100	0.00100	0.077	3.50	5.00					
	6.0% SOM	0.00014	0.00150	0.00180	0.120	3.50	5.40					
			Explosives									
2,4,6 Trinitrotoluene	1.0% SOM	1.60	65	0.24	1,000	130	260					
	2.5% SOM	3.70	66	0.58	1,000	130	270					
	6.0% SOM	8.10	66	1.40	1,000	130	270					
RDX	1.0% SOM	120	13,000	17	210,000	26,000	49,000(18.7)so					
(Hexogen/Cyclonite/1,3,5-	2.5% SOM	250	13,000	38	210,000	26,000	51,000					
trinitro-1,3,5- triazacyclohexane)	6.0% SOM	540	13,000	85	210,000	27,000	53,000					
HMX (Octogen/1,3,5,7-	1.0% SOM	5.70	67,00	0.86	110,000	13,000	23,000(0.35)vap					
tetrenitro-1,3,5,7-	2.5% SOM	13	67,00	1.90	110,000	13,000	23,000(0.39)vap					
tetrazacyclo-octane)	6.0% SOM	26	67,00	3.90	110,000	13,000	24,000(0.48)vap					
Atrazine	1.0% SOM	3.30	610	0.50	9,300	1,200	2,300					
	2.5% SOM	7.60	620	1.20	9,400	1,200	2,400					
	6.0% SOM	17.40	620	2.70	9,400	1,200	2,400					

^{vap} – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

 $^{\rm sol}$ – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

Determinands	;	RwHP	RwoHP	Allotment	Commercial	POSresi	POSpark
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aldata	4.00/.5014	F 70	Pesticides	2.20	470	40	20
Aldrin	1.0% SOM	5.70	7.30	3.20	170	18	30
	2.5% SOM	6.60	7.40	6.10	170	18	31
	6.0% SOM	7.10	7.50	9.60	170	18	31
Dieldrin	1.0% SOM	0.97	7.00	0.17	170	18	30
	2.5% SOM	2.00	7.30	0.41	170	18	30
	6.0% SOM	3.50	7.40	0.96	170	18	31
Dichlorvos	1.0% SOM	0.032	6.40	0.0049	140	16	26
	2.5% SOM	0.066	6.50	0.0100	140	16	26
	6.0% SOM	0.140	6.60	0.0220	140	16	27
Alpha - Endosulfan	1.0% SOM	7.40	160(0.003) ^{vap}	1.20	5,600(0.003) ^{vap}	1,200	2,400
	2.5% SOM	18	280(0.007)vap	2.90	7,400(0.007) ^{vap}	1,200	2,400
	6.0% SOM	41	410(0.016) ^{vap}	6.80	8,400(0.016) ^{vap}	1,200	2,400
Beta - Endosulfan	1.0% SOM	7.00	190(0.00007)vap	1.10	6,300(0.00007)vap	1,200	2,400
	2.5% SOM	17	320(0.0002) ^{vap}	2.70	7,800(0.0002)vap	1,200	2,400
	6.0% SOM	39	440(0.0004)vap	6.40	8700	1,200	2,500
Alpha -	1.0% SOM	0.23	6.90	0.035	170	24	47
Hexachlorocyclohexanes	2.5% SOM	0.55	9.20	0.087	180	24	48
	6.0% SOM	1.20	11	0.210	180	24	48
Beta -	1.0% SOM	0.085	3.70	0.013	65	8.10	15
Hexachlorocyclohexanes	2.5% SOM	0.200	3.80	0.013	65	8.10	15
nexacinor ocyclonexanes	6.0% SOM	0.460	3.80	0.032	65	8.10	16
Gamma -	1.0% SOM	0.06	2.90	0.0092	67	8.2	14
Hexachlorocyclohexanes		0.00	3.30	0.0032	69	8.2	15
nexaciliorocyclonexalles	2.5% SOM	0.14	3.50	0.0230	70	8.2	15
	6.0% SOM	0.33	Chlorobenzen		70	0.2	13
Oblanah anasana	4.00/.5084	0.46			F.C.	44.000	4 200/675\6
Chlorobenzene	1.0% SOM	0.46	0.46	5.90	56	11,000	1,300(675)s
	2.5% SOM	1.00	1.00	14	130	13,000	2,000(1520)
	6.0% SOM	2.40	2.40	32	290	14,000	2,900
1,2-Dichlorobenzene	1.0% SOM	23	24	94	2,000 (571) sol	90,000	24,000(571)
	2.5% SOM	55	57	230	4,800 (1370) sol	95,000	36,000(1370
	6.0% SOM	130	130	540	11,000 (3240) sol	98,000	51,000(3240)
1,3-Dichlorobenzene	1.0% SOM	0.40	0.44	0.25	30	300	390
	2.5% SOM	1.00	1.10	0.60	73	300	440
	6.0% SOM	2.30	2.50	1.50	170	300	470
1,4-Dichlorobenzene	1.0% SOM	61	61	15	4,400 (224) ^{vap}	17,000g	36,000 (224)
	2.5% SOM	150	150	37	10,000 (540) ^{vap}	17,000g	36,000 (540)
	6.0% SOM	350	350	88 ^g	25,000 (1280) ^{vap}	17,000g	36,000 (1280) ^{vap}
1,2,3,-Trichlorobenzene	1.0% SOM	1.50	1.50	4.70	102	1,800	770(134 ^{)var}
	2.5% SOM	3.60	3.70	12	250	1,800	1,100(330)v
	6.0% SOM	8.60	8.80	28	590	1,800	1,600(789)va
1,2,4,-Trichlorobenzene	1.0% SOM	2.60	2.60	55	220	15,000	1,700(318)v
, , , , , , , , , , , , , , , , , , , ,	2.5% SOM	6.40	6.40	140	530	17,000	2,600(786) ^v
	6.0% SOM	15	15	320	1,300	19,000	4,000(1880)
1,3,5,-Trichlorobenzene	1.0% SOM	0.33	0.33	4.70	23	1,700	380(36.7) ^{va}
1,5,5,-111cilio10belizefle		0.33	0.81	12	55	1,700	590(90.8) ^{val}
	2.5% SOM 6.0% SOM	1.90	1.90	140	130	1,800	860(217) ^{var}

^{vap} – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

sol – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued from previous page

Determinan	ds	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
			Chlorobenzen	es (cont.)			
1,2,3,4,-	,3,4,- 1.0% SOM 15		24	4.40	1,700(122)vap	830	1,500(122)vap
Tetrachlorobenzene	2.5% SOM			11	3,080(304) ^{vap}	830	1,600
	6.0% SOM	78	56 120	26	4,400(728) ^{vap}	830	1,600
1,2,3,5,-	1.0% SOM	0.66	0.75	0.38	49(39.4) ^{vap}	78	110(39)vap
Tetrachlobenzene	2.5% SOM	1.60	1.90	0.90	120(98.1)vap	79	120
	6.0% SOM	3.70	4.30	2.20	240(235) ^{vap}	79	130
1,2,4, 5,-	1.0% SOM	0.33	0.73	0.06	42(19.7) ^{sol}	13	25
Tetrachlobenzene	2.5% SOM	0.77	1.70	0.16	72(49.1) ^{sol}	13	26
	6.0% SOM	1.60	3.50	0.37	96	13	26
Pentachlrobenzene	1.0% SOM	5.80	19	1.20	640(43.0)sol	100	190
	2.5% SOM	12	30	3.10	770(107) ^{sol}	100	190
	6.0% SOM	22	38	7.00	830	100	190
Hexachlorobenzene	1.0% SOM	1.80(0.20) ^{vap}	4.10 (0.20) ^{vap}	0.47	110(0.20) ^{vap}	16	30
	2.5% SOM	3.30(0.50) ^{vap}	5.70 (0.50) ^{vap}	1.10	120	16	30
	6.0% SOM	4.90	6.70 (1.2) ^{vap}	2.50	120	16	30
			Phenols & Chlo				
BTEX	1.0% SOM	280	750	66	760 ^{dir} (31,000)	760 ^{dir} (11,0 00)	760 ^{dir} (8,600)
	2.5% SOM	550	1,300	140	1,500 ^{dir} (35,000)	1,500 ^{dir} (11 ,000)	1,500 ^{dir} (9,700
	6.0% SOM	1100	2,300	280	3,200 ^{dir} (37,000)	3,200 ^{dir} (11 ,000)	3,200 ^{dir} (11,00
Chlorophenols (4	1.0% SOM	0.87	94	0.13	3,500	620	1,100
Congeners)	2.5% SOM	2.00	150	0.30	4,000	620	1,100
	6.0% SOM	4.50	210	0.70	4,300	620	1,100
Pentachlorophenols	1.0% SOM	0.22	27(16.4)vap	0.03	400	60	110
	2.5% SOM	0.52	29	0.08	400	60	120
	6.0% SOM	1.20	31	0.19	400	60	120
	,		Other	s			
Carbon Disulphide	1.0% SOM	0.14	0.14	4.80	11	11,000	1,300
	2.5% SOM	0.29	0.29	10	22	11,000	1,900
	6.0% SOM	0.62	0.62	23	47	12,000	2,700
Hexachloro-1,3-	1.0% SOM	0.29	0.32	0.25	31	25	48
Butadiene	2.5% SOM	0.70	0.78	0.61	68	25	50
	6.0% SOM	1.60	1.80	1.40	120	25	51

^{vap} – GAC presented exceeds the vapour saturation limit, which is presented in brackets.

VOC and SVOC table continued overleaf

sol – GAC presented exceeds the soil saturation limit, which is presented in brackets.

VOC and SVOC table continued from previous page

CL:AIRE General As		RwHP	RwoHP	Allotment	Commercial	
Determinands		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
1,1,2 Trichloroethane	1.0% SOM	0.60	0.88	0.28	94	
	2.5% SOM	1.20	1.8	0.61	190	
	6.0% SOM	2.70	3.9	1.40	400	
1,1-Dichloroethane	1.0% SOM	2.40	2.50	9.20	280	
	2.5% SOM	3.90	4.10	17	450	
	6.0% SOM	7.40	7.70	35	850	
1,1-Dichloroethene	1.0% SOM	0.23	0.23	2.80	26	
	2.5% SOM	0.40	0.41	5.60	46	
	6.0% SOM	0.82	0.82	12	92	
1,2,4-Trimethylbenzene	1.0% SOM	0.35	0.41	0.38	42	
-	2.5% SOM	0.85	0.99	0.93	99	
	6.0% SOM	2.00	2.30	2.20	220	
1,2-Dichloropropane	1.0% SOM	0.024	0.024	0.62	3.3	
	2.5% SOM	0.042	0.042	1.20	5.9	
	6.0% SOM	0.084	0.085	2.60	12	
2,4-Dimethylphenol	1.0% SOM	19	210	3.10	16000*	
	2.5% SOM	43	410	7.20	24000*	
	6.0% SOM	97	730	17	30000*	
2,4-Dinitrotoluene	1.0% SOM	1.50	170*	0.22	3700*	
	2.5% SOM	3.20	170	0.49	3700*	
	6.0% SOM	7.20	170	1.10	3800*	
2,6-Dinitrotoluene	1.0% SOM	0.78	78	0.12	1900*	
ŕ	2.5% SOM	1.70	84	0.27	1900*	
	6.0% SOM	3.90	87	0.61	1900*	
2-Chloronapthalene	1.0% SOM	3.70	3.80	40	390*	
•	2.5% SOM	9.20	9.30	98	960*	
	6.0% SOM	22	22	230	2200*	
Biphenyl	1.0% SOM	66*	220*	14	18000*	
,	2.5% SOM	160	500*	35	33000*	
	6.0% SOM	360	980*	83	48000*	
Bis (2-ethylhexyl) phthalate	1.0% SOM	280*	2700*	47*	85000*	
	2.5% SOM	610*	2800*	120*	86000*	
	6.0% SOM	1100*	2800*	280*	86000*	
Bromobenzene	1.0% SOM	0.87	0.91	3.2	97	
2.0000200	2.5% SOM	2.0	2.1	7.6	220	
	6.0% SOM	4.7	4.9	18	520	
Bromodichloromethane	1.0% SOM	0.016	0.019	0.016	2.1	
	2.5% SOM	0.016	0.019	0.016	3.7	
	6.0% SOM	0.030	0.070	0.068	7.6	
Bromoform	1.0% SOM	2.8	5.2	0.08	7.6	
2. \$1110101111	2.5% SOM	5.9	11	2.1	1500	
		13	23	4.6		
Butyl benzyl phthalate	6.0% SOM	1400*	42000*	220*	3100 940000*	
batyi belizyi piitiialate	1.0% SOM 2.5% SOM	3300*	44000*	550*	940000*	
	6.0% SOM	7200*	44000*	1300*	950000*	

^{*}soil concentration above saturation limit

VOC and SVOC table continued overleaf

VOC and SVOC table continued from previous page

Determinands	i	RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)
Chloroethane	1.0% SOM	8.3	8.4	110	960
	2.5% SOM	11	11	200	1300
	6.0% SOM	18	18	380	2100
Chloromethane	1.0% SOM	0.0083	0.0085	0.066	1.0
	2.5% SOM	0.0098	0.0099	0.13	1.2
	6.0% SOM	0.013	0.013	0.23	1.6
Cis 1,2 Dichloroethene	1.0% SOM	0.11	0.12	0.26	14
	2.5% SOM	0.19	0.20	0.50	24
	6.0% SOM	0.37	0.39	1.0	47
Dichloromethane	1.0% SOM	0.58	2.10	0.10	270
	2.5% SOM	0.98	2.80	0.19	360
	6.0% SOM	1.70	4.50	0.34	560
Diethyl Phthalate	1.0% SOM	120*	1800*	19*	150000*
	2.5% SOM	260*	3500*	41*	220000*
	6.0% SOM	570*	6300*	94*	290000*
Di-n-butyl phthalate	1.0% SOM	13*	450*	2.00	15000*
	2.5% SOM	31*	450*	5.00	15000*
	6.0% SOM	67*	450*	12	15000*
Di-n-octyl phthalate	1.0% SOM	2300*	3400*	940*	89000*
	2.5% SOM	2800*	3400*	2100*	89000*
	6.0% SOM	3100*	3400*	3900*	89000*
Hexachloroethane	1.0% SOM	0.20	0.22	0.27	22*
	2.5% SOM	0.48	0.54	0.67	53*
	6.0% SOM	1.10	1.30	1.60	120*
Isopropylbenzene	1.0% SOM	11	12	32	1400*
	2.5% SOM	27	28	79	3300*
	6.0% SOM	64	67	190	7700*
Methyl tert-butyl ether	1.0% SOM	49	73	23	7900
(MTBE)	2.5% SOM	84	120	44	13000
	6.0% SOM	160	220	90	24000
Propylbenzene	1.0% SOM	34	40	34	4100*
	2.5% SOM	82	97	83	9700*
	6.0% SOM	190	230	200	21000*
Styrene	1.0% SOM	8.10	35	1.60	3300*
	2.5% SOM	19	78	3.70	6500*
	6.0% SOM	43	170	8.70	11000*
otal Cresols (2-, 3-, and 4-	1.0% SOM	80	3700	12	160000
methylphenol)	2.5% SOM	180	5400	27	180000*
	6.0% SOM	400	6900	63	180000*
Trans 1,2 Dichloroethene	1.0% SOM	0.19	0.19	0.93	22
,	2.5% SOM	0.34	0.35	1.90	40
	6.0% SOM	0.70	0.71	0.24	81
Tributyl tin oxide	1.0% SOM	0.70	1.40	0.042	130*
	2.5% SOM	0.59	3.10	0.100	180*
	6.0% SOM	1.30	5.70	0.240	200*

^{*}soil concentration above saturation limit

	C45	SL Low Level	of Toxicolo	ogical Conce	ern		
Determinands		RwHP (mg/kg)	RwoHP (mg/kg)	Allotment (mg/kg)	Commercial (mg/kg)	POSresi (mg/kg)	POSpark (mg/kg)
1.2 Dishlovosthone	1.0% SOM	0.11	0.16	0.054	12	300	300
1,2-Dichloroethane (Ethylene Dichloride)	2.5% SOM	0.18	0.24	0.10	17	310	330
(Ethylene Dichloride)	6.0% SOM	0.31	0.41	0.19	29	310	380
	1.0% SOM	0.46	0.50	0.89	38	3,800	2,000
Cis-1,2-Dichloroethene	2.5% SOM	0.78	0.84	1.7	64	3,800	2,400
	6.0% SOM	1.5	1.6	3.6	120	3,900	3,100
Tetrachloroethene	1.0% SOM	0.31	0.32	2	24	3,200	1,400
(PCE)	2.5% SOM	0.70	0.71	4.8	55	3,300	1,900
(PCE)	6.0% SOM	1.60	1.60	11	130	3,400	2,500
	1.0% SOM	0.90	0.93	3.70	69	13,000	5,600
Trans-1,2-Dichloroethene	2.5% SOM	1.60	1.70	7.50	120	13,000	7,000
	6.0% SOM	3.30	3.40	16	260	13,000	9,100
Tuichlousethouse	1.0% SOM	0.0093	0.0097	0.032	0.73	76	41
Trichloroethene	2.5% SOM	0.020	0.020	0.072	1.5	78	54
(TCE)	6.0% SOM	0.043	0.045	0.16	3.4	79	69
Viscal Chlorida	1.0% SOM	0.0064	0.015	0.0017	1.1	7.8	18
Vinyl Chloride	2.5% SOM	0.010	0.019	0.0031	1.4	7.8	19
(Chloroethene)	6.0% SOM	0.017	0.029	0.0058	2.2	7.8	19

9.6. Asbestos

No asbestos or asbestos containing materials (ACM's) are considered acceptable on-site from a human health perspective. Therefore the GAC for asbestos & ACM's within any imported material should be none detected (ND).

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX G: Asbestos Risk Assessment

Asbestos Risk Assessment (CIRIA733)

	Trial Hole		TP1 and TP3							
Site information	Depth (m bgl)	0.2 and 0.80								
	Abestos type		Chrysotile		Amosite		Crocidolite			
Asbestos Type	Kasbestos		1.3			1.7		2.0		
Considerations	Soil Concentration		0.001							
	(Quantification Result in %)	0.001								
Soil Type	Soil Type	Sand	Sandy Clay	Clay	Sand	Sandy Clay	Clay	Sand	Sandy Clay	Clay
Considerations	Ksoil	2.9	1.7	0.93	2.9	1.7	0.93	2.9	1.7	0.93
Considerations	Enter the relevant from the above		1.7							
	Koverall		1.6		1.6			1.6		
Constants	Dust Concentration (mg/m3)		0.1		0.1			0.1		
Constants	Dry Conditions Exposure (hrs)		750		750			750		
	Occupation hours in a year		1920		1920			1920		
	fibre/ml per mg/m3	0.00138								
Calculation Results	fibre/ml		0.000138							
Calculation Results	fibre/ml.hr	0.104								
	fibre/ml.year		0.000054							
	Age (exposure commences)		0			0			0	
Mesothelioma	Risk persists for (Years)		60			60			60	
Accumulated Risk	Cummulative Age Adjustment Factor		16.8			16.8		16.8		
	fibre/ml.year (cumulative)		0.00091							
Lung Cancer	Risk persists for (Years)	60		60		60				
Accumulated Risk	fibre/ml.year (cumulative)		0.00065							

BACKGROUND

This asbestos risk assessment has been undertaken in accordance with the guidance within CIRIA733.

The fibre concentration within the airborne soil dust (in fibres/ml per mg/m3) was calculated based on the results of Addison et al 1988.

The airborne concentration of soil dust (0.1mg/m3) was based on ambient urban dust levels and ART modelling.

The dry conditions exposure (750hrs) was based upon regional meteorological data suggesting 150hrs of dry conditions per year, when applied over a 5-year segment this equates to 750hours.

The occupational hours per year (1920hrs) is based on a 40-hour working week and 48 working weeks in a year.

A worst-case exposure scenario has been considered for residents, groundworkers or generally end-users. This was based on the risk persisting for a period of 60 years, accumulated in 5-year increments. As the risk of mesothelioma is age dependent, this considered the exposure commencing at age 0 with the relevant age adjustment factor applied for each 5-year increment.

Based on the above considerations, the following equations have been used:

((Kasbestostype x Ksoil) ÷ Koverall) x Soil Concentration = fibre/ml per mg/m3

Fibre/ml per mg/m3 x Dust Concentration = fibre/ml

(f/ml x Dry Conditions Exposure (hrs)) = fibre/ml.hr

Fibre/ml.hr ÷ occupational hours per year = fibre/ml.year

Mesothelioma: fibre/ml.year x 16.8 (cumulative age adjustment factor for 60 years)

Lung Cancer: fibre/ml.year x 12 (60 years in 5-year increments)

2 The Long Barn, Norton Farm, Selborne Road, Alton, Hampshire GU34 3NB

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX H: Hazard Waste Assessment

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

50972-04UVQ-2V5

Job name

GWPR5909

Description/Comments

Project Site

GWPR5909 34 Nassau Road SW13 9QE

Classified by

Name: Company: Adam Young Ground and Water

Date: 2 The long Barn, Norton Farm, Selbourne

Road,

05 Apr 2024 08:04 GMT

Telephone:

Alton GU34 3NB HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

Course

Hazardous Waste Classification

-Date

Purpose of classification

2 - Material Characterisation

Address of the waste

34 Nassau Road Post Code SW13 9QE

SIC for the process giving rise to the waste

Description of industry/producer giving rise to the waste

Redevelopment of site

Description of the specific process, sub-process and/or activity that created the waste

Waste created during the excavation of soils

Description of the waste

Made Ground

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS0112032024-1.20		Non Hazardous		3
2	WS0212032024-0.20		Non Hazardous		5
3	WS0112032024-2.00		Non Hazardous		8
4	WS0212032024-1.50		Non Hazardous		9
5	WS0212032024-3.00		Non Hazardous		10

Related documents

#	Name	Description
1	24-009116_HWOL.hwol	i2 Analytical .hwol file used to populate the Job

Report

Created by: Adam Young	Created date: 05 Apr 2024 08:04 GM
------------------------	------------------------------------

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	11
Appendix B: Rationale for selection of metal species	12
Appendix C: Version	13

Page 2 of 13 50972-04UVQ-2V5JZ www.hazwasteonline.com

Classification of sample: WS01--12032024-1.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: WS01--12032024-1.20 Chapter: Moisture content: Entry:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

17: Construction and Demolition Wastes (including excavated soil

03)

Hazard properties

(wet weight correction)

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromoxide } 024-001-00-0	215-607-8	ds { chromium(VI)		<1.8	mg/kg	1.923	<3.462	mg/kg	<0.000346 %		<lod< td=""></lod<>
2	0	monohydric phenol	ls	P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				2	mg/kg	1.884	3.768	mg/kg	0.000377 %		
4	<u> </u>	006-007-00-5 boron { boron tribromide }		+	1.7	ma/ka	23.173	32.697	mg/kg	0.00327 %	,		
4	_	005-003-00-0	233-657-9	10294-33-4		1.7	ilig/kg	23.173	32.097	ilig/kg	0.00327 %	√	
5	0	рН		PH	-	8	рН		8	pН	8pH		
6	4	arsenic { arsenic	2 2 231-148-6	7440-38-2		18	mg/kg		14.94	mg/kg	0.00149 %	✓	
7	æ\$	cadmium { cadmiur		1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
8	æ å	copper { dicopper o				67	mg/kg	1.126	62.611	mg/kg	0.00626 %	✓	
9	4	mercury { mercury		7439-97-6		0.9	mg/kg		0.747	mg/kg	0.0000747 %	✓	
10	-		droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		24	mg/kg	1.579	31.464	mg/kg	0.00315 %	√	
11	4	lead { • lead comp specified elsewhere			1	220	mg/kg		182.6	mg/kg	0.0183 %	✓	
12	4	selenium { seleniur	l <mark>n</mark> } 231-957-4	7782-49-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
13		vanadium { divanadi pentoxide }				55	mg/kg	1.785	81.494	mg/kg	0.00815 %	√	
14	-	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		110	mg/kg	2.469	225.447	mg/kg	0.0225 %	<	

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	0	acenaphthylene				0.38	mg/kg		0.315	mg/kg	0.0000315 %	✓	
			205-917-1	208-96-8	1						,		
16	0	acenaphthene	bo4 400 0	00.00	_	0.1	mg/kg		0.083	mg/kg	0.0000083 %	✓	
			201-469-6	83-32-9	+							-	
17	0	anthracene	204-371-1	120-12-7	_	3	mg/kg		2.49	mg/kg	0.000249 %	✓	
		benzo[a]anthracen		120-12-7	+							+	
18			200-280-6	56-55-3	-	5.7	mg/kg		4.731	mg/kg	0.000473 %	✓	
		benzo[a]pyrene; be		00 00 0	+					_			
19			200-028-5	50-32-8	-	4.7	mg/kg		3.901	mg/kg	0.00039 %	✓	
00		benzo[b]fluoranthe	ne		1	0.4			F 000		0.000500.0/	,	
20		601-034-00-4	205-911-9	205-99-2	1	6.1	mg/kg		5.063	mg/kg	0.000506 %	✓	
21		benzo[k]fluoranthe	ne			2.3	mg/kg		1.909	mg/kg	0.000191 %	√	
21		601-036-00-5	205-916-6	207-08-9		0	mg/kg		1.303	mg/kg	0.000191 /6	~	
22	0	benzo[ghi]perylene)			2.6	mg/kg		2.158	mg/kg	0.000216 %	√	
			205-883-8	191-24-2		2.0				9/9		ľ	
23		chrysene				5.7	mg/kg		4.731	mg/kg	0.000473 %	✓	
		601-048-00-0	205-923-4	218-01-9	\perp							Ļ	
24		dibenz[a,h]anthrac				0.63	mg/kg		0.523	mg/kg	0.0000523 %	1	
		1	200-181-8	53-70-3	-								
25	0	fluoranthene	laa= a.c			14	mg/kg		11.62	mg/kg	0.00116 %	✓	
		-	205-912-4	206-44-0	╆							+	
26	0	fluorene	201-695-5	06.72.7	_	0.43	mg/kg		0.357	mg/kg	0.0000357 %	✓	
		indeno[123-cd]pyre		86-73-7	+							-	
27	0		205-893-2	193-39-5	-	2.2	mg/kg		1.826	mg/kg	0.000183 %	\checkmark	
		naphthalene	200.030-2	100-03-0	+								
28		601-052-00-2	202-049-5	91-20-3	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
00	0	phenanthrene	1	<u> </u>	\dagger	7.0			F.070		0.000500.01		
29		-	201-581-5	85-01-8	-	7.2	mg/kg		5.976	mg/kg	0.000598 %	✓	
30	0	pyrene	204-927-3	129-00-0		11	mg/kg		9.13	mg/kg	0.000913 %	√	
31	4	chromium in chrom	nium(III) compound			25	mg/kg	1.462	36.539	mg/kg	0.00365 %		
										Total:	0.0733 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Page 4 of 13 50972-04UVQ-2V5JZ www.hazwasteonline.com

Classification of sample: WS02--12032024-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name: WS02--12032024-0.20 Chapter: Moisture content:

Entry: 17 05 04 (Soil and stones other than those mentioned in 17 05 (wet weight correction)

from contaminated sites)

03)

17: Construction and Demolition Wastes (including excavated soil

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

					Τ							ō	
#			Determinand		CLP Note	User enter	ed data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Used
	4	chromium in chrom	nium(VI) compound	ds { chromium(VI)		4.0		4 000	0.400		0.000040.0/		
1		oxide } 024-001-00-0	215-607-8	1333-82-0	_	<1.8	mg/kg	1.923	<3.462	mg/kg	<0.000346 %		<lod< td=""></lod<>
		monohydric pheno		1333-62-0	+								
2	0	mononyunc prieno	15	P1186	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	cyanides { salts exception of complete ferricyanides and no specified elsewhere	ex cyanides such a nercuric oxycyanid	de with the as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5											
4	æ\$	boron { boron tribro	omide } 233-657-9	10294-33-4		1.2	mg/kg	23.173	23.636	mg/kg	0.00236 %	✓	
	0	pH	200 001 0	10234 33 4	+								
5	ľ	F		PH	-	7.7	рН		7.7	рН	7.7 pH		
6	ď,	arsenic { arsenic	}			19	mg/kg		16.15	mg/kg	0.00161 %	√	
		033-001-00-X	231-148-6	7440-38-2									
7	4	cadmium { cadmiu	<mark>m sulfide</mark> }		1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
		048-010-00-4	215-147-8	1306-23-6									
8	4	copper { dicopper o		•		33	mg/kg	1.126	31.581	mg/kg	0.00316 %	1	
	_		215-270-7	1317-39-1	+								
9	4	mercury { mercury		7400 07 0	-	0.6	mg/kg		0.51	mg/kg	0.000051 %	✓	
	_	080-001-00-0 nickel { nickel dihyd	231-106-7	7439-97-6	+							1	
10	4	028-008-00-X	235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		21	mg/kg	1.579	28.194	mg/kg	0.00282 %	✓	
11	4	lead {	oounds with the ex	ception of those	1	160	mg/kg		136	mg/kg	0.0136 %	√	
		082-001-00-6											
12	ď,	selenium { <mark>seleniur</mark> 034-001-00-2	•	7702 40 2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
13	æ\$	034-001-00-2 231-957-4 7782-49-2 vanadium { divanadium pentaoxide; vanadium pentoxide }			49	mg/kg	1.785	74.353	mg/kg	0.00744 %	✓		
-			215-239-8	1314-62-1	+	49 m	59			و			
	æ	zinc { zinc sulphate		1	T					,			
14	_	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		74	mg/kg	2.469	155.319	mg/kg	0.0155 %	✓	

_	_			Т							_		
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	0	number acenaphthylene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %	2	<lod< td=""></lod<>
13			205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 /8		\LOD
16	0	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
L			201-469-6	83-32-9		10.00			10.00	9/119	40.000000 70		1202
17	0	anthracene				0.16	mg/kg		0.136	mg/kg	0.0000136 %	1	
			204-371-1	120-12-7		0.10			0.100	mg/kg	0.0000100 70	~	
18		benzo[a]anthracen	е			1	mg/kg		0.85	mg/kg	0.000085 %	1	
		601-033-00-9	200-280-6	56-55-3								Ť	
19		benzo[a]pyrene; be				0.84	mg/kg		0.714	mg/kg	0.0000714 %	1	
		601-032-00-3	200-028-5	50-32-8						J J		Ľ	
20		benzo[b]fluoranthe				1.6	mg/kg		1.36	mg/kg	0.000136 %	1	
		601-034-00-4	205-911-9	205-99-2						J J		Ľ	
21		benzo[k]fluoranthe				0.68	mg/kg		0.578	mg/kg	0.0000578 %	√	
		601-036-00-5	205-916-6	207-08-9								Ť	
22	0	benzo[ghi]perylene	•			0.6	mg/kg		0.51	mg/kg	0.000051 %	√	
<u> </u>			205-883-8	191-24-2	1		.59			.59		ľ	
23		chrysene				1.3	mg/kg		1.105	mg/kg	0.000111 %	1	
Ľ		601-048-00-0	205-923-4	218-01-9		0				9'''9		'	
24		dibenz[a,h]anthrac	ene			0.17	mg/kg		0.145	mg/kg	0.0000145 %	1	
		601-041-00-2	200-181-8	53-70-3		0.17			0.110	9/119	0.0000110 70	*	
25	0	fluoranthene				1.7	mg/kg		1.445	mg/kg	0.000145 %	1	
			205-912-4	206-44-0		1	mg/kg		1.110	mg/ng	0.000110 70	*	
26	0	fluorene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-695-5	86-73-7		40.00	mg/kg		VO.00	mg/kg	40.000000 70		LOD
27	0				0.52	mg/kg		0.442	mg/kg	0.0000442 %	,		
21			205-893-2	193-39-5	1	0.52	mg/kg		0.442	ilig/kg	0.0000442 /6	✓	
28		naphthalene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
20		601-052-00-2	202-049-5	91-20-3	1	<0.03	mg/kg		<0.03	mg/kg	20.000003 /6		LOD
29	0	phenanthrene	,			0.59	ma/ka		0.501	ma/ka	0.0000501 %	,	
29			201-581-5	85-01-8	1	0.59	mg/kg		0.501	mg/kg	0.0000501 %	✓	
30	0	pyrene	,			1.7	ma/ka		1 115	ma/ka	0.000145 %	,	
30			204-927-3	129-00-0		1.7	mg/kg		1.445	mg/kg	0.000145 %	✓	
24		benzene				-			0.005		0.0000005.0/		100
31		601-020-00-8	200-753-7	71-43-2		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
	0	ethylbenzene		,		_			0.005	//	0.0000005.0/		
32		•	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		tert-butyl methyl et			T								
33		2-methoxy-2-methy				<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
L	L	603-181-00-X	216-653-1	1634-04-4	L								
		xylene	·										
34			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		o-xylene; [1] p-xyle	ne; [2] m-xylene; [
		601-022-00-9	202-422-2 [1]	95-47-6 [1]	1	_					0.0000000		
35			203-396-5 [2]	106-42-3 [2]		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
			203-576-3 [3] 215-535-7 [4]	108-38-3 [3] 1330-20-7 [4]									
\vdash		toluene		\vdash									
36			203-625-9	108-88-3	-	<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
	_	TPH (C6 to C40) p		. 50 00 0	\vdash								
37	9	(CO to C+0) p	Caroleum group	TPH	-	<40	mg/kg		<40	mg/kg	<0.004 %		<lod< td=""></lod<>
38	ď,	chromium in chrom				24	mg/kg	1.462	35.077	mg/kg	0.00351 %		
	chromium(III) oxide } 215-160-9 1308-38-9		-		5 5			3 3					
	213-100-9 1300-30-9									Total:	0.0558 %	\vdash	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
₫	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS01--12032024-2.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS01--12032024-2.00 Chapter:

Moisture content: 3.4%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 3.4% Wet Weight Moisture Correction applied (MC)

#					Note		Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		i actor		value		Oseu
1	0	pH		PH		8.4 pH		8.4 pH	8.4 pH		
								Total:	0%	П	

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 8 of 13 50972-04UVQ-2V5JZ www.hazwasteonline.com

Classification of sample: WS02--12032024-1.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS02--12032024-1.50 Chapter: Moisture content:

17% (wet weight correction) Entry: 17 (03)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

from contaminated sites)

17: Construction and Demolition Wastes (including excavated soil

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor		Classification value	MC Applied	Conc. Not Used
	_	number			0					2	
1	0	pН				8 pH		8 pH	8pH		
				PH							
								Total	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS02--12032024-3.00

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS02--12032024-3.00 Chapter:

Moisture content:

2.4%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 2.4% Wet Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entered dat	ser entered data Conv. Factor		User entered data Conv. Factor Co		Compound conc.		Classification value	u MC Applied	Conc. Not Used
		number			O							≥			
1	0	pН				8.3	рН		8.3	рН	8.3 pH				
				PH						·					
									Total:	0%					

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 10 of 13 50972-04UVQ-2V5JZ www.hazwasteonline.com

Appendix A: Classifier defined and non GB MCL determinands

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301, STOT RE 2; H373, Skin Corr. 1B; H314, Skin Corr.

1B; H314 >= 3 %, Skin Irrit. 2; H315 1 <= conc. < 3 %, Eye Irrit. 2; H319 1 <= conc. < 3 %, Aquatic Chronic 2; H411

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

GB MCL index number: 033-001-00-X

Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Aquatic Acute 1; H400, Aquatic Chronic 1; H410, Aquatic Chronic 2;

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Carc. 2; H351, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from ECHA's C&L inventory database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 30 Apr 2020

Hazard Statements: Acute Tox. 4; H302, Skin Sens. 1; H317, Eye Irrit. 2; H319

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015
Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

Appendix B: Rationale for selection of metal species

chromium in chromium(VI) compounds {chromium(VI) oxide}

Most likely worst case.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Most likely worst case.

boron {boron tribromide}

Most likely worst case.

arsenic {arsenic}

Most likely worst case.

cadmium {cadmium sulfide}

Most likely worst case.

Page 12 of 13 50972-04UVQ-2V5JZ www.hazwasteonline.com

copper {dicopper oxide; copper (I) oxide}

Most likely worst case.

mercury {mercury}

Most likely worst case.

nickel {nickel dihydroxide}

Most likely worst case.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Worse case

selenium {selenium}

Most likely worst case.

vanadium {divanadium pentaoxide; vanadium pentoxide}

Most likely worst case.

zinc {zinc sulphate}

Most likely worst case.

chromium in chromium(III) compounds {chromium(III) oxide}

Most likely worst case.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021

HazWasteOnline Classification Engine Version: 2024.96.6000.11109 (05 Apr 2024)

HazWasteOnline Database: 2024.95.5999.11108 (04 Apr 2024)

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

GB MCL List v2.0 - version 2.0 of 20th October 2023

GB MCL List v3.0 - version 3.0 of 11th January 2024

GB MCL List v4.0 - version 4.0 of 2nd March 2024

Waste Classification Report

HazWasteOnline™ classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

GWPR5986

Description/Comments

Project Site

GWPR5986 34 Nassau Road SW13 9QE

Classified by

Name: Company: Adam Young **Ground and Water**

Date: 2 The long Barn, Norton Farm, Selbourne

22 May 2024 09:17 GMT Road,

Telephone:

Alton **GU34 3NB** Hazardous Waste Classification

HazWasteOnline[™] provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

Date

Purpose of classification

2 - Material Characterisation

Address of the waste

34 Nassau Road Post Code SW13 9QE

SIC for the process giving rise to the waste

Description of industry/producer giving rise to the waste

Redevelopment of site

Description of the specific process, sub-process and/or activity that created the waste

Waste created during excavation of soils

Description of the waste

Made Ground

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	TP106052024-0.20		Non Hazardous		3
2	TP206052024-0.50		Non Hazardous		6
3	TP306052024-0.80		Non Hazardous		8
4	TP506052024-1.20		Non Hazardous		10

Related documents

# Name	Description
1 24-018427_HWOL.hwol	i2 Analytical .hwol file used to populate the Job

Report

Created by: Adam Young	Created date: 22 May 2024 09:17 GMT
------------------------	-------------------------------------

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	13
Appendix B: Rationale for selection of metal species	15
Appendix C: Version	15

Page 2 of 16 XWGXO-17D24-G9T81 www.hazwasteonline.com

Classification of sample: TP1--06052024-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP1--06052024-0.20 Chapter: Moisture content:

14%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chromoxide } 024-001-00-0	nium(VI) compound	ds { chromium(VI)		<1.8	mg/kg	1.923	<3.462	mg/kg	<0.000346 %		<lod< td=""></lod<>
2	0	monohydric phenol	ls	P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	cyanides { salts exception of completerricyanides and magnetified elsewhere 006-007-00-5	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
4	0	pH				8	pH		8	рН	8pH		
-				PH	1		pri		J	Pii	Оргі		
5	4	boron { boron tribro	omide } 233-657-9	10294-33-4		1.1	mg/kg	23.173	21.922	mg/kg	0.00219 %	1	
_	-			10294-33-4	+							-	
6	≪4	arsenic { arsenic 033-001-00-X	2) 231-148-6	7440-38-2	-	22	mg/kg		18.92	mg/kg	0.00189 %	✓	
7	4	cadmium { cadmiu	<mark>m sulfide</mark> }		1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
			215-147-8	1306-23-6	_								
8	4	copper { dicopper of 029-002-00-X	oxide; copper (I) ox 215-270-7	<mark>(ide</mark> } 1317-39-1	-	68	mg/kg	1.126	65.842	mg/kg	0.00658 %	✓	
9	4	mercury { mercury		7439-97-6		1.6	mg/kg		1.376	mg/kg	0.000138 %	√	
	æ	nickel { nickel dihyo	droxide }										
10	ľ		235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		21	mg/kg	1.579	28.526	mg/kg	0.00285 %	✓	
11	4	lead {			1	330	mg/kg		283.8	mg/kg	0.0284 %	√	
	-	082-001-00-6			-							-	
12	≪\$	selenium { seleniur 034-001-00-2	<mark>n</mark> } 231-957-4	7782-49-2	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
13		vanadium { divanadipentoxide }	dium pentaoxide; v	vanadium 1314-62-1		50	mg/kg	1.785	76.763	mg/kg	0.00768 %	~	
-	1			1014-02-1	+							1	
14	-		231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]	-	110	mg/kg	2.469	233.595	mg/kg	0.0234 %	✓	

			Determinand		te			Conv			Classification	Applied	Conc. No
#		EU CLP index	EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	value	MC App	Used
15	0	acenaphthylene	205-917-1	208-96-8		0.09	mg/kg		0.0774	mg/kg	0.00000774 %	√	
16	0	acenaphthene	203-917-1	200-30-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
17	0	anthracene	204-371-1	120-12-7	-	0.24	mg/kg		0.206	mg/kg	0.0000206 %	✓	
18		benzo[a]anthracer	ne			1.4	mg/kg		1.204	mg/kg	0.00012 %	√	
		601-033-00-9 benzo[a]pyrene; b	200-280-6	56-55-3									
19		601-032-00-3	200-028-5	50-32-8	-	1.6	mg/kg		1.376	mg/kg	0.000138 %	✓	
20		benzo[b]fluoranthe		005.00.0		2	mg/kg		1.72	mg/kg	0.000172 %	✓	
		601-034-00-4 benzo[k]fluoranthe	205-911-9	205-99-2									
21		601-036-00-5	205-916-6	207-08-9	-	0.86	mg/kg		0.74	mg/kg	0.000074 %	✓	
22	0	benzo[ghi]perylen	e			1	mg/kg		0.86	mg/kg	0.000086 %	√	
00		chrysene	205-883-8	191-24-2		4.7			4 400		0.000446.0/		
23		601-048-00-0	205-923-4	218-01-9		1.7	mg/kg		1.462	mg/kg	0.000146 %	✓	
24		dibenz[a,h]anthrac 601-041-00-2	200-181-8	53-70-3	_	0.21	mg/kg		0.181	mg/kg	0.0000181 %	✓	
25	0	fluoranthene	205 042 4	006 44 0		2.7	mg/kg		2.322	mg/kg	0.000232 %	✓	
26	0	fluorene	205-912-4	206-44-0		0.06	mg/kg		0.0516	mg/kg	0.00000516 %	√	
			201-695-5	86-73-7						99		*	
27	0	indeno[123-cd]pyr	ene 205-893-2	193-39-5	-	0.91	mg/kg		0.783	mg/kg	0.0000783 %	✓	
28		naphthalene	1000 040 5	64.00.0		0.16	mg/kg		0.138	mg/kg	0.0000138 %	√	
29	0	601-052-00-2 phenanthrene	202-049-5	91-20-3		1.1	mg/kg		0.946	mg/kg	0.0000946 %	√	
			201-581-5	85-01-8		1.1			0.540	mg/kg	0.0000340 70	~	
30	Θ	pyrene	204-927-3	129-00-0	-	2.4	mg/kg		2.064	mg/kg	0.000206 %	✓	
31		benzene 601-020-00-8	000 750 7	74 40 0		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
	0	ethylbenzene	200-753-7	71-43-2		_							
32		601-023-00-4	202-849-4	100-41-4		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
33		tert-butyl methyl e 2-methoxy-2-meth				<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
34		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		o-xylene; [1] p-xyle											
35		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
36		toluene		·		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	-		פייש			9'19	70		
37	0	TPH (C6 to C40) p	petroleum group	TPH		<40	mg/kg		<40	mg/kg	<0.004 %		<lod< td=""></lod<>
38	4	chromium in chror chromium(III) oxid	e }			22	mg/kg	1.462	32.154	mg/kg	0.00322 %		
		215-160-9 1308-38-9			1			ı 1				l l	I

Page 4 of 16 XWGXO-17D24-G9T81 www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
9	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: TP2--06052024-0.50

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Entry:

Sample details

LoW Code: Sample name: TP2--06052024-0.50 Chapter:

Moisture content:

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP	1 acto		racioi			value	MC.	Used
1	0	pН				7.3	рН		7.3	рН	7.3 pH		
				PH	1		· 			•	•		
2	0	acenaphthylene				0.15	mg/kg		0.129	mg/kg	0.0000129 %	√	
			205-917-1	208-96-8	-	}						Ľ	
3	0	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9	<u> </u>	}							
4	0	anthracene				0.3	mg/kg		0.258	mg/kg	0.0000258 %	1	
			204-371-1	120-12-7	1							_	
5		benzo[a]anthracen				1.8	mg/kg		1.548	mg/kg	0.000155 %	1	
		601-033-00-9	200-280-6	56-55-3						3 3		Ť	
6		benzo[a]pyrene; be				2.5	mg/kg		2.15	mg/kg	0.000215 %	1	
			200-028-5	50-32-8						99	***************************************	Ť	
7		benzo[b]fluoranthe				2.4	mg/kg		2.064	mg/kg	0.000206 %	√	
			205-911-9	205-99-2						3 3		ľ	
8		benzo[k]fluoranthene			1.3	mg/kg		1.118	mg/kg	0.000112 %	√		
	3 I I	601-036-00-5	205-916-6	207-08-9			99			9/9	0.0001.12 /0	•	
9	0	benzo[ghi]perylene				1.3	mg/kg		1.118	mg/kg	0.000112 %	√	
			205-883-8	191-24-2		1.3	mg/ng		1.110	mg/ng	0.000112 70	•	
10		chrysene				2.4	mg/kg		2.064	mg/kg	0.000206 %	√	
10		601-048-00-0	205-923-4	218-01-9		2.7	mg/kg		2.004	mg/kg	0.000200 70	~	
11		dibenz[a,h]anthrace	ene	,		0.26	mg/kg		0.224	mg/kg	0.0000224 %	/	
' '		601-041-00-2	200-181-8	53-70-3		0.20	mg/kg		0.224	mg/kg	0.0000224 /0	~	
12	0	fluoranthene				3.9	mg/kg		3.354	mg/kg	0.000335 %	/	
12			205-912-4	206-44-0	1	3.9	ilig/kg		3.334	mg/kg	0.000333 /6	~	
13	0	fluorene				0.07	mg/kg		0.0602	mg/kg	0.00000602 %	/	
13			201-695-5	86-73-7	1	0.07	ilig/kg		0.0002	mg/kg	0.00000002 /6	~	
14	0	indeno[123-cd]pyre	ene	,		1.1	mg/kg		0.946	mg/kg	0.0000946 %	,	
14			205-893-2	193-39-5	1	1.1	mg/kg		0.946	mg/kg	0.0000946 %	✓	
15		naphthalene		,		0.08	m = // . =		0.0688		0.00000688 %	,	
15		601-052-00-2	202-049-5	91-20-3	1	0.08	mg/kg		0.0686	mg/kg	0.0000066 %	√	
16	0	phenanthrene		*		1.5	ma/k=		1 20	ma/ka	0.000129 %	,	
וסו			201-581-5	85-01-8	1	1.5	mg/kg		1.29	mg/kg	0.000129%	✓	ĺ
17	8	pyrene				2.2	ma/k=		2.838	ma/ka	0.000284 %	,	
'			204-927-3	129-00-0	1	3.3	mg/kg		2.038	mg/kg	0.000284 %	✓	

Page 6 of 16 XWGXO-17D24-G9T81 www.hazwasteonline.com

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18		benzene 601-020-00-8	200-753-7	71-43-2		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
19	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
20			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
21			ene; [2] m-xylene; 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	[3] xylene [4] 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
22		toluene 601-021-00-3	203-625-9	108-88-3		<5	μg/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
23	0	polychlorobiphenyl	ls; PCB 215-648-1	1336-36-3		<0.007	mg/kg		<0.007	mg/kg	<0.0000007 %		<lod< th=""></lod<>
24	0	coronene	205-881-7	191-07-1		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
			1	1						Total:	0.00194 %	П	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

Classification of sample: TP3--06052024-0.80

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP3--06052024-0.80 Chapter:

Moisture content:

(wet weight correction)

Entry:

from contaminated sites)
17.05.04 (Soil and stones

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		Determinand	Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not
		EU CLP index	CLP		lactor		Value	MC	Used
1	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<1.8 mg/kg	1.923	<3.462 mg/kg	<0.000346 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0 monohydric phenols	-						
2	0	P1186	-	<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
		006-007-00-5	1						
4	0	pH PH	-	8.1 pH		8.1 pH	8.1 pH		
5	4	boron { boron tribromide } 005-003-00-0 233-657-9 10294-33-4		<0.2 mg/kg	23.173	<4.635 mg/kg	<0.000463 %		<lod< td=""></lod<>
6	4	arsenic { arsenic }		19 mg/kg		16.72 mg/kg	0.00167 %	✓	
7	æ G	cadmium { cadmium sulfide }	_ 1	<0.2 mg/kg	1.285	<0.257 mg/kg	<0.00002 %		<lod< td=""></lod<>
	æ	048-010-00-4	+						
8	_	029-002-00-X 215-270-7 1317-39-1	-	47 mg/kg	1.126	46.567 mg/kg	0.00466 %	✓	
9	_	mercury { mercury } 080-001-00-0 231-106-7 7439-97-6	_	0.6 mg/kg		0.528 mg/kg	0.0000528 %	✓	
	æ.	nickel { nickel dihydroxide }							
10		028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		20 mg/kg	1.579	27.799 mg/kg	0.00278 %	✓	
11	***	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	240 mg/kg		211.2 mg/kg	0.0211 %	✓	
		082-001-00-6 selenium { selenium }	-					H	
12		034-001-00-2 231-957-4 7782-49-2	1	<1 mg/kg		<1 mg/kg	<0.0001 %		<lod< td=""></lod<>
13		vanadium { divanadium pentaoxide; vanadium pentoxide }		46 mg/kg	1.785	72.264 mg/kg	0.00723 %	✓	
-	-	023-001-00-8	+						
14	_	030-006-00-9 231-793-3 [1] 7446-19-7 [1] 231-793-3 [2] 7733-02-0 [2]		120 mg/kg	2.469	260.758 mg/kg	0.0261 %	✓	

Page 8 of 16 XWGXO-17D24-G9T81 www.hazwasteonline.com

#	,	EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
15	9	acenaphthylene	205-917-1	208-96-8		2.3	mg/kg		2.024	mg/kg	0.000202 %	✓	
16	9	acenaphthene	201-469-6	83-32-9	_	0.49	mg/kg		0.431	mg/kg	0.0000431 %	√	
17	0	anthracene	204-371-1	120-12-7		10	mg/kg		8.8	mg/kg	0.00088 %	√	
18		benzo[a]anthracen		56-55-3	+	18	mg/kg		15.84	mg/kg	0.00158 %	√	
19		benzo[a]pyrene; be		50-32-8	+	18	mg/kg		15.84	mg/kg	0.00158 %	√	
20		benzo[b]fluoranthe		205-99-2	+	23	mg/kg		20.24	mg/kg	0.00202 %	√	
21		benzo[k]fluoranthe		207-08-9	+	8	mg/kg		7.04	mg/kg	0.000704 %	√	
22	0	benzo[ghi]perylene		191-24-2		9.1	mg/kg		8.008	mg/kg	0.000801 %	√	
23		chrysene	1			18	mg/kg		15.84	mg/kg	0.00158 %	√	
24		dibenz[a,h]anthrac		218-01-9	_	2.1	mg/kg		1.848	mg/kg	0.000185 %	√	
25	0	fluoranthene	200-181-8	53-70-3	\perp	42	mg/kg		36.96	mg/kg	0.0037 %	√	
26	0	fluorene	205-912-4	206-44-0		2.6	mg/kg		2.288	mg/kg	0.000229 %	✓	
27	0	indeno[123-cd]pyre		86-73-7	+	8.6	mg/kg		7.568	mg/kg	0.000757 %	✓	
28		naphthalene	205-893-2	193-39-5	1	1.2	mg/kg		1.056	mg/kg	0.000106 %	v √	
29	0	601-052-00-2 phenanthrene	202-049-5	91-20-3	+								
	0	pyrene	201-581-5	85-01-8	+	27	mg/kg		23.76	mg/kg	0.00238 %	✓	
30	_		204-927-3	129-00-0	+	34	mg/kg		29.92	mg/kg	0.00299 %	✓	
31	₫,	chromium in chrom chromium(III) oxide	} ` ` ` '	•		22	mg/kg	1.462	32.154	mg/kg	0.00322 %		
			215-160-9	1308-38-9						Total:	0.0878 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration **<LOD**Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: TP5--06052024-1.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Entry:

Sample details

LoW Code: Sample name: TP5--06052024-1.20 Chapter:

Moisture content:

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chrom oxide }	ium(VI) compound	ds { chromium(VI)		<1.8	mg/kg	1.923	<3.462	mg/kg	<0.000346 %		<lod< th=""></lod<>
2	0	monohydric phenol	s	P1186		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
3	4	cyanides { salts of exception of complete ferricyanides and management of specified elsewhere	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
4	0	006-007-00-5 pH		PH		8.4	рН		8.4	рН	8.4 pH		
5	æ	boron { boron tribro	o <mark>mide</mark> } 233-657-9	10294-33-4		0.6	mg/kg	23.173	12.096	mg/kg	0.00121 %	✓	
6	4	arsenic { arsenic	;} 231-148-6	7440-38-2		17	mg/kg		14.79	mg/kg	0.00148 %	✓	
7	4	cadmium { cadmiur		1306-23-6	1	<0.2	mg/kg	1.285	<0.257	mg/kg	<0.00002 %		<lod< td=""></lod<>
8	*	copper { dicopper o	oxide; copper (I) ox 215-270-7	<mark>(ide</mark> } 1317-39-1		49	mg/kg	1.126	47.997	mg/kg	0.0048 %	✓	
9	4	mercury { mercury 080-001-00-0	} 231-106-7	7439-97-6		0.7	mg/kg		0.609	mg/kg	0.0000609 %	✓	
10	4		Iroxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]	_	20	mg/kg	1.579	27.483	mg/kg	0.00275 %	✓	
11	4	lead {			1	180	mg/kg		156.6	mg/kg	0.0157 %	√	
12	4	082-001-00-6 selenium { seleniun 034-001-00-2	<mark>n</mark> } 231-957-4	7782-49-2		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
13	4	vanadium { divanad pentoxide }				49	mg/kg	1.785	76.102	mg/kg	0.00761 %	√	
14		zinc { zinc sulphate		7446-19-7 [1] 7733-02-0 [2]		86	mg/kg	2.469	184.753	mg/kg	0.0185 %	√	

					Τ							_	
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered d	ata	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number	LC Number	CAS Number	占							M	
15	0	acenaphthylene	205-917-1	208-96-8	-	0.05 m	ıg/kg		0.0435	mg/kg	0.00000435 %	✓	
16	0	acenaphthene	200 017 1	200 00 0		0.09 m	ıg/kg		0.0783	mg/kg	0.00000783 %	1	
-10			201-469-6	83-32-9	1	0.00	19/119			mg/kg	0.00000700 70	~	
17	0	anthracene	204-371-1	120-12-7	-	0.2 m	ıg/kg		0.174	mg/kg	0.0000174 %	✓	
18		benzo[a]anthracen	1	1		0.98 m	ıg/kg		0.853	mg/kg	0.0000853 %	✓	
_			200-280-6	56-55-3	1	0.00	.9/9			9,9		•	
19		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8	+	1.3 m	ıg/kg		1.131	mg/kg	0.000113 %	✓	
20		benzo[b]fluoranthe				1.5 m	ıg/kg		1.305	mg/kg	0.000131 %	/	
			205-911-9	205-99-2	1		.9/9			9,9		•	
21		benzo[k]fluoranthe	ne 205-916-6	207-08-9	-	0.57 m	ıg/kg		0.496	mg/kg	0.0000496 %	✓	
22	9	benzo[ghi]perylene				0.82 m	ıg/kg		0.713	mg/kg	0.0000713 %	✓	
Ë			205-883-8	191-24-2	1	0.02	39			9'9		•	
23		chrysene 601-048-00-0	205-923-4	218-01-9	-	1.2 m	ıg/kg		1.044	mg/kg	0.000104 %	✓	
24		dibenz[a,h]anthrac	ene			0.16 m	ıg/kg		0.139	mg/kg	0.0000139 %	√	
-	0	601-041-00-2 fluoranthene	200-181-8	53-70-3	+								
25			205-912-4	206-44-0		2.1 m	ıg/kg		1.827	mg/kg	0.000183 %	✓	
26	Θ	fluorene	ho4 co5 5	00.70.7		0.07 m	ıg/kg		0.0609	mg/kg	0.00000609 %	✓	
_		indeno[123-cd]pyre	201-695-5 ene	86-73-7	+								
27			205-893-2	193-39-5		0.72 m	ıg/kg		0.626	mg/kg	0.0000626 %	√	
28		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.05 m	ıg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
29	0	phenanthrene	202 0 10 0	01200		1 m	ıg/kg		0.87	mg/kg	0.000087 %	✓	
H		pyrene	201-581-5	85-01-8	+								
30	Θ	* *	204-927-3	129-00-0	-	1.8 m	ıg/kg		1.566	mg/kg	0.000157 %	✓	
31		benzene	I			<5 μ	g/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
-	0	601-020-00-8 ethylbenzene	200-753-7	71-43-2	+							H	
32		,	202-849-4	100-41-4		<5 μί	g/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
33		tert-butyl methyl et 2-methoxy-2-methy	/lpropane			<5 μι	g/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	1								
34			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5 μί	g/kg		<0.005	mg/kg	<0.0000005 %		<lod< th=""></lod<>
		o-xylene; [1] p-xyle											
35			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5 μς	g/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
36		toluene				<5 μ	g/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
	_	601-021-00-3 TPH (C6 to C40) p	203-625-9 etroleum group	108-88-3	+								
37		(30 ιο 040) μ		TPH	1	57 m	ıg/kg		49.59	mg/kg	0.00496 %	✓	
38	4	chromium in chrom	}			24 m	ıg/kg	1.462	35.077	mg/kg	0.00351 %		
			215-160-9	1308-38-9						Total:	0.0624 %		
										Total:	0.0624 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Worst case

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00496%)

Page 12 of 16 XWGXO-17D24-G9T81 www.hazwasteonline.com

Appendix A: Classifier defined and non GB MCL determinands

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-004-00-9).

604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

 $Hazard\ Statements:\ Muta.\ 2;\ H341\ ,\ Acute\ Tox.\ 3;\ H331\ ,\ Acute\ Tox.\ 3;\ H301\ ,\ STOT\ RE\ 2;\ H373\ ,\ Skin\ Corr.\ 1B;\ H314\ ,\ Skin\ Corr.\ H314\ ,\ Skin\ Corr.\ H314\ ,\ Skin\ Corr.\ H314\ \ H314\ ,\ Skin\ Corr.\ H314\ \ H314\ ,\ Skin\ Corr.\$

1B; H314 >= 3 %, Skin Irrit. 2; H315 1 <= conc. < 3 %, Eye Irrit. 2; H319 1 <= conc. < 3 %, Aquatic Chronic 2; H411

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

arsenic (EC Number: 231-148-6, CAS Number: 7440-38-2)

GB MCL index number: 033-001-00-X

Description/Comments: Worst Case: IARC considers arsenic Group 1; Carcinogenic to humans

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

H411

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Skin\ Sens.\ 1;\ H317\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Chronic\ 1;\ H410\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Acute\ 1;\ H410\ ,\ Aquatic\ Acute\ 1;\ H400\ ,\ Aquatic\ Acute\ 1;\ H410\ ,\ Aquatic\ Acute\ 1;\ Aquatic\$

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

" TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

" chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from ECHA's C&L inventory database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 30 Apr 2020

Hazard Statements: Acute Tox. 4; H302, Skin Sens. 1; H317, Eye Irrit. 2; H319

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

GB MCL index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans;

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.

 $\begin{tabular}{ll} Data \ source: \ http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010\&HarmOnly=no?fc=true\&lang=enderset. The source of the control

Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

Page 14 of 16 XWGXO-17D24-G9T81 www.hazwasteonline.com

Appendix B: Rationale for selection of metal species

chromium in chromium(VI) compounds {chromium(VI) oxide}

Most likely worst case.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Most likely worst case.

boron (boron tribromide)

Most likely worst case.

arsenic {arsenic}

Most likely worst case.

cadmium {cadmium sulfide}

Most likely worst case.

copper {dicopper oxide; copper (I) oxide}

Most likely worst case.

mercury {mercury}

Most likely worst case.

nickel {nickel dihydroxide}

Most likely worst case.

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Worst case

selenium (selenium)

Most likely worst case.

vanadium {divanadium pentaoxide; vanadium pentoxide}

Most likely worst case.

zinc {zinc sulphate}

Most likely worst case.

chromium in chromium(III) compounds {chromium(III) oxide}

Most likely worst case.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021
HazWasteOnline Classification Engine Version: 2024.142.6063.11222 (21 May 2024)

HazWasteOnline Database: 2024.142.6063.11222 (21 May 2024)

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

GB MCL List v2.0 - version 2.0 of 20th October 2023

GB MCL List v3.0 - version 3.0 of 11th January 2024

GB MCL List v4.0 - version 4.0 of 2nd March 2024

Page 16 of 16 XWGXO-17D24-G9T81 www.hazwasteonline.com