Addendum Drainage Statement – Section 73 application – Station Road Care Home, Station Road, Hampton

The following document has been prepared as an update and addendum to the Flood Risk Assessment and Drainage Strategy report CWA-19-207 prepared by CWA in July 2019.

This Addendum Drainage Statement provides a review of the original CWA report and updates where changes have occurred or an update to the design is required.

Site location

Site location and arrangement remain the same as the original report. Site levels remain broadly unchanged and the neighbouring land uses remain the same.

Site development proposals

The principle to provide a care home on the development site remains the same and the overall arrangement of the building above ground remains broadly similar to the previous scheme, however the extent of the basement and lower ground floor accommodation has been significantly reduced. The previous scheme had accommodation with terraces and courtyard gardens provided at a lower ground floor level. Any residential accommodation has been removed from lower ground floor and the units plus external spaces are now located at ground floor and above. The basement is now much smaller and will comprise of ancillary accommodation. Access road and parking will still be provided on the eastern boundary.

The proposed scheme will incorporate the existing police station building which is to be partially retained.

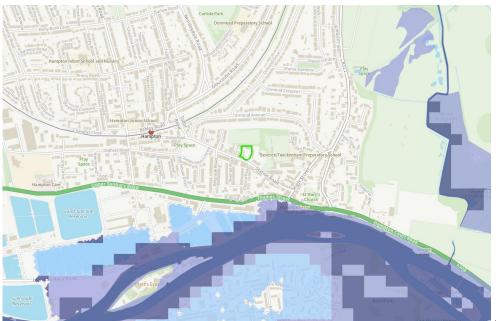
Existing Ground Conditions

A Phase 2 site investigation undertaken by Solmek in 2021 confirmed the site conditions to comprise soft to firm clay overlaying medium dense gravel to a depth of 6.5-6.9mbgl. This is underlain by stiff to very stiff London Clay to the extent of the investigation.

The 2021 encountered groundwater strikes between 1m and 6.8mbgl. Subsequent long term monitoring of the groundwater level found that this appeared to settle at approximately 3.5mbgl.

The result of the site investigation confirms that the ground conditions preclude the use of soakaways as the cohesive content of the clay at varying depths prevent adequate infiltration results.

Consultation and policy


Further to the consultation undertaken by CWA in the preparation of the original report, further discussions have been undertaken with Thames Water to determine the invert levels of the surface water sewer in Station Road. This has been calculated from interpolation and should be checked on site.

It is intended to maintain the agreed rate of 2 litres/second for discharge to the Thames Water surface water sewer.

With reference to the latest climate change allowances from the GOV.uk website, the site falls within the Maidenhead and Sunbury Management Catchment and 40% climate change remains the correct allowance for peak rainfall during the 1% annual exceedance event.

Flood Risk

With reference to the flood maps below, the overall flood risk of the development site is unchanged from the original CWA report. The site remains located in Flood Zone 1 which is considered to be appropriate, and the surface water flood risk on the site remains very low.

ren lans school and nurs. Tagener Baren dans de lange Baren de lange Baren

Fluvial flood risk map

Surface water flood risk map

www.swh.co.uk

Sustainable Drainage Proposals and Drainage Strategy

The principles of the sustainable drainage proposals outlined in the original CWA report remain the same. The overall impermeable area of the development remains broadly the same and attenuation tank volumes have been recalculated based upon the proposed impermeable area, including for urban creep.

Due to the lower ground floor level and depth of the attenuation tanks for the original scheme, surface water needed to be pumped from the lower level to achieve the required attenuation and discharge to public sewer. With the removal of the lower ground floor, the surface water strategy is simplified to incorporate a number of cellular attenuation tanks which overall provide sufficient storage on site with a wholly gravity system and vortex flow control device limiting the discharge to the public sewer to 2l/s as previous.

Please refer to appended calculations and drainage layout.

Conclusion

The above addendum note confirms the overall flood risk of the site remains as previous with no significant changes. The overall drainage strategy will remain on site and the new drainage system has been redesigned to suit the new impermeable area and achieving a gravity only solution.

Maintenance

The table below provides information in relation to the required inspections and maintenance for long term management of the surface water strategy. It is expected the maintenance will be managed and provided by the client and their sub-contractors as part of their ongoing responsibilities on the site.

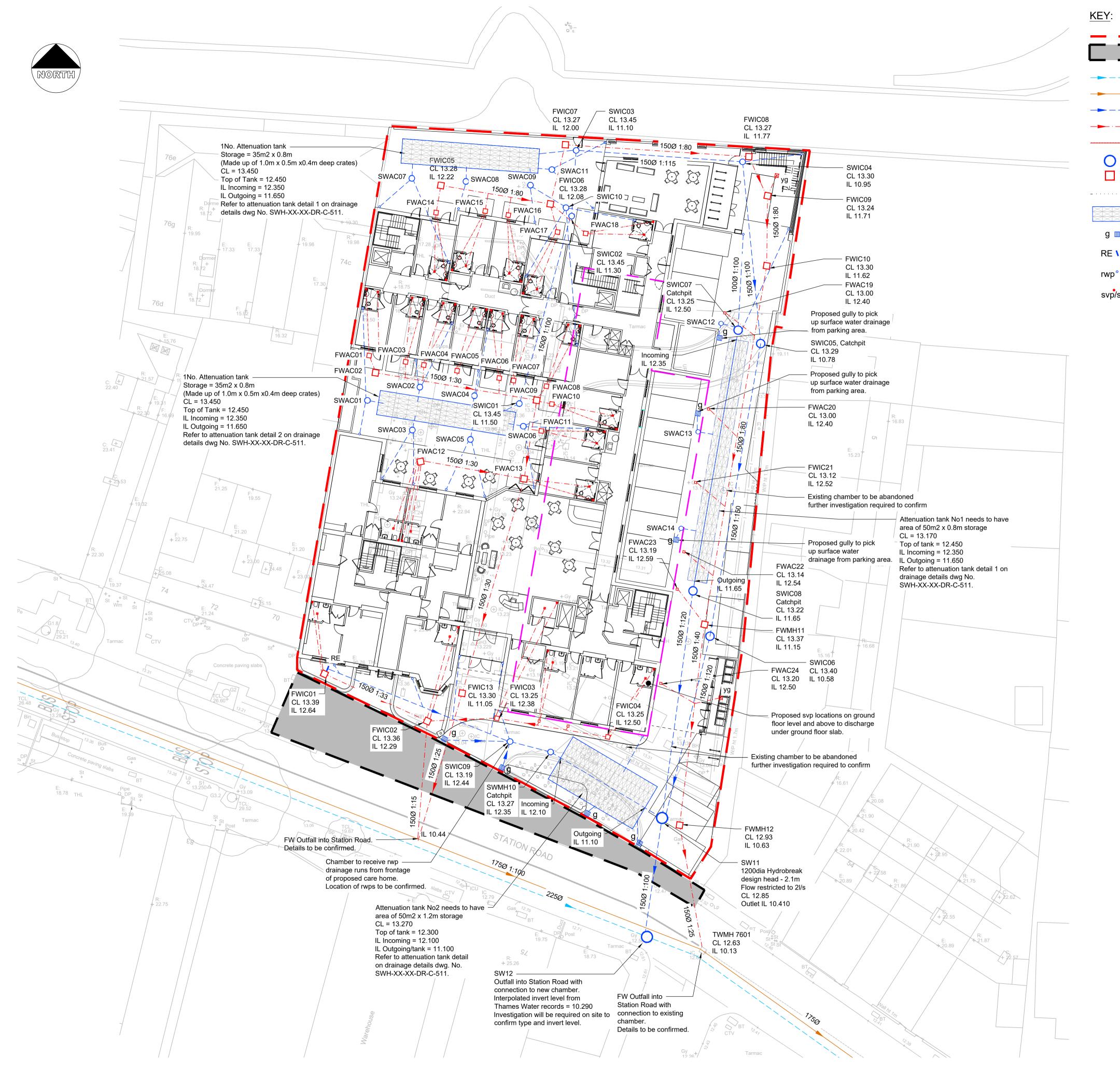
All those responsible for maintenance should take appropriate health, safety and welfare precautions for all activities including lone working, if relevant, and risk assessments should always be undertaken. The sites infrastructure Health and Safety File should be consulted before carrying out any works either inside or outside of the development's boundary and information regarding the location of existing utilities passed on to operatives.

The requirements of the Health and Safety at Work Act 1974 and The Construction (Design and Management) Regulations 2015 should be adhered to and any residual risks identified in the Health and Safety File should be managed and information passed on the maintenance operatives through task specific risk assessments.

There are three types of maintenance activities associated with surface water drainage systems.

The SuDS Manual, CIRIA C753, defines these as:

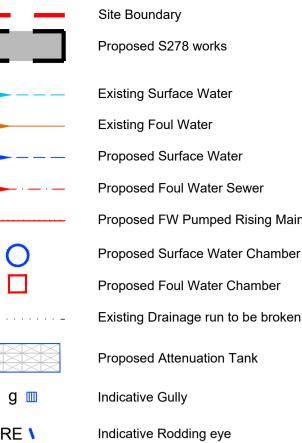
- Regular Maintenance 'basic tasks undertaken on a frequent and predictable schedule' including vegetation management, litter and debris removal, and inspections.'
- Occasional Maintenance 'tasks that are likely to be required periodically, but on a much less frequent and predictable basis than the routine tasks (sediment removal is an example).'


 Remedial Maintenance – 'intermittent tasks that may be required to rectify faults associated with the system, although the likelihood of faults can be minimised by good design. Where remedial work is found to be necessary, it is likely to be due to sitespecific characteristics or unforeseen events, and as such timings are difficult to predict.'

Operation and	SuDs Component		
Maintenance Activity	Piped Network / Inspection Chambers	Cellular / Modular Storage	Permeable Pavement
Regular Maintenance			
Inspection	•	•	•
Litter and debris removal		0	
Grass cutting		•	•
Weed and invasive plant control			
Occasional Maintenance	9		
Sediment management	•	•	•
Vacuum sweeping and brushing			•
Remedial Maintenance			
Structure rehabilitation/ repair		0	
Infiltration surface reconditioning			
 Will be required 	May be require	ed	
Extract from The SuDs Ma maintenance activities	anual Table 32.1 : Typical	key SuDs components	operation and

Piped Network/Chambers Maintenance Schedule	Required Action	Typical
Maintenance Schedule		Frequency
	Inspect and identify any features that are not	Monthly for three
	operating correctly. If required take remedial	months, then six
	action	monthly
Regular Maintenance	Debris removal from catchment surface /	Monthly (and after
Regular Maintenance	gratings (where may cause risks to	large storms)
	performance)	
	Remove sediment from trapped sumps,	Annually or as
	manholes and catchpits.	required
Remedial Maintenance	Repair / rehabilitation of gratings, inlets and	As required
	outlets	
Monitoring	Inspect / check all gratings, trapped sumps,	Annually and after
5	manholes and catchpits to ensure that they are	large storm events
	in good condition and operating as designed	-
Structure Rehabilitation /	Regular Maintenance and Monitoring to identify	As required
Repair	if repair and / or replacement of features or	-
	pipework is required.	

Cellular Storage	Required Action	Typical
Maintenance Schedule		Frequency
Regular	Inspect and identify any features that are not	Monthly for three
Maintenance	operating correctly. If required take remedial action	months, then annually.
	Remove debris from catchment surface (where may cause risks to performance)	Monthly
	Remove debris from catchment surface (where may cause risks to performance)	Annually or as required
Remedial	Repair / rehabilitate inlets, outlets, overflows and	As required
Maintenance	vents	
	Inspect / check all inlets, outlets, vents and	Annually and after
Monitoring	overflows to ensure that they are in good condition and operating as designed	large storm events
Wontoning	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required
Structure Rehabilitation /	Regular Maintenance and Monitoring to identify if	As required
Repair	repair and / or replacement of storage units is	
•	required.	
The SuDS Manual Table 21.3	: Operation and maintenance requirements for attenu	ation storage tanks


Scott White and Hookins July 2024 IL/303423

KEY:

()

svp/ss

- Proposed FW Pumped Rising Main
- Existing Drainage run to be broken out
- Indicative Rainwater pipe
- Indicative Internal soil vent pipe

Notes

GENERAL

- This drawing is to be read in conjunction with all relevant Engineers and Architects drawings and with the Specification.
- For setting out refer to Architects drawings.
- All dimensions are in millimetres and levels are in metres unless noted otherwise.
- Contractor to take all relevant dimensions on site. Any discrepancies to be advised to the Engineer.

 Contractor to check/scan for services prior to construction to avoid any damage during works.

DRAINAGE

- Any information given on this drawing regarding existing services is believed to be correct. The contractor must check this information and determine the nature and location of other existing services from the various statutory authorities before commencing excavation works.
- Drainage works to be constructed in accordance with BS EN 752 and Approved Document H
- All soft spots and unacceptable material encountered in drainage excavations is to be removed and replaced with granular material to the requirements of the building control officer.
- Pipes to be installed to manufacturers recommendations.
- Pipes under buildings to be laid to a fall of 1:40 minimum unless noted otherwise.
- Plastic plain wall pipes to be PVC-U to BS EN 1401-1, class SN4, with flexible joints, Kitemark certified. Structured wall plastic pipes to be to WIS 04-35-01, Kitemark certified
- Clay pipes to be vitrified clay to BS EN 295-1, with flexible joints, Kitemark certified. Clayware pipes must be extra strength classification protected in accordance with the specified details.
- Concrete pipes to be precast concrete to BS 5911-1 and BS EN
- 1916, with flexible joints. • Bedding of pipes to be in accordance with approved document H1.
- Rocker pipes with flexible joints are to be provided at a distance of 150mm and 750mm from the face of construction to manholes, where pipes pass above, below or through ground beams or foundations; at gully connections and soil stack ends.
- Manhole access covers are to be located at the outgoing side of manholes.
- Cover levels are to be fixed on site to suit finished levels. Covers and frames to BS EN124, Grade D to be used in areas subject to heavy vehicular loading, Grade C in areas subject to light vehicular loading and Grade B to be used elsewhere.
- All pipes to be 100Ø unless noted otherwise.
- Manhole positions and level information is indicative only to be confirmed by Architect.
- Access points to be located at base of all rwps and svps.
- All gullies to be trapped
- Positions of SVP's and RWP's is indicative only and should be read in conjuction with Architects drawings.
- Hydrobreak information based on 1 in 100yr + 40% climate control.

HAZARDS LEADING TO UNUSUAL OR SIGNIFICANT RISKS DURING THE CONSTRUCTION PROCESS ARE IDENTIFIED ON THIS DRAWING AS:

NOTE: THE LIST BELOW IDENTIFIES CERTAIN RISKS WHICH ARE DEEMED TO BE UNUSUAL, ABNORMAL OR UNEXPECTED TO A COMPETENT CONTRACTOR CARRYING OUT WORK OF THIS NATURE BUT DOES NOT COVER ALL POSSIBLE SITUATIONS WHICH MAY BE ENCOUNTERED DURING THE CONSTRUCTION PROCESS. IT IS THEREFORE THE MAIN CONTRACTOR'S RESPONSIBILITY TO IDENTIFY ANY FURTHER RISKS/HAZARDS AND TAKE APPROPRIATE ACTION.

RISKS/HAZARDS SPECIFIC TO THIS DRAWING:

PRELIMINARY - NOT FOR CONSTRUCTION

P02	Drainage updated to suit revised ground floor layout	RD	ТК	IL	10.07.24
P01	Preliminary Issue	RD	тк	IL	17.12.21
Rev.	Amendment	Drn.	Chkd.	Appd.	Date
Projec	t				

Station Road Care Home Hampton

Drawing

Ground Floor Drainage Strategy

Client Meedhurst

Meeunuist			
Scott V	Vhite and	Hookins	
Structural Engineering	Civil Engineering	Sustainability and BREEAM	CDM Consul
	,	ester, Hampshire SO23 co.uk E: info@swh.co.ul	
Scale at A1	- 1:200		

303423-SWH-XX-XX-DR-C-0500 P02 Originator Zone Level Type Role Number Project

Itancy

cott-White		S							Page 1
West Str									
ondon Hous	е								
arshalton									Micro
ate 10/07/	2024 15:1	0		Desi	gned by	y wintemp	51		Draina
lle SW - S	torage ta	nk gro	un	Chec	ked by				Brainc
.cro Drain	lage			Sour	ce Cont	crol 2020	0.1.3		
	Summary	of Resu	ults f	or 10	0 year	Return	Period	(+40%)	_
		Н	alf Dra	in Tir	ne : 658	minutes.			
	Storm	Max	Max		ax	Max	Max	Max	Status
	Event		-			Control Σ			
		(m)	(m)	(1	/s)	(1/s)	(1/s)	(m³)	
15	min Summer	11.859	0.759		0.0	1.7	1.7	59.9	ОК
	min Summer				0.0	1.8	1.8	77.9	
	min Summer				0.0	1.8	1.8		
	min Summer				0.0	1.9	1.9		
	min Summer				0.0	1.9	1.9		
	min Summer				0.0	1.9	1.9		0 K
	min Summer min Summer				0.0	1.9 1.9	1.9 1.9		
	min Summer min Summer				0.0	1.9	1.9		
	min Summer				0.0	1.9	1.9		
	min Summer				0.0	1.8	1.8		
	min Summer				0.0	1.8	1.8		
2160	min Summer	12.037	0.937		0.0	1.8	1.8	88.7	ОК
2880	min Summer	11.973	0.873		0.0	1.8	1.8	78.3	ОК
4320	min Summer	11.859	0.759		0.0	1.7	1.7	59.9	ΟK
5760	min Summer	11.766	0.666		0.0	1.6	1.6	44.8	0 K
	min Summer				0.0	1.6		32.8	
	min Summer				0.0	1.6		23.8	
	min Summer min Winter				0.0	1.5 1.7	1.5 1.7		
		Storm	I	Rain	Flooded	Discharge	a Time-Pe	ak	
		Event	(m	m/hr)	Volume	Volume	(mins)	
					(m³)	(m³)			
	15	min Sur	nmer 13	8.153	0.0	61.9)	22	
	30	min Sur	nmer 9	0.705	0.0	81.3	3	37	
		min Sur		6.713	0.0	101.5		66	
		min Sur		4.246	0.0	122.7		.26	
		min Sur		5.149	0.0	135.3		.84	
		min Sur		0.078	0.0	143.9		244	
) min Sur) min Sur		4.585	0.0	156.9 166.6		862 80	
		min Sur min Sur		9.738	0.0	174.5		i80 i26	
) min Sur) min Sur		8.424	0.0	181.3		520	
		min Sur min Sur		6.697	0.0	192.0		12	
		min Sur		4.839	0.0	208.2		82	
		min Sur		3.490	0.0	225.2		888	
		min Sur		2.766	0.0	238.0		92	
	4320	min Sur	nmer	1.989	0.0	256.8	3 25	56	
		min Sur	nmer	1.573	0.0	270.8	32 32	96	
	5760	intii Sui	unor		0.0				
	7200	min Sur	nmer	1.311	0.0	281.7		32	
	7200 8640		nmer nmer				2 46	32 80 40	

©1982-2020 Innovyze

Scott-White & Hooki	ns						Page 2
42 West Street							
London House							
Carshalton SM5 2PR							Micro
Date 10/07/2024 15:	10	Desi	lgned b	y wintemp	51		Drainag
File SW - Storage t	ank groun	. Chec	cked by	,			Diamay
Micro Drainage		Sour	cce Con	trol 2020	0.1.3		
Summary	of Results	for 10	00 year	Return 1	Period	(+40%)	_
Storm Event	Max Max		lax tration	Max Control Σ	Max	Max	Status
Event	(m) (m)		L/s)	(1/s)	(1/s)	(m ³)	
	(,	· · · ·	-, -,	(_/)/	(=/ 0/	()	
	r 12.031 0.93		0.0	1.8		87.6	
60 min Winte 120 min Winte	r 12.154 1.05		0.0		1.8		
180 min Winte			0.0 0.0	1.9 1.9	1.9 1.9		
240 min Winte			0.0	1.9	1.9		
360 min Winte			0.0		1.9		
480 min Winte			0.0			140.3	
600 min Winte			0.0		1.9		
720 min Winte			0.0	1.9	1.9	135.0	O K
960 min Winte			0.0		1.9		
1440 min Winte			0.0	1.9	1.9		
2160 min Winte			0.0	1.8	1.8		
2880 min Winte 4320 min Winte			0.0	1.8		83.6	
5760 min Winte			0.0			56.8 35.9	
7200 min Winte			0.0			21.8	
8640 min Winte			0.0			12.3	
10080 min Winte	r 11.211 0.11	L1	0.0	1.3	1.3	5.3	O K
	Storm Event	Rain (mm/hr)	Flooded Volume (m³)	d Discharge Volume (m ³)	e Time-Pe (mins		
			((111)			
	0 min Winter					37	
	0 min Winter 0 min Winter) 113.8) 137.5		66 24	
	0 min Winter					124	
	0 min Winter					238	
	0 min Winter					354	
	0 min Winter					164	
	0 min Winter					572	
	0 min Winter					572	
	0 min Winter					758	
	0 min Winter)66 516	
	0 min Winter					936	
	0 min Winter					128	
	50 min Winter					156	
	0 min Winter					12	
	0 min Winter					340	
1008	0 min Winter	0.994	0.0	335.2	2 54	148	
	©.	1982-20	20 Inn	ovyze			

Scott-White & Hookins	Page 3
42 West Street	
London House	
Carshalton SM5 2PR	Aigned by wintern1
Date 10/07/2024 15:10 De	signed by wintemp1
File SW - Storage tank groun Ch	ecked by
Micro Drainage So	urce Control 2020.1.3
Rainf	all Details
Rainfall Model	FSR Winter Storms Yes
Return Period (years)	100 Cv (Summer) 0.750
Region England	and Wales Cv (Winter) 0.840
M5-60 (mm) Ratio R	20.000 Shortest Storm (mins) 15 0.400 Longest Storm (mins) 10080
Summer Storms	Yes Climate Change % +40
<u>Time</u>	Area Diagram
Total A	Area (ha) 0.239
	rea Time (mins) Area ha) From: To: (ha)
0 4 0.	120 4 8 0.119
0 40.	120 4 0 0.119
©1982-	2020 Innovyze

cott-White & Hookins		Page 4
2 West Street		
ondon House		
Carshalton SM5 2PR		— Micro
Date 10/07/2024 15:10	Designed by wintemp1	Drainago
Tile SW - Storage tank groun	Checked by	brainage
licro Drainage	Source Control 2020.1.3	
I	Model Details	
Storage is Or	nline Cover Level (m) 13.300	
Cor	mplex Structure	
Ce	ellular Storage	
	rt Level (m) 11.100 Safety Factor 2 Base (m/hr) 0.00000 Porosity 0.	
Infiltration Coefficient		
Depth (m) Area (m²) Inf. Ar	ea (m ²) Depth (m) Area (m ²) Inf. Area	a (m²)
0.000 50.0 1.200 50.0	50.0 1.201 0.0 86.0	86.0
Ce	ellular Storage	
Taura	rt Ioural (m) 11 (50 Cofety Foster (
	rt Level (m) 11.650 Safety Factor 2 Base (m/hr) 0.00000 Porosity 0. Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area	a (m²)
0.000 50.0 0.800 50.0	50.0 0.801 0.0 93.2	93.2
	ellular Storage	
Inve: Infiltration Coefficient Infiltration Coefficient	· · · · · · · · · · · · · · · · · · ·	
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area	a (m²)
0.000 35.0 0.800 35.0	35.0 0.801 0.0 61.4	61.4
	ellular Storage	
Inve Infiltration Coefficient Infiltration Coefficient	· · · · · · · · ·	
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area	a (m²)
0.000 35.0	35.0 0.801 0.0 61.4	61.4

©1982-2020 Innovyze

cott-Wh	ite	& Ho	okin	S										Page	e 5
2 West	Stre	et													
ondon H	louse	9													~
arshalt	on	SM5	2pr											Mic	10
ate 10/	07/2	2024	15:1	0		I	Design	ed by	y wi	ntemp	51				
ile SW	– St	orac	ge ta	nk gr	oun.		Checke	d by						DIC	inago
licro Dr	aina	age				C.	Source	Con	trol	2020	0.1.3				
				Hydro	-Bra	ke®	Optimu	ım Ou	tflc	w Coi	ntrol				
				4			Referen					100	2000		
							Head (-SHE-	-0056-	2000-2		.100		
					Des	-	low (l/						2.0		
							lush-Fl Objecti		tinim:			alcul			
							plicati		1111111	ise up	Stream		face		
						Sump 2	Availab	le					Yes		
					Tn		eter (m Level ('				1 ∩	56 .400		
		Mini	Lmum (Dutlet			eter (m					τU	.400 75		
					-		eter (m						1200		
				Co	ontro	l Poir	nts	Hea	ad (m) Flo	w (l/s)			
			D	esign	Point		.culated .ush-Flo	,	2.10 0.24		2. 1.				
							Kick-Flo		0.50		1.				
			М	ean Fl	ow ov	ver He	ead Rang	ge		-	1.	5			
The hyd Hydro-B Hydro-B invalid	rake@ rake) Opt:	imum a	as spec	cifie	d. S	hould a	nothe	er typ	pe of	contro	ol de	vice	other	than a
Hydro-B Hydro-B invalid Depth	rake rake ated (m) E) Opt: Optir	imum a num® k (l/s)	ns spec pe uti: Depth	cifie lised (m)	d. Sinthen	hould a these	nothe stora Depth	er tyr Ige ro (m)	be of Duting	contro calcu (l/s)	ol de ulati Dept	vice (ons w h (m)	other ill be Flow	than a (l/s)
Hydro-B Hydro-B invalid Depth	rake rake ated (m) E) Opt: Optir	imum a num® k (1/s) 1.1	ns spec pe uti: Depth	cifie lised (m) .200	d. Sinthen	hould a these	nothe stora Depth	er typ ige ro (m) .000	be of Duting	contro calcu (1/s) 2.4	ol de ulati Dept	vice (ons w. h (m) 7.000	other ill be Flow	than a (1/s) 3.5
Hydro-B Hydro-B invalid Depth 0.1 0.2	rake rake ated (m) E) Opt: Optir	imum a num® k (l/s)	Depth 1 1	cifie lised (m)	d. Sinthen	hould a these	Depth	er tyr Ige ro (m)	be of Duting	contro calcu (l/s)	ol de lati Dept	vice (ons w h (m)	other ill be Flow	than a (l/s)
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4	rake rake ated (m) E 100 200 300 400) Opt: Optir	imum a num® k (1/s) 1.1 1.3	Depth 1 1	cifie lised (m) .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7	Depth 3. 3.	er typ ige ro (m) .000 .500	be of Duting	contro calcu (1/s) 2.4 2.5	Dept	vice (ons w h (m) 7.000 7.500	other ill be Flow	than a (1/s) 3.5 3.6
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5	rake rake ated (m) E 100 200 300 400 500) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1	Depth 1 1 2	<pre>cifie lised (m) .200 .400 .600 .800 .000</pre>	d. Sinthen	hould a these (1/s) 1.6 1.6 1.7 1.8 1.9 2.0	Depth 3 4 4 5	(m) .000 .500 .500 .500 .000	be of Duting	<pre>contro (1/s) 2.4 2.5 2.7 2.8 3.0</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6	rake rake ated (m) E 100 200 300 400 500 600) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1	Depth 1 1 1 2 2	(m) .200 .400 .600 .800 .000 .200	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0	Depth 3. 3. 4. 4. 5.	(m) .000 .500 .500 .500 .000 .500	be of Duting	<pre>control (1/s) 2.4 2.5 2.7 2.8 3.0 3.1</pre>	Dept	vice ons w h (m) 7.000 7.500 8.000 8.500	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8</pre>
Hydro-B Hydro-B invalid Depth 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	rake rake ated (m) E 100 200 300 400 500) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1	Depth 1 1 1 2 2 2	<pre>cifie lised (m) .200 .400 .600 .800 .000</pre>	d. Sinthen	hould a these (1/s) 1.6 1.6 1.7 1.8 1.9 2.0	Depth 3 4 5 5 6	(m) .000 .500 .500 .500 .000	be of Duting	<pre>contro (1/s) 2.4 2.5 2.7 2.8 3.0</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B Hydro-B invalid Depth 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.8	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.8	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B Hydro-B invalid Depth 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>
Hydro-B. Hydro-B. invalid. Depth 0.1 0.2 0.3 0.4 0.5 0.6 0.6	rake rake (m) E 100 200 300 400 500 600 800) Opt: Optir	imum a num® k (1/s) 1.1 1.3 1.3 1.2 1.1 1.1 1.3	Depth 1 1 1 2 2 2	(m) .200 .400 .600 .800 .000 .200 .400	d. Sinthen	hould a these (1/s) 1.6 1.7 1.8 1.9 2.0 2.0 2.1	Depth 3 4 5 5 6	(m) (m) .000 .500 .000 .500 .000 .500 .000	be of Duting	<pre>control (l/s) 2.4 2.5 2.7 2.8 3.0 3.1 3.2</pre>	Dept	vice (ons w. h (m) 7.000 7.500 8.000 8.500 9.000	other ill be Flow	<pre>than a (1/s) 3.5 3.6 3.7 3.8 3.9</pre>