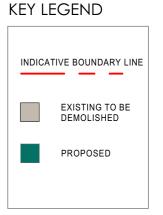

PLANS

Existing Location Plan 1:2500


Aerial View NOT TO SCALE

- 1. This drawing is copyright of HollandGreen Ltd. Reproduction is only to take place with written authority.
- 2. These plans are subject to Planning & Building Regulation Approval
- or any other statute in law before building work commences.

 3. Any structural work where mentioned on this drawing is subject to a qualified structural and civil engineer calculations
- before building work commences.

 4. All boundaries are assumed. To be confirmed on site before building work commences.
- Any discrepancies are to be brought to the attention of HollandGreen Ltd for rectification. If in doubt, ASK.
- Only drawings marked as CONSTRUCTION status can be used to build or manufacture from.
- 7. All windows and doors shown on schedules and drawings are indicative only and no manufacturing should be carried out until a site survey has been conducted by manufacturer.
- The survey information shown on this drawing is based on a survey prepared by a third party. HollandGreen accept no responsibility for the accuracy or completeness of the survey.

PLANNING Location Plan

Revision	Date	Details	
PL-2	09/09/2024	Issued to Consultants	

Ross - Sevenoaks

Project Number 1553

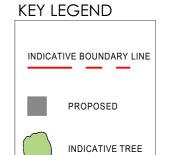
Sevenoaks, 101a High Street Hampton Middlesex London

09 September 2024

Drawing Number 010-100

PL-2

The Old Grammar School Church Road Thame OX9 3AJ


- This drawing is copyright of HollandGreen Ltd. Reproduction is only to take place with written authority.
 These plans are subject to Planning & Building Regulation Approval
- or any other statute in law before building work commences.

 3. Any structural work where mentioned on this drawing is subject to a qualified structural and civil engineer calculations before building work commences.

 4. All boundaries are assumed. To be confirmed on site before

- building work commences.
 Any discrepancies are to be brought to the attention of HollandGreen Ltd for rectification. If in doubt, ASK.
 Only drawings marked as CONSTRUCTION status can be used to build or manufacture from.
- 7. All windows and doors shown on schedules and drawings are
- indicative only and no manufacturing should be carried out until a site survey has been conducted by manufacturer.

 8. The survey information shown on this drawing is based on a survey prepared by a third party. HollandGreen accept no responsibility for the accuracy or completeness of the survey.

PLANNING

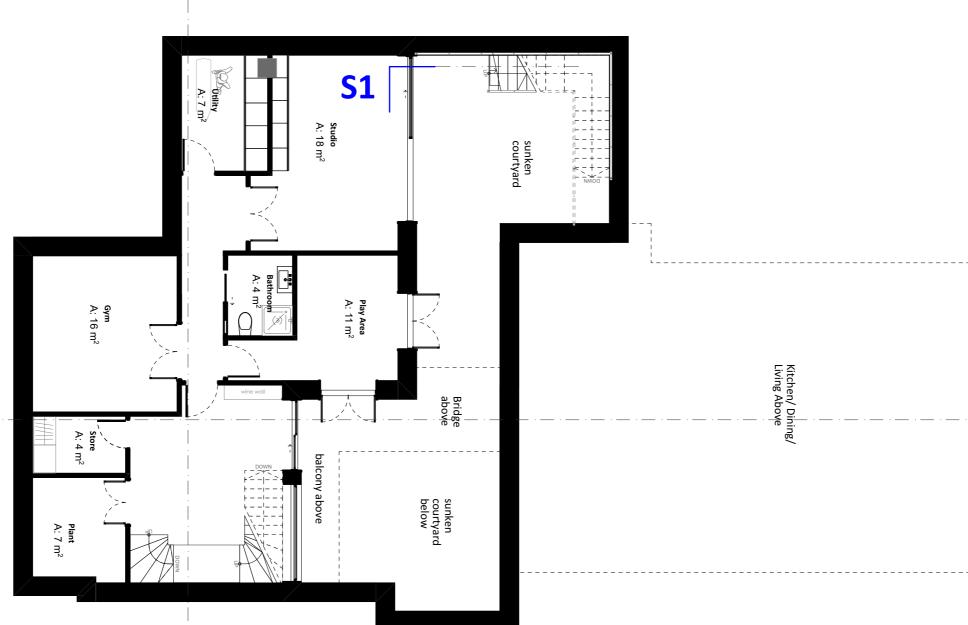
Proposed Site Plan

Revision	Date	Details
PL-2	09/09/2024	Issued to Consultants

Ross - Sevenoaks

Project Number 1553 Project Leader Laira Piccinato Sevenoaks, 101ਰ ਜਿੰਦ੍ਰਿਜ ਤਿਸੰਦਦ Hampton Middlesex London TW12 2SX

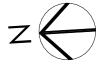
1:500 @ A3 Drawing Number


09 September 2024

022-101

PL-2

The Old Grammar School Church Road Thame OX9 3AJ


- 1. This drawing is copyright of HollandGreen Ltd. Reproduction is
- only to take place with written authority.

 These plans are subject to Planning & Building Regulation Approval
- or any other statute in law before building work commences.

 3. Any structural work where mentioned on this drawing is subject to a qualified structural and civil engineer calculations
- before building work commences.

 4. All boundaries are assumed. To be confirmed on site before building work commences.
- 5. Any discrepancies are to be brought to the attention of HollandGreen Ltd for rectification. If in doubt, ASK.
 6. Only drawings marked as CONSTRUCTION status can be used to build or manufacture from.
- 7. All windows and doors shown on schedules and drawings are
- indicative only and no manufacturing should be carried out until a site survey has been conducted by manufacturer.

 8. The survey information shown on this drawing is based on a survey prepared by a third party. HollandGreen accept no responsibility for the accuracy or completeness of the survey.

PLANNING Proposed Basement

Details

	Dute	Details
PL-1	19/08/2024	Issued to Consultants
PL-2	29/08/2024	Issued to Consultants
PL-3	04/09/2024	Issued to Consultants
PL-4	09/09/2024	Issued to Consultants

Ross - Sevenoaks

Sevenoaks, 101ਰ ਜਿੰਦ੍ਰਿਜ ਤਿਸੰਦਦ Hampton Middlesex London TW12 2SX

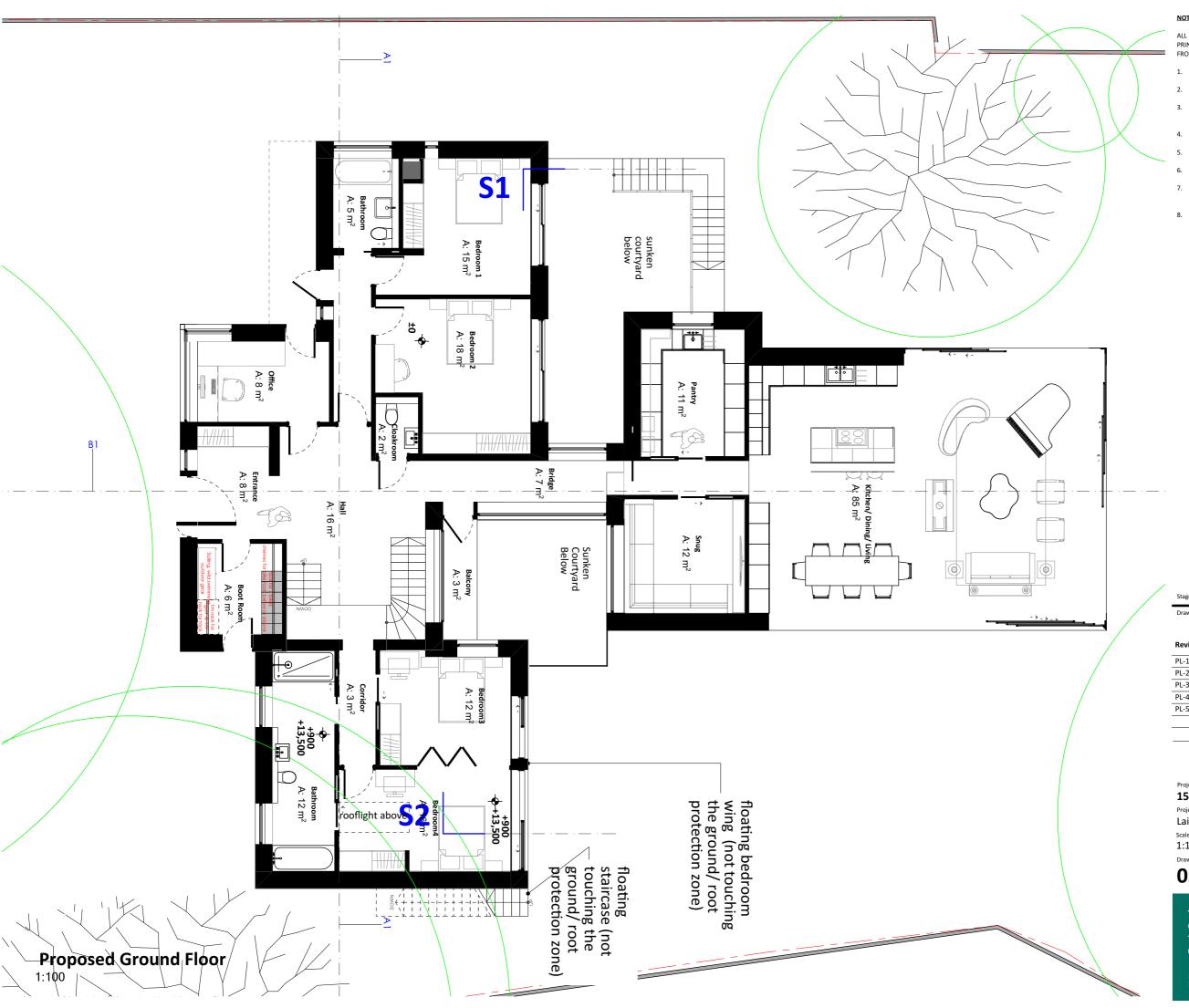
Project Number 1553 Project Leader

Laira Piccinato

Scale 1:100 @ A3

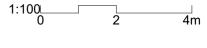
Drawing Number

10 September 2024


051-106

PL-4

The Old Grammar School Church Road Thame OX9 3AJ


1:100

- 1. This drawing is copyright of HollandGreen Ltd. Reproduction is only to take place with written authority.
- 2. These plans are subject to Planning & Building Regulation Approval
- or any other statute in law before building work commences.

 3. Any structural work where mentioned on this drawing is subject to a qualified structural and civil engineer calculations before building work commences.

 4. All boundaries are assumed. To be confirmed on site before
- building work commences.
- Any discrepancies are to be brought to the attention of HollandGreen Ltd for rectification. If in doubt, ASK.
- Only drawings marked as CONSTRUCTION status can be used to build or manufacture from.
- 7. All windows and doors shown on schedules and drawings are
- indicative only and no manufacturing should be carried out until a site survey has been conducted by manufacturer.
- The survey information shown on this drawing is based on a survey prepared by a third party. HollandGreen accept no responsibility for the accuracy or completeness of the survey.

PLANNING

Proposed Ground Floor

Revision	Date	Details
PL-1	19/08/2024	Issued to Consultants
PL-2	29/08/2024	Issued to Consultants
PL-3	04/09/2024	Issued to Consultants
PL-4	05/09/2024	Issued to Consultants
PL-5	09/09/2024	Issued to Consultants

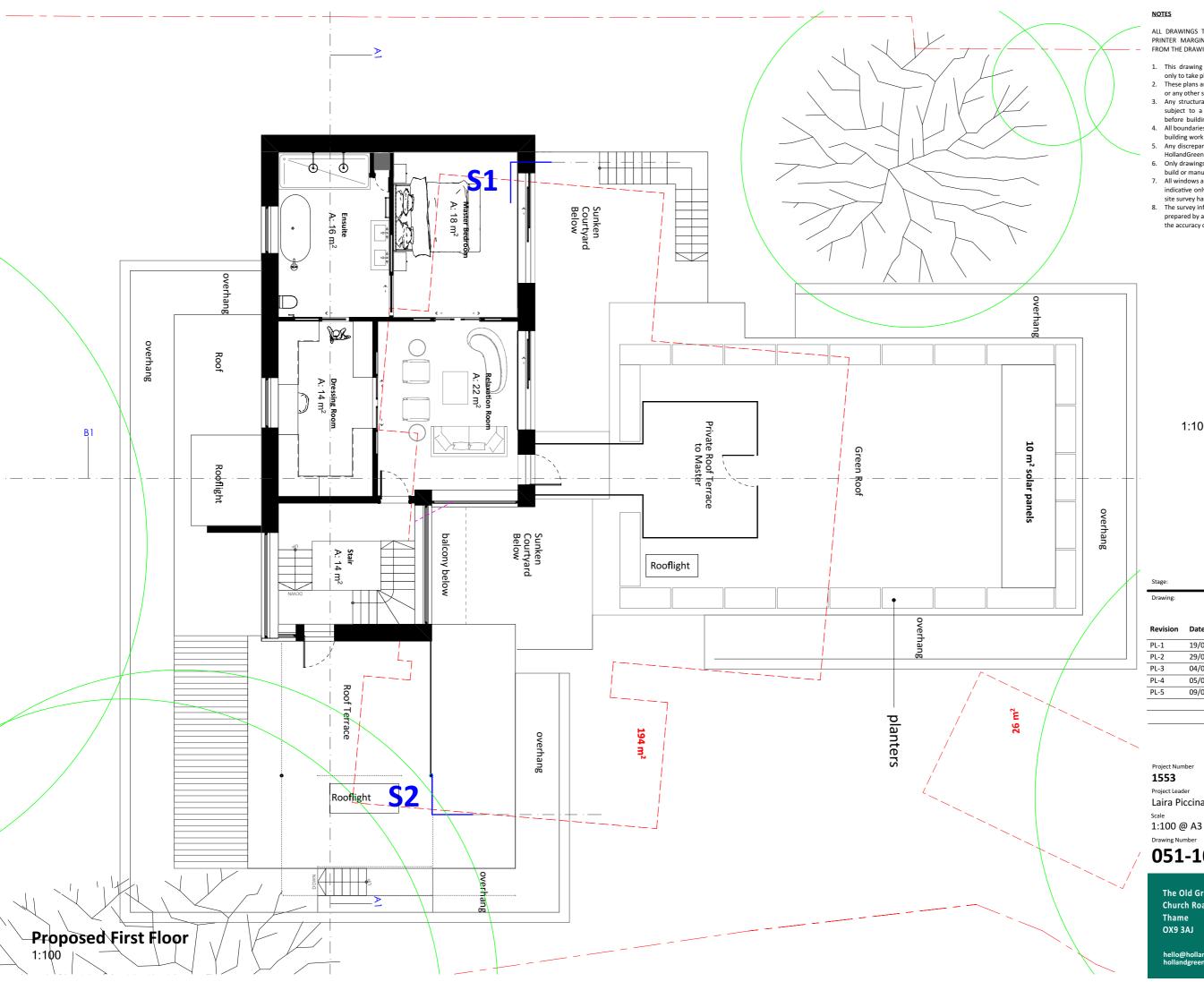
Ross - Sevenoaks

Project Number 1553

Sevenoaks, 101ਰ ਜਿੰਤ੍ਰਿਜ ਤੇਵਾਂਦਦ Hampton Middlesex London

Project Leader Laira Piccinato

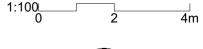
1:100 @ A3


10 September 2024

Drawing Number 051-107

PL-5

The Old Grammar School **Church Road** Thame OX9 3AJ


- 1. This drawing is copyright of HollandGreen Ltd. Reproduction is only to take place with written authority.
- 2. These plans are subject to Planning & Building Regulation Approval
- or any other statute in law before building work commences.

 3. Any structural work where mentioned on this drawing is subject to a qualified structural and civil engineer calculations
- before building work commences.

 4. All boundaries are assumed. To be confirmed on site before building work commences.

- 5. Any discrepancies are to be brought to the attention of HollandGreen Ltd for rectification. If in doubt, ASK.
 6. Only drawings marked as CONSTRUCTION status can be used to build or manufacture from.
- 7. All windows and doors shown on schedules and drawings are indicative only and no manufacturing should be carried out until a site survey has been conducted by manufacturer.

 8. The survey information shown on this drawing is based on a survey prepared by a third party. HollandGreen accept no responsibility for
- the accuracy or completeness of the survey.

PLANNING

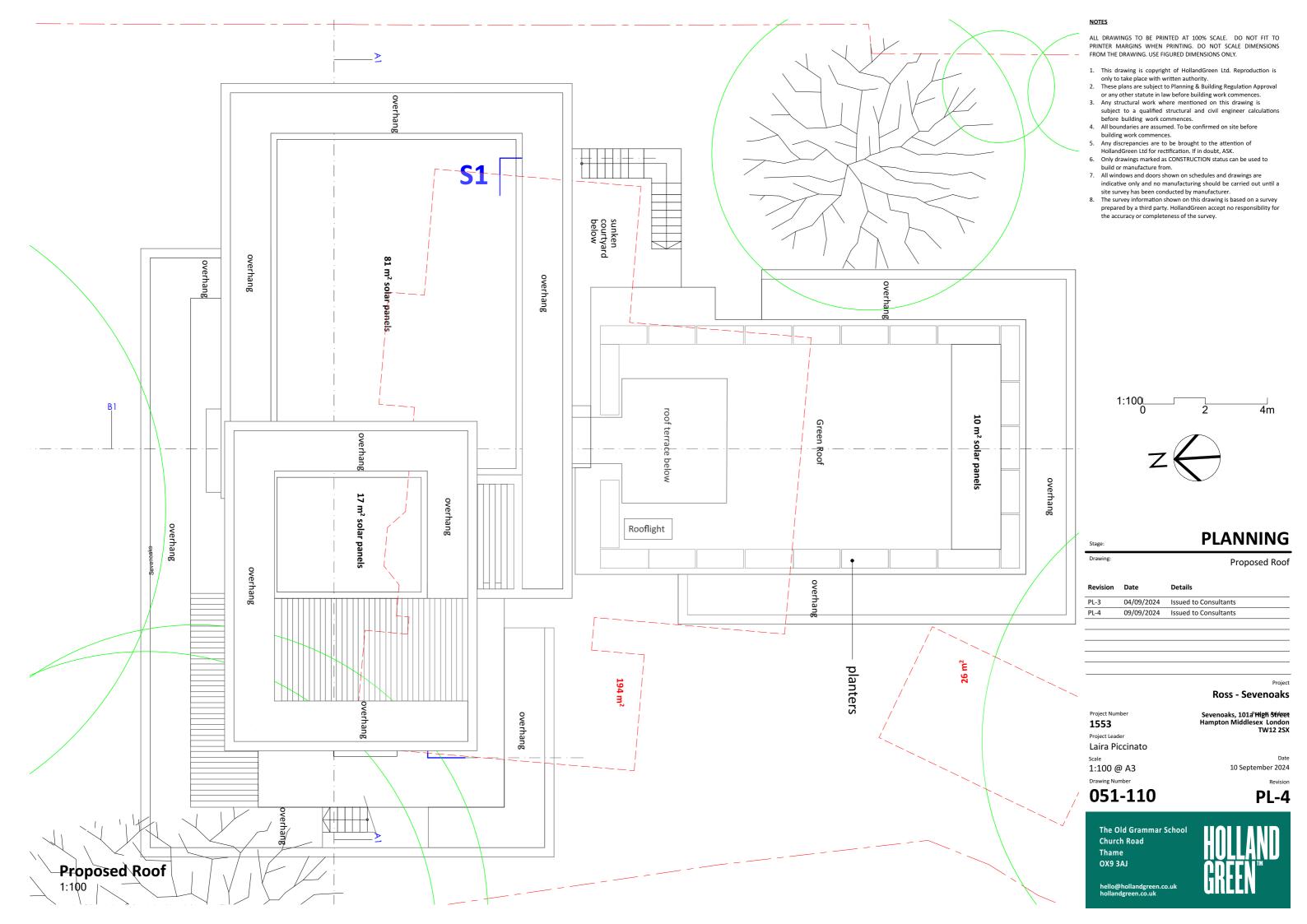
Proposed First Floor

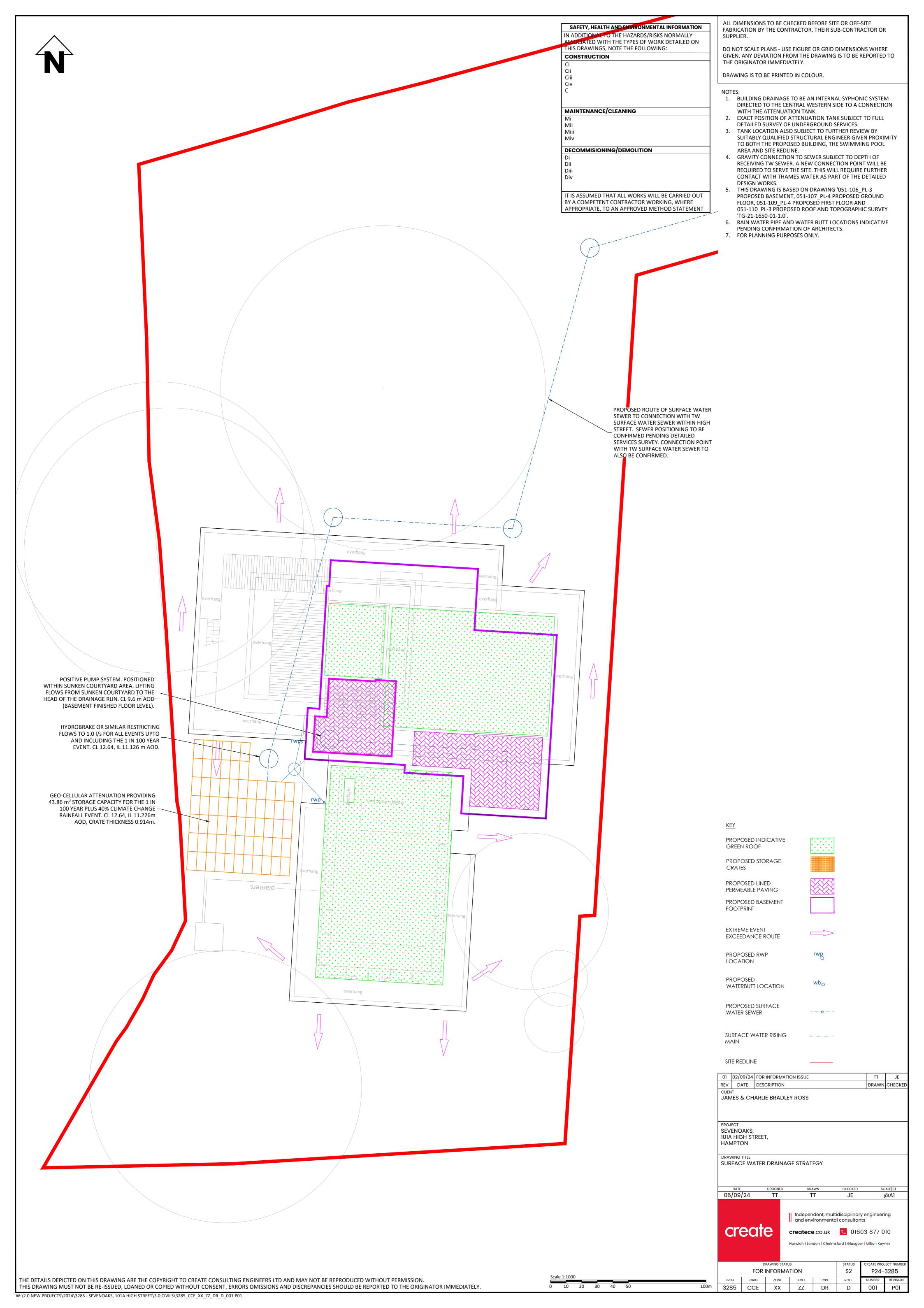
Revision	Date	Details
PL-1	19/08/2024	Issued to Consultants
PL-2	29/08/2024	Issued to Consultants
PL-3	04/09/2024	Issued to Consultants
PL-4	05/09/2024	Issued to Consultants
PL-5	09/09/2024	Issued to Consultants

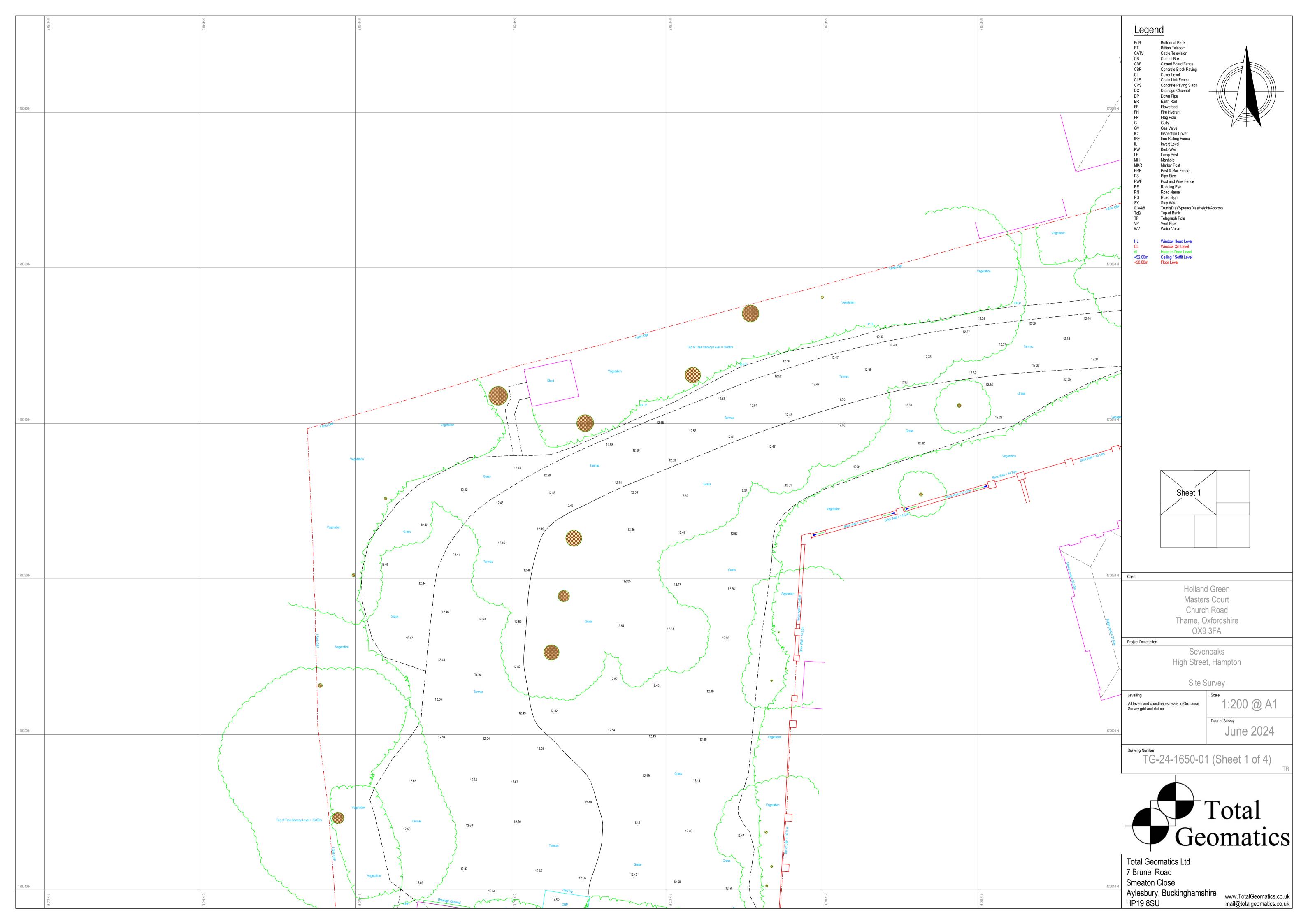
Ross - Sevenoaks

1553 Project Leader Sevenoaks, 101ਰ ਜਿੰਦ੍ਰਿਜ ਤਿਸੰਦਦ Hampton Middlesex London TW12 2SX

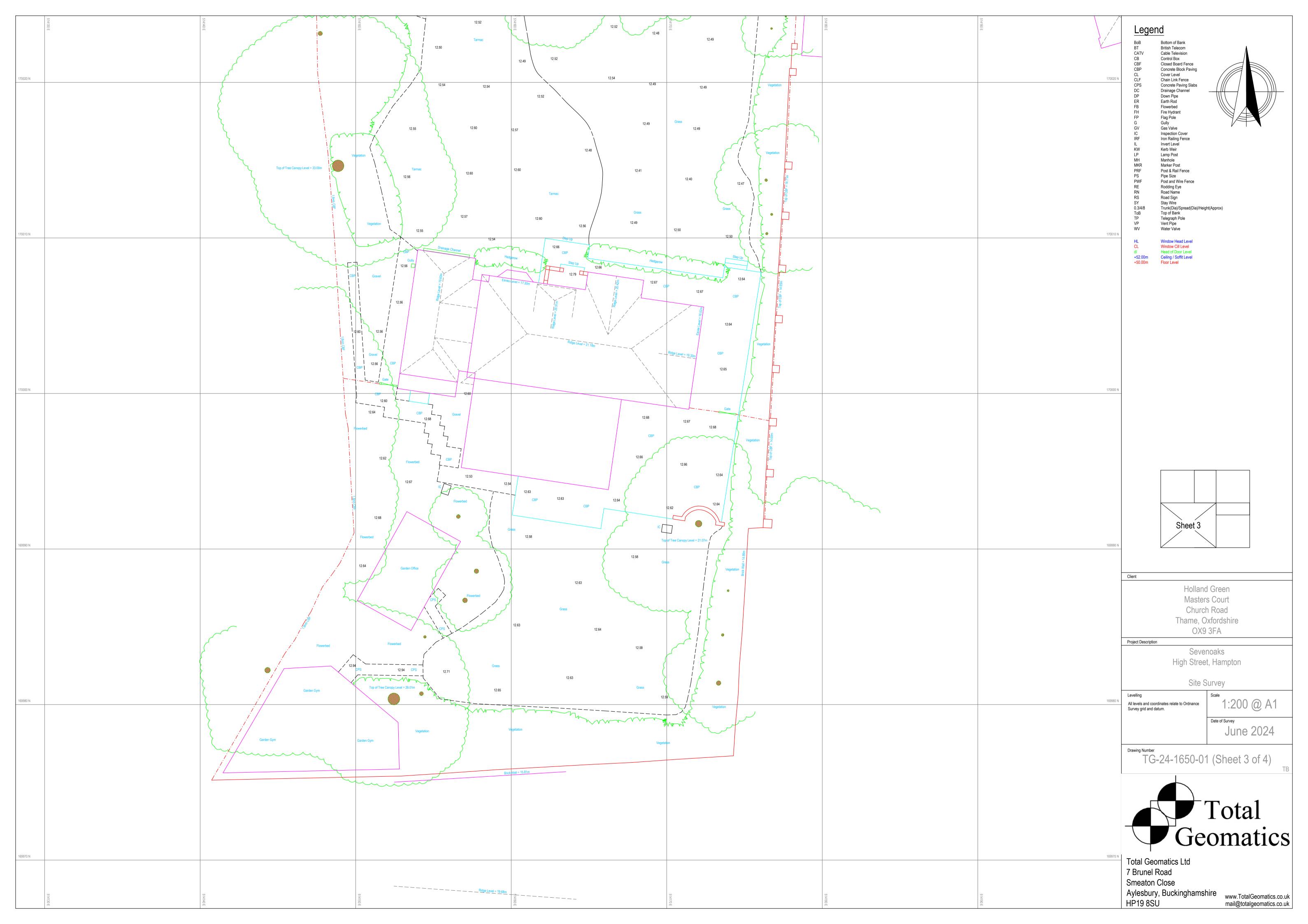
Laira Piccinato


10 September 2024


Drawing Number 051-109


PL-PL-5


The Old Grammar School Church Road Thame OX9 3AJ



APPENDICES

APPENDIX A

Create Consulting Engineers Ltd
CREATE CONSULTING ENGINEERS LT CREATE
CONSULTING ENGINEERS LT

NORWICH NR3 1AF

Search address supplied 101A

High Street Hampton TW12 2SX

Your reference P24-3285

Our reference ALS/ALS Standard/2024_5041579

Search date 28 August 2024

Notification of Price Changes

From 1st April 2024 Thames Water Property Searches will be increasing the prices of its CON29DW Residential and Commercial searches along with the Asset Location Search. Costs will rise in line with RPI as per previous years, which is sat at 6%.

Customers will be emailed with the new prices by February 28th 2024.

Any orders received with a higher payment prior to the 1^{st} April 2024 will be non-refundable. For further details on the price increase please visit our website at www.thameswater-propertysearches.co.uk.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: 101A, High Street, Hampton, TW12 2SX

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This search provides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts
 or highway drains. If any of these are shown on the copy extract they are shown for
 information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

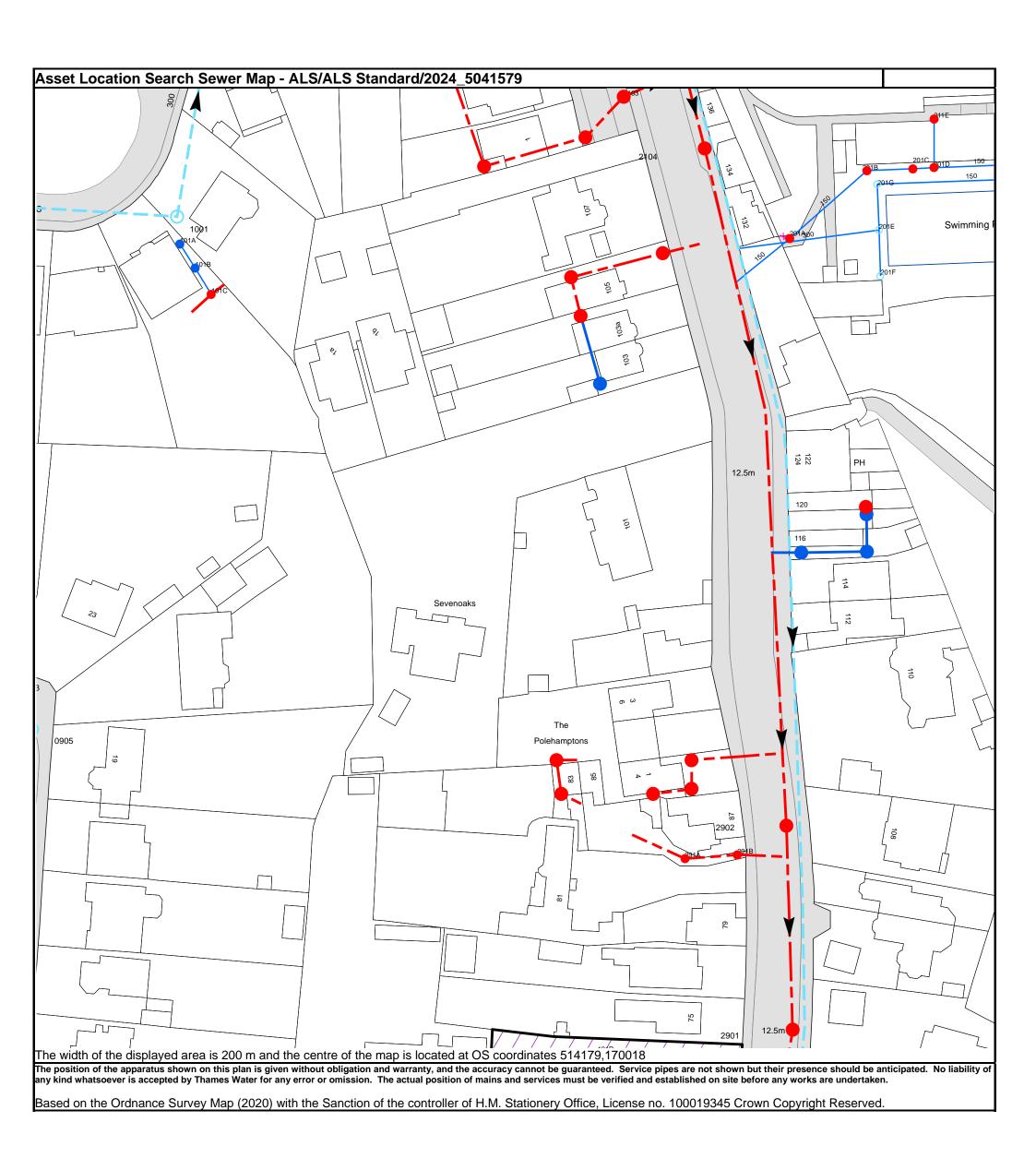
Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water)
Thames Water
Clearwater Court
Vastern Road
Reading
RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

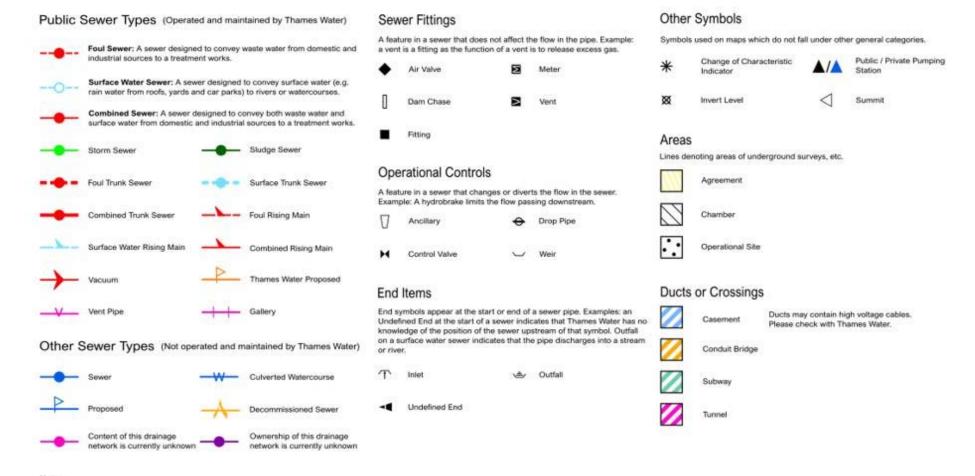

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk


<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Manhole Reference	Manhole Cover Level	Manhole Invert Level
11ZV	n/a	n/a
10ZY	n/a	n/a
2103	12.6	10.85
20ZT	n/a	n/a
2104	12.42	n/a
201A	12.553	10.753
2003	n/a	n/a
20ZY	n/a	n/a
20ZX	n/a	n/a
201B	12.297	11.107
201G	12.411	10.241
201E	12.508	10.058
201F	12.494	11.704
201C	12.284	11.254
201D	12.303	11.313
211E	n/a	n/a
19ZV	n/a	n/a
19ZW	n/a	n/a
10ZX	n/a	n/a
101C	n/a	n/a
10ZW	n/a	n/a
101B	n/a	n/a
101A	n/a	n/a
1001	12.67	10.93
11ZW	n/a	n/a
2901	12.34	9.7
291A	n/a	n/a
291B	n/a	n/a
2902	n/a	n/a
29ZV	n/a	n/a
29ZT	n/a	n/a
29ZS	n/a	n/a
20ZW	n/a	n/a

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

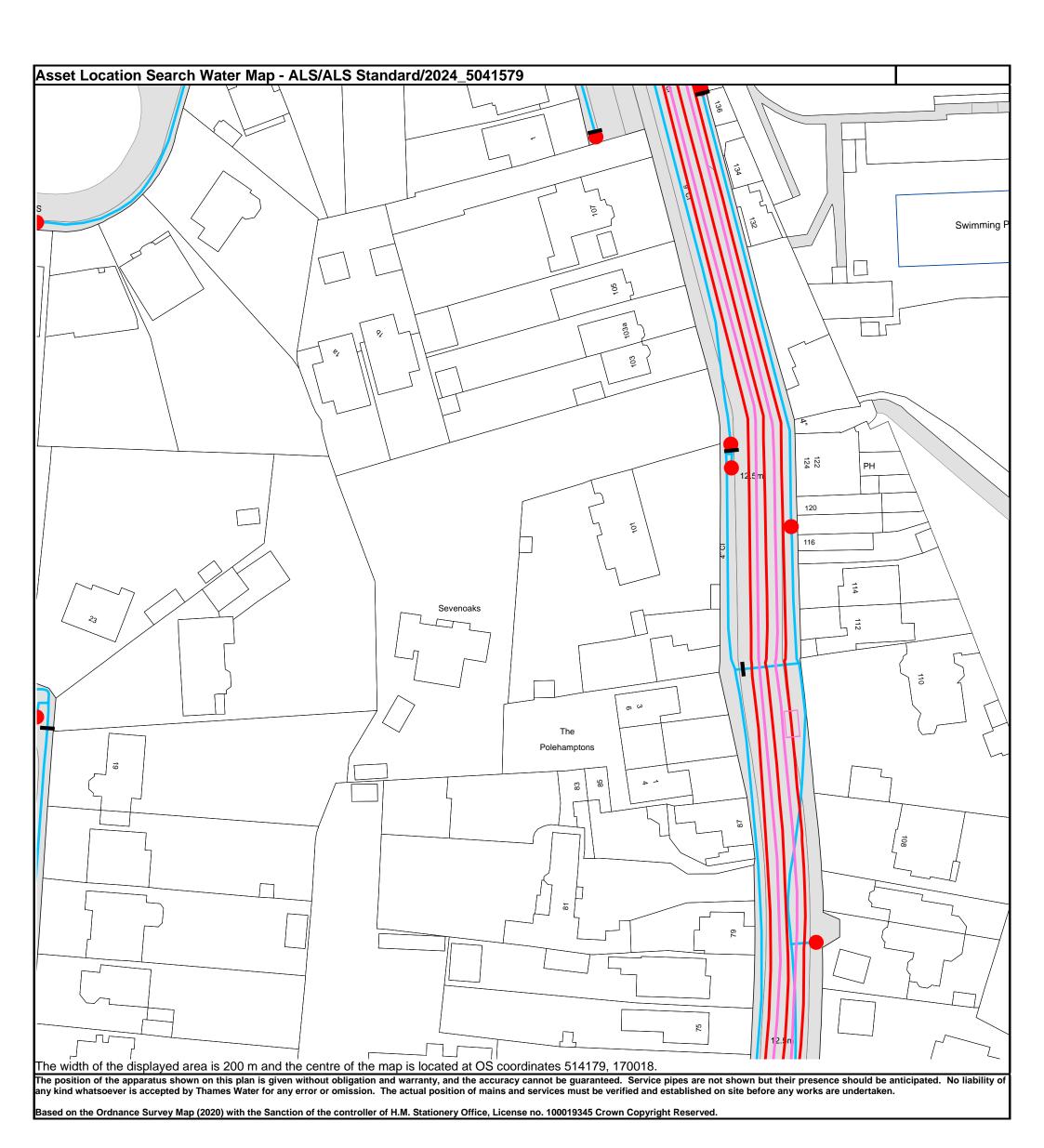
Asset Location Search - Sewer Key

5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in millimeters.

If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

Text next to a manhole indicates the manhole reference number and should not be taken as a measurement.


1) All levels associated with the plans are to Ordnance Datum Newlyn.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate the direction of flow.

T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

2) All measurements on the plan are metric.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Asset Location Search - Water Key

Water Pipes (Operated & Maintained by Thames Water)

water i	(Operated & Maintained by Thames Water)
4"	Distribution Main: The most common pipe shown on water maps. With few exceptions, domestic connections are only made to distribution mains.
16"	Trunk Main: A main carrying water from a source of supply to a treatment plant or reservoir, or from one treatment plant or reservoir to another. Also a main transferring water in bulk to smaller water mains used for supplying individual customers.
3" SUPPLY	Supply Main: A supply main indicates that the water main is used as a supply for a single property or group of properties.
3° FIRE	Fire Main: Where a pipe is used as a fire supply, the word FIRE will be displayed along the pipe.
3" METERED	Metered Pipe: A metered main indicates that the pipe in question supplies water for a single property or group of properties and that quantity of water passing through the pipe is metered even though there may be no meter symbol shown.
	Transmission Tunnel: A very large diameter water pipe. Most tunnels are buried very deep underground. These pipes are not expected to affect the structural integrity of buildings shown on the map provided.
	Proposed Main: A main that is still in the planning stages or in the

PIPE DIAMETER	DEPTH BELOW GROUND				
Up to 300mm (12")	900mm (3')				
300mm - 600mm (12" - 24")	1100mm (3' 8")				
600mm and bigger (24" plus)	1200mm (4')				

process of being laid. More details of the proposed main and its

reference number are generally included near the main.

Valves General PurposeValve Air Valve Pressure ControlValve Customer Valve Hydrants Single Hydrant Meters Meters Meter End Items Symbol indicating what happens at the end of a water main.

Blank Flange

Capped End

Emptying Pit
Undefined End
Manifold

Customer Supply

Fire Supply

Operational Sites Booster Station Other Other (Proposed) Pumping Station Service Reservoir Shaft Inspection Treatment Works Unknown Water Tower

Other Water Pipes (Not Operated or Maintained by Thames Water)

 Other Water Company Main: Occasionally other water company
water pipes may overlap the border of our clean water coverage
area. These mains are denoted in purple and in most cases have
the owner of the pipe displayed along them.

Private Main: Indiates that the water main in question is not owned by Thames Water. These mains normally have text associated with them indicating the diameter and owner of the pipe.

Payment Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment within 14 days of the date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service or will be held to be invalid.
- 4. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 5. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 6. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 980 8800.

If you are unhappy with our service, you can speak to your original goods or customer service provider. If you are still not satisfied with the outcome provided, we will refer the matter to a Senior Manager for resolution who will provide you with a response.

If you are still dissatisfied with our final response, and in certain circumstances such as you are buying a residential property or commercial property within certain parameters, The Property Ombudsman will investigate your case and give an independent view. The Ombudsman can award compensation of up to £25,000 to you if he finds that you have suffered actual financial loss and/or aggravation, distress, or inconvenience because of your search not keeping to the Code. Further information can be obtained by visiting www.tpos.co.uk or by sending an email to admin@tpos.co.uk.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0300 034 2222 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Ways to pay your bill

Credit Card	BACS Payment	Telephone Banking
Please Call 0800 009 4540 quoting your invoice number starting CBA or ADS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater.co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Sewer Flooding History Enquiry

Create Consulting Engineers Ltd

Search address supplied 101A

High Street Hampton TW12 2SX

Your reference P24-3285

Our reference SFH/SFH Standard/2024_5041580

Received date 28 August 2024

Search date 28 August 2024

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Sewer Flooding History Enquiry

Search address supplied: 101A, High Street, Hampton, TW12 2SX

This search is recommended to check for any sewer flooding in a specific address or area

TWUL, trading as Property Searches, are responsible in respect of the following:-

- (i) any negligent or incorrect entry in the records searched;
- (ii) any negligent or incorrect interpretation of the records searched;
- (iii) and any negligent or incorrect recording of that interpretation in the search report
- (iv) compensation payments

Sewer Flooding

History of Sewer Flooding

Is the requested address or area at risk of flooding due to overloaded public sewers?

The flooding records held by Thames Water indicate that there have been no incidents of flooding in the requested area as a result of surcharging public sewers.

For your guidance:

- A sewer is "overloaded" when the flow from a storm is unable to pass through it due to a permanent problem (e.g. flat gradient, small diameter).
 Flooding as a result of temporary problems such as blockages, siltation, collapses and equipment or operational failures are excluded.
- "Internal flooding" from public sewers is defined as flooding, which enters
 a building or passes below a suspended floor. For reporting purposes,
 buildings are restricted to those normally occupied and used for
 residential, public, commercial, business or industrial purposes.
- "At Risk" properties are those that the water company is required to include in the Regulatory Register that is presented annually to the Director General of Water Services. These are defined as properties that have suffered, or are likely to suffer, internal flooding from public foul, combined or surface water sewers due to overloading of the sewerage system more frequently than the relevant reference period (either once or twice in ten years) as determined by the Company's reporting procedure.
- Flooding as a result of storm events proven to be exceptional and beyond the reference period of one in ten years are not included on the At Risk Register.
- Properties may be at risk of flooding but not included on the Register where flooding incidents have not been reported to the Company.
- Public Sewers are defined as those for which the Company holds statutory responsibility under the Water Industry Act 1991.
- It should be noted that flooding can occur from private sewers and drains
 which are not the responsibility of the Company. This report excludes
 flooding from private sewers and drains and the Company makes no
 comment upon this matter.
- For further information please contact Thames Water on Tel: 0800 316 9800 or website www.thameswater.co.uk

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Appendix B

SOUTHEASTERN Project Name: Old High St P/O No.

Cleate Client:

BOREHOLE No. MOB

Rig Type: 1000

SPT Hammer No. SEDS 8 Date: 2-9-24

Project No.: 024 -3285

DESCRIPTION OF STRATA			DEPTH	DEPTH SAMPLES & INSITU TESTING						CAS	SING						
Soft / Firm / Colour Clayey Sand		TO BASE	Depth (m)					S.P.T. / C.P.T mm				&					
Stiff		Silty	SOIL	bands	OF STRATA	Туре	<u> </u>	- X X	blows	0	75	150	225	300	375		TER
Loose / Dense	Fine / Coarse / Medium	Sandy etc	TYPE	cobbles etc	m	No.	From	То	Vane	to 75 *	to 75 *	to 225	to 300	to 375	to 450	water	casin
IMEOS?	٥٥	Start of day's dr	illing		0-14	7)	0.40	5								water	Guoin
100	Soil	with	routs	~	6/2	0	1-50										
70	0.	1. 01	2 H		0.90	105	150	_		3	4	3	4	4	3	_	_
STOWN	7 Son	one co	y wis		0-10	6	30	_		4	4	4	4	4	5	2.0	2-:
and,	grewel.	7				13	000	3-0	1								
	U					0	1.0			4	_	6	7	Z	ヌ	3.0	7
						2	05.	4.0		4	5	0	7	7	7	0 0	J.
C .	1/01	/:			1 4	0	40	7 0									
OW	rall de	ovel)			1-20	C	4-50	_		4	5	5	3	2	2	4.0	4
	nd/gr	0/000			1. 4	B	4.5	5-2	>								
	may	Ciay			4.40	n	50			-				_			
		,				1250	50	_		3	3	2	5	0	6	550	5
						0)	0.0			3	4	1.	5	¥	7	n.	
						no	40			J	4	4	2	7	7	Dy	5
						757	500			4	5	6	7	¥	×	Ì	
						1) 8	30										
						MSI	8:00	-		4	5	0	×	7	8		
						0	70										
						ns	7.50	_		4	4	6	7	8	8	U	1
						101	0.0										
1E:/ 5	: 00	End of day's dri	lling		10.												
U = Und	disturbed; P :	= Piston; D =	Disturbed; B	= Bulk;	W = Water:	S = St	tandard	Penet	ration Te	st:	C = C	Cone P	l enetrat	ion Tes	t.	I V = Van	

SIZE (mm)	FROM (m)	TO (m)					
150	6-16	5.50					

DELAYS/E HARI	BAD ACC STRAT		T/
Cause and time encountered	From (m)	To (m)	Time (hr)
SETUP on	BHO	2	
Dig Pot d	01-2	DAY	16
lay out	Shee	Luy	to.
Keep !	Cleo	~	Eh

NAMES	& SIGNA	TURES
DRILLEI	3:	CLIENT:

		GR	OUNDWAT	ER DE	TAILS	3			
DATE	TIME	DEPTH OF	RATE OF	RISING TO MINS				CASING	SEALED
	INFL	INFLOW	INFLOW INFLOW		5 10 15 20		20	DEPTH	OL (LLD
	orde	ling a	rentes	a	2	-01	Y-	4.0u	h
		_		-					

* SPT if 25 seating blows are achieved, record the penetration, i.e. 25/50mm and restart penetration

01 11			REMARKS ,
Install	on	MStall	Sheet

See Form: INST1 for Installation details

WEATHER: Fine / Drizzling / Raining / Stormy / Snowy / Freezing

SOUTHEASTERN **DRILLING SERVICES LTD.**

RECORD OF EXPLORATORY HOLE INSTALLATION

EXPLORATORY HOLE No.

BMOZ

Project Name: 101A Migh St Harpton Project No: P24 - 3285

Equipment:

Date: 2 - 9 - 24

	PIEZOMETER (S)	STA	NDPIPE / GAS WELL
0.0.00	Pipe Diameter mm G.L. & Stopcock/Barrel Cover	0.0.00	Pipe Diameter
	Base of concrete m GROUT / ARISINGS		Base of concrete m Bean nie GROUT / ARISINGS
	Top of Seal		Top of Seal m Base of Seal m and Top of Sand Cell
	Piezo Tip m		Top of Slotted Pipe
	Base of Sand Cell m and Top of Seal		Filter Type = 9.1 c. 0. m Base of Slotted Pipe
	Base of Seal m		Base of Filter & m Top of Seal
	GROUT / ARISINGS		Base of Seal m
			GROUT / ARISINGS
And printed the state of the st	Base of Hole m		Base of Hole m

IF TWO PIEZOMETERS, STANDPIPES OR GAS WALLS ARE INSTALLED, USE A SEPERATE SHEET FOR SECOND INSTALLATION. DELETE OR AMEND DETAILS ON THIS SHEET AS APPROPRIATE, ie, IF INSTALLATION IS IN BASE OF BOREHOLE

DRILLER:

Colour

Client: Cleate

BOREHOLE No.

BHOI

Project Name: 101A High St. P/O No.

DESCRIPTION OF STRATA

Clayey

Rig Type: 04000

Soft / Firm / Stiff

SPT Hammer No. SEDS8

Sand

DEPTH TO BASE

OF

	T	M L RESERVE	LES &	INS			ING C.P.T m	nm		The state of the s	SING &
Туре	Depti	n (m)	blows	0	75	150	225	300	375	WA	TER
No.	From	То	Vane	to 75	to 75	to 225	to 300	to 375	to 450	DEPTH	
				*	*					water	casing
0	0.50	3									
01	10										
C	150	_		L	2	3	4	4	4	1	_
2	150	2-5							-		
0	2-0										
	2			7	1.	10	6	A	1	2.00	2.5

Stiff Loose /	Fine / Coarse /	- Silty Sandy	SOIL TYPE	bands	OF STRATA	Туре	From	To	blows Vane	0 to	75 to	150 to	225 to	300 to	375 to		TER PTH
Dense	Medium	etc	,,,,	etc	m	No.				75 *	75 *	225	300	375	450	water	casing
TIME: 07	30	Start of day's di			6/4	0	250	3									
10P 3	8011	with	1004)		0/0	0	0										
n.	800	1.0	n 1.	0/01 -	20-	0	20	_		l	2	3	4	4	4	_	-
1 21 Och	200	7717	1209	7	0-90	13	00	2-0									
Brown	Sone	el/9ra	relis		2-20	0	320			3	4	4	6	6	6	2.7	2.57
	^	9			2.00	R	250	2.5		0	7	Т		U		2,0	2.0
	gky	clay	9	_	4-80	n.	3-0	0 0									
	0 /	- 1				e :	350	(4	4	6	X	6	7	2.0	357
						130	300	4-1	•								
						-	4-0			1.	,	7	_	_)	1	1
						-49	95			4	4	7	8	5	4	4.0	4.5
200						1	500	2 0	3								
						-	200	_		2	3	4	5	6	6	50	5.0
14							5-3					,				5 3 4	5
0 1 10 10																	
7.						-											
						-	-										
TIME: (4)	w	End of day's dr	illing		6.0												
U = Undis	sturbed; P	= Piston; D =	= Disturbed;	B = Bulk;	W = Water;	S = S	tandard	Penet	ration Te	st;	C = 0	Cone P	enetrat	ion Tes	st;	V = Van	ie

	CASING	
SIZE (mm)	FROM (m)	TO (m)
150	6/4	5.50

DELAYS/E HARI	BAD AC		T /
Cause and time encountered	From (m)	To (m)	Time (hr)
Drop more	820	Two a	m
BHOI			
Diy PA	Ju 1.	222	Th.
dean	PBO	H 782	15 /2

NAMES & S	IGNATURES
DRILLER:	CLIENT:

054155				IAIL	K DE	OUNDWATE	GR		
SEALED	CASING	3	TO MINS	RISING T	F	DEPTH OF RATE OF		DATE TIME	
CLALLD	DEPTH	20	15	10	5	INFLOW INFLOW	DATE TIME	5,1,2	
	om	-4.	20-	2:		eter	lky a	add	
							0		
							U		

* SPT if 25 seating blows are achieved, record the penetration, i.e. 25/50mm and restart penetration

,	4	,		REMARKS	,	(/
lay out	Shre	Aun	D	Keep	clean	The
install	on	in Str	M	Sheer	+	

See Form: INST1 for Installation details

WEATHER: Fine / Drizzling / Raining / Stormy / Snowy / Freezing

SOUTHEASTERN **DRILLING SERVICES LTD.**

Equipment: Seas

RECORD OF EXPLORATORY **HOLE INSTALLATION**

EXPLORATORY HOLE No.

Project Name: OIA High ST Hampton Project No: P24-3285

Date: 3 - 9-24

BHOI

	PIEZOMETER (S)	STAN	IDPIPE / GAS WELL
0.0	Pipe Diameter mm	0 0	Pipe Diameter
0.0.00	G.L. & Stopcock/Barrel Cover	0.0.00	G.L. & Stopcock/Barrel Cover
	Base of concrete m		Base of concrete
	GROUT / ARISINGS		GROUT / ARISINGS
	Top of Seal m		Top of Seal
	Base of Seal m and Top of Sand Cell	0 0 0	Base of Seal
	Piezo Tip m		Top of Slotted Pipe
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Geowrap? Yes No
	Base of Sand Cell m and Top of Seal		Filter Type = 9. fc.e.l. O. m Base of Slotted Pipe
	Base of Seal m	。。。 ※	Base of Slotted Pipe
			Base of Filter & m Top of Seal
			Base of Seal m
	GROUT / ARISINGS		
8			GROUT / ARISINGS
	Base of Hole m		Base of Hole 6-3 m

IF TWO PIEZOMETERS, STANDPIPES OR GAS WALLS ARE INSTALLED, USE A SEPERATE SHEET FOR SECOND INSTALLATION. DELETE OR AMEND DETAILS ON THIS SHEET AS APPROPRIATE, ie, IF INSTALLATION IS IN BASE OF BOREHOLE

DRILLER:

APPENDIX C

M5-60: 20 mm 0.45

Wallingford Method - maps

create

For different durations,

From Table 1

Duration, D	Z1			
15 min	0.65	M5-15:	Z1 x M5-60	13.00 mm
30 min	0.82	M5-30:	Z1 x M5-60	16.40 mm
60 min	1	M5-60:	Z1 x M5-60	20.00 mm
6hr	1.51	M5-360:	Z1 x M5-60	30.20 mm

For different return intervals,

From Table 2*

		Z2	
Duration, D	M1	M30	M100
15 min	0.62	1.52	1.96
30 min	0.62	1.53	2.00
60 min	0.64	1.54	2.03
6 hr	0.68	1.51	1.97

Average point intensity, API = I/(D/60)

	D (min)	Calculation	I (mm)	API (mm/hr)
M 1-15	15	M5-15*Z2(M1)	8.06	32.24
M 1-30	30	M5-30*Z2(M1)	10.17	20.34
M 1-60	30	M5-360*Z2(M1)	12.80	25.60
M1-360	360	M5-360*Z2(M1)	20.54	3.42
M 30-15	15	M5-15*Z2(M30)	19.76	79.04
M 30-30	30	M5-30*Z2(M30)	25.09	50.18
M 30-60	60	M5-60*Z2(M30)	30.80	30.80
M30-360	360	M5-360*Z2(M30)	45.60	7.60
M 100-15	15	M5-15*Z2(M100)	25.48	101.92
M 100-30	30	M5-30*Z2(M100)	32.80	65.60
M100-60	60	M5-60*Z2(M100)	40.60	40.60
M100-360	360	M5-360*Z2(M100)	59.49	9.92

Peak Runoff

Q=2.78CiA Rational Method, SUDS Manual Section 4.3.3

where:

(1) C = Cv Cr

(2) i = API, defined above

(3) A = areas measured for subcatchments

therefore,

constant value for design purposes

Q=2.78CiA

C = 1.32.78*C= **3.614**

Cv = 1

Cr = 1.3

		Contributing Impermeal	ole Area (ha)
	i	Site	Per hectare
	mm/hr	0.02	1
M 1-15	32.24	2.33	116.52
M 1-30	20.34	1.47	73.49
M 1-60	25.60	1.85	73.49
M1-360	3.42	0.25	12.37
M 30-15	79.04	5.71	285.65
M 30-30	50.18	3.63	181.36

		Contributing Impe	rmeable Area (ha)
	i	Site	Per hectare
	mm/hr	0.02	1
M 30-60	30.80	2.23	181.36
M30-360	7.60	0.55	27.47
M 100-15	101.92	7.37	368.34
M 100-30	65.60	4.74	237.08
M 100-60	40.60	2.93	237.08
M100-360	9.92	0.72	35.84

Table 1

Minutes					Hours					
r	5	10	15	30	1	2	4	6	10	24
0.12	0.22	0.34	0.45	0.67	1.00	1.48	2.17	2.75	3.70	6.00
0.15	0.25	0.38	0.48	0.69	1.00	1.42	2.02	2.46	3.32	4.90
0.18	0.27	0.41	0.51	0.71	1.00	1.36	1.86	2.25	2.86	4.30
0.21	0.29	0.43	0.54	0.73	1.00	1.33	1.77	2.12	2.62	3.60
0.24	0.31	0.46	0.56	0.75	1.00	1.30	1.71	2.00	2.40	3.35
0.27	0.33	0.48	0.58	0.76	1.00	1.27	1.64	1.88	2.24	3.10
0.30	0.34	0.49	0.59	0.77	1.00	1.25	1.57	1.78	2.12	2.84
0.33	0.35	0.50	0.61	0.78	1.00	1.23	1.53	1.73	2.04	2.60
0.36	0.36	0.51	0.62	0.79	1.00	1.22	1.48	1.67	1.90	2.42
0.39	0.37	0.52	0.63	0.80	1.00	1.21	1.46	1.62	1.82	2.28
0.42	0.38	0.53	0.64	0.81	1.00	1.20	1.42	1.57	1.74	2.16
0.45	0.39	0.54	0.65	0.82	1.00	1.19	1.38	1.51	1.68	2.03

Rainfall Duration D

Table 2 - England and Wales

		Growth Fa	actor Z2							
M5 rainfall	M1	M2	M3	M4	M5	M10	M20	M50	M100	M30 interpolated
5.00	0.62	0.79	0.89	0.97	1.02	1.19	1.36	1.56	1.79	1.25
10.00	0.61	0.79	0.90	0.97	1.03	1.22	1.41	1.65	1.91	1.49
15.00	0.62	0.80	0.90	0.97	1.03	1.24	1.44	1.70	1.99	1.53
20.00	0.64	0.81	0.90	0.97	1.03	1.24	1.45	1.73	2.03	1.54
25.00	0.66	0.82	0.91	0.97	1.03	1.24	1.44	1.72	2.01	1.53
30.00	0.68	0.83	0.91	0.97	1.03	1.22	1.42	1.70	1.97	1.51
40.00	0.70	0.84	0.92	0.97	1.02	1.19	1.38	1.64	1.89	1.47
50.00	0.72	0.85	0.93	0.98	1.02	1.17	1.34	1.58	1.81	1.42
75.00	0.76	0.87	0.93	0.98	1.02	1.14	1.28	1.47	1.64	1.34
100.00	0.78	0.88	0.94	0.98	1.02	1.13	1.25	1.40	1.54	1.30
150.00	0.78	0.88	0.94	0.98	1.01	1.12	1.21	1.33	1.45	1.25
200.00	0.78	0.88	0.94	0.98	1.01	1.11	1.19	1.30	1.40	1.23

^{*} The rainfall depths from cells E8-E11 are compared with the depths given in cells J29-J40 and Z2 interpolated accordingly for each return period

^{**} Cv varies between 0.6 (rapidly draining soils) and 0.9 (heavy clay) with an average of 0.75 taken if ground conditions not known.

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

Latitude:	51.41753° N
Longitude:	0.35942° W

Site name:

Sevenoaks

101A High St, Hampton

This is an estimation of the greenfield runoff rates that

Tracey Tooke

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Date:

Aug 29 2024 15:38

1917748043

Runoff estimation approach

FEH Statistical

Site characteristics

Total site area (ha):

0.27

Methodology

Mothodology	
Q _{MED} estimation method:	Calculate from BFI and SAAR
BFI and SPR method:	Calculate from dominant HOST
HOST class:	7
BFI / BFIHOST:	0.682
Q _{MED} (I/s):	0.26
Q _{BAR} / Q _{MED} factor.	1.14

Hydrological characteristics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year:

Growth curve factor 30

Growth curve factor 100 years:

years:

Growth curve factor 200 years:

Derault	Laitea
598	598
6	6
0.85	0.85
2.3	2.3
3.19	3.19
3.74	3.74

Edited

Default

Notes

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is $SPR/SPRHOST \le 0.3$?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Q _{BAR} (I/s):	0.29	0.29
1 in 1 year (l/s):	0.25	0.25
1 in 30 years (l/s):	0.68	0.68
1 in 100 year (l/s):	0.94	0.94
1 in 200 years (l/s):	1.1	1.1

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Tracey Tooke
Site name:	
Site location:	

Site Details

Date:

51.41753° N Latitude: 0.35941° W Longitude: 1170465672

This is an estimation of the greenfield runoff rates that are used to meet normal best practice **Reference**: criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Aug 29 2024 15:45

Runoff estimation approach

FEH Statistical

Site characteristics

Total site area (ha):

Methodology

Q _{MED} estimation method:	Calculate from BFI and SAAR			
BFI and SPR method:	Calculate from dominant HOST			
HOST class:	7			
BFI / BFIHOST:	0.682			
Q _{MED} (I/s):	0.1			
Q _{BAR} / Q _{MED} factor.	1.14			

Notes

(1) Is $Q_{BAR} < 2.0 \text{ l/s/ha}$?

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

(2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

Hydrological characteristics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year.

Growth curve factor 30 years:

Growth curve factor 100 years:

Growth curve factor 200 years:

Default	Edited
598	598
6	6
0.85	0.85
2.3	2.3
3.19	3.19
3.74	3.74

(3) Is $SPR/SPRHOST \leq 0.3$?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Q _{BAR} (I/s):	0.11	0.11
1 in 1 year (l/s):	0.09	0.09
1 in 30 years (l/s):	0.25	0.25
1 in 100 year (l/s):	0.35	0.35
1 in 200 years (l/s):	0.41	0.41

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

APPENDIX D

File: Attenuation Tank 1 in 100 yr 40%

Network: Storm Network

Tracey Tooke 06/09/2024

Page 1

Design Settings

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	1.000	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	\checkmark
Maximum Rainfall (mm/hr)	50.0		

Nodes

Name			Cover Level (m)	Diameter (mm)	Depth (m)
MH1 MH2	0.030	5.00	12.640 12.640	1200 1200	1.340 1.514
TANK 1	0.030	5.00		1200	1.414

Pipeline Schedule

Link	U	•					US Depth (m)			•
1.000	1.000	13.5	100	Circular	12.640	11.300	1.240	12.640	11.226	1.314
1.001	1.000	10.0	100	Circular	12.640	11.226	1.314	12.640	11.126	1.414

LINK	US	Dia	Noae	IVIH	DS	Dia	Noae	IVIH
	Node	(mm)	Type	Type	Node	(mm)	Type	Type
1.000	MH1	1200	Manhole	Adoptable	TANK 1	1200	Manhole	Adoptable
1.001	TANK 1	1200	Manhole	Adoptable	MH2	1200	Manhole	Adoptable

Simulation Settings

Rainfall Methodology	FEH-22	Analysis Speed	Normal	Additional Storage (m³/ha)	0.0
Summer CV	1.000	Skip Steady State	Х	Check Discharge Rate(s)	Х
Winter CV	1.000	Drain Down Time (mins)	240	Check Discharge Volume	Х

Storm Durations

15	60	180	360	600	960	2160	4320	7200	10080
30	120	240	480	720	1440	2880	5760	8640	

Return Period (years)	(CC %)	Additional Area (A %)	Additional Flow (Q %)
2	0	0	0
30	35	0	0
100	40	0	0

Node MH2 Online Hydro-Brake® Control

Flap Valve	Х	Objective	(HE) Minimise upstream storage
Replaces Downstream Link	\checkmark	Sump Available	\checkmark
Invert Level (m)	11.126	Product Number	CTL-SHE-0045-1000-1143-1000
Design Depth (m)	1.143	Min Outlet Diameter (m)	0.075
Design Flow (I/s)	1.0	Min Node Diameter (mm)	1200

File: Attenuation Tank 1 in 100 yr 40%

Network: Storm Network

Tracey Tooke 06/09/2024

Page 2

Node TANK 1 Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 1.0 Invert Level (m) 11.226 Side Inf Coefficient (m/hr) 0.00000 Porosity 0.97 Time to half empty (mins)

Depth	Area	Inf Area									
(m)	(m²)	(m²)									
0.000	48.2	0.0	0.914	48.2	0.0	0.915	1.1	0.0	1.414	1.1	0.0

Rainfall

Dook

Average

Event

Event	Peak	Average
	Intensity	Intensity
	(mm/hr)	(mm/hr)
2 year 15 minute summer	103.926	29.407
2 year 15 minute winter	72.930	29.407
2 year 30 minute summer	66.192	18.730
2 year 30 minute winter	46.451	18.730
2 year 60 minute summer	43.005	11.365
2 year 60 minute winter	28.572	11.365
2 year 120 minute summer	32.476	8.583
2 year 120 minute winter	21.576	8.583
2 year 180 minute summer	26.683	6.866
2 year 180 minute winter	17.345	6.866
2 year 240 minute summer	21.706	5.736
2 year 240 minute winter	14.421	5.736
2 year 360 minute summer	16.818	4.328
2 year 360 minute winter	10.932	4.328
2 year 480 minute summer	13.198	3.488
2 year 480 minute winter	8.769	3.488
2 year 600 minute summer	10.724	2.933
2 year 600 minute winter	7.328	2.933
2 year 720 minute summer	9.473	2.539
2 year 720 minute winter	6.367	2.539
2 year 960 minute summer	7.649	2.014
2 year 960 minute winter	5.067	2.014
2 year 1440 minute summer	5.402	1.448
2 year 1440 minute winter	3.631	1.448
2 year 2160 minute summer	3.787	1.047
2 year 2160 minute winter	2.609	1.047
2 year 2880 minute summer	3.126	0.838
2 year 2880 minute winter	2.101	0.838
2 year 4320 minute summer	2.389	0.625
2 year 4320 minute winter	1.573	0.625
2 year 5760 minute summer	2.012	0.515
2 year 5760 minute winter	1.302	0.515
2 year 7200 minute summer	1.761	0.449
2 year 7200 minute winter	1.136	0.449
2 year 8640 minute summer	1.588	0.405
2 year 8640 minute winter	1.025	0.405
2 year 10080 minute summer	1.464	0.373
2 year 10080 minute winter	0.945	0.373
30 year +35% CC 15 minute summer	411.357	116.400
30 year +35% CC 15 minute winter	288.672	116.400
30 year +35% CC 30 minute summer	264.453	74.831
30 year +35% CC 30 minute winter	185.581	74.831
30 year +35% CC 60 minute summer	174.350	46.076

File: Attenuation Tank 1 in 100 yr 40%

Network: Storm Network

Tracey Tooke 06/09/2024

Page 3

<u>Rainfall</u>

	ntensity mm/hr)	Intensity
	mm/hrl	•
-	-	(mm/hr)
	115.834	46.076
,	111.590	29.490
30 year +35% CC 120 minute winter	74.138	29.490
30 year +35% CC 180 minute summer	86.147	22.169
30 year +35% CC 180 minute winter	55.998	22.169
30 year +35% CC 240 minute summer	67.693	17.889
30 year +35% CC 240 minute winter	44.974	17.889
30 year +35% CC 360 minute summer	50.454	12.983
30 year +35% CC 360 minute winter	32.796	12.983
30 year +35% CC 480 minute summer	38.735	10.237
30 year +35% CC 480 minute winter	25.735	10.237
30 year +35% CC 600 minute summer	30.998	8.479
30 year +35% CC 600 minute winter	21.180	8.479
30 year +35% CC 720 minute summer	27.065	7.254
30 year +35% CC 720 minute winter	18.190	7.254
30 year +35% CC 960 minute summer	21.475	5.655
30 year +35% CC 960 minute winter	14.225	5.655
30 year +35% CC 1440 minute summer	14.783	3.962
30 year +35% CC 1440 minute winter	9.935	3.962
30 year +35% CC 2160 minute summer	10.081	2.786
30 year +35% CC 2160 minute winter	6.946	2.786
30 year +35% CC 2880 minute summer	8.142	2.182
30 year +35% CC 2880 minute winter	5.472	2.182
30 year +35% CC 4320 minute summer	5.993	1.567
30 year +35% CC 4320 minute winter	3.947	1.567
30 year +35% CC 5760 minute summer	4.895	1.253
30 year +35% CC 5760 minute winter	3.169	1.253
30 year +35% CC 7200 minute summer	4.172	1.064
30 year +35% CC 7200 minute winter	2.693	1.064
30 year +35% CC 8640 minute summer	3.675	0.937
30 year +35% CC 8640 minute winter	2.372	0.937
30 year +35% CC 10080 minute summer	3.318	0.846
30 year +35% CC 10080 minute winter	2.141	0.846
•	549.859	155.591
•	385.866	155.591
•	356.117	100.769
•	249.907	100.769
•	235.754	62.303
•	156.629	62.303
,	148.810	39.326
100 year +40% CC 120 minute winter	98.866	39.326
•	114.526	29.471
100 year +40% CC 180 minute winter	74.445	29.471
100 year +40% CC 240 minute summer	90.019	23.789
100 year +40% CC 240 minute winter	59.806	23.789
100 year +40% CC 360 minute summer	67.352	17.332
100 year +40% CC 360 minute winter	43.781	17.332
100 year +40% CC 480 minute summer	51.835	13.699
100 year +40% CC 480 minute winter	34.438	13.699
100 year +40% CC 600 minute summer	41.524	11.358
100 year +40% CC 600 minute winter	28.372	11.358
100 year +40% CC 720 minute summer	36.263	9.719

File: Attenuation Tank 1 in 100 yr 40%

Network: Storm Network

Tracey Tooke 06/09/2024

Page 4

<u>Rainfall</u>

Event	Peak	Average
	Intensity	Intensity
	(mm/hr)	(mm/hr)
100 year +40% CC 720 minute winter	24.371	9.719
100 year +40% CC 960 minute summer	28.736	7.567
100 year +40% CC 960 minute winter	19.035	7.567
100 year +40% CC 1440 minute summer	19.695	5.278
100 year +40% CC 1440 minute winter	13.236	5.278
100 year +40% CC 2160 minute summer	13.287	3.672
100 year +40% CC 2160 minute winter	9.155	3.672
100 year +40% CC 2880 minute summer	10.616	2.845
100 year +40% CC 2880 minute winter	7.134	2.845
100 year +40% CC 4320 minute summer	7.660	2.003
100 year +40% CC 4320 minute winter	5.044	2.003
100 year +40% CC 5760 minute summer	6.150	1.574
100 year +40% CC 5760 minute winter	3.980	1.574
100 year +40% CC 7200 minute summer	5.169	1.319
100 year +40% CC 7200 minute winter	3.336	1.319
100 year +40% CC 8640 minute summer	4.500	1.148
100 year +40% CC 8640 minute winter	2.905	1.148
100 year +40% CC 10080 minute summer	4.023	1.026
100 year +40% CC 10080 minute winter	2.597	1.026

File: Attenuation Tank 1 in 100 yr 40%

Network: Storm Network

Tracey Tooke 06/09/2024 Page 5

Results for 2 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US	Peak		Depth		Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
240 minute summer	MH1	164	11.361	0.061	1.9	0.0688	0.0000	OK
240 minute summer	MH2	168	11.359	0.233	3.2	0.2638	0.0000	OK
240 minute summer	TANK 1	168	11.360	0.134	4.4	6.3959	0.0000	SURCHARGED

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
240 minute summer 240 minute summer	MH1 MH2	1.000 Hydro-Brake®	TANK 1	3.3 0.8	0.983	0.198	0.0064	14.0
240 minute summer	TANK 1	1.001	MH2	3.2	0.504	0.163	0.0078	

File: Attenuation Tank 1 in 100 yr 40%

Network: Storm Network

Tracey Tooke 06/09/2024 Page 6

Results for 30 year +35% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
240 minute winter	MH1	236	11.883	0.583	3.7	0.6599	0.0000	SURCHARGED
240 minute winter	MH2	236	11.883	0.757	2.5	0.8560	0.0000	OK
240 minute winter	TANK 1	236	11.883	0.657	7.2	31.4760	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
240 minute winter	MH1	1.000	TANK 1	3.5	1.156	0.214	0.0078	
240 minute winter	MH2	Hydro-Brake®		0.8				21.4
240 minute winter	TANK 1	1.001	MH2	2.5	0.599	0.131	0.0078	

File: Attenuation Tank 1 in 100 yr 40%

Network: Storm Network

Tracey Tooke 06/09/2024

Page 7

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
240 minute winter	MH1	236	12.172	0.872	5.0	0.9861	0.0000	SURCHARGED
240 minute winter	MH2	236	12.171	1.045	1.6	1.1820	0.0000	OK
240 minute winter	TANK 1	236	12.172	0.946	9.8	43.8595	0.0000	SURCHARGED

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
240 minute winter	MH1	1.000	TANK 1	4.8	1.190	0.289	0.0078	
240 minute winter	MH2	Hydro-Brake®		1.0				23.9
240 minute winter	TANK 1	1.001	MH2	1.6	0.577	0.081	0.0078	

APPENDIX E

LBR BIA Assessment Verification Form

Site Details	Applicant Information
Site Name	Sevenoaks
Planning Application Reference (If applicable)	N/A
Address and Postcode	Sevenoaks, 101 A High Street, Hampton, TW12 2SX
Brief description of the proposed works	Demolition of current dwelling and construction of
	replacement dwelling with basement
Geology type	Kempton Park Gravels and London Clay Formation
Presence of aquifer?	Yes – Kempton Park Gravels
Total Site Area	0.27 ha
Is the site currently know to be at risk of flooding	Long Term Flood Risk Maps show surface water
from any sources?	flooding at the site.

Professional Details	Application Information
Name	Graham Sinclair
Profession/Areas of Expertise	Flood Risk and Drainage Engineer
Chartered Institution and Membership Level	Charted Water and Environment Manager (C.WEM)
	with the Chartered Institute of Water and
	Environmental Management (CIWEM)
Brief description of the assessment involved	Replacement dwelling with basement
Brief Summary of the assessment results	Site is at risk of surface water flooding in isolated
	areas, but the location of the replacement house is
	outside the area of surface water risk.
	Perched groundwater is present in the Kempton
	Park Gravels Member. London Clay commences at
	5 m bgl. The true groundwater position will below
	the London Clay which is goes past 10 m bgl. The
	basement will interact with the perched
	groundwater, and the basement need to be suitable
	tanked to prevent groundwater ingress or seepage.
Signature	6. hirelan

GREATER **LONDON** AUTHORITY

The London Sustainable Drainage Proforma

Introduction

This proforma is intended to accompany a drainage strategy prepared for a planning application where required by national or local planning policy. It should be used to summarise the key outputs from the strategy to allow assessing officers at the Lead Local Flood Authority (LLFA) to quickly assess compliance with sustainable drainage (SuDS) planning ... The proforma is divided into 4 sections, which are intended to be used as follows:

- 1. Site and project information Provide summary details of the development, site and drainage
- 2. Proposed discharge arrangement Summarise site ground conditions to determine potential for infiltration. Select a surface water discharge method (or mix of methods) following the hierarchical approach set out in the London Plan.
- 3. Drainage strategy Prioritise SuDS measures that manage runoff as close to source as possible and contribute to the four main pillars of SuDS; amenity, biodiversity, water quality and water quantity.
- 4. Supporting information Provide cross references to the page or section of the drainage strategy report where the detailed information to support each element can be found. This may be more than one reference for each

Policy

Drainage strategies for developments in the London Borough of Richmond upon Thames need to comply with the following policies on SuDS:

- 1. London Borough of Richmond upon Thames Local Plan policy LP21
- 2. London Plan policy 5.13 and draft New London Plan policy SI13
- 3. The National Planning Policy Framework (NPPF)

Technical Guidance

- Post-development surface water discharge rate should be limited to greenfield runoff rates. Proposals for higher discharge rates should be agreed with the LLFA ahead of submission of the Planning Application. Clear evidence should be provided with the Planning Application to show why greenfield rates cannot be achieved.
- Greenfield runoff rate is the runoff rate from a site in its natural state, prior to any development. This should be calculated using one of the runoff estimation methods set out in Table 24.1 of CIRIA C753 The SuDS Manual.
- Attenuation storage volumes required to reduce post-development discharge rates to greenfield rates should be calculated using one of the runoff estimation methods set out in Table 24.1 of CIRIA C753 The SuDS Manual.
- 'CC' refers to climate change allowance from the current Environment Agency guidance.
- An operation and maintenance strategy for proposed SuDS measures should be submitted with the Planning Application and include the details set out in section 32.2 of CIRIA C753 The SuDS Manual. The manual should be site-specific and not directly reproduce parts of The SuDS Manual.
- Other useful sources of guidance are:
 - o Richmond upon Thames Sustainable Drainage guidance
 - o The London Plan Sustainable Design and Construction SPG
 - o DEFRA non-statutory technical standards for sustainable drainage
 - o Environment Agency climate change guidance
 - o CIRIA C753 The SuDS Manual

GREATER**LONDON**AUTHORITY

		Sevenoaks		
	Project / Site Name (including sub- catchment / stage / phase where	Maidenhead & Sunbury Management Catchment		
	appropriate)	outline planning		
	Address & post code	Sevenoaks, 101A High Street , Hampton, TW12 2SX		
	OS Grid ref. (Easting, Northing)	E 514164		
10	O3 GHd Tel. (Easting, Northing)	M 70010		
1. Project & Site Details	LPA reference (if applicable)			
	Brief description of proposed work	Replacement single occupancy dwelling		
	Total site Area	2700 m ²		
	Total existing impervious area	193.7 m ²		
	Total proposed impervious area	600 m ²		
	Is the site in a surface water flood risk catchment (ref. local Surface Water Management Plan)?	No but small areas of surface water flood risk on site		
	Existing drainage connection type and location	Assumend foul connection to tw sewer in High Street		
	Designer Name	Tracey Tooke		
	Designer Position	Senior Consultant Water & Flood Risk		
	Designer Company	Create Consulting Engineers Ltd		

	2a. Infiltration Feasibility				
	Superficial geology classification	Kempton Park Gravel Member		ember	
	Bedrock geology classification London Clay		у		
	Site infiltration rate	unknown m/s			
	Depth to groundwater level	2.0 (perched) m below ground lev		w ground level	
	Is infiltration feasible?	no concentrated features due to high perched groundwater		hed groundwater	
	2b. Drainage Hierarchy				
ements			Feasible (Y/N)	Proposed (Y/N)	
ang	1 store rainwater for later use		у	у	
2. Proposed Discharge Arrangements	2 use infiltration techniques, such as porous surfaces in non-clay areas		n	n	
	3 attenuate rainwater in ponds or open water features for gradual release		n	n	
roposed	4 attenuate rainwater by storing in tanks or sealed water features for gradual release 5 discharge rainwater direct to a watercourse		у	у	
2. F			n	n	
	6 discharge rainwater to a surface sewer/drain	ischarge rainwater to a surface water rer/drain		у	
	7 discharge rainwater to the combined sewer.		n	n	
	2c. Proposed Discharge Details				
	Proposed discharge location	Thames Water surface sewer in High Street		ver in	
	Has the owner/regulator of the discharge location been consulted?	no			

GREATER**LONDON**AUTHORITY

	3a. Discharge Rates & Required Storage				
		Greenfield (GF) runoff rate (I/s)	Existing discharge rate (I/s)	Required storage for GF rate (m ³)	Proposed discharge rate (I/s)
	Qbar	0.11			
	1 in 1	0.09	unknown	1.0	1.0
	1 in 30	0.25		1.0	1.0
	1 in 100	0.35		1.0	1.0
	1 in 100 + CC		\geq	1.0	1.0
	Climate change allowance used		40%		
3. Drainage Strategy	3b. Principal Method of Flow Control		hydrobrake		
e St	3c. Proposed SuDS Measures				
inag			Catchment	Plan area	Storage
Dra			area (m²)	(m ²)	vol. (m³)
3.	Rainwater harvesting		0		0
	Infiltration systems		0		0
	Green roofs		207.5 0	207.5 0	0
	Blue roofs		0	0	0
	Filter strips		0	0	0
	Filter drains		0	0	0
	Bioretention / tree pits		0	0	0
	Pervious pavements		51.5 0	51.5 0	0
	Swales		0	0	0
	Basins/ponds		0	0	0
	Attenuation tanks		600 0		43.86 0
	Total		0	0	0

	4a. Discharge & Drainage Strategy	Page/section of drainage report
ı	Infiltration feasibility (2a) – geotechnical factual and interpretive reports, including infiltration results	Appendix B - perched groundwater between 2 - 4 m bgl, infiltration unfesable except for shallow features draining themselves such as pathways etc.
	Drainage hierarchy (2b)	To surface sewer section 10 of report
	Proposed discharge details (2c) – utility plans, correspondence / approval from owner/regulator of discharge location	See drainage drawing and section 10 of the report
4. Supporting Information	Discharge rates & storage (3a) – detailed hydrologic and hydraulic calculations	Section 10 of the report and Appendix D
ting Inf	Proposed SuDS measures & specifications (3b)	Section 10 of the report and Appendix D
lodo	4b. Other Supporting Details	Page/section of drainage report
Sup	Detailed Development Layout	Appended Plans
4.	Detailed drainage design drawings, including exceedance flow routes	Drainage drawing appended
	Detailed landscaping plans	
	Maintenance strategy	Section 10 of the report
	Demonstration of how the proposed SuDS measures improve:	
	a) water quality of the runoff?	section 10 and Appendix D
	b) biodiversity?	Section 10
	c) amenity?	Section 10