Ref: GS-8427493 Your ref: 92068 Grid ref: 518477 177330

12.2 Open Access Land

Records within 250m 0

The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without having to use paths. Access land includes mountains, moors, heaths and downs that are privately owned. It also includes common land registered with the local council and some land around the England Coast Path. Generally permitted activities on access land are walking, running, watching wildlife and climbing.

This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m 0

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

This data is sourced from the Forestry Commission.

12.4 Environmental Stewardship Schemes

Records within 250m 0

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. The schemes identified may be historical schemes that have now expired, or may still be active.

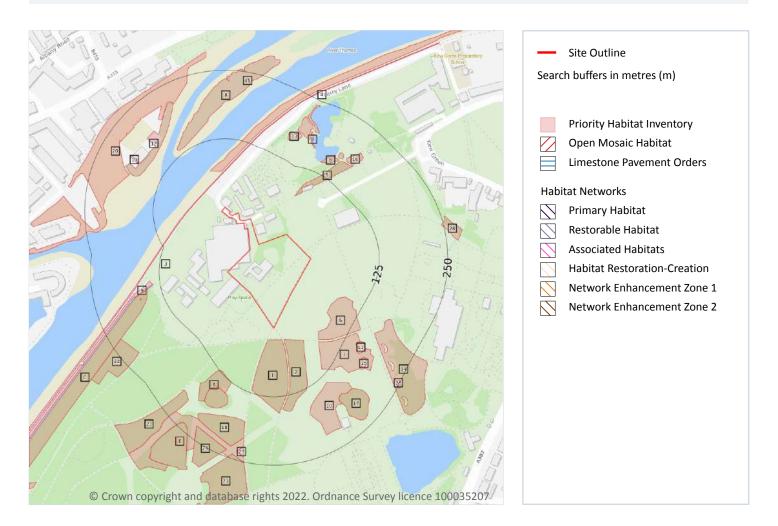
This data is sourced from Natural England.

12.5 Countryside Stewardship Schemes

Records within 250m 0

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

This data is sourced from Natural England.



Grid ref: 518477 177330

13 Habitat designations

13.1 Priority Habitat Inventory

Records within 250m 39

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

Features are displayed on the Habitat designations map on page 98

ID	Location	Main Habitat	Other habitats
1	21m S	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
2	28m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
3	46m NW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
4	66m N	Mudflats	Main habitat: MUDFL (INV > 50%)

Ref: GS-8427493 Your ref: 92068 Grid ref: 518477 177330

ID	Location	Main Habitat	Other habitats
5	72m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
6	73m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
7	84m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
Α	122m SW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
8	132m NW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
9	138m W	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
10	138m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
В	146m NE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
Α	147m SW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
11	147m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
С	149m W	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
12	157m NW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
13	159m NE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
D	166m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
14	169m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
15	169m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
В	170m NE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
16	172m NE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
17	172m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
18	177m S	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
19	177m NW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
D	177m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
20	181m W	Mudflats	Main habitat: MUDFL (INV > 50%)
С	187m W	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
D	194m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
21	198m SW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
Е	207m S	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
22	218m SW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)

08444 159 000

Ref: GS-8427493 **Your ref**: 92068

1001		32000	
Grid	ref:	518477	177330

ID	Location	Main Habitat	Other habitats
23	223m S	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
24	227m SW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
25	231m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
Е	238m SW	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
26	240m SE	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
27	241m S	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
28	246m E	Deciduous woodland	Main habitat: DWOOD (INV > 50%)

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m 0

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

This data is sourced from Natural England.

13.3 Open Mosaic Habitat

Records within 250m 0

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

This data is sourced from Natural England.

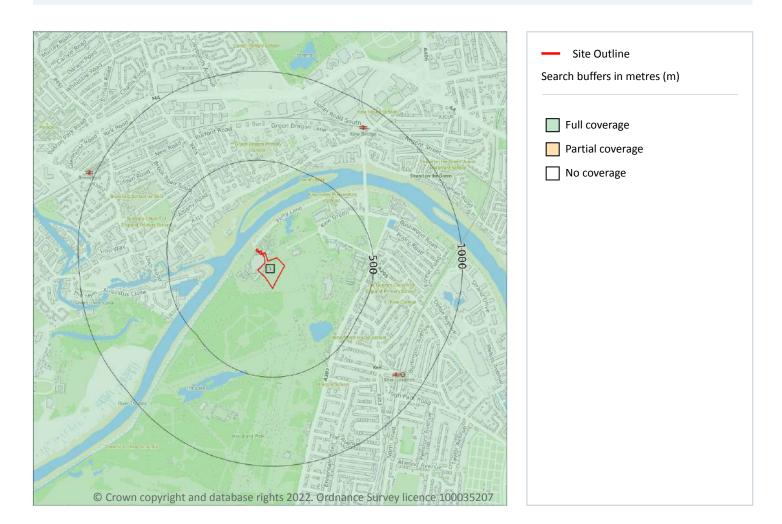
13.4 Limestone Pavement Orders

Records within 250m 0

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330


This data is sourced from Natural England.

Grid ref: 518477 177330

14 Geology 1:10,000 scale - Availability

14.1 10k Availability

Records within 500m

An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset provided by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:10,000 scale - Availability map on page 102

1	On site	Full	Full	Full	No coverage	TQ17NE
ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.

Grid ref: 518477 177330

Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

Records within 500m 11

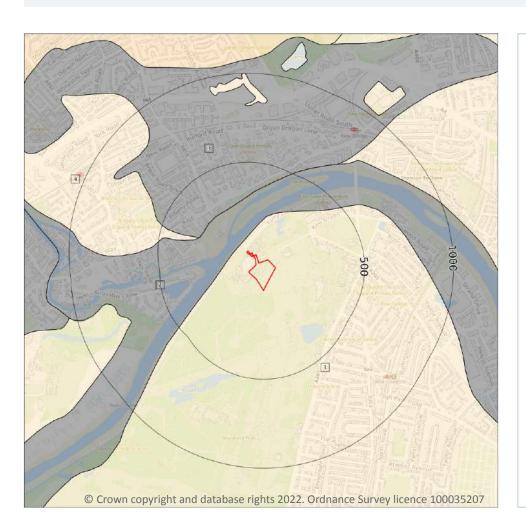
Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:10,000 scale - Artificial and made ground map on page 103

1 181m SE MGR-UKNOWN Made Ground (Undivided) Unknown/uncl	
The second (character)	assified Entry
2 256m SE MGR-UKNOWN Made Ground (Undivided) Unknown/uncl	assified Entry
3 259m NW MGR-UKNOWN Made Ground (Undivided) Unknown/uncl	assified Entry
4 269m W MGR-UKNOWN Made Ground (Undivided) Unknown/uncl	assified Entry

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330


ID	Location	LEX Code	Description	Rock description
5	289m SE	WGR-UKNOWN	Worked Ground (Undivided)	Unknown/unclassified Entry
6	299m SW	WGR-UKNOWN	Worked Ground (Undivided)	Unknown/unclassified Entry
7	323m SE	MGR-UKNOWN	Made Ground (Undivided)	Unknown/unclassified Entry
8	412m S	MGR-UKNOWN	Made Ground (Undivided)	Unknown/unclassified Entry
9	481m N	MGR-UKNOWN	Made Ground (Undivided)	Unknown/unclassified Entry
10	481m S	WGR-UKNOWN	Worked Ground (Undivided)	Unknown/unclassified Entry
11	493m S	MGR-UKNOWN	Made Ground (Undivided)	Unknown/unclassified Entry

Grid ref: 518477 177330

Geology 1:10,000 scale - Superficial

Site OutlineSearch buffers in metres (m)

Landslip (10k)

Superficial geology (10k) Please see table for more details.

14.3 Superficial geology (10k)

Records within 500m 4

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:10,000 scale - Superficial map on page 105

ID	Location	LEX Code	Description	Rock description
1	On site	KPGR-XSV	Kempton Park Gravel Formation - Sand And Gravel	Sand And Gravel
2	56m NW	ALV-Z	Alluvium - Silt (unlithified Deposits Coding Scheme)	Silt
3	259m NW	LASI-Z	Langley Silt Member - Silt (unlithified Deposits Coding Scheme)	Silt

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

ID	Location	LEX Code	Description	Rock description
4	279m W	KPGR-XSV	Kempton Park Gravel Formation - Sand And Gravel	Sand And Gravel

This data is sourced from the British Geological Survey.

14.4 Landslip (10k)

Records within 500m 0

Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.


This data is sourced from the British Geological Survey.

Grid ref: 518477 177330

Geology 1:10,000 scale - Bedrock

Search buffers in metres (m)

Site Outline

Bedrock faults and other linear features (10k)

Bedrock geology (10k) Please see table for more details.

14.5 Bedrock geology (10k)

Records within 500m

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 107

ID	Location	LEX Code	Description	Rock age
1	On site	LC-CLAY	London Clay Formation - Clay	Eocene Epoch

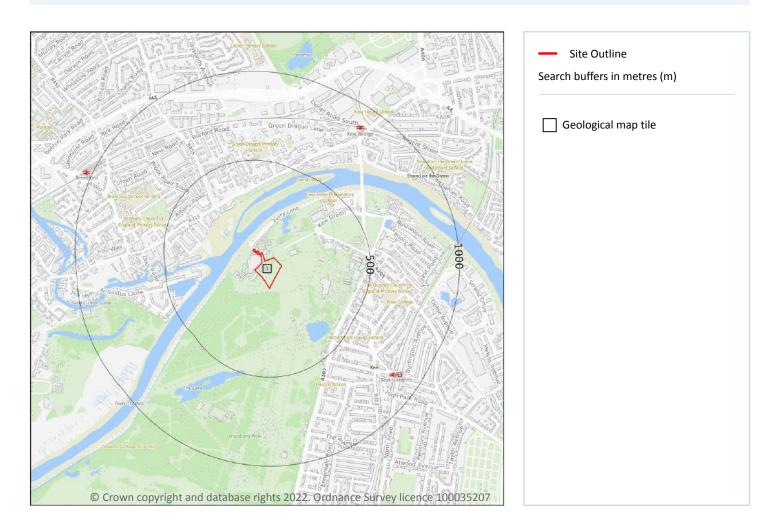
This data is sourced from the British Geological Survey.

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

14.6 Bedrock faults and other linear features (10k)

Records within 500m 0


Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

Grid ref: 518477 177330

15 Geology 1:50,000 scale - Availability

15.1 50k Availability

Records within 500m 1

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 109

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	Full	EW270_south_london_v4

This data is sourced from the British Geological Survey.

Grid ref: 518477 177330

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

Records within 500m 11

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:50,000 scale - Artificial and made ground map on page 110

ID	Location	LEX Code	Description	Rock description
1	188m SE	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
2	257m SE	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
3	259m NW	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
4	265m W	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT

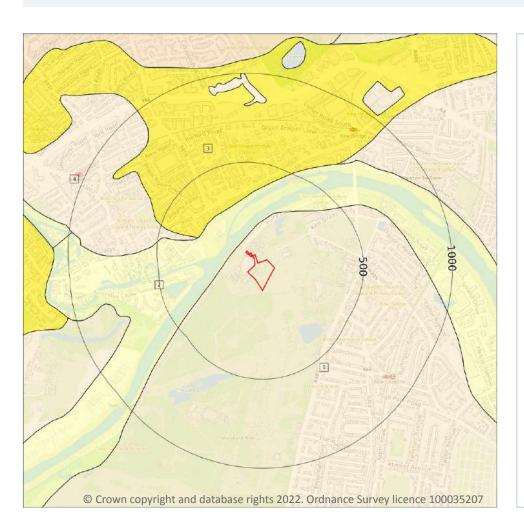
Ref: GS-8427493 Your ref: 92068 Grid ref: 518477 177330

ID	Location	LEX Code	Description	Rock description
5	286m SE	WGR-VOID	WORKED GROUND (UNDIVIDED)	VOID
6	300m SW	WGR-VOID	WORKED GROUND (UNDIVIDED)	VOID
7	333m SE	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
8	403m S	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
9	473m S	WGR-VOID	WORKED GROUND (UNDIVIDED)	VOID
10	481m N	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
11	493m S	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT

This data is sourced from the British Geological Survey.

15.3 Artificial ground permeability (50k)

Records within 50m 0


A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

Grid ref: 518477 177330

Geology 1:50,000 scale - Superficial

Site OutlineSearch buffers in metres (m)

Landslip (50k)

Superficial geology (50k) Please see table for more details.

15.4 Superficial geology (50k)

Records within 500m 4

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 112

ID	Location	LEX Code	Description	Rock description
1	On site	KPGR-XSV	KEMPTON PARK GRAVEL MEMBER	SAND AND GRAVEL
2	56m NW	ALV-XCZSP	ALLUVIUM	CLAY, SILT, SAND AND PEAT
3	259m NW	LASI-XCZ	LANGLEY SILT MEMBER	CLAY AND SILT
4	279m W	KPGR-XSV	KEMPTON PARK GRAVEL MEMBER	SAND AND GRAVEL

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

This data is sourced from the British Geological Survey.

15.5 Superficial permeability (50k)

Records within 50m 1

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Intergranular	Very High	High

This data is sourced from the British Geological Survey.

15.6 Landslip (50k)

Records within 500m 0

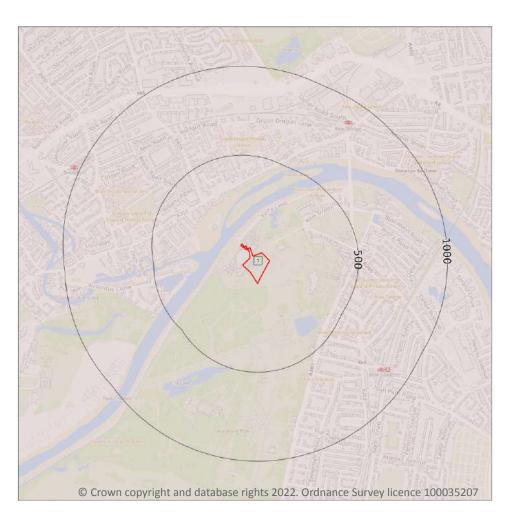
Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

15.7 Landslip permeability (50k)

Records within 50m 0

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).


This data is sourced from the British Geological Survey.

Grid ref: 518477 177330

Geology 1:50,000 scale - Bedrock

Site Outline
Search buffers in metres (m)

Bedrock faults and other linear features (50k)

Bedrock geology (50k)

Please see table for more details.

15.8 Bedrock geology (50k)

Records within 500m

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 114

ID	Location	LEX Code	Description	Rock age
1	On site	LC-XCZ	LONDON CLAY FORMATION - CLAY AND SILT	YPRESIAN

Grid ref: 518477 177330

15.9 Bedrock permeability (50k)

Records within 50m

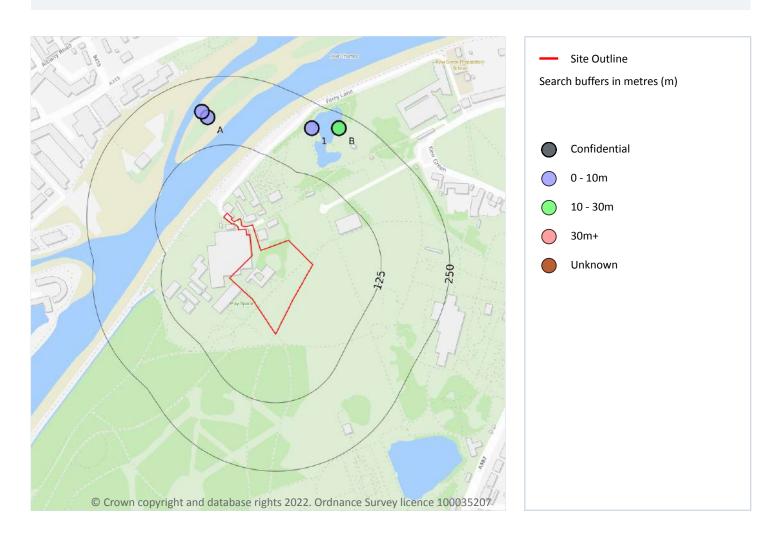
A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of bedrock (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Mixed	Low	Very Low

This data is sourced from the British Geological Survey.

15.10 Bedrock faults and other linear features (50k)

Records within 500m 0


Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

Grid ref: 518477 177330

16 Boreholes

16.1 BGS Boreholes

Records within 250m 5

The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

Features are displayed on the Boreholes map on page 116

ID	Location	Grid reference	Name	Length	Confidential	Web link
А	179m N	518360 177620	BRENTFORD ISLANDS 3049 4	9.14	N	580724
А	191m N	518350 177630	BRENTFORD ISLANDS 3049 1	9.14	N	580721
1	207m NE	518550 177600	KEW BOT GDNS TWA EASTERN TP 1	7.0	N	580741

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

ID	Location	Grid reference	Name	Length	Confidential	Web link
В	225m NE	518600 177600	KEW BOT GDNS TWA EASTERN TRIAL	6.5	N	580740
В	225m NE	518600 177600	KEW BOT GDNS NEW MUSEUM 1	10.5	N	580729

Grid ref: 518477 177330

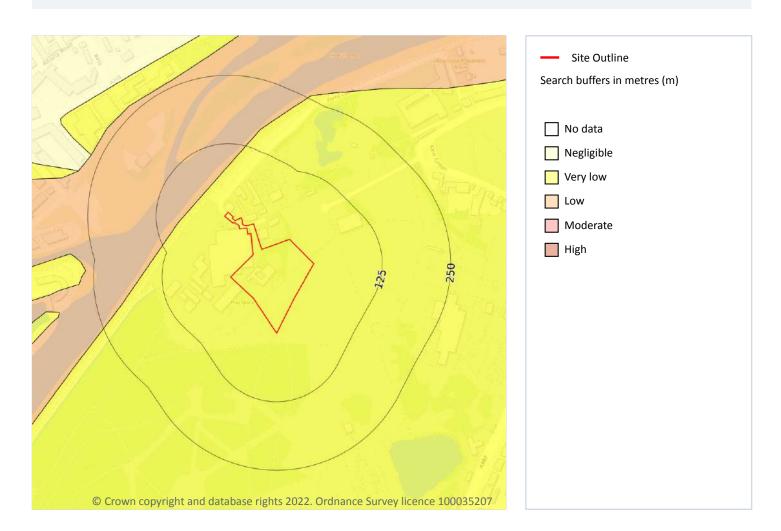
17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

Records within 50m 1

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 118


Location	Hazard rating	Details
On site	Negligible	Ground conditions predominantly non-plastic.

Grid ref: 518477 177330

Natural ground subsidence - Running sands

17.2 Running sands

Records within 50m 1

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 119

Location	Hazard rating	Details
On site	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.

Grid ref: 518477 177330

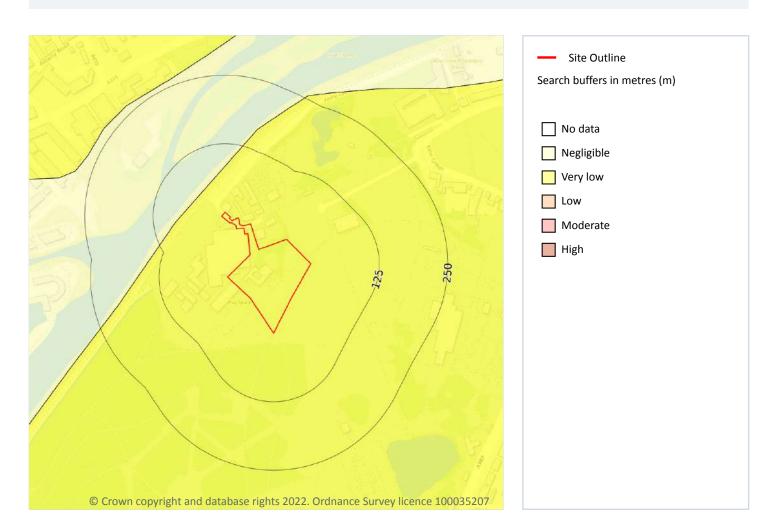
Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m 1

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 120


Location	Hazard rating	Details
On site	Negligible	Compressible strata are not thought to occur.

Grid ref: 518477 177330

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

Records within 50m

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 121

Location	Hazard rating	Details
On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

Grid ref: 518477 177330

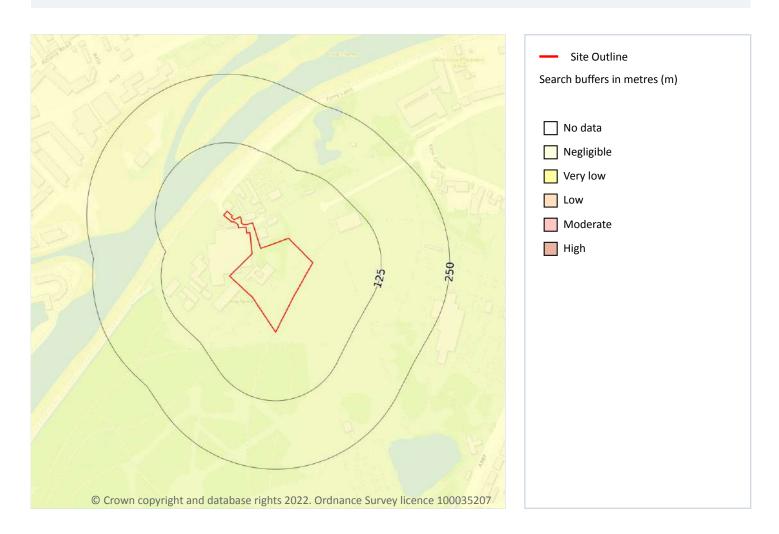
Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m 1

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 122


Locatio	n Hazard rating	Details
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

Ref: GS-8427493 Your ref: 92068 Grid ref: 518477 177330

Natural ground subsidence - Ground dissolution of soluble rocks

17.6 Ground dissolution of soluble rocks

Records within 50m 1

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on **page** 123

Location	Hazard rating	Details
On site	Negligible	Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present.

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

This data is sourced from the British Geological Survey.

Grid ref: 518477 177330

18 Mining, ground workings and natural cavities

18.1 Natural cavities

Records within 500m 0

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Stantec UK Ltd.

Grid ref: 518477 177330

0

18.2 BritPits

Records within 500m

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

This data is sourced from the British Geological Survey.

18.3 Surface ground workings

Records within 250m 37

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining, ground workings and natural cavities map on page 125

1 19m SW Unspecified Ground Workings 1898 1:10560 A 94m E Unspecified Heap 1948 1:10560 A 94m E Unspecified Heap 1948 1:10560 B 144m SE Unspecified Heap 1961 1:10560 B 145m SE Unspecified Heap 1948 1:10560 B 145m SE Unspecified Heap 1913 1:10560 B 149m SE Unspecified Pit 1933 1:10560 2 153m NE Ponds 1987 1:10000 C 157m NW Pond 1898 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1966 1:10560	ID	Location	on Land Use	Year of mapping	Mapping scale
A 94m E Unspecified Heap 1948 1:10560 B 144m SE Unspecified Heap 1961 1:10560 B 145m SE Unspecified Heap 1948 1:10560 B 145m SE Unspecified Heap 1913 1:10560 B 149m SE Unspecified Pit 1933 1:10560 2 153m NE Ponds 1987 1:10000 C 157m NW Pond 1898 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	1	19m SW	V Unspecified Ground Workings	1898	1:10560
B 144m SE Unspecified Heap 1961 1:10560 B 145m SE Unspecified Heap 1948 1:10560 B 145m SE Unspecified Heap 1913 1:10560 B 145m SE Unspecified Pit 1933 1:10560 B 149m SE Unspecified Pit 1987 1:10000 C 157m NW Ponds 1987 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	А	94m E	Unspecified Heap	1948	1:10560
B 145m SE Unspecified Heap 1948 1:10560 B 145m SE Unspecified Heap 1948 1:10560 B 145m SE Unspecified Heap 1913 1:10560 B 149m SE Unspecified Pit 1933 1:10560 C 153m NE Ponds 1987 1:10000 C 157m NW Pond 1898 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	А	94m E	Unspecified Heap	1948	1:10560
B 145m SE Unspecified Heap 1948 1:10560 B 145m SE Unspecified Heap 1913 1:10560 B 149m SE Unspecified Pit 1933 1:10560 2 153m NE Ponds 1987 1:10000 C 157m NW Pond 1898 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	В	144m SE	E Unspecified Heap	1961	1:10560
B 145m SE Unspecified Heap 1913 1:10560 B 149m SE Unspecified Pit 1933 1:10560 2 153m NE Ponds 1987 1:10000 C 157m NW Pond 1898 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	В	145m SE	E Unspecified Heap	1948	1:10560
B 149m SE Unspecified Pit 1933 1:10560 2 153m NE Ponds 1987 1:10000 C 157m NW Pond 1898 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	В	145m SE	E Unspecified Heap	1948	1:10560
2 153m NE Ponds 1987 1:10000 C 157m NW Pond 1898 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	В	145m SE	E Unspecified Heap	1913	1:10560
C 157m NW Pond 1898 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	В	149m SE	E Unspecified Pit	1933	1:10560
D 178m SE Unspecified Heap 1948 1:10560 D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	2	153m NE	NE Ponds	1987	1:10000
D 178m SE Unspecified Heap 1948 1:10560 D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	С	157m NW	NW Pond	1898	1:10560
D 182m SE Unspecified Heap 1961 1:10560 D 182m SE Unspecified Heap 1966 1:10560	D	178m SE	E Unspecified Heap	1948	1:10560
D 182m SE Unspecified Heap 1966 1:10560	D	178m SE	E Unspecified Heap	1948	1:10560
	D	182m SE	E Unspecified Heap	1961	1:10560
D 193m SE Unspecified Heap 1074 1:10000	D	182m SE	E Unspecified Heap	1966	1:10560
D 102111 3E UTSpecified fleath 1374 1:10000	D	182m SE	E Unspecified Heap	1974	1:10000
D 183m SE Unspecified Heap 1893 1:10560	D	183m SE	E Unspecified Heap	1893	1:10560
D 184m SE Unspecified Heap 1933 1:10560	D	184m SE	E Unspecified Heap	1933	1:10560

Ref: GS-8427493 Your ref: 92068 Grid ref: 518477 177330

ID	Location	Land Use	Year of mapping	Mapping scale
D	185m SE	Unspecified Heap	1867	1:10560
D	192m SE	Unspecified Heap	1920	1:10560
D	192m SE	Unspecified Heap	1938	1:10560
С	197m W	Unspecified Wharf	1961	1:10560
С	201m W	Water Body	1933	1:10560
С	201m W	Water Body	1894	1:10560
D	203m SE	Unspecified Heap	1894	1:10560
D	203m SE	Unspecified Ground Workings	1911	1:10560
D	205m SE	Unspecified Ground Workings	1898	1:10560
3	209m SE	Unspecified Heap	1933	1:10560
Е	219m W	Dock	1938	1:10560
4	220m NE	Unspecified Heap	1987	1:10000
F	227m W	Canal	1894	1:10560
F	233m W	Canal	1933	1:10560
G	236m NE	Unspecified Hole	1873	1:10560
F	243m W	Canal	1938	1:10560
F	244m W	Canal	1935	1:10560
G	249m NE	Unspecified Hole	1933	1:10560
G	250m NE	Unspecified Hole	1920	1:10560
G	250m NE	Unspecified Hole	1938	1:10560

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground workings

Records within 1000m 0

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

This is data is sourced from Ordnance Survey/Groundsure.

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

18.5 Historical Mineral Planning Areas

Records within 500m 0

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m 0

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

This data is sourced from the British Geological Survey.

18.7 Mining cavities

Records within 1000m 0

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Stantec UK Ltd.

18.8 JPB mining areas

Records on site 0

Areas which could be affected by former coal and other mining. This data includes some mine plans unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

18.9 Coal mining

Records on site 0

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

18.10 Brine areas

Records on site 0

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.11 Gypsum areas

Records on site 0

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.12 Tin mining

Records on site 0

Generalised areas that may be affected by historical tin mining.

This data is sourced from Groundsure.

18.13 Clay mining

Records on site 0

Generalised areas that may be affected by kaolin and ball clay extraction.

This data is sourced from the Kaolin and Ball Clay Association (UK).

Grid ref: 518477 177330

19 Radon

19.1 Radon

Records on site 1

Estimated percentage of dwellings exceeding the Radon Action Level. This data is the highest resolution radon dataset available for the UK and is produced to a 75m level of accuracy to allow for geological data accuracy and a 'residential property' buffer. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain. The data was derived from both geological assessments and long term measurements of radon in more than 479,000 households.

Features are displayed on the Radon map on page 130

Location	Estimated properties affected	Radon Protection Measures required
On site	Less than 1%	None**

This data is sourced from the British Geological Survey and Public Health England.

Grid ref: 518477 177330

2

20 Soil chemistry

20.1 BGS Estimated Background Soil Chemistry

Records within 50m

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	No data	No data	No data	No data	No data	No data	No data
On site	No data	No data	No data	No data	No data	No data	No data

This data is sourced from the British Geological Survey.

20.2 BGS Estimated Urban Soil Chemistry

Records within 50m 12

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

Location	Arsenic (mg/kg)	Bioaccessible Arsenic (mg/kg)	Lead (mg/kg)	Bioaccessible Lead (mg/kg)	Cadmium (mg/kg)	Chromiu m (mg/kg)	Copper (mg/kg)	Nickel (mg/kg)	Tin (mg/k g)
On site	18	3.2	127	87	0.4	55	25	18	8
On site	19	3.3	145	100	0.4	56	28	19	10
On site	20	3.5	155	106	0.4	59	31	19	11
On site	20	3.5	146	100	0.4	59	30	19	10
On site	20	3.5	178	122	0.5	59	35	20	13
On site	20	3.5	187	128	0.5	61	38	21	14
On site	20	3.5	148	102	0.5	63	33	19	11

Ref: GS-8427493 Your ref: 92068 Grid ref: 518477 177330

Location	Arsenic (mg/kg)	Bioaccessible Arsenic (mg/kg)	Lead (mg/kg)	Bioaccessible Lead (mg/kg)	Cadmium (mg/kg)	Chromiu m (mg/kg)	Copper (mg/kg)	Nickel (mg/kg)	Tin (mg/k g)
5m NE	20	3.5	166	114	0.4	56	32	20	11
20m SW	21	3.7	140	96	0.4	61	30	19	10
24m S	20	3.5	125	86	0.4	60	26	18	8
29m S	19	3.3	125	86	0.4	56	25	18	8
48m E	17	3	127	87	0.3	54	24	17	8

This data is sourced from the British Geological Survey.

20.3 BGS Measured Urban Soil Chemistry

Records within 50m 0

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

This data is sourced from the British Geological Survey.

Ref: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

21 Railway infrastructure and projects

21.1 Underground railways (London)

Records within 250m 0

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

21.2 Underground railways (Non-London)

Records within 250m 0

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

This data is sourced from publicly available information by Groundsure.

21.3 Railway tunnels

Records within 250m

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

21.4 Historical railway and tunnel features

Records within 250m 0

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

This data is sourced from Ordnance Survey/Groundsure.

21.5 Royal Mail tunnels

Records within 250m 0

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

WHITE PEAKS CAFE, ROYAL BOTANIC GARDENS, KEW GREEN, KEW, TW9 3AB **Ref**: GS-8427493 **Your ref**: 92068

Grid ref: 518477 177330

This data is sourced from Groundsure/the Postal Museum.

21.6 Historical railways

Records within 250m 0

Former railway lines, including dismantled lines, abandoned lines, disused lines, historic railways and razed lines.

This data is sourced from OpenStreetMap.

21.7 Railways

Records within 250m 0

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways.

This data is sourced from Ordnance Survey and OpenStreetMap.

21.8 Crossrail 1

Records within 500m 0

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

21.9 Crossrail 2

Records within 500m 0

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

21.10 HS2

Records within 500m 0

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

This data is sourced from HS2 ltd.

WHITE PEAKS CAFE, ROYAL BOTANIC GARDENS, KEW GREEN, KEW, TW9 3AB Ref: GS-8427493 Your ref: 92068 Grid ref: 518477 177330

Data providers

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see https://www.groundsure.com/sources-reference.

Terms and conditions

Groundsure's Terms and Conditions can be accessed at this link: https://www.groundsure.com/terms-and-conditions-jan-2020/.

 $\label{eq:Appendix B-Contamination Assessment Data} Appendix \ B-Contamination \ Assessment \ Data$

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

Ca	able Percussive	Borehole Record	Project No.	BH01
Project:	RBG Kew Lear	ning Centre	210699	51101
Client:	lient: Royal Botanical Gardens Kew		Date Start:	01/02/2022
Plant:	00 0	ools+Cable Percussive	Date End:	01/02/2022
Lo	gged by	Checked by	Ground Level:	7.14mAOD
	EBE	RHG	Coordinates:	518440.16(E)
	Sheet	Scale		177317.62(N)
	1 of 2	1:50		

					1 of 2				:50				
	C+	ratum Desc	orintion		Legend		Depth	Level	Sa	mple an	d In Situ	Testing	Water
	Si	ialuiii Desi	лриоп		Legend		(m)	(m)	Туре	Depth (m)	Re	sults	Strikes
and. Gra	ROUND: Dark vel is fine to c clinker, slate,	oarse, sub-r	ounded to ang			- - - - - -			ES	0.50			
						- - - 1 - - -			В	1.00			
						- - - - - - 2			D SPT B	1.50 1.50 2.00	N=18 (3	,4/4,5,4,5)	
	ense, light bro				L .	- - -	2.20	4.94	SPT	2.50	N=36 (6,	8/8,9,9,10)	
EMPTO	IN PARK GRA	VEL MEMBI	ER)			3			D	3.00			
						- - - - -			SPT	3.50	N=37 (5,	7/9,8,9,11)	
						4			D	4.00			
									SPT	4.50	N=34 (6	,7/8,8,9,9)	
						5			D	5.00			
		Sa <u>nd a</u>	and gravel b	ecoming loo	ose.	6			B SPT	6.00 6.00	N=7 (2,	3/2,2,1,2)	
						- - - - -			D	7.00			
	Sand	d and grave	l becoming i	medium der	nse.				SPT	7.50	N=22 (1	,5/5,5,5,7)	
ne to me ONDON	ff, light brown, dium, sub-ano I CLAY FORM ming stiff, gre	gular flint and IATION)	velly, sandy Cl d quartzite.	LAY. Gravel is	S	- 8 - - - -	8.00	-0.86 -1.26	В	8.00			
ONDON.	I CLAY FORM	IATION)			 	_ _ _ _ 9			D	9.00			
						- - - - - - - -			U	9.00 - 9.45	Ublo	ow=60	
						10			D	10.00			
										1	1		
Hole D	Diameter Diameter	Casing Depth Base	Diameter Diameter	Depth Top	Ch Depth Base	iselling Dura		Tool		pth Strike	Grou Rising to	indwater Time	Rem

Remarks

Position CAT scanned and started with hand dug inspection pit to 1.2m bgl. Groundwater not encountered.

Position terminated at target depth of 15.00m bgl.

Location backfilled with compacted arisings.

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

Ca	able Percussive	Borehole Record	Project No.		BH01
Project:	RBG Kew Lear	ning Centre	210699		51101
Client:	Royal Botanica	l Gardens Kew	Date Start:	0	1/02/2022
Plant:	Hand Digging T Rig	Tools+Cable Percussive	Date End:	0	1/02/2022
Lo	ogged by	Checked by	Ground Level:	7	.14mAOD
	EBE	RHG	Coordinates:	51	8440.16(E)
	Sheet	Scale		17	7317.62(N)
	2 of 2	1:50			

	2 of 2		1	:50				
Stratum Description	Legend	Depth	Level	Sa	mple and	d In Situ Testing	Water Strikes	W
	Legend	(m)	(m)	Туре	Depth (m)	Results	Strikes	V'
irm becoming stiff, grey CLAY. LONDON CLAY FORMATION)				D SPT D	10.50 10.50 11.00	N=21 (3,4/5,5,5,6)		
	 			D U	12.00 12.00 - 12.45	Ublow=85		
	13 13			D	13.00			
				D SPT	13.50 13.50	N=20 (3,4/4,5,6,5)		
	14 14 			D	14.00			
End of Borehole at 15.00m	15	15.00	-7.86	D U	15.00 15.00 - 15.45	Ublow=100		
	- 16 							
	- - - - - - - - - - - - - - - - - - -							
	— 19 - - - - - - - - - -							
Hole Diameter Casing Diameter						Crowndivister		
oth Base Diameter Depth Base Diameter Dep	Chiselling h Top Depth Base Dura	ition	Tool	De	pth Strike	Groundwater Rising to Time	Rema	ark
15.00 200 8.80 200								

Remarks

Position CAT scanned and started with hand dug inspection pit to 1.2m bgl. Groundwater not encountered.

Position terminated at target depth of 15.00m bgl.

Location backfilled with compacted arisings.

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

	Trial Pit	Record	Project No.	SA01
Project:	RBG Kew Lear	ning Centre	210699	67 (0 1
Client:	Royal Botanica	l Gardens Kew	Date Start:	03/02/2022
Plant:	JCB 3CX		Date End:	03/02/2022
Lo	gged by	Checked by	Ground Level:	6.84mAOD
	EBE	RHG	Coordinates:	518484.25(E)
	Sheet	Scale		177295.50(N)
	4 - 5 4	4.45	1	

	Sneet			cale		177295.50	D(IN)
	1 of 1		1	:15			
Charles Description		Depth	Level	Sample and I	n Situ Testing	Water	We
Stratum Description	Legend	(m)	(m)	Type Depth (m)	Results	Strikes	vve
Dark brown, slightly gravelly, silty, sandy TOPSOIL with frequent	XXXX			Type Depart(III)	results		XXX
rootlets. Gravel is fine to medium, sub-rounded to sub-angular							
int.		0.45	0.04				
ADE GROUND: Firm, dark brown, sandy, gravelly clay. Gravel		0.15	6.84				
fine to very coarse, sub-rounded to angular brick, concrete,	- XXXXL						
nd flint.	- XXXXI						
	- XXXXIII						
	- XXXXIII						
	- XXXXIII						
	- XXXXIII						
	- XXXXIII						
							W
ght brown and yellow, slightly clayey, very coarse grained	000001	1 1.00	6.69				
AND and fine to very coarse, sub-rounded to angular GRAVEL	E						
flint and quartzite. (EMPTON PARK GRAVEL MEMBER)							°
EMPTON FARR GRAVEL MEMBER)	_						
							::::
							٠
							۰
	<u>[</u>						٠
	E						
		2					• . • .
		_					
	_						
	_						
End of Borehole at 2.200m		2.20	5.84				
Elid of Borellole at 2.200111	-						
	-						
	-						
	-						
	-						
	-						
	-						
		3					
Dimensions Pit	Stability		l		Groundwater		
Pit Length Pit Width Pit unstable	during excavation	١.		Depth Strike Ri	sing to Time	Rema	arks
2.60 0.50							
marka							

Remarks

Position CAT scanned and excavated with JCB 3CX. Groundwater not encountered. Excavation terminated at 2.2m bgl due to pit instability. Location backfilled with gravel for soakaway testing.

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

	Borehole	e Record	Project No.		WS01
Project:	RBG Kew Lear	ning Centre	210699		***************************************
Client:	Royal Botanica	l Gardens Kew	Date Start:	C	2/02/2022
Plant:	Hand Digging T Sampler	ools+Windowless	Date End:	C	2/02/2022
Lo	gged by	Checked by	Ground Level:	6	3.00mAOD
	EBE	RHG	Coordinates:	51	8468.86(E)
	Sheet	Scale		17	7308.64(N)
	1 of 1	1.22			

	1 of 1			1	:22				
Stratum Description	Legend	De	epth m)	Level (m)			d In Situ Testing	Water Strikes	We
Dark brown, sandy silty gravelly TOPSOIL with frequent Gravel is fine to medium, sub-rounded flint. Medium dense becoming very dense, light brown to ora clayey, silty, gravelly, very coarse grained SAND. Grave to coarse, sub-rounded to sub-angular flint and quartzite (KEMPTON PARK GRAVEL MEMBER)	nge,		.40	5.60	ES	Depth (m) 0.10	Results	Ourices	
		- 1			D SPT	1.00	N=33 (5,7/6,8,10,9)		
End of Borehole at 2.00m		- 2 2	.00	4.00	D SPT	2.00 2.00	50 (27 for 105mm/50 for 190mm)		
		- 3							
		- 4							
Hole Diameter Casing Diameter apth Base Diameter Depth Base Diameter Depth 2.00 102	Chis h Top Depth Base	elling Duration		Tool	De	pth Strike	Groundwater Rising to Time	Rema	arks

Remarks

Position CAT scanned and started with hand dug inspection pit to 1.2m bgl. Groundwater not encountered.

Position refused upon dense sands at 2.00m bgl.

Location installed with monitoring well.

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

	Borehole	Record	Project No.	WS02
Project:	RBG Kew Lear	ning Centre	210699	11002
Client:	Royal Botanica	l Gardens Kew	Date Start:	01/02/2022
Plant:	Hand Digging T Windowless Sa		Date End:	02/02/2022
Lo	gged by	Checked by	Ground Level:	7.52mAOD
	EBE	RHG	Coordinates:	518476.82(E)
	Sheet	Scale	·	177351.87(N)

	1 0	of 1		1	:22					()
Stratum Description			Depth	Level		mple and	d In Situ T	esting	Water	Well
·		egend	(m)	(m)	Туре	Depth (m)	Res	sults	Strikes	L
Dark brown, slightly gravelly, sandy, silty TOPSOIL, with rootlets. Gravel is fine to medium, sub-angular flint and MADE GROUND: Light brown, clayey, silty, gravelly, ve grained SAND. Gravel is fine to very coarse, sub-angular brick, concrete, clinker, and quartzite.	quartzite.		0.30	7.22	ES	0.50				
Soft, light brown, very sandy CLAY. (KEMPTON PARK GRAVEL MEMBER)		1	0.90	6.62	SPT	1.20	N=7 (1,1	1/2,1,2,2)		
Dense becoming very dense, light brown to yellow, clay gravelly, very coarse grained SAND. Gravel is fine to m sub-angular to angular fint and quartzite. (KEMPTON PARK GRAVEL MEMBER)	rey, edium,		1.70	5.82	D	1.50				
End of Borehole at 2.20m		_ 2	2.20	5.32	SPT	2.00	N=50 (10	/6,8,10,11) 0,10/50 for mm)		
		- 3								
	th Top Depth E	Chiselling Base Durati	on	Tool	De	pth Strike	Groun Rising to	ndwater Time	Rema	arks
2.20 102										

Remarks

Position CAT scanned and started with hand dug inspection pit to 1.2m bgl. Groundwater not encountered.

Position refused upon dense sands at 2.20m bgl.

Location installed with monitoring well.

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

	Borehole	e Record	Project No.	WS03
Project:	RBG Kew Lear	ning Centre	210699	***************************************
Client:	Royal Botanica		Date Start:	01/02/2022
Plant:	Hand Digging T Windowless Sa		Date End:	01/02/2022
Lo	gged by	Checked by	Ground Level:	6.50mAOD
	EBE	RHG	Coordinates:	518475.00(E)
	Sheet	Scale		177337.00(N)

	1 of 1			1	:22					- ()
Stratum Description	Legend		Depth	Level			d In Situ Tes		Water	We
CONCRETE	50.200		(m)	(m)	Туре	Depth (m)	Resul	lts S	Strikes	X//Z
CONCILIE										
		_								
MADE GROUND: Grey, sandy, fine to medium, sub-angular		-	0.30	6.20						
gravel of quartzite.										
MADE GROUND: Soft to firm, light red and brown, very gravelly,		-	0.55	5.95	ES	0.60				
sandy clay. Gravel is fine to medium, sub-angular to angular brick, concrete, and quartzite.		-	0.75	F 75						
MADE GROUND: BRICK FILL			0.75	5.75						
		_								
		<u> </u>	4.40	5.40						
Medium dense to very dense, light brown and yellow, very coarse SAND and GRAVEL. Gravel is fine to very coarse, sub-			1.10	5.40	SPT	1.20	N=50 (10,7	7/50 for		
ounded to angular flint and quartzite.		_			0. 1	1.20	285mi	m)		
KEMPTON PÄRK GRAVEL MEMBER)		-								
					SPT	1.50	N=28 (14,10)/7,5,8,8)		
		_								
		-								
		_ — 2			D	2.00				
					SPT	2.00	N=27 (8,7/5	5,6,8,8)		
		_								
		_								
		-								
			2.60	3.90	SPT	2.60	50 (25 for 12	25mm/50		
End of Borehole at 2.60m		_	2.00	3.30	011	2.00	for 115r	mm)		
		_								
		_ 3								
		_								
		_								
		_								
		<u>-</u>								
		-								
		- ,								
		— 4 -								
		_								
		-								
		_								
Hole Diameter Casing Diameter		iselling	tion	Tos!	I De	nth Ctrilia	Ground		Do	rle
ppth Base	epth Base	Durat	uon	Tool	De	pth Strike	Rising to	Time	Rema	ıгкs

Remarks

Position CAT scanned and started with diamond coring of concrete slab. Hand dug inspection pit dug to 1.2m bgl.

Groundwater not encountered.

Position refused upon dense sand and gravel at 2.60m bgl.

Location backfilled with compacted arisings.

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

		Borehole	e Record	Project No.	WS04	
	Project:	RBG Kew Lear	ning Centre	210699	***************************************	
	Client:	Royal Botanica	l Gardens Kew	Date Start:	01/02/2022	
	Plant: Hand Digging Windowless Sa		Tools+Modular Ampler	Date End:	01/02/2022	
	Logged by		Checked by	Ground Level:	6.50mAOD	
EBE		EBE	RHG	Coordinates:	518467.00(E)	
		Sheet	Scale		177342.00(N)	

1 of 1 1:22								
Stratum Description	Legend	Depth	Level	Sa	mple and	d In Situ Testing	Water	We
	Logona	(m)	(m)	Туре	Depth (m)	Results	Strikes	
MADE GROUND: CONCRETE MADE GROUND: Firm to stiff, dark brown, gravelly, sandy clay Gravel is fine to medium, sub-angular to angular brick, concret clinker, flint, and quartzite.	<i>I.</i> e,	0.45	6.05					
	- 1			ES	1.00	N=14 (2,4/3,3,4,4)		
	2	2		SPT	2.00	N=23 (6,5/5,5,6,7)		
Medium dense to very dense, light brown, very gravelly, coarse grained SAND. Gravel is fine to medium, sub-angular to angula flint and quartzite. (KEMPTON PARK GRAVEL MEMBER)	e ar	2.60	3.90	D SPT	3.00 3.00	N=19 (6,3/3,4,6,6)		
End of Borehole at 4.00m	4	4.00	2.50	SPT	4.00	N=50 (8,11/50 for 285mm)		
Hole Diameter Casing Diameter epth Base Diameter Depth Base Diameter 4.00 102 Depth Base Diameter Depth Top	Chisellir Depth Base Du	ng uration	Tool	De	pth Strike	Groundwater Rising to Time	Rema	arks

Remarks

Position CAT scanned and started with diamond coring of concrete slab. Hand dug inspection pit dug to 1.2m bgl.

Groundwater not encountered.

Position refused upon dense sands at 4.00m bgl.

Location backfilled with compacted arisings.

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

	Borehole	e Record	Project No.	W.	S05
Project:	RBG Kew Lear	ning Centre	210699		500
Client:	Royal Botanica	l Gardens Kew	Date Start:	01/02/2	2022
Plant:	Hand Digging T Windowless Sa		Date End:	01/02/2	2022
Logged by		Checked by	Ground Level:	6.50m/	AOD
	EBE	RHG	Coordinates:	518458.	00(E)
	Sheet	Scale		177317.	00(N)
			7		

	Sneet			caie			1.	11311.00)(IV	
	1 of 1		1:2							
0		Dept	h Level	Sa	mple and	d In Situ 1	Testing	Water		
Stratum Description	Legend	(m)	(m)		Depth (m)		sults	Strikes	W	
IADE GROUND: CONCRETE		-		туре	Deptil (III)	110:	Suits			
		-								
ADE GROUND: Reddish brown, sandy, fine to coarse, a	angular	0.34	6.16						ı	
avel of quartzite.		- - -								
IADE GROUND: Soft to firm, brown, slightly gravelly, ver andy clay. Gravel is fine to medium, sub-angular brick ar	ry nd	0.60	5.90	ES	0.70					
uartzite. edium dense, light brown and yellow, clayey, coarse gra		0.80	5.70		0.70					
AND. EMPTON PARK GRAVEL MEMBER)		- - - 1		D	1.00					
		- - -							٠	
		- - -		SPT	1.20	N=17 (4,	,5/4,5,4,4)		٠	
		- - -								
		-								
ery dense, light brown and yellow, gravelly, clayey, very or rained SAND. Gravel is fine to medium, sub-rounded to	coarse	1.70	4.80							
ngular flint and quartzite. KEMPTON PARK GRAVEL MEMBER)	Sup-	- - -								
End of Borehole at 2.00m	্র্ব	_ 2 2.00	4.50	D SPT	2.00 2.00	N=50 (5	5,7/50 for			
		- - -				280	0mm)			
		- - -								
		- - -								
		- - -							1	
		- - -								
		- - - 3								
		- - -								
		- - -								
		- - -							1	
		- - -								
		-								
		- - -								
		_ 4 								
		- - -								
		- - -								
Hole Diameter Casing Diameter oth Base Diameter Depth Base Diameter Depth		selling Duration	Tool	Dei	oth Strike	Grou Rising to	indwater Time	Rema	arkı	
2.00 102 Diameter Depth Dase Diameter Depth	, 35p Buoo		.501		50.110	9 10				

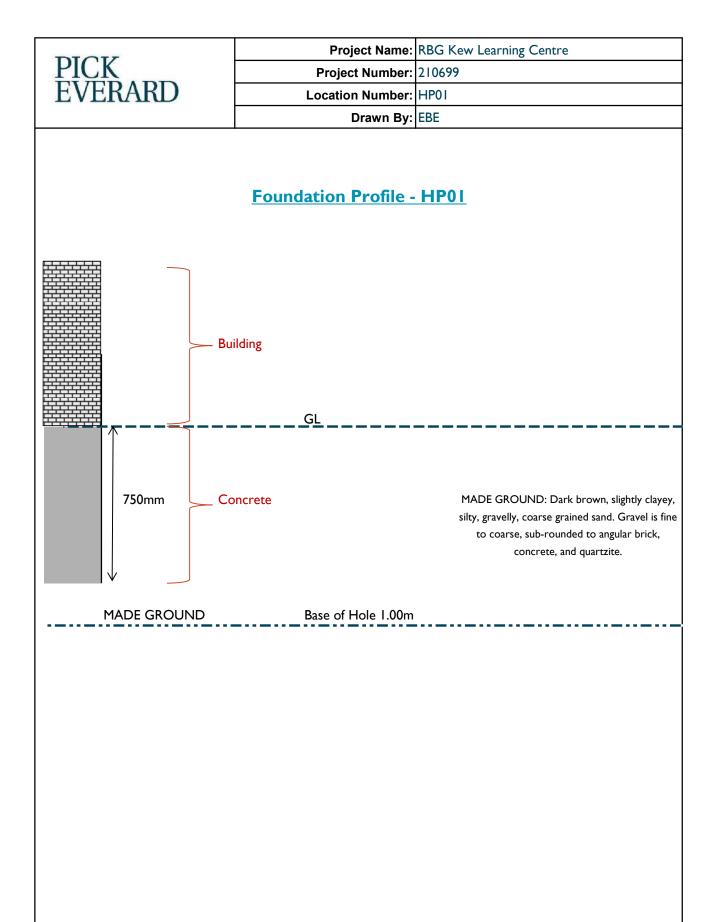
Remarks

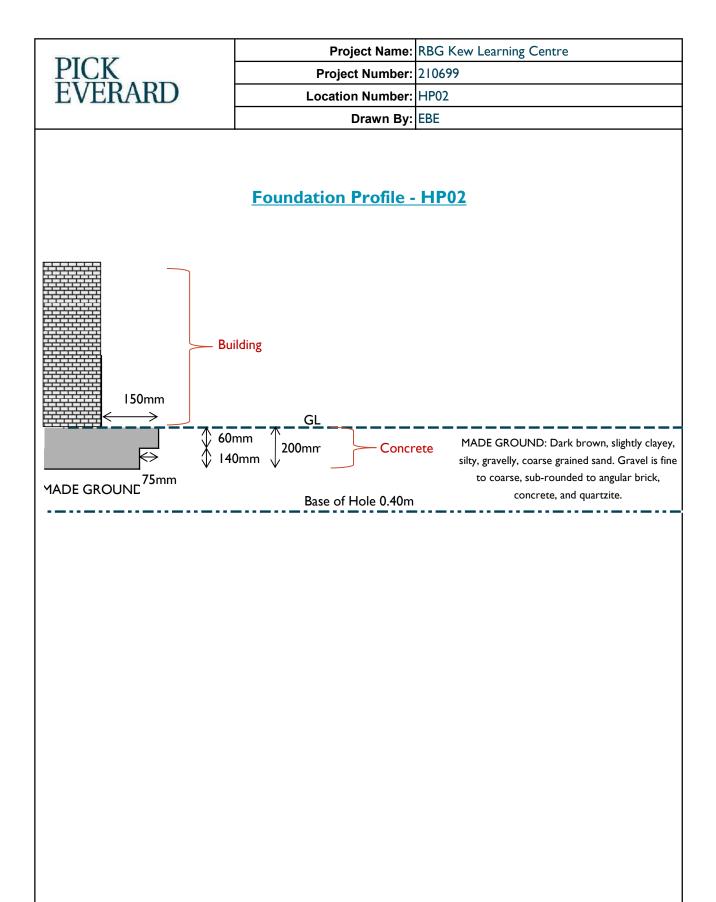
Position CAT scanned and started with diamond coring of concrete slab. Hand dug inspection pit dug to 1.2m bgl.

Groundwater not encountered.
Position refused upon dense sands at 2.00m bgl.
Location installed with monitoring well.

Tel: 0345 045 0050, email consultants@pickeverard.co.uk

	Borehole	e Record	Project No.		WS06
Project:	RBG Kew Lear	ning Centre	210699		***************************************
Client:	Royal Botanica	l Gardens Kew	Date Start:	C	2/02/2022
Plant: Hand Digging T Windowless Sa			Date End:	C	2/02/2022
Logged by		Checked by	Ground Level:	6	3.82mAOD
EBE		RHG	Coordinates:	51	8442.10(E)
Sheet		Scale		17	7324.98(N)
	1 of 1	1:22			


ADE GROUND: Light brown and yellow, very coarse sand. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay. Gravel is fine to coarse, sub-rounded to angular brick, oncrete, slate, quartzite, and flint. MADE GROUND) ES 0.30 ES 0.30 Type Depth (m) Results Strikes 0.20 6.62 ES 0.30 Type Depth (m) Results Strikes 1.10 5.72 SPT 1.20 N=8 (2,2/2,2,2,2) Include to angular from the property of the pr	ADE GROUND: Light brown and yellow, very coarse sand. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, increte, slate, quartizite, and flint. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, increte, slate, quartizite, and flint. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, increte, slate, quartizite, and flint. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, increte, slate, quartizite, and flint. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, increte, slate, quartizite, and flint. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, increte, slate, quartizite, and flint. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, slate, s	ADE GROUND: Light brown and yellow, very coarse sand. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, nacrete, slate, quartzile, and flint. ADE GROUND) Type Depth (m) Results Strikes No. 20 Strik	MADE GROUND: Light brown and yellow, very coarse sand. MADE GROUND: Soft to firm, dark brown, very gravelly, sandy clay. Gravel is fine to coarse, sub-rounded to angular brick, concrete, slate, quartzite, and flint. (MADE GROUND) Loose to very dense, light brown and yellow, clayey, gravelly, very coarse grained SAND. Gravel is fine to medium, sub-angular to angular flint. (KEMPTON PARK GRAVEL MEMBER)	(m) 0.20	(m) 6.62	Type	Depth (m) 0.30	Results	Water Strikes
ADE GROUND: Light brown and yellow, very coarse sand. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, increte, slate, quartzite, and flint. Doose to very dense, light brown and yellow, clayey, gravelly, ery coarse grained SAND. Gravel is fine to medium, sub-ingular to angular flint. EMPTON PARK GRAVEL MEMBER) Circle (RI) (III) Type Depth (m) Results O.20 6.62 ES 0.30 SPT 1.20 N=8 (2,2/2,2,2,2) D 1.50 N=8 (2,2/2,2,2,2)	ADE GROUND: Light brown and yellow, very coarse sand. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy and cravel is fine to coarse, sub-rounded to angular brick, morete, slate, quartizile, and filmt. ADE GROUND Does to very dense, light brown and yellow, clayey, gravelly, any coarse grained SAND. Gravel is fine to medium, sub-gular to angular filmt. EMPTON PARK GRAVEL MEMBER) End of Borehole at 2.00m Type Depth (m) Results O .20 6.62 ES 0.30 N=8 (2.2/2.2.2.2) N=8 (2.2/2.2.2.2) N=8 (5.11/50 for 285mm)	ADE GROUND: Light brown and yellow, very coarse sand. ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, make GROUND: Does to very dense, light brown and yellow, clayey, gravelly, any coarse grained SAND. Gravel is fine to medium, sub-right properties, and find. End of Borehole at 2.00m End of Borehole at 2.00m End of Borehole at 2.00m SINKS SINKS (III) (IV) Type Depth (m) Results SINKS ADE GROUND: Soft to firm, dark brown, very gravelly, and soft to result in the complex of the	MADE GROUND: Light brown and yellow, very coarse sand. MADE GROUND: Soft to firm, dark brown, very gravelly, sandy clay. Gravel is fine to coarse, sub-rounded to angular brick, concrete, slate, quartzite, and flint. (MADE GROUND) Loose to very dense, light brown and yellow, clayey, gravelly, very coarse grained SAND. Gravel is fine to medium, sub-angular to angular flint. (KEMPTON PARK GRAVEL MEMBER)	0.20	6.62	ES	0.30		Strikes
ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay. Gravel is fine to coarse, sub-rounded to angular brick, morete, slate, quartzite, and flint. ADE GROUND) 1.10 5.72 SPT 1.20 N=8 (2,2/2,2,2,2) BY 1.50 N=8 (2,2/2,2,2,2) D 1.50	ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay Gravel is fine to coarse, sub-rounded to angular brick, shape of very dense, light brown and yellow, clayey, gravelly, and coarse grained SAND. Gravel is fine to medium, subgrader to angular finit. EMPTON PARK GRAVEL MEMBER) End of Borehole at 2.00m End of Borehole at 2.00m O.20 6.62 ES 0.30 N=8 (2,2/2,2,2,2) N=8 (2,2/2,2,2,2) N=8 (5,11/50 for 285mm)	ADE GROUND: Soft to firm, dark brown, very gravelly, sandy ay, Gravel is fine to coarse, sub-rounded to angular brick, noncrete, slate, quartztie, and flint. AADE GROUND) Dose to very dense, light brown and yellow, clayey, gravelly, any coarse grained SAND. Gravel is fine to medium, sub-gular to angular flint. EMPTON PARK GRAVEL MEMBER) End of Borehole at 2.00m End of Borehole at 2.00m A 8.2 SPT 2.00 N=50 (5.11/50 for 285mm)	MADE GROUND: Soft to firm, dark brown, very gravelly, sandy clay. Gravel is fine to coarse, sub-rounded to angular brick, concrete, slate, quartzite, and flint. MADE GROUND) Loose to very dense, light brown and yellow, clayey, gravelly, very coarse grained SAND. Gravel is fine to medium, subangular to angular flint. KEMPTON PARK GRAVEL MEMBER)	1				N=8 (2,2/2,2,2,2)	
pose to very dense, light brown and yellow, clayey, gravelly, ery coarse grained SAND. Gravel is fine to medium, subgular to angular flint. IEMPTON PARK GRAVEL MEMBER) 1.10 5.72 SPT 1.20 N=8 (2,2/2,2,2,2) D 1.50	bose to very dense, light brown and yellow, clayey, gravelly, ery coarse grained SAND. Gravel is fine to medium, sub- rigular to angular flint. GEMPTON PARK GRAVEL MEMBER) End of Borehole at 2.00m 1.10 5.72 SPT 1.20 N=8 (2,2/2,2,2,2) N=8 (2,2/2,2,2,2) N=8 (5,11/50 for 285mm)	Dose to very dense, light brown and yellow, clayey, gravelly, any coarse grained SAND. Gravel is fine to medium, sub-rigular to angular that regular to angular flint. EMPTON PARK GRAVEL MEMBER) End of Borehole at 2.00m End of Borehole at 2.00m 1.10 5.72 SPT 1.20 N=8 (2.2/2.2.2.2) N=8 (2.2/2.2.2.2) N=8 (2.2/2.2.2.2)	ery coarse grained SAND. Gravel is fine to medium, sub- ngular to angular flint. KEMPTON PARK GRAVEL MEMBER)		5.72	SPT	1.20	N=8 (2,2/2,2,2,2)	
End of Borehole at 2.00m 2 2.00 4.82 SPT 2.00 N=50 (5,11/50 for 285mm)	Elid of Boreliole at 2.00m (285mm) (285mm)	285mm) 285mm)	End of Borehole at 2.00m			D	1.50		
				2 2.00	4.82	SPT	2.00	N=50 (5,11/50 for 285mm)	
Hole Diameter Casing Diameter Chiselling Groundwater					IOOI	Dei	oth Strike	Rising to Time	Rema


Remarks

Position CAT scanned and started with hand dug inspection pit to 1.2m bgl. Groundwater not encountered.

Position refused upon dense sands at 2.00m bgl.

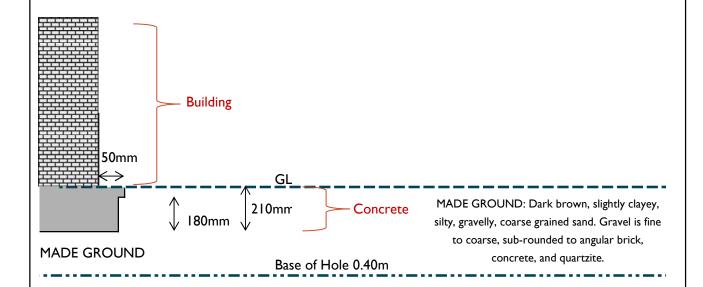
Location backfilled with compacted arisings.

Project Name:

Project Number:

Location Number:

Drawn By:


RBG Kew Learning Centre

210699

HP03

EBE

Foundation Profile - HP03

Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Dynamic sampling

Unit 8

Victory parkway

Victory rd Derby

DE24 8ZF

Hammer Ref:

MR.100.87

Test Date:

09/09/2021

Report Date:

09/09/2021

File Name:

MR.100.87.spt

Test Operator:

B HUNTER

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.0

Assumed Modulus Ea (GPa): 208

0.0

Accelerometer No.1:

62901

Accelerometer No.2:

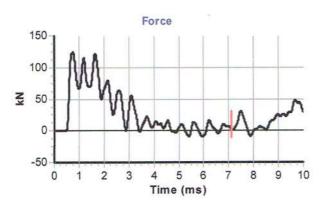
62902

Hammer Information

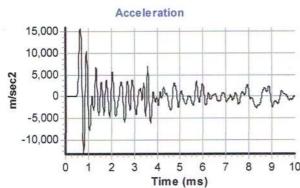
Hammer Mass m (kg):

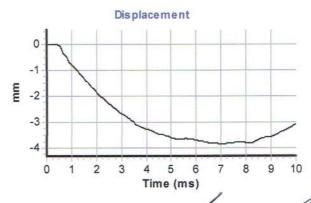
Falling Height h (mm): 760

String Length L (m):


15.0


63.5


Comments / Location


Hammer tested at Dynamic samplings

yard.

Calculations

Area of Rod A (mm2):

905

Theoretical Energy Etheor (J):

: 473

Measured Energy E_{meas}

(J): 353

signed: A.parker

Title:

Associate director

Energy Ratio E_r (%):

75

The recommended calibration interval is 12 months

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Southern Testing

Unit 11

Charlwood Road East Grinstead West Sussex RH19 2HU SPT Hammer Ref: SEDS10

Test Date:

01/05/2021

Report Date:

01/05/2021

File Name:

SEDS10.spt

Test Operator:

NPB

Instrumented Rod Data

Diameter d_r (mm):

54

Wall Thickness t_r (mm):

6.6

Assumed Modulus Ea (GPa): 208

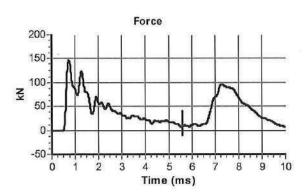
Accelerometer No.1:

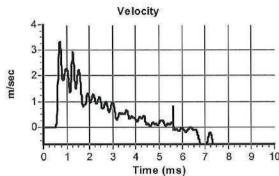
64786

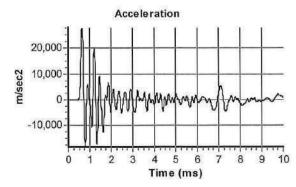
Accelerometer No.2:

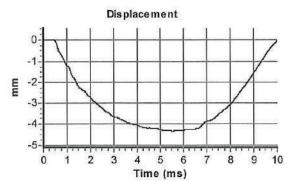
64789

SPT Hammer Information


Hammer Mass m (kg): 63


Falling Height h (mm): 760


SPT String Length L (m): 14.5


Comments / Location

CHARLWOODS

Calculations

Area of Rod A (mm2):

983

Theoretical Energy E_{theor} (J):

473

Measured Energy E_{meas}

328

Energy Ratio E_r (%):

69

Signed: N P Burrows

Title:

Field Operations Manager

The recommended calibration interval is 12 months

(J):

BRE 365 Soakaway Infiltration Rate Calculation

The following spreadsheet calculations are based on the method given in BRE Digest 365

Job Number:	210699	Trial Pit No:	SA01
Job Title:	RBG Kew Learning Centre	Test No:	Test I
Engineer:	Elliott Bell	Date of Test:	03/02/2022

Details of pit

Actual depth of pit, D'	(m)	2.20	Width of Pit, W	(m)	0.50
Effective depth of Pit, D (1)	(m)	1.00	Proportion of pit volume occupied by gravel		0.69
Length of Pit, L	(m)	2.60	solids, Pg (2)		0.07

Volume, V, of pit between 75% and 25% depths (m^3) = L x W x $\frac{1}{2}D$ =	0.65
Effective volume between 75% and 25% depths, V_{p75-25} , = $V \times P_g$ =	0.20
Internal surface area of pit up to 50% level, a _{p50} , (m ²)	4.40
= area of 2 sides + 2 ends + base = $(2 \times L \times \frac{1}{2}D) + (2 \times W \times \frac{1}{2}D) + (L \times W)$	7.70

Water Level Readings

Depth of

water

Time

elapsed

			Time (min	utes)		
0.00	5.00	10.00	15.00	20.00	25.00	30.00
						Depth of water ground (m)
0.50						Maximum effect depth
						75% full depth
1.00 long long long long long long long long						- · - · - 50%% full depth
50 I.00						— — — 25% full depth
A CION						
1.50					+	
5						<u> </u>
2.00						
J						
2.50						

	(min)	below
	0.00	1.20
	0.50	1.26
elow	1.00	1.30
	1.50	1.33
e	2.00	1.36
	2.50	1.40
	3.00	1.42
	4.00	1.48
	5.00	1.53
	6.00	1.58
	7.00	1.62
	8.00	1.66
	9.00	1.70
	10.00	1.73
	15.00	1.94
	20.00	2.07
	25.00	2.17
	30.00	2.19

Time t _{p75} (= time water is at 25% of effective depth in minutes)	15.0
Time t _{p75-25} (=time for water to fall from 75% to 25% in minutes)	11.5
Time t _{p75-25} (=time for water to fall from 75% to 25% in seconds)	690

$$= \frac{V_{p75-25}}{a_{p50} \times t_{p75-25}} = \frac{0.20}{4.40 \times 690}$$

Soil infiltration rate, f =	6.64E-05	m/s
-----------------------------	----------	-----

BRE 365 Soakaway Infiltration Rate Calculation

The following spreadsheet calculations are based on the method given in BRE Digest 365

Job Number:	210699	Trial Pit No:	SA01
Job Title:	RBG Kew Learning Centre	Test No:	Test 2
Engineer:	Elliott Bell	Date of Test:	03/02/2022

Details of pit

Actual depth of pit, D'	(m)	2.20	Width of Pit, W	(m)	0.50
Effective depth of Pit, D (1)	(m)	0.83	Proportion of pit volume occupied by gravel		0.69
Length of Pit, L	(m)	2.60	solids, Pg (2)		0.07

Volume, V, of pit between 75% and 25% depths (m^3) = L x W x $\frac{1}{2}D$ =	0.54
Effective volume between 75% and 25% depths, V_{p75-25} , = $V \times P_g$ =	0.17
Internal surface area of pit up to 50% level, a _{p50} , (m ²)	3.87
= area of 2 sides + 2 ends + base = $(2 \times L \times \frac{1}{2}D) + (2 \times W \times \frac{1}{2}D) + (L \times W)$	3.67

Water Level Readings

Depth of water below 1.37 1.40 1.42 1.44 1.46 1.48 1.50 1.52 1.56 1.59 1.62 1.65 1.68 1.71 1.85 1.99 2.08 2.17

									Read
									Time
									elapsed
				Time (min	utes)				(min)
	0.00	5.00	10.00	15.00	20.00	25.00	30.00		0.00
0.00									0.50
								→ Depth of water below	1.00
								ground (m)	1.50
								Maximum effective	2.00
0.50	+							depth	2.50
								75% full depth	3.00
<u> </u>								.	4.00
Depth of water below ground (m)								- · - · - 50%% full depth	5.00
S 1.00	-								6.00
ည့								— — – 25% full depth	7.00
∞									8.00
e e								—— Empty	9.00
ھ 1.50 ء	Tank								10.00
ate	h		+- -+- -	 - - - -		+- -+- -			15.00
<u> </u>									20.00
ō	F · F · F · F	· † · † · † · †			· † · † · † · † · †	T:T:T:T:T	· † · † ·		25.00
1 th 200					$\downarrow\downarrow\downarrow$				30.00
ا م									
2.50									
2.50									
								_	
Time t _{p25} (ime t _{p25} (= time water is at 75% of effective depth in minutes) 5.50								
			of effective de				20.00		
			all from 75% to				14.5	7 I	
			all from 75% to				870	1	
F/3 2					•	1	·	⊣ ⊦	

0.17

870

m/s

4.96E-05

3.87

Soil infiltration rate, f =

BRE 365 Soakaway Infiltration Rate Calculation

The following spreadsheet calculations are based on the method given in BRE Digest 365

Job Number:	210699	Trial Pit No:	SA01
Job Title:	RBG Kew Learning Centre	Test No:	Test 3
Engineer:	Elliott Bell	Date of Test:	03/02/2022

Details of pit

Actual depth of pit, D'	(m)	2.20	Width of Pit, W	(m)	0.50
Effective depth of Pit, D (1)	(m)	1.00	Proportion of pit volume occupied by gravel		0.69
Length of Pit, L	(m)	2.60	solids, P _g (2)		0.67

Volume, V, of pit between 75% and 25% depths (m^3) = L x W x $\frac{1}{2}D$ =	0.65
Effective volume between 75% and 25% depths, V_{p75-25} , = $V \times P_g$ =	0.20
Internal surface area of pit up to 50% level, a _{p50} , (m ²)	4.40
= area of 2 sides + 2 ends + base = $(2 \times L \times \frac{1}{2}D) + (2 \times W \times \frac{1}{2}D) + (L \times W)$	7.70

Water Level

R	ea	di	n	σς
1,	Ca	uı	ш,	go

										Time	Depth of
										elapsed	water
	Time (minutes)							(min)	below		
0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00	40.00		0.00	1.20
0.00										0.50	1.24
									Depth of water below	1.00	1.26
									ground (m)	1.50	1.29
									Maximum effective	2.00	1.31
0.50									depth	2.50	1.33
									75% full depth	3.00	1.35
<u> </u>										4.00	1.40
 									- · - · - 50%% full depth	5.00	1.44
§ 1.00										6.00	1.49
grc									— — – 25% full depth	7.00	1.51
Depth of water below ground (m)										8.00	1.54
									——— Empty	9.00	1.57
1.50			 							10.00	1.60
vate						8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				15.00	1.75
<u></u>					1.1-1-1.1			- - -		20.00	1.87
6										25.00	2.00
2.00										30.00	2.09
										40.00	2.16
2.50											
Time t _{p25} (= tim	e water is	at 75% of of	factive do	oth in min	utos)			5.00			
•							_		-		
Time t _{p75} (= tim								23.00	-		
Time t _{p75-25} (=ti								18	-		
Time t _{p75-25} (=ti	me for wat	er to fall fro	om /5% to	25% in se	conds)			1080			
	.,					••					
= —	V _{p75-2}		=	-	0.3						
	$a_{p50} \times t_{p}$	75-25		4	1.40	× 108	30				
									_		
Soil infi	ltratio	on rat	e.f:		4	.24E-	05	m/s	7		
	i ci a ci	Jii i at	·-, ·			•= •=		11/3	_		

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS01 Test No: I

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.72

Time	Depth to	Head Of Water above
(Minutes)	water (m bgl)	Reference Point (m)
0	0.30	1.20
0.5	0.54	0.96
I	0.77	0.73
1.5	0.88	0.62
2	1.01	0.49
2.5	1.06	0.44
3	1.17	0.33
3.5	1.23	0.27
4	1.28	0.22
4.5	1.34	0.16
5	1.38	0.12
6	1.43	0.07
7	1.50	0.00
8	1.55	-0.05
9	1.60	-0.10
10	1.63	-0.13
15	1.72	-0.22

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

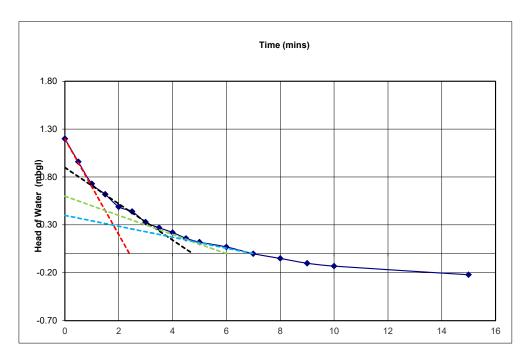
 Date:
 02/02/2022

BH No: WS01 Test No: 1

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length


(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.72

Head of Water Under Consideration (m)	Head Intercept (Hp)	Time Intercept (Ht)	Soil Infiltration Rate (m/s)
1.00	1.2	2.40	6.13E-05
0.60	0.90	4.75	2.32E-05
0.20	0.60	6.00	1.23E-05
0.10	0.40	7.00	7.00E-06

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS01 Test No: 2

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.67

Time	Depth to	Head Of Water above
(Minutes)	water (m bgl)	Reference Point (m)
0	0.00	1.50
0.5	0.26	1.24
1	0.40	1.10
1.5	0.56	0.94
2	0.65	0.85
2.5	0.74	0.76
3	0.82	0.68
3.5	0.89	0.61
4	0.95	0.55
4.5	1.02	0.48
5	1.07	0.43
6	1.20	0.30
7	1.29	0.21
8	1.36	0.14
9	1.41	0.09
10	1.46	0.04
15	1.67	-0.17

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

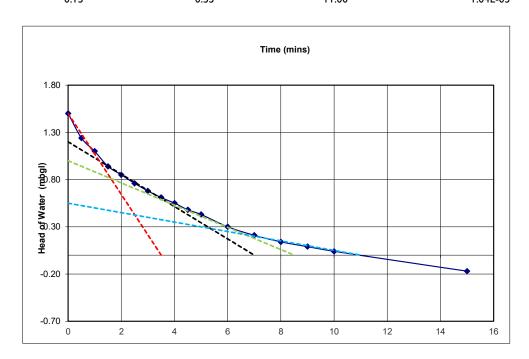
 Date:
 02/02/2022

BH No: WS01 Test No: 2

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length


(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.67

Head of Water Under Consideration (m)	Head Intercept (Hp)	Time Intercept (Ht)	Soil Infiltration Rate (m/s)
1.20	1.5	3.50	8.93E-05
0.70	1.20	7.00	3.57E-05
0.50	1.00	8.50	2.45E-05
0.15	0.55	11.00	I 04F-05

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS01 Test No: 3

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.76

Time	Depth to	Head Of Water above
(Minutes)	water (m bgl)	Reference Point (m)
0	0.00	1.50
0.5	0.23	1.27
I	0.36	1.14
1.5	0.49	1.01
2	0.60	0.90
2.5	0.68	0.82
3	0.76	0.74
3.5	0.83	0.67
4	0.89	0.61
4.5	0.95	0.55
5	1.00	0.50
6	1.13	0.37
7	1.26	0.24
8	1.35	0.15
9	1.39	0.11
10	1.44	0.06
15	1.66	-0.16
20	1.76	-0.26

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

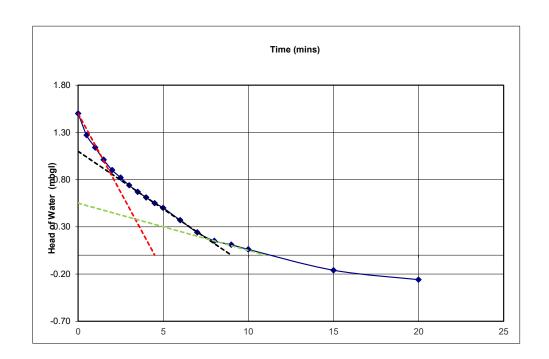
 Date:
 02/02/2022

BH No: WS01 Test No: 3

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length


(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.76

Head of Water Under Consideration (m)	Head Intercept (Hp)	Time Intercept (Ht)	Soil Infiltration Rate (m/s)
1.00	1.5	4.50	6.94E-05
0.50	1.10	9.00	2.55E-05
0.15	0.55	11.00	1.045.05

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS02 Test No: I

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.72

Time	Depth to	Head Of Water above
(Minutes)	water (m bgl)	Reference Point (m)
0	0.60	0.90
0.5	0.90	0.60
I	1.10	0.40
1.5	1.35	0.15
2	1.60	-0.10
2.5	1.78	-0.28
3	1.90	-0.40
3.5	1.97	-0.47
4	2.00	-0.50

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS02 Test No: I

Borehole internal Casing Depth (m)

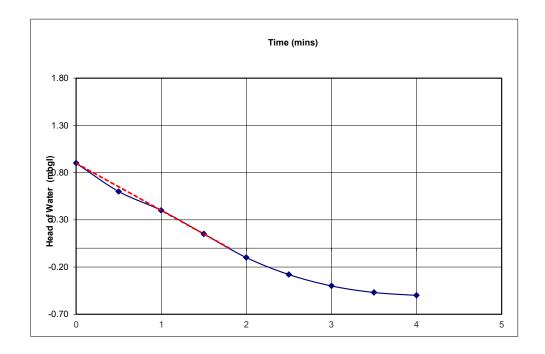
diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)


Start water level End Water Level (mbgl) 1.72

(mbgl): 0.60

Head of Water Under Head Intercept (Hp) Time Intercept (Ht) Soil Infiltration Rate

Consideration (m) (m/s)

0.50 0.9 1.80 7.44E-05

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS02 Test No: 2

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.72

Time	Depth to	Head Of Water above
(Minutes)	water (m bgl)	Reference Point (m)
0	0.50	1.00
0.5	0.80	0.70
1	1.05	0.45
1.5	1.35	0.15
2	1.65	-0.15
2.5	1.79	-0.29
3	1.91	-0.41
3.5	1.98	-0.48
4	2.00	-0.50

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS02 Test No: 2

Borehole internal Casing Depth (m)

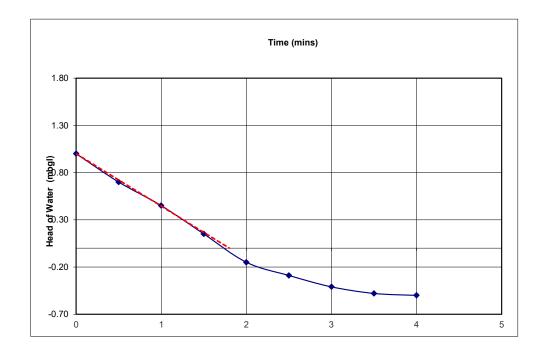
diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)


Start water level End Water Level (mbgl) 1.72

(mbgl): 0.50

Head of Water Under Head Intercept (Hp) Time Intercept (Ht) Soil Infiltration Rate

Consideration (m) (m/s)

0.50 I I.80 7.72E-05

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS02 Test No: 3

Borehole internal Casing Depth (m)

diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)

Start water level End Water Level (mbgl) 1.72

Time	Depth to	Head Of Water above
(Minutes)	water (m bgl)	Reference Point (m)
0	0.50	1.00
0.5	0.83	0.67
I	1.10	0.40
1.5	1.36	0.14
2	1.70	-0.20
2.5	1.88	-0.38
3	1.98	-0.48
3.5	2.00	-0.50
4	2.00	-0.50

Infiltration Rate Calculated in accordance with The Soakway Design Guide (2000), Kent County Council

 Site:
 RBG Kew

 Job No:
 210699

 Date:
 02/02/2022

BH No: WS02 Test No: 3

Borehole internal Casing Depth (m)

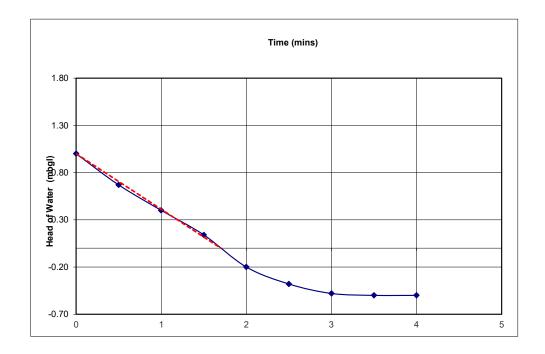
diameter (m): 0.05

Water table level Borehole Open Length

(mbgl):* L (m)

Borehole Base (mbgl): Midpoint of Open 1.50

2.00 Section (mbgl)


Start water level End Water Level (mbgl) 1.72

(mbgl): 0.50

Head of Water Under Head Intercept (Hp) Time Intercept (Ht) Soil Infiltration Rate

Consideration (m) (m/s)

0.50 I 1.70 8.17E-05

Appendix C – Geotechnical Laboratory Reports

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 22/01085

Issue Number: 1 **Date:** 18 February, 2022

Client: Pick Everard

Halford House Charles Street

Leicester LE1 1HA

Project Manager: Elliot Bell/Ross Goodband

Project Name:
Project Ref:
210699
Order No:
92092
Date Samples Received:
Date Instructions Received:
08/02/22
Date Analysis Completed:
18/02/22

Approved by:

Danielle Brierley

Deputy Client Services Supervisor

Envirolab Job Number: 22/01085 Client Project Name: RBG Kew

Client Project Ref: 210699

	Chefit Project Ref: 210099									
Lab Sample ID	22/01085/1	22/01085/2	22/01085/3	22/01085/4	22/01085/5	22/01085/6	22/01085/7			
Client Sample No	1	2	3	4	5	6	7			
Client Sample ID	BH01	WS01	WS02	WS03	WS04	WS05	WS06			
Depth to Top	0.50	0.10	0.50	0.60	1.00	0.70	0.30			
Depth To Bottom									ion	
Date Sampled	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22		etect	*
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	4AB	4A	4AE	4AB	4AB	4AB	4AB	Units	Limi	Meth
% Moisture at <40C _A	14.1	17.5	10.5	3.9	7.6	5.8	9.2	% w/w	0.1	A-T-044
% Stones >10mm _A	9.6	<0.1	<0.1	16.1	0.6	2.9	24.3	% w/w	0.1	A-T-044
pH _D ^{M#}	8.84	7.25	7.16	8.45	7.70	6.73	8.43	рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.03	<0.01	<0.01	0.07	0.03	0.06	0.02	g/I	0.01	A-T-026s
Sulphate (acid soluble) _D ^{M#}	1600	600	<200	610	330	390	440	mg/kg	200	A-T-028s
Cyanide (free) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sFCN
Cyanide (total) _A ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-042sTCN
Organic matter _D ^{M#}	1.4	7.5	3.9	7.3	1.9	1.7	0.8	% w/w	0.1	A-T-032 OM
Arsenic _D ^{M#}	11	11	11	7	15	11	10	mg/kg	1	A-T-024s
Boron (water soluble) _D	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	mg/kg	1	A-T-027s
Cadmium _D ^{M#}	1.0	1.1	0.9	0.8	1.0	1.1	0.8	mg/kg	0.5	A-T-024s
Copper _D M#	30	30	20	9	20	21	11	mg/kg	1	A-T-024s
Chromium _D ^{M#}	17	24	24	13	24	25	17	mg/kg	1	A-T-024s
Chromium (hexavalent) _D	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-040s
Lead _D ^{M#}	463	113	56	62	143	81	54	mg/kg	1	A-T-024s
Mercury _D	1.46	<0.17	<0.17	2.53	<0.17	<0.17	0.29	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	16	18	18	12	20	23	14	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	38	86	51	98	79	54	36	mg/kg	5	A-T-024s

Lab Sample ID	22/01085/1	22/01085/2	22/01085/3	22/01085/4	22/01085/5	22/01085/6	22/01085/7			
Client Sample No	1	2	3	4	5	6	7			
Client Sample ID	BH01	WS01	WS02	WS03	WS04	WS05	WS06			
Depth to Top	0.50	0.10	0.50	0.60	1.00	0.70	0.30			
Depth To Bottom									ion	
Date Sampled	01-Feb-22		Detection	Je e						
Sample Type	Soil - ES	_s	₽	Method ref						
Sample Matrix Code	4AB	4A	4AE	4AB	4AB	4AB	4AB	Units	Limit	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	NAD			A-T-045						
Asbestos Matrix (visual) _D	-	-	-	-	-	-	-			A-T-045
Asbestos Matrix (microscope) _D	-	-	-	-	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A			A-T-045						

					Client Pro	ject Ref: 21	0699			
Lab Sample ID	22/01085/1	22/01085/2	22/01085/3	22/01085/4	22/01085/5	22/01085/6	22/01085/7			
Client Sample No	1	2	3	4	5	6	7			
Client Sample ID	BH01	WS01	WS02	WS03	WS04	WS05	WS06			
Depth to Top	0.50	0.10	0.50	0.60	1.00	0.70	0.30			
Depth To Bottom									ion	
Date Sampled	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22		etect	4
Sample Type	Soil - ES	Soil - ES	,	Limit of Detection	Method ref					
Sample Matrix Code	4AB	4A	4AE	4AB	4AB	4AB	4AB	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	0.02	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	0.02	<0.01	0.02	0.02	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	0.02	<0.02	0.10	0.05	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A M#	0.07	0.23	0.13	0.55	0.26	<0.04	0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.07	0.32	0.20	0.59	0.29	<0.04	0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.08	0.39	0.22	0.65	0.36	<0.05	0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	0.16	0.12	0.26	0.13	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A M#	<0.07	0.15	0.08	0.27	0.14	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	0.07	0.29	0.17	0.64	0.31	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	0.13	0.36	0.26	1.20	0.56	<0.08	<0.08	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	0.03	0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.04	0.21	0.15	0.34	0.17	<0.03	0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	0.06	0.11	0.09	0.50	0.24	<0.03	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	0.13	0.33	0.22	1.00	0.47	<0.07	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	0.65	2.59	1.64	6.23	3.01	<0.08	0.16	mg/kg	0.01	A-T-019s
TPH Banded 1										
>C6-C8 _A M#	-	<5	<5	-	-	-	<5	mg/kg	5	A-T-007s
>C8-C10 _A ^{M#}	-	5	2	-	-	-	<1	mg/kg	1	A-T-007s
>C10-C12 _A ^{M#}	-	5	<1	-	-	-	<1	mg/kg	1	A-T-007s
>C12-C16 _A M#	-	10	<2	-	-	-	<2	mg/kg	2	A-T-007s
>C16-C21 _A M#	-	13	3	-	-	-	<2	mg/kg	2	A-T-007s
>C21-C40 _A ^{M#}	-	46	9	-	-	-	<5	mg/kg	5	A-T-007s
Total TPH Banded 1 _A M#	-	79	14	-	-	-	<5	mg/kg	5	A-T-007s
	_									

					Olicher 10	ect Ref: 21	0000			
Lab Sample ID	22/01085/1	22/01085/2	22/01085/3	22/01085/4	22/01085/5	22/01085/6	22/01085/7			
Client Sample No	1	2	3	4	5	6	7			
Client Sample ID	BH01	WS01	WS02	WS03	WS04	WS05	WS06			
Depth to Top	0.50	0.10	0.50	0.60	1.00	0.70	0.30			
Depth To Bottom									ion	
Date Sampled	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22	01-Feb-22		eteci	₹
Sample Type	Soil - ES	Soil - ES	s	Limit of Detection	Method ref					
Sample Matrix Code	4AB	4A	4AE	4AB	4AB	4AB	4AB	Units	Limi	Meth
TPH CWG with Clean Up *C1										
Ali >C5-C6 _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	<1	-	-	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	<1	-	-	<1	1	1	-	mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	<1	-	-	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C16-C21AM#	<1	-	-	2	2	<1	-	mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	<1	-	-	3	26	<1	-	mg/kg	1	A-T-055s
Total Aliphatics _A	<1	-	-	5	29	1	-	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	<1	-	-	<1	<1	<1	-	mg/kg	1	A-T-055s
Aro >C10-C12 _A	<1		-	<1	<1	<1		mg/kg	1	A-T-055s
Aro >C12-C16 _A	<1	-	-	2	<1	<1	-	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	<1	-	-	20	5	<1	-	mg/kg	1	A-T-055s
Aro >C21-C35A	<1	-	-	103	18	<1	-	mg/kg	1	A-T-055s
Total Aromatics _A	<1	-	-	125	24	<1	-	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)A	<1	-	-	130	53	1	-	mg/kg	1	A-T-055s
BTEX - Benzene _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
MTBE _A #	<0.01	-	-	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s

			Cilent Fro	ect Ref: 21	0099			
Lab Sample ID	22/01085/8							
Client Sample No								
Client Sample ID	WS03							
Depth to Top	2.00							
Depth To Bottom							ion	
Date Sampled	01-Feb-22						etect	4
Sample Type	Soil - ES						Limit of Detection	Method ref
Sample Matrix Code	4AB					Units	Limit	Meth
% Moisture at <40C _A	2.8					% w/w	0.1	A-T-044
% Stones >10mm _A	38.0					% w/w	0.1	A-T-044
pH _D ^{M#}	10.90					рН	0.01	A-T-031s
Sulphate (water sol 2:1) _D M#	0.07					g/l	0.01	A-T-026s
Sulphate (acid soluble) _D M#	1300					mg/kg	200	A-T-028s
Cyanide (free)A ^{M#}	<1					mg/kg	1	A-T-042sFCN
Cyanide (total) _A ^{M#}	<1					mg/kg	1	A-T-042sTCN
Organic matter _D ^{M#}	1.4					% w/w	0.1	A-T-032 OM
Arsenic _D ^{M#}	6					mg/kg	1	A-T-024s
Boron (water soluble) _D	<1.0					mg/kg	1	A-T-027s
Cadmium _D M#	0.9					mg/kg	0.5	A-T-024s
Copper _D M#	12					mg/kg	1	A-T-024s
Chromium _D ^{M#}	53					mg/kg	1	A-T-024s
Chromium (hexavalent) _□	<1					mg/kg	1	A-T-040s
Lead _D ^{M#}	27					mg/kg	1	A-T-024s
Mercury _D	2.15					mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	33					mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1					mg/kg	1	A-T-024s
Zinc _D ^{M#}	86					mg/kg	5	A-T-024s

				,000 11011 21			
Lab Sample ID	22/01085/8						
Client Sample No							
Client Sample ID	WS03						
Depth to Top	2.00						
Depth To Bottom						tion	
Date Sampled	01-Feb-22					of Detection	eŧ
Sample Type	Soil - ES				v	it of [Method ref
Sample Matrix Code	4AB				Units	Limit	Metl
Asbestos in Soil (inc. matrix)							
Asbestos in soil _D #	NAD						A-T-045
Asbestos Matrix (visual) _D	-						A-T-045
Asbestos Matrix (microscope) _D	-						A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	N/A						A-T-045

				Cilentino	ject Ref: 21	0099			
Lab Sample ID	22/01085/8								
Client Sample No									
Client Sample ID	WS03								
Depth to Top	2.00								
Depth To Bottom								ion	
Date Sampled	01-Feb-22							Limit of Detection	JE
Sample Type	Soil - ES							t of D	Method ref
Sample Matrix Code	4AB						Units	Limi	Meth
PAH-16MS									
Acenaphthene _A M#	<0.01						mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01						mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02						mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04						mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04						mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05						mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05						mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A M#	<0.07						mg/kg	0.07	A-T-019s
Chrysene _A M#	<0.06						mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	<0.04						mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08						mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01						mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A M#	<0.03						mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03						mg/kg	0.03	A-T-019s
Phenanthrene _A M#	<0.03						mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07						mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08						mg/kg	0.01	A-T-019s
TPH Banded 1									
>C6-C8 _A M#	<5						mg/kg	5	A-T-007s
>C8-C10 _A M#	<1						mg/kg	1	A-T-007s
>C10-C12 _A M#	3						mg/kg	1	A-T-007s
>C12-C16 _A M#	<2						mg/kg	2	A-T-007s
>C16-C21 _A M#	8	_					mg/kg	2	A-T-007s
>C21-C40 _A M#	94						mg/kg	5	A-T-007s
Total TPH Banded 1 _A M#	105						mg/kg	5	A-T-007s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample, 9 = INCINERATOR ASH.

Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

EPH CWG results have humics mathematically subtracted through instrument calculation

TPH results "with Cleanup" indicates results cleaned up with Silica during extraction

EPH CWG GCxGC ID from TPH CWG

Where we have identified humic substances in any ID's from TPH CWG with Clean Up please note that the concentration of these humic substances is not included in the quantified results and are included in the ID for information.

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: Pick Everard, Halford House, Charles Street, Leicester, LE1 1HA Project No: 22/01085

Date Received: 08/02/2022 (am)

Project: RBG Kew Cool Box Temperatures (°C): 6.4

Clients Project No: 210699

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

Envirolab Analysis Dates

Lab Sample ID	22/01085/1	22/01085/2	22/01085/3	22/01085/4	22/01085/5	22/01085/6	22/01085/7	22/01085/8
Client Sample No	1	2	3	4	5	6	7	
Client Sample ID/Depth	BH01 0.50m	WS01 0.10m	WS02 0.50m	WS03 0.60m	WS04 1.00m	WS05 0.70m	WS06 0.30m	WS03 2.00m
Date Sampled	01/02/22	01/02/22	01/02/22	01/02/22	01/02/22	01/02/22	01/02/22	01/02/22
A-T-004s	14/02/2022							
A-T-007s	11/02/2022	11/02/2022	11/02/2022				11/02/2022	15/02/2022
A-T-019s	14/02/2022	14/02/2022	14/02/2022	14/02/2022	14/02/2022	14/02/2022	14/02/2022	15/02/2022
A-T-022s	14/02/2022			14/02/2022	14/02/2022	14/02/2022		
A-T-024s	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	16/02/2022
A-T-025w	18/02/2022							
A-T-026s	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022
A-T-026w	18/02/2022							
A-T-027s	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022
A-T-028s	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	16/02/2022
A-T-030s	14/02/2022							
A-T-031s	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022
A-T-031w	18/02/2022							
A-T-032 OM	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	15/02/2022
A-T-032s	16/02/2022							
A-T-032w	18/02/2022							
A-T-037w	18/02/2022							
A-T-040s	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022	15/02/2022
A-T-042sFCN	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022	16/02/2022
A-T-042sTCN	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022	10/02/2022	16/02/2022
A-T-044	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022	16/02/2022
A-T-045	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022	09/02/2022
A-T-050w	18/02/2022							
A-T-055s	14/02/2022			14/02/2022	14/02/2022	14/02/2022		
A-T-ANCs	16/02/2022							
Calc-no stones	18/02/2022							
Probe (w)	18/02/2022							

The above dates are the analysis completion dates, please note that these are not necessarily the date that the analysis was weighed/extracted.

	SOIL - TIER ONE HUMAN HEALTH S	SCREENING VA	LUES
Status	End Use	Issue No	Issue Date
DRAFT	Commercial	1	04/07/16

		SC	OIL ORGANIC MATT	ΓER	
Determinand	Units	1%	2.5%	6%	SOURCE
pH			<5, >9	<u> </u>	
Asbestos	%		Presence		
HEAVY METALS/METALLOIDS					
Arsenic	mg/kg		640		C4SL and CIEH/LQM S4ULs
Cadmium*	mg/kg		190		CIEH/LQM S4ULs
Chromium (III) Chromium (VI)*	mg/kg		8,600 33		CIEH/LQM S4ULs CIEH/LQM S4ULs
Lead*	mg/kg mg/kg		2,300.00		C4SL
Mercury (Elemental)	mg/kg		58 ^{vap} (25.8)		CIEH/LQM S4ULs
Mercury (Inorganic)	mg/kg		1,100		CIEH/LQM S4ULs
Mercury (Methyl)	mg/kg		320		CIEH/LQM S4ULs
Nickel*	mg/kg		980		CIEH/LQM S4ULs
Selenium	mg/kg		12,000		CIEH/LQM S4ULs
Berylium Boron	mg/kg		240,000		CIEH/LQM S4ULs CIEH/LQM S4ULs
Vanadium	mg/kg mg/kg		9,000		CIEH/LQM S4ULs
Copper	mg/kg		68,000		CIEH/LQM S4ULs
Zinc	mg/kg		730,000		CIEH/LQM S4ULs
GENERAL INORGANICS					
Easily Liberatable Cyanide (free)	mg/kg		36		Acute effects infant 1 dose 3g soil
US EPA PRIORITY PAHs					
Acenaphthene	mg/kg	84,000 (57.0) ^{sol}	97,000 (141) ^{sol}	100,000	CIEH/LQM S4ULs
Acenaphthylene	mg/kg	83,000 (86.1) ^{sol}	97,000 (212) ^{sol}	100,000	CIEH/LQM S4ULs
Anthracene	mg/kg	520,000	540,000	540,000	CIEH/LQM S4ULs
Benzo(a)Anthracene	mg/kg	170	170	180	CIEH/LQM S4ULs
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	44 L 200	1,200	45	CIEH/LQM S4ULs
Benzo(k)fluoranthene Benzo(g,h,i)perylene	mg/kg mg/kg	1,200 3,900	1,200 4,000	1,200 4,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
Benzo(a)Pyrene*	mg/kg	35	35	36	CIEH/LQM S4ULs
Chrysene	mg/kg	350	350	350	CIEH/LQM S4ULs
Di-benzo(a,h)anthracene	mg/kg	3.5	3.6	3.6	CIEH/LQM S4ULs
Fluoranthene	mg/kg	23,000	23,000	23,000	CIEH/LQM S4ULs
Fluorene	mg/kg	63000 (30.9)sol	68,000	71,000	CIEH/LQM S4ULs
Indeno(1,2,3-cd)pyrene	mg/kg	500	510	510	CIEH/LQM S4ULs
Naphthalene	mg/kg	190 (76.4)sol 22,000	460 (183)sol 22,000	1100 (432)sol 23,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
Phenanthrene Pyrene	mg/kg mg/kg	54,000	54,000	54,000	CIEH/LQM S4ULs
Coal Tar (Bap as surrogate marker)	mg/kg	15	15	15	CIEH/LQM S4ULs
Chlorinated Solvents		2.75	2.07		S151 1/1 S14 S 41 II
I,2-Dichloroethane (I,2 DCA)	mg/kg	0.67 660	0.97 1,300	3,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
I,I,I-Trichloroethane (I,I,I TCA) I,I,I,2-Tetrachloroethane (I,I,I,2 PCA)	mg/kg mg/kg	110	250	560	CIEH/LQM S4ULs
1,1,2,2-Tetrachloroethane (1,1,2,2 PCA)	mg/kg	270	550	1,100	CIEH/LQM S4ULs
Tetrachloroethene (PCE)	mg/kg	19	42	95	CIEH/LQM S4ULs
Tetrachloromethane (Carbon Tetrachloride)	mg/kg	2.9	6.3	14	CIEH/LQM S4ULs
Trichloroethene (TCE)	mg/kg	1.2	2.6	5.7	CIEH/LQM S4ULs
Trichloromethane (Chloroform) Vinyl Chloride (VC)	mg/kg mg/kg	99 0.059	170 0.077	350 0.12	CIEH/LQM S4ULs CIEH/LQM S4ULs
		0.00 7	• • • • • • • • • • • • • • • • • • • •	VII.2	0.10.00
Phenolics Phenol	mg/kg	440 ^{dir} (26,000)	690 ^{dir} (30,000)	I,300 ^{dir} (34,000)	CIEH/LQM S4ULs
	90	(20,000)	(50,000)	1,555 (51,555)	•
ТРН					
TPH Aliphatic >C5-6	mg/kg	3,200 (304) ^{sol}	5,900 (558) ^{sol}	12,000 (1,150) ^{sol}	CIEH/LQM S4ULs
TPH Aliphatic >C6-8	mg/kg	7,800 (144) ^{sol}	17,000 (322) ^{sol}	40,000 (736) ^{sol}	CIEH/LQM S4ULs
TPH Aliphatic >C8-10	mg/kg	2,000 (78) ^{sol}	4,800 (190) ^{vap}	11,000 (451) ^{vap}	CIEH/LQM S4ULs
TPH Aliphatic >C10-12	mg/kg	9,700 (48) ^{sol}	23,000 (118) ^{vap}	47,000 (283) ^{vap}	CIEH/LQM S4ULs
TPH Aliphatic >C12-16	mg/kg	59,000 (24) ^{sol}	82,000 (59) ^{sol}	90,000 (142) ^{sol}	CIEH/LQM S4ULs
TPH Aliphatic >C16-35	mg/kg	1,600,000	1,700,000	1,800,000	CIEH/LQM S4ULs
TPH Aliphatic >C35-44 TPH Aromatic >EC5-7 (Benzene)*	mg/kg	1,600,000	1,700,000 46,000 (2,260) ^{sol}	1,800,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >EC5-7 (Benzene)* TPH Aromatic >EC7-8	mg/kg mg/kg	26,000 (1,220) ^{sol}	. (. ,	86,000 (4,710) ^{sol}	CIEH/LQM S4ULs CIEH/LQM S4ULs
IIII AI OIIIauc /EC/-0	mg/kg	56,000 (869) ^{vap} 3,500 (613) ^{vap}	110,000 (1,320) ^{sol} 8,100 (1,500) ^{vap}	180,000 (4,360) ^{vap} 17,000 (3,580) ^{vap}	CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >FC8-10	mg/kg	3,300 (613)	` /	` /	CIEH/LQM S4ULs
TPH Aromatic >EC8-10 TPH Aromatic >FC10-12	mg/kg mg/kg	14 000 (344)sol	38 UUU \000/ ₂₀₁	34 UUU (3 1 EU/ ₂₀₁	
TPH Aromatic >EC10-12	mg/kg	16,000 (364) ^{sol}	28,000 (899) ^{sol} 37,000	34,000 (2,150) ^{sol}	-
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16	mg/kg mg/kg	36,000 (169) ^{sol}	37,000	38,000	CIEH/LQM S4ULs
TPH Aromatic >EC10-12	mg/kg mg/kg mg/kg	` '	` ,	1 (1)	-
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21	mg/kg mg/kg	36,000 (169) ^{sol} 28,000	37,000 28,000	38,000 28,000	CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000 28,000	37,000 28,000 28,000 28,000 28,000	38,000 28,000 28,000 28,000 28,000	CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44	mg/kg mg/kg mg/kg mg/kg mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000	37,000 28,000 28,000 28,000	38,000 28,000 28,000 28,000	CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70 Total TPH	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000 28,000 No Sum	37,000 28,000 28,000 28,000 28,000 No Sum	38,000 28,000 28,000 28,000 28,000 No Sum	CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70 Total TPH BTEX Benzene*	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000 28,000 No Sum	37,000 28,000 28,000 28,000 28,000 No Sum	38,000 28,000 28,000 28,000 28,000 No Sum	CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70 Total TPH BTEX Benzene* Toluene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000 28,000 No Sum	37,000 28,000 28,000 28,000 28,000 No Sum	38,000 28,000 28,000 28,000 28,000 No Sum	CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70 Total TPH BTEX Benzene* Toluene Ethylbenzene	mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000 28,000 No Sum	37,000 28,000 28,000 28,000 28,000 No Sum 47 110,000 ^{vap} (1,920) 13,000 ^{vap} (1,220)	38,000 28,000 28,000 28,000 28,000 No Sum 70 180,000 ^{vap} (4,360) 27,000 ^{vap} (2,840)	CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70 Total TPH BTEX Benzene* Toluene Ethylbenzene m-Xylene	mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000 28,000 No Sum 27 56,000 ^{vap} (869) 5,700 ^{vap} (518) 6,200 ^{vap} (625)	37,000 28,000 28,000 28,000 28,000 No Sum 47 110,000 ^{vap} (1,920) 13,000 ^{vap} (1,220) 14,000 ^{vap} (1,470)	38,000 28,000 28,000 28,000 28,000 No Sum 70 180,000 ^{vap} (4,360) 27,000 ^{vap} (2,840) 31,000 ^{vap} (3,460)	CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70 Total TPH BTEX Benzene* Toluene Ethylbenzene m-Xylene o-Xylene	mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000 28,000 No Sum 27 56,000 ^{vap} (869) 5,700 ^{vap} (518) 6,200 ^{vap} (625) 6,600 ^{sol} (478)	37,000 28,000 28,000 28,000 28,000 No Sum 47 110,000 ^{vap} (1,920) 13,000 ^{vap} (1,220) 14,000 ^{vap} (1,470) 15,000 ^{sol} (1,120)	38,000 28,000 28,000 28,000 28,000 No Sum 70 180,000 ^{vap} (4,360) 27,000 ^{vap} (2,840) 31,000 ^{vap} (3,460) 33,000 ^{sol} (2,620)	CIEH/LQM S4ULs
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16 TPH Aromatic >EC16-21 TPH Aromatic >EC21-35 TPH Aromatic >EC35-44 TPH Aliphatic & Aromatic >EC44-70 Total TPH BTEX Benzene* Toluene Ethylbenzene m-Xylene	mg/kg	36,000 (169) ^{sol} 28,000 28,000 28,000 28,000 No Sum 27 56,000 ^{vap} (869) 5,700 ^{vap} (518) 6,200 ^{vap} (625)	37,000 28,000 28,000 28,000 28,000 No Sum 47 110,000 ^{vap} (1,920) 13,000 ^{vap} (1,220) 14,000 ^{vap} (1,470)	38,000 28,000 28,000 28,000 28,000 No Sum 70 180,000 ^{vap} (4,360) 27,000 ^{vap} (2,840) 31,000 ^{vap} (3,460)	CIEH/LQM S4ULs

Appendix D – Soakaway Test Results

Pick Everard Halford House Charles Street Leicester LE1 1HA

Analytical Test Report: L22/00765/PIC - 22-24028

Your Project Reference: RBG Kew Learning Centre

Your Order Number: 92094 Testing Received / Instructed: 09/02/2022 / 09/02/2022

Report Issue Number: 1 Sample Tested: 09/02 to 23/02/2022

Samples Analysed: 13 soil samples Report issued: 24/02/2022

Signed

v Lee Harbottle

GCM Operations Manager Nicholls Colton Group

Notes:

Samples will be retained for 14 days after issue of this report unless otherwise requested.

 $The \ results \ included \ within \ the \ report \ are \ representative \ of \ the \ samples \ submitted \ for \ analysis.$

A certificate of sampling was not supplied

Samples were supplied by customer, results apply to the samples as received.

Within the report any information provided by the client is identified with a '#'

Accreditation Key

UKAS = UKAS Accreditation, u = Unaccredited

Date of Issue10/12/2020

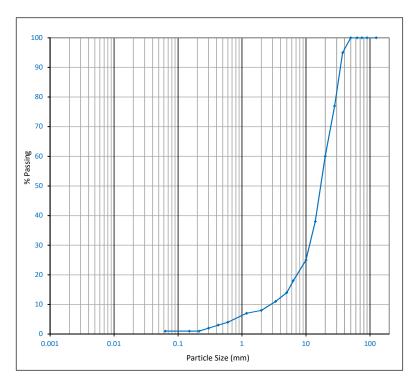
Owned by Emily Blissett - Commercial Reporting Supervisor
Authorised by Lee Harbottle - GCM Operations Manager
L:\DATA\REPORTS\PICO064\[L22-00765-PIC - 22-24028.XLSM]Cover Sheet

L22/00765/PIC - 22-24028
Project Reference - RBG Kew
Learning Centre
Analytical Test Results - Soil

NC Reference		215731	215732	215733	215735	215736	215737
Client Sample ID (#)		-	-	-	-	-	-
Client Sample Location (#)		BH01	BH01	BH01	BH01	BH01	BH01
Client Sample Type (#)		-	-	-	-	-	-
Client Sample Number (#)		-	-	-	-	-	-
Depth - Top (m) (#)		6.00	8.00	9.00	10.00	11.00	12.00
Depth - Bottom (m) (#)		=	-	-	-	-	-
Date of Sampling (#)		01/02/2022	01/02/2022	01/02/2022	01/02/2022	01/02/2022	01/02/2022
Sample type		Disturbed	Disturbed	Disturbed	Disturbed	Disturbed	Disturbed
Sample Description		Brown sandy gravel	Brown slightly silty slightly sandy clay	Brown clay	Brown clay	Brown clay	Brown clay
Determinant	Units						
Moisture Content	(%)	-	-	29	26	27	26
Moisture Content Prep	-	-	-	3.2.3.1 (fine)	3.2.3.1 (fine)	3.2.3.1 (fine)	3.2.3.1 (fine)
Fines passing 425µm test sieve	(%)	-	-	100	100	100	100
Liquid Limit	(%)	-	-	77	68	70	73
Plastic Limit	(%)	-	-	29	26	27	27
Plasticity Index	(%)	-	-	48	42	43	46
PI preparation	-	-	-	from its natural state			
PI Test Method		-	-	clause 4.4 (one point)			
BS1377 PSD							
125.0	(% Passing)	100	100	-	-	-	-
90.0	(% Passing)	100	100	-	-	-	-
75.0	(% Passing)	100	100	-	-	-	-
63.0	(% Passing)	100	100	-	-	-	-
50.0	(% Passing)	100	100	-	-	-	-
37.5	(% Passing)	95	100	-	-	-	-
28.0	(% Passing)	77	100	-	-	-	-
20.0	(% Passing)	60	100	-	-	-	-
14.0	(% Passing)	38	100	-	-	-	-
10.0	(% Passing)	25	100	-	-	-	-
6.3	(% Passing)	18	100	-	-	-	-
5.0	(% Passing)	14	99	-	-	-	-
3.35	(% Passing)	11	98	-	-	-	-
2.00	(% Passing)	8	96	-	-	-	-
1.18	(% Passing)	7	93	-	-	-	-
0.600	(% Passing)	4	88	-	-	-	-
0.425	(% Passing)	3	86	-	-	-	-
0.300	(% Passing)	2	85	-	-	-	-
0.212	(% Passing)	1	84	-	-	-	-
0.150	(% Passing)	1	83	-	-	-	-
0.063	(% Passing)	1	82	-	-	-	-
PSD test Method	_	9.2 Wet Sieve	9.2 Wet Sieve	-	-	-	-

L22/00765/PIC - 22-24028
Project Reference - RBG Kew
Learning Centre
Analytical Test Results - Soil

Non-f		245720	245076	245077	245070
NC Reference		215739	215876	215877	215878
Client Sample ID (#)		-	-	-	-
Client Sample Location (#)		BH01	BH01	BH01	BH01
Client Sample Type (#)		-	-	-	-
Client Sample Number (#)		-	-	-	-
Depth - Top (m) (#)		13.00	13.50	14.0	15.0
Depth - Bottom (m) (#)		-	-	-	-
Date of Sampling (#)		01/02/2022	01/02/2022	01/02/2022	01/02/2022
Sample type		Disturbed	Disturbed	Disturbed	Disturbed
Sample Description		Brown clay	Brown clay	Grey clay	Grey clay
Determinant	Units				
Moisture Content	(%)	27	28	26	28
Moisture Content Prep	-	3.2.3.1 (fine)	3.2.3.1 (fine)	3.2.3.1 (fine)	3.2.3.1 (fine)
Fines passing 425µm test sieve	(%)	100	100	100	100
Liquid Limit	(%)	74	72	71	75
Plastic Limit	(%)	26	26	26	27
Plasticity Index	(%)	48	46	45	48
PI preparation	-	from its natural state			
PI Test Method		clause 4.4 (one point)			
BS1377 PSD					
125.0	(% Passing)	-	-	-	-
90.0	(% Passing)	-	-	-	=
75.0	(% Passing)	-	-	-	=
53.0	(% Passing)	-	-	-	-
50.0	(% Passing)	-	-	-	-
37.5	(% Passing)	-	-	-	-
28.0	(% Passing)	-	-	-	-
20.0	(% Passing)	-	-	-	-
14.0	(% Passing)	-	-	-	-
10.0	(% Passing)	-	-	-	-
5.3	(% Passing)	-	-	-	-
5.0	(% Passing)	-	-	-	-
3.35	(% Passing)	-	-	-	-
2.00	(% Passing)	-	-	-	-
1.18	(% Passing)	-	-	-	-
0.600	(% Passing)	-	-	-	-
0.425	(% Passing)	-	-	-	-
0.300	(% Passing)	-	-	-	-
0.212	(% Passing)	-	-	-	-
0.150	(% Passing)	-	-	-	-
0.063	(% Passing)	-	-	-	-
PSD test Method	-	-	-	-	-



L22/00765/PIC - 22-24028

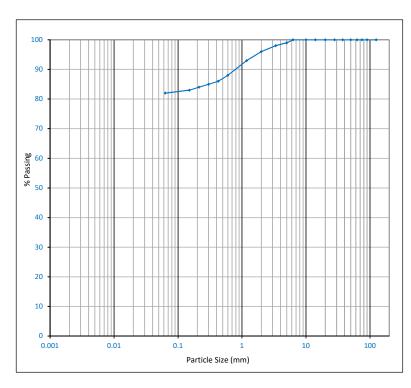
Project Reference - RBG Kew Learning Centre

Material Analysis Results

NC Reference	215731	
Client Sample ID (#)	-	
Client Sample Location (#)	BH01	
Client Sample Type (#)	-	
Client Sample Number (#)	-	
Depth - Top (m) (#)	6.00	
Depth - Bottom (m) (#)	-	
Date of Sampling (#)	01/02/2022	
Sample type	Disturbed	
Sample Description	Brown sandy gravel	

Specifica	tion:			
Sieve Size	Upper	Lower	Passing	
(mm)	Limit (%)	Limit (%)	(%)	
125			100	Cobbles
90			100	
75			100	
63			100	0
50			100	Gravel
37.5			95	
28			77	
20			60	
14			38	
10			25	
6.3			18	
5			14	
3.35			11	89
2			8	Sand
1.18			7	
0.6			4	
0.425			3	
0.3			2	
0.212			1	
0.15			1	
0.063			1	10
				Fines 1

NOTES:



L22/00765/PIC - 22-24028

Project Reference - RBG Kew Learning Centre

Material Analysis Results

NC Reference	215732	
Client Sample ID (#)	-	
Client Sample Location (#)	BH01	
Client Sample Type (#)	-	
Client Sample Number (#)	-	
Depth - Top (m) (#)	8.00	
Depth - Bottom (m) (#)	-	
Date of Sampling (#)	01/02/2022	
Sample type	Disturbed	
Sample Description	Brown slightly silty slightly sandy clay	_

Specificate Sieve Size		Lower	Dessins	1
(mm)	Upper Limit (%)	Lower Limit (%)	Passing (%)	
125	Little (70)	Little (70)	100	Cobbles
90			100	
75			100	
63			100	0
50			100	Gravel
37.5			100	
28			100	
20			100	
14			100	
10			100	
6.3			100	
5			99	
3.35			98	2
2			96	Sand
1.18			93	
0.6			88	
0.425			86	
0.3			85	
0.212			84	
0.15			83	
0.063			82	16
				Fines 82

NOTES:

L22/00765/PIC - 22-24028

Project Reference - RBG Kew Learning Centre

Analytical Test Results - Triaxial (Multi Stage)

NC Reference		215734	215738	215879
Client Sample ID (#)		-	-	-
Client Sample Location (#)		BH01	BH01	BH01
Client Sample Type (#)		-	=	-
Client Sample Number (#)		-	-	-
Depth - Top (m) (#)		9.00	12.00	15.0
Depth - Bottom (m) (#)		-	-	-
Date of Sampling (#)		01/02/2022	01/02/2022	01/02/2022
Sample type		Undisturbed	Undisturbed	Undisturbed
Sample Description		Brown silty clay	Brown silty clay	Brown silty clay
Determinant	Units			
Preperation Method		Undisturbed	Undisturbed	Undisturbed
Orientation within original sample		Vertical	Vertical	Vertical
Depth within original sample	mm	50	40	35
Initial Properties				
Sample height	mm	208	208	208
Sample width	mm	103	104	104
Moisture content	%	29	28	28
Bulk density	Mg/m ³	2.02	1.98	1.98
Dry density	Mg/m ³	1.57	1.54	1.55
Rate of strain	%/min	0.43	0.42	0.39
Type of membrane	-	Latex	Latex	Latex
Membrane thickness	mm	0.44	0.44	0.44
Test Data				
Cell pressure	kPa	90	120	150
Maximum deviator stress	kPa	234	221	273
Membrane correction	kPa	0.8	1.2	0.4
Corrected maximum deviator	kPa	233	219	273
stress				
Cumulative strain at failure	%	7	3	4
Mode of failure	-	brittle	brittle	brittle
Shear strength (c _u)	kPa	117	110	136
Cell pressure	kPa	180	240	300
Maximum deviator stress	kPa	240	-	279
Membrane correction	kPa	0.8	-	0.4
Corrected maximum deviator stress	kPa	239	-	279
Cumulative strain at failure	%	9	=	5
Mode of failure	-	brittle	-	brittle
Shear strength (c _u)	kPa	120	*	139
Cell pressure	kPa	360	-	600
Maximum deviator stress	kPa	248	-	288
Membrane correction	kPa	0.8	-	0.4
Corrected maximum deviator stress	kPa	247	-	288
Cumulative strain at failure	%	10	-	8
Mode of failure	-	brittle	-	brittle
Shear strength (c _u)	kPa	123	-	144
o (u)				

^{*} Sample reversed

L22/00765/PIC - 22-24028

Project Reference - RBG Kew Learning Centre

Analysis Methodologies

Determinant	Title	Details and Test method used
1377 PI/MC	BS1377 PI and	1377 Plasticity Index
	Moisture Content	1. Sample preparation was in accordance with BS1377:Part 1:2016.
		2. Testing was in accordance with BS1377:Part 2:1990
		1377 Moisture Content
		1. Sample preparation was in accordance with BS1377:Part 1:2016.
		2. Moisture content testing was in accordance with BS1377 : Part 2 :1990 1377 Moisture Content
1377MOIST	BS1377 Moisture	1. Sample preparation was in accordance with BS1377:Part 1:2016.
13771010131	Content	2. Moisture content testing was in accordance with BS1377 : Part 2 :1990
	BS1377 Plasticity	1377 Plasticity Index
1377PI	Index	1. Sample preparation was in accordance with BS1377:Part 1:2016.
	ilidex	2. Testing was in accordance with BS1377:Part 2:1990
		1377 Particle Size Distribution
1377PSD	BS1377 PSD	1. Sample preparation was in accordance with BS1377:Part 1:2016.
		2. Testing was in accordance with BS1377:Part 2:1990 clause 9.2 wet sieving method
	BS1377 Multi Stage	1377 Determination of Undrained Shear Strength in Triaxial Compression
1377TRXMS	Triaxial	1. Sample preparation was in accordance with BS1377:Part 1:2016.
	maxidi	2. Testing was in accordance with BS 1377: Part 7: 1990 clause 9, multi stage loading

Pick Everard Halford House Charles Street Leicester LE1 1HA

> Analytical Test Report: L22/00765/PIC - 22-24057

Your Project Reference: 210699 RBG Kew Learning Centre

92094 10/02/2022 / 10/02/2022 Your Order Number: Samples Received / Instructed:

Report Issue Number: 1 Sample Tested: 10/02 to 24/02/2022

10 soil samples Report issued: 24/02/2022 Samples Analysed:

Signed

James Gane Data Manager

Nicholls Colton Group

Notes:

General

 $Please\ refer\ to\ Methodologies\ page\ for\ details\ pertaining\ to\ the\ analytical\ methods\ undertaken.$

Samples will be retained for 14 days after issue of this report unless otherwise requested.

Moisture Content was determined in accordance with NC method statement MS - CL - Sample Prep, oven dried at <30°C.

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2 Stone Content was determined in accordance with NC method statement MS - CL - Sample Prep and refers to the percentage of stones retained on a 10mm BS test sieve.

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement

values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

 ${\sf UKAS} = {\sf UKAS} \ {\sf Accreditation}, \ {\sf MCERTS} = {\sf MCERTS} \ {\sf Accreditation}, \ {\sf u} = {\sf Unaccredited}$

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

Date of Issue 10/12/2020

Owned by Emily Blissett - Customer Services Supervisor

Authorised by James Gane - Commercial Manage

L:\DATA\REPORTS\PIC0064\[L22-00765-PIC - 22-24028.XLSM]Cover Sheet

L22/00765/PIC - 22-24057

Project Reference - 210699 RBG Kew Learning Centre

Analytical Test Results - Soil

NC Reference		216005	216006	216007	216008
Client Sample ID		-		-	-
Client Sample Location		BH01	BH01	BH01	BH01
Client Sample Type		- BHU1	PHOT	-	-
Client Sample Type Client Sample Number		-	-	-	-
Depth - Top (m)		9.00	10.50	13.00	15.00
Depth - Bottom (m)		9.00	10.50	13.00	15.00
Date of Sampling		01/02/2022	01/02/2022	01/02/2022	01/02/2022
Time of Sampling		-	-	-	-
Sample Matrix		Clay	Clay	Clay	Clay
Determinant	Units Accreditatio	n			
Ammonium (as N)	(mgN/kg) u	22	24	30	35

L22/00765/PIC - 22-24057

Project Reference - 210699 RBG Kew Learning Centre

Analytical Test Results - Chemical Analysis

NC Reference			216002	216003	216004	216005	216006	216007
Client Sample ID			-	-	-	-	-	-
Client Sample Location			BH01	BH01	BH01	BH01	BH01	BH01
Client Sample Type			-	-	-	-	-	-
Client Sample Number			-	-	-	-	-	-
Depth - Top (m)			3.00	5.00	7.00	9.00	10.50	13.00
Depth - Bottom (m)			3.00	5.00	7.00	9.00	10.50	13.00
Date of Sampling			01/02/2022	01/02/2022	01/02/2022	01/02/2022	01/02/2022	01/02/2022
Time of Sampling			-	-	-	-	-	-
Sample Matrix			Sand	Sand	Sand	Clay	Clay	Clay
Determinant	Units	Accreditation						
Water soluble sulphate	(mg/l)	u	19	19	14	260	370	160
Acid Soluble Sulphate	(%)	u	-	-	-	0.12	0.15	0.10
Total Sulphur	(%)	UKAS	-	-	-	0.30	0.65	0.45
pH Value	pH Units	MCERTS	9.2	8.7	8.4	8.2	9.1	9.2
Water Soluble Chloride	(mg/l)	u	-	-	-	24	21	17
Water Soluble Nitrate	(mg/l)	u	-	-	-	< 1.0	< 1.0	< 1.0
Water Soluble Magnesium	(mg/l)	u	-	-	-	36	53	42
Ammonium (as N)	(mgN/kg)	u	-	-	-	22	24	30

L22/00765/PIC - 22-24057

Project Reference - 210699 RBG Kew Learning Centre

Analytical Test Results - Chemical Analysis

NC Reference			216008	216009	216010	216011
Client Sample ID			-	-	-	-
Client Sample Location			BH01	WS01	WS04	WS05
Client Sample Type			-	-	-	-
Client Sample Number			-	-	-	-
Depth - Top (m)			15.00	1.00	3.00	2.00
Depth - Bottom (m)			15.00	1.00	3.00	2.00
Date of Sampling			01/02/2022	02/02/2022	01/02/2022	01/02/2022
Time of Sampling			-	-	-	-
Sample Matrix			Clay	Clay	Sand	Sand
Determinant	Units	Accreditation				
Water soluble sulphate	(mg/l)	u	200	10	36	73
Acid Soluble Sulphate	(%)	u	0.11	-	-	-
Total Sulphur	(%)	UKAS	0.34	-	-	-
pH Value	pH Units	MCERTS	9.4	5.5	7.9	5.0
Water Soluble Chloride	(mg/l)	u	22	-	-	-
Water Soluble Nitrate	(mg/l)	u	< 1.0	-	-	-
Water Soluble Magnesium	(mg/l)	u	29	-	-	-
Ammonium (as N)	(mgN/kg)	u	35	-	-	-

L22/00765/PIC - 22-24057 Project Reference - 210699 RBG Kew Learning Centre Sample Descriptions

NC Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
216002	-	BH01	-	-	Light brown very gravelly sand	-	-	9.7
216003	-	BH01	-	-	Light brown very gravelly sand	-	-	38
216004	-	BH01	-	-	Light brown very gravelly sand	-	-	17
216005	=	BH01	-	-	Dark grey slightly silty clay	26	0.0	100
216006	-	BH01	-	-	Dark grey slightly silty clay	19	0.0	100
216007	-	BH01	-	-	Dark grey slightly silty clay	22	0.0	100
216008	-	BH01	-	-	Dark grey slightly silty clay	28	0.0	100
216009	-	WS01	-	-	Dark red slightly silty sandy clay with rare rootlets	-	-	100
216010	-	WS04	-	-	Light brown slightly gravelly silty sand	-	-	42
216011	-	WS05	-	-	Brown slightly gravelly silty sand	-	-	67

L22/00765/PIC - 22-24057

Project Reference - 210699 RBG Kew Learning Centre

Sample Comments

NC Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
216002	-	BH01	-	-	
216003	-	BH01	-	-	
216004	-	BH01	-	-	
216005	-	BH01	-	-	
216006	-	BH01	-	-	
216007	-	BH01	-	-	
216008	-	BH01	-	-	
216009	-	WS01	-	-	
216010	-	WS04	-	-	
216011	-	WS05	-	-	

L22/00765/PIC - 22-24057

Project Reference - 210699 RBG Kew Learning Centre

Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
AMMS	MS - CL - Ammonia in Soil by Aquakem	As Received	Passing 10mm test sieve	Determination of Ammonia in soil via Aquakem
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
SAMPLEPREP	MS - CL - Sample Preparation	-		Preparation of samples (including determination of moisture content) to allow for subsequent analysis
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

L22/00765/PIC - 22-24057

Project Reference - 210699 RBG Kew Learning Centre

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

- A No date of sampling provided
- C Received in inappropriate container
- H Contains headspace
- T Temperature on receipt exceeds storage temperature
- R Date of sampling to receipt insufficient to allow analysis to be completed without deviation, Please note this is only a deviation if 'X' is also recorded against the sample

Observations whist in laboratory

X - Exceeds sampling to extraction or analysis timescales

NC Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Test	Deviations
216002	-	BH01	-	-	MS - CL - pH in Soils	RX
216003	-	BH01	-	-	MS - CL - pH in Soils	RX
216004	-	BH01	-	-	MS - CL - pH in Soils	RX
216005	-	BH01	-	-	MS - CL - pH in Soils	RX
216006	-	BH01	-	-	MS - CL - pH in Soils	RX
216007	-	BH01	-	-	MS - CL - pH in Soils	RX
216008	-	BH01	-	-	MS - CL - pH in Soils	RX
216009	-	WS01	-	-	MS - CL - pH in Soils	RX
216010	-	WS04	-	-	MS - CL - pH in Soils	RX
216011	-	WS05	-	-	MS - CL - pH in Soils	RX

Appendix $E-Ground\ Gas\ Monitoring\ Results$

DIC	W								GAS M	IONITORI	NG RECO	RD SHEET			
PICK				Client:						Roya	l Botanical Ga	rdens Kew			
PICK EVERARD			Project:	t: RBG Kew Learning Centre			Job No.:		210699		Instruments Used:			GA2000	
LV	LIM	\mathbf{n}		Weather:		Overcast		Date:		11/02/2022		Monitored By:		JHL	
1 . 11 . 1	Atmospheric	Relative	Pe	eak ^I		Steady ²		Total gas	Peak CH ₄	Peak CO ₂	Water	Base	Elevation	Water	
Installation No.	Pressure	Pressure	CH₄	CO ₂	CH₄	CO ₂	O ₂	flow rate	flow rate	flow rate	Depth to	Depth	of cover	Depth	Comments
	(mbar)	(mbar)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(l/hr)	(l/hr)	(l/hr)	top of cover	top of cover	(m AOD)	(m AOD)	
WS01	1031	-0.16	<0.1	4.3	<0.1	4.3	18.0	<0.1	0.0001	0.0043	-	-	6.00	-	
WS02	1031	-0.07	<0.1	3.1	<0.1	3.1	19.4	<0.1	0.0001	0.0031	2.07	2.10	7.52	5.45	
WS05	1031	-0.07	<0.1	3.2	<0.1	3.2	18.7	<0.1	0.0001	0.0032	-	-	6.50	-	

Background Gas Levels:	CH₄	CO ₂	O ₂	Atmos
Background Gas Levels.	(%)	(%)	(%)	(mbar)
Before Monitoring	<0.1	0.1	21.2	1031
After Monitoring	<0.1	0.1	21.5	1031

Characteristic Gas Situation									
I									
2									
3									
4									

¹ The peak reading is the maximum recorded level during a monitoring event.

 $[\]overset{\cdot}{}$ The steady reading is the level which remained constant after approximately 1 minute.

DIC	VI								GAS M	IONITORI	NG RECO	RD SHEET			
PIC				Client:						Roya	l Botanical Gai	dens Kew			
EV	CK ERA	D		Project:	Project: RBG Kew Learning Centre Jo		Job No.:		210699		Instruments Used:			GA2000	
LV	LIM	\mathbf{n}		Weather:		Sunny		Date:	25/02/2022		Monitored B	By:	JHL		
1 . 11 . 1	Atmospheric	Relative	Pe	ak ^I		Steady ²		Total gas	Peak CH₄	Peak CO ₂	Water	Base	Elevation	Water	
Installation No.	Pressure	Pressure	CH₄	CO ₂	CH₄	CO ₂	O ₂	flow rate	flow rate	flow rate	Depth to	Depth	of cover	Depth	Comments
	(mbar)	(mbar)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(l/hr)	(l/hr)	(l/hr)	top of cover	top of cover	(m AOD)	(m AOD)	
WS01	1025	-0.17	0.1	4.1	<0.1	4.0	17.8	0.1	0.0001	0.0040	-	1.84	6.00	-	Flow rate of -0.1 converted to positive flow in accordance with BS8485 as a precuation.
WS02	1025	-0.17	0.1	4.8	<0.1	4.8	18.2	<0.1	0.0001	0.0048	2.065	2.095	7.52	5.46	
WS05	1025	-0.17	0.1	1.8	<0.1	1.8	19.8	<0.1	0.0001	0.0018	-	1.97	6.50	-	

Background Gas Levels:	CH₄	CO ₂	O ₂	Atmos
Background Gas Leveis.	(%)	(%)	(%)	(mbar)
Before Monitoring	0.1	0.1	21.0	1025
After Monitoring	<0.1	<0.1	21.0	1025

Characteristic Gas Situation									
I									
2									
3									
4									

¹ The peak reading is the maximum recorded level during a monitoring event.

[.] $^{\prime}$ The steady reading is the level which remained constant after approximately I minute.

DIC	W								GAS M	IONITORI	NG RECO	RD SHEET			
PIC				Client:						Roya	l Botanical Ga	rdens Kew			
PICK EVERARD				Project: RBG Kew Learning Centre Jo			Job No.:	No.: 210699			Instruments Used:			GA2000	
LV	EVERARD			Weather:	Overcast		Date:	04/03/2022		Monitored By:		JHL			
1 . 11 . 1	Atmospheric	Relative	Pe	ak ^I		Steady ²		Total gas	Peak CH₄	Peak CO ₂	Water	Base	Elevation	Water	
Installation No.	Pressure	Pressure	CH₄	CO ₂	CH₄	CO ₂	O ₂	flow rate	flow rate	flow rate	Depth to	Depth	of cover	Depth	Comments
	(mbar)	(mbar)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(l/hr)	(l/hr)	(l/hr)	top of cover	top of cover	(m AOD)	(m AOD)	
WS01	1017	-0.16	0.1	5.9	0.1	5.4	15.8	<0.1	0.0001	0.0054	-	1.845	6.00	-	
WS02	1017	-0.16	0.1	2.8	0.1	2.8	19.5	<0.1	0.0001	0.0028	2.075	2.090	7.52	5.45	
WS05	1017	-0.12	0.1	2.7	0.1	2.1	19.4	0.1	0.0001	0.0021	-	1.97	6.50	-	

Background Gas Levels:	CH₄	CO ₂	O ₂	Atmos
Background Gas Levels.	(%)	(%)	(%)	(mbar)
Before Monitoring	0.1	0.1	21	1025
After Monitoring	0.1	0.1	21.4	1025

Characteristic Gas Situation									
I									
2									
3									
4									

 $^{^{\}mbox{\scriptsize I}}$ The peak reading is the maximum recorded level during a monitoring event.

 $[\]overset{\cdot}{}$ The steady reading is the level which remained constant after approximately 1 minute.

DIC	W								GAS M	IONITORI	NG RECO	RD SHEET			
PICK				Client:						Roya	l Botanical Ga	rdens Kew			
PICK EVERARD			Project:	roject: RBG Kew Learning Centre J			Job No.: 21069			210699 Instruments Used:		Used:	GA2000		
LV		\mathbf{n}		Weather:		Rain		Date:	Date: 11/03/2022			Monitored By:		JHL	
1 . 11 . 1	Atmospheric	Relative	Pe	ak ^I		Steady ²		Total gas	Peak CH ₄	Peak CO ₂	Water	Base	Elevation	Water	
Installation No.	Pressure	Pressure	CH₄	CO ₂	CH₄	CO ₂	O ₂	flow rate	flow rate	flow rate	Depth to	Depth	of cover	Depth	Comments
	(mbar)	(mbar)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(l/hr)	(l/hr)	(l/hr)	top of cover	top of cover	(m AOD)	(m AOD)	
WS01	1001	-0.02	0.1	5.9	0.1	5.9	15.3	0.1	0.0001	0.0059	-	1.840	6.00	-	
WS02	1001	-0.07	0.1	5.1	0.1	5.1	16.5	<0.1	0.0001	0.0051	2.085	2.090	7.52	5.44	
WS05	1001	-0.14	0.1	1.6	0.1	0.6	20.6	<0.1	0.0001	0.0006	-	1.975	6.50	-	

Background Gas Levels:	CH₄	CO ₂	O ₂	Atmos
Background Gas Levels.	(%)	(%)	(%)	(mbar)
Before Monitoring	0.1	<0.1	21.0	1001
After Monitoring	0.1	<0.1	21.2	1001

	Characteristic Gas Situation									
I	I									
2										
3										
4										

¹ The peak reading is the maximum recorded level during a monitoring event.

The steady reading is the level which remained constant after approximately I minute.

DIC	W								GAS M	IONITORI	NG RECO	RD SHEET				
PIC				Client:						Roya	l Botanical Gai	dens Kew				
PICK EVERARD				Project:	RBG Kew Learning Centre		Job No.:	210699			Instruments	Used:	GA2000			
LV		\mathbf{n}		Weather:		Sunny		Date:		18/03/2022		Monitored B	By:	JHL		
	Atmospheric	Relative	Pe	eak ¹	Steady ²		Total gas	Peak CH₄	Peak CO ₂	Water	Base	Elevation	Water			
Installation No.	Pressure	Pressure	CH₄	CO ₂	CH₄	CO ₂	O ₂	flow rate	flow rate	flow rate	Depth to	Depth	of cover	Depth	Comments	
140.	(mbar)	(mbar)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(l/hr)	(l/hr)	(l/hr)	top of cover	top of cover	(m AOD)	(m AOD)		
WS01	1041	-0.19	0.1	5.9	0.1	5.9	15.3	<0.1	0.0001	0.0059	-	1.845	6.00	-		
WS02	1040	-0.15	0.1	2.6	0.1	2.6	19.3	<0.1	0.0001	0.0026	2.080	2.090	7.52	5.44		
WS05	1041	-0.19	0.1	1.2	0.1	1.2	19.6	0.1	0.0001	0.0012	-	1.975	6.50	-		

Background Gas Levels:	CH₄	CO ₂	O ₂	Atmos	
Background Gas Levels.	(%)	(%)	(%)	(mbar)	
Before Monitoring	0.1	<0.1	21.0	1040	
After Monitoring	0.1	<0.1	20.9	1041	

Characteristic Gas Situation										
I										
2										
3										
4										

¹ The peak reading is the maximum recorded level during a monitoring event.

[.] $^{\prime}$ The steady reading is the level which remained constant after approximately I minute.

DIC	VI				GAS MONITORING RECORD SHEET												
PIC	CK ERA			Client:						Roya	l Botanical Ga	rdens Kew					
EV	FRA	D		Project:	RBG Kew Learning Centre		Job No.: 210699 In:				Instruments	Used:	GA2000				
LV		\mathbf{n}		Weather:		Sunny		Date:	25/03/2022 M c			Monitored E	Monitored By:		JHL		
1 . 11 . 1	Atmospheric	Relative	Pe	ak ^I		Steady ²		Total gas	Peak CH₄	Peak CO ₂	Water	Base	Elevation	Water			
Installation No.	Pressure	Pressure	CH₄	CO ₂	CH₄	CO ₂	O ₂	flow rate	flow rate	flow rate	Depth to	Depth	of cover	Depth	Comments		
	(mbar)	(mbar)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(l/hr)	(l/hr)	(l/hr)	top of cover	top of cover	(m AOD)	(m AOD)			
WS01	1030	-0.16	0.1	6.3	0.1	6.2	14.9	0.1	0.0001	0.0062	-	1.835	6.00	-			
WS02	1030	-0.16	0.1	3.1	0.1	3.1	18.4	<0.1	0.0001	0.0031	2.090	2.090	7.52	5.43			
WS05	1030	-0.16	0.1	1.0	0.1	0.6	20.4	<0.1	0.0001	0.0006	-	1.975	6.50	-			

Background Gas Levels:	CH₄	CO ₂	O ₂	Atmos	
Background Gas Levels.	(%)	(%)	(%)	(mbar)	
Before Monitoring	0.1	<0.1	21.0	1030	
After Monitoring	0.1	<0.1	20.6	1030	

Characteristic Gas Situation										
I										
2										
3										
4										

¹ The peak reading is the maximum recorded level during a monitoring event.

The steady reading is the level which remained constant after approximately I minute.

 ${\bf Appendix}\; {\bf F-Waste}\; {\bf Classification}\; {\bf Certificates}$

Waste Classification Report

HazWasteOnline™ classifies waste as either hazardous or non-hazardous based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

210699 - RBG Kew

Description/Comments

Preliminary waste classification undertaken on soil samples collected from ground investigation.

Project

210699

Royal Botanical Gardens Kew, Richmond, TW9 3AG

Classified by

Name: Company: Elliott Bell Pick Everard

Date:

28 Mar 2022 13:01 GMT

Telephone:

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED

Hazardous Waste Classification

Date 10 Feb 2022

Next 3 year Refresher due by Feb 2025

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	BH01-1-0.50m-20220201	0.50m	Non Hazardous		2
2	WS01-2-0.10m-20220201	0.10m	Non Hazardous		4
3	WS02-3-0.50m-20220201	0.50m	Non Hazardous		6
4	WS03-4-0.60m-20220201	0.60m	Non Hazardous		8
5	WS03-2.00m-20220201	2.00m	Non Hazardous		11
6	WS04-5-1.00m-20220201	1.00m	Non Hazardous		13
7	WS05-6-0.70m-20220201	0.70m	Non Hazardous		16
8	WS06-7-0.30m-20220201	0.30m	Non Hazardous		19

Related documents

# Name	Name Description					
1 22-010	085-1.pdf	Lab results				
2 22-010	085-1 wac.pdf	WAC results				
3 22-010	085.hwol	.hwol file used to create the Job				
4 RBG K	(ew	waste stream template used to create this Job				

Report

Created by: Elliott Bell Created date: 28 Mar 2022 13:01 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	21
Appendix B: Rationale for selection of metal species	22
Appendix C: Version	23

Classification of sample: BH01-1-0.50m-20220201

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: BH01-1-0.50m-20220201 LoW Code: Chapter: Sample Depth:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Entry:

Moisture content:

0.50m m

14.1% (wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 14.1% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH		PH		8.84	рН		8.84	рН	8.84 pH		
2	4	cyanides { salts of exception of comple ferricyanides and messpecified elsewhere	x cyanides such a ercuric oxycyanide	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< th=""></lod<>
3	4	arsenic { arsenic tric	*			11	mg/kg	1.32	12.476	mg/kg	0.00125 %	1	
	_	033-003-00-0 2 boron { boric acid; [1	215-481-4	1327-53-3	\vdash								
4	-	005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		<1	mg/kg	5.719	<5.719	mg/kg	<0.000572 %		<lod< th=""></lod<>
5	æ\$	cadmium { cadmium	n fluoride }	7790-79-6		1	mg/kg	1.338	1.149	mg/kg	0.000115 %	√	
6	4	copper { tetracopper tetracopper hexahyo	r hexahydroxide si	ulphate; [1]		30	mg/kg	1.779	45.854	mg/kg	0.00459 %	✓	
7	4	chromium in chromio oxide (worst case) }	um(III) compound:	s { • chromium(III)		17	mg/kg	1.462	21.343	mg/kg	0.00213 %	√	
8	4	chromium in chromic compounds, with the of compounds speci	um(VI) compound	s { chromium (VI)		<1	mg/kg	2.27	<2.27	mg/kg	<0.000227 %		<lod< th=""></lod<>
9	4	024-017-00-8 lead { lead compospecified elsewhere 082-001-00-6			1	463	mg/kg		397.717	mg/kg	0.0398 %	✓	
10	4	mercury { inorganic exception of mercuric elsewhere in this An	ic sulphide and the		1	1.46	mg/kg		1.254	mg/kg	0.000125 %	√	
	-	080-002-00-6 nickel { nickel(II) car	bonate }		\vdash							+	
11	-	028-010-00-0 2 2	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		16	mg/kg	2.022	27.796	mg/kg	0.00278 %	✓	
12	₽	selenium { selenium cadmium sulphosele in this Annex }				<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>

Report created by Elliott Bell on 28 Mar 2	Report	created	bv	Elliott	Bell	on	28	Mar	2022
--	--------	---------	----	---------	------	----	----	-----	------

The composition Compositio	$\overline{}$	_				_				ПСР	ort crea	ted by Elliott Bell o		IVIAI ZOZZ
13	#		EU CLP index		CAS Number	LP Note	User entered	d data		Compound of	conc.		C Applied	Conc. Not Used
13						ပ				1			Σ	
1 2 2 2 2 2 2 2 2 2	13	~	,				38	mg/kg	1.968	64.252	mg/kg	0.00643 %	/	
				231-944-3	7779-90-0								Щ	
15	14	0	acenaphthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
10				201-469-6	83-32-9	-							Н	
6 anthracene	15	0	acenaphthylene	bos 047.4	boo oo o	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
10	\vdash			205-917-1	208-96-8	+							H	
	16	0	anthracene	004 274 4	420 42 7	4	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
10	\vdash		honzíalanthrasana		120-12-7	+							\vdash	
Benzo(a)pyrene; benzo(derjchrysene 0.07 mg/kg 0.0601 mg/kg 0.00006601	17				EC EE 2	-	0.07	mg/kg		0.0601	mg/kg	0.00000601 %	✓	
19					00-00-3	+							\vdash	
	18				60 33 8	-	0.07	mg/kg		0.0601	mg/kg	0.00000601 %	✓	
Solidation Sol	\vdash			1	pu-32-6	+							Н	
20	19				bos oo 2	-	0.08	mg/kg		0.0687	mg/kg	0.00000687 %	✓	
Description				1	205-99-2	-						<u>.</u>	Н	
Denzolk/fluoranthene	20	0	benzo[grii]peryleni		101 24 2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
1			henzolklfluoranthe	1	191-24-2	1					-	<u> </u>	H	
Carrysene Carr	21				207-08-9	-	<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lod< td=""></lod<>
Solid Soli				203-910-0	207-00-9	+							\vdash	
Color	22		•	205-923-4	218-01-0	-	0.07	mg/kg		0.0601	mg/kg	0.00000601 %	✓	
Substitution	\vdash			1	210-01-9								Н	
Part	23				53-70-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
205-912-4 206-44-0 0.13 mg/kg 0.112 mg/kg 0.0000112% 0.0000112% 0.0000112% 0.0000112% 0.0000112% 0.0000112% 0.0000112% 0.0000112% 0.0000112% 0.00000112% 0.00000112% 0.00000112% 0.00000112% 0.00000112% 0.00000112% 0.00000112% 0.000000112% 0.000000112% 0.00000012% 0.00000012% 0.00000012% 0.00000012% 0.00000012% 0.00000012% 0.00000012% 0.00000012% 0.00000012% 0.0000012% 0.0000012% 0.0000012% 0.0000012% 0.0000012% 0.0000012% 0.0000012% 0.0000012% 0.0000012% 0.00000012% 0.00000012% 0.00000012% 0.00000012% 0.00000000012% 0.0000000000000000000000000000000000	\vdash			200-101-0	03-70-3	+							Н	
Column	24	9	ndorantilene	205-912-4	206-44-0	-	0.13	mg/kg		0.112	mg/kg	0.0000112 %	✓	
201-695-5 86-73-7			fluorene	200 012 1	200 11 0	+							Н	
Indeno[123-cd]pyrene	25			201-695-5	86-73-7	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
205-893-2 193-39-5 0.04 mg/kg 0.0000344 mg/kg 0.0000344 mg/kg 0.00000344 mg/kg 0.00000346 < LOD mg/kg 0.00000346 < LOD mg/kg 0.00000346			indeno[123-cd]pyre	1		\top							H	
Papel	26	Ĭ			193-39-5	-	0.04	mg/kg		0.0344	mg/kg	0.00000344 %	√	
Solidation Sol			naphthalene		(100 00 0	1							П	
Phenanthrene	27			202-049-5	91-20-3	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
Pyrene P	20	0	phenanthrene	1			0.00			0.0545	//	0.00000545.0/		
29 204-927-3 129-00-0 204-927-3 129-00-0 30 TPH (C6 to C40) petroleum group	28		•	201-581-5	85-01-8	1	0.06	mg/kg		0.0515	mg/kg	0.00000515 %	√	
TPH (C6 to C40) petroleum group		0	pyrene	1	`		0.40			0.440		0.0000440.0/		
TPH State State	29			204-927-3	129-00-0	1	0.13	mg/kg		0.112	mg/kg	0.0000112%	✓	
TPH	20	0	TPH (C6 to C40) p	etroleum group			-1	malka		-1	ma/ka	-0.0001.9/	П	-I OD
Color Colo	30				TPH		<1	mg/kg		<1	mg/kg	<0.0001 %		<lud< td=""></lud<>
101-020-00-8 200-753-7 71-43-2	31		benzene				-0.01	ma/ka		<0.01	ma/ka	<0.000001 %	П	<1.0D
32 601-021-00-3 203-625-9 108-88-3 <0.01 mg/kg <0.000001 % <lod 100-41-4="" 202-849-4="" 33="" 601-023-00-4="" ethylbenzene="" td="" ="" <=""><td> </td><td></td><td>601-020-00-8</td><td>200-753-7</td><td>71-43-2</td><td></td><td>\U.U1</td><td>mg/kg</td><td></td><td>V0.01</td><td>mg/kg</td><td></td><td></td><td>~LOD</td></lod>			601-020-00-8	200-753-7	71-43-2		\U.U1	mg/kg		V0.01	mg/kg			~LOD
601-021-00-3 203-625-9 108-88-3	32		toluene				~0.01	ma/ka		<0.01	ma/ka	<0.000001 %	П	<1 UU
33 0.01 mg/kg 0.000001 % 0.0000001 % 0.00000001 % 0.00000001 % 0.00000001 % 0.00000001 % 0.00000001 % 0.00000001 % 0.000000001 % 0.000000000000000000000000000000000	J2		601-021-00-3	203-625-9	108-88-3		V0.01	mg/kg		V0.01	mg/kg	3.000001 /0		_UD
601-023-00-4 202-849-4 100-41-4	33	0	ethylbenzene				<0.01	ma/ka		<0.01	ma/ka	<0.000001 %	П	<lod< td=""></lod<>
34			601-023-00-4	202-849-4	100-41-4		30.01	g/ng		33.01	mg/kg		Ш	
34			o-xylene; [1] p-xyle	ene; [2] m-xylene; [3] xylene [4]								H	
203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]	3/		601-022-00-9				-0.02	ma/ka		~0.02	ma/ka	~0.000002 %		~I OD
215-535-7 [4] 1330-20-7 [4]	34						<0.02	mg/kg		\0.02	ilig/kg	<0.000002 /0		\LOD
tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 20.01 mg/kg <0.000001 % <lod td="" ="" <=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod>														
35			tert-butyl methyl et										П	
36 polychlorobiphenyls; PCB c02-039-00-4 215-648-1 1336-36-3 c0.0007 mg/kg c0.0000007 % clob	35			ylpropane			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
36			603-181-00-X	216-653-1	1634-04-4								Ш	
602-039-00-4 215-648-1 [1336-36-3	36	0					<0.007	ma/ka		<0.007	ma/ka	<0.0000007 %		<lod< td=""></lod<>
Total: 0.0585 %			602-039-00-4	215-648-1	1336-36-3		.0.007			.3.00.		<u> </u>	Ш	
											Total:	0.0585 %	L	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS01-2-0.10m-20220201

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS01-2-0.10m-20220201 Chapter:

Sample Depth:

0.10m m Entry: Moisture content:

17.5%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 17.5% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		7.25	рН		7.25 pH	7.25 pH		
2	₫,	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1	mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
3	æ å	006-007-00-5 arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		11	mg/kg	1.32	11.982 mg/kg	0.0012 %	✓	
4	4	boron { boric acid; [1] boric acid [2] } 005-007-00-2		<1	mg/kg	5.719	<5.719 mg/kg	<0.000572 %		<lod< th=""></lod<>
5	4	cadmium { cadmium fluoride } 048-006-00-2 232-222-0 7790-79-6		1.1	mg/kg	1.338	1.214 mg/kg	0.000121 %	✓	
6	4	copper { tetracopper hexahydroxide sulphate; [1] tetracopper hexahydroxide sulphate hydrate [2] } 029-018-00-7		30	mg/kg	1.779	44.039 mg/kg	0.0044 %	√	
7	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		24	mg/kg	1.462	28.939 mg/kg	0.00289 %	√	
8	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<1	mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< th=""></lod<>
9	4	lead {	1	113	mg/kg		93.225 mg/kg	0.00932 %	✓	
10	4	mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }	1	<0.17	mg/kg		<0.17 mg/kg	<0.000017 %		<lod< th=""></lod<>
11	₫,	nickel { nickel(II) carbonate } 028-010-00-0		18	mg/kg	2.022	30.033 mg/kg	0.003 %	√	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1	mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< th=""></lod<>

Donort	araatad	las r	FII:044	Dall		20	1100	2022
Report	created	IJУ		Dell	OH	20	IVIai	2022

_									ТСР	ort orou	ted by Elliott Bell o	11 2	J IVIUI ZUZZ
#	,	EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
	æ	zinc { trizinc bis(or	thophosphate) }		\vdash								
13	•	030-011-00-6	231-944-3	7779-90-0	-	86	mg/kg	1.968	139.658	mg/kg	0.014 %	✓	
	0	acenaphthene	-0.00		1								
14		асспартителе	201-469-6	83-32-9	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	8	acenaphthylene	-000 0	00 02 0	1								
15		accriapitatylone	205-917-1	208-96-8	-	0.02	mg/kg		0.0165	mg/kg	0.00000165 %	✓	
	8	anthracene	200 011 1	200 00 0	+								
16		ununuoono	204-371-1	120-12-7	-	0.02	mg/kg		0.0165	mg/kg	0.00000165 %	✓	
		benz[a]anthracene	1	120 12 7	╁						,		
17		601-033-00-9	200-280-6	56-55-3	-	0.23	mg/kg		0.19	mg/kg	0.000019 %	✓	
		benzo[a]pyrene; be	1	00 00 0	\vdash								
18		601-032-00-3	200-028-5	50-32-8	-	0.32	mg/kg		0.264	mg/kg	0.0000264 %	✓	
		benzo[b]fluoranthe		00 02 0	╁								
19		601-034-00-4	205-911-9	205-99-2	-	0.39	mg/kg		0.322	mg/kg	0.0000322 %	✓	
	_	benzo[ghi]perylene	1	200 33 2									
20	9	benzolgrijperyiene	205-883-8	191-24-2	-	0.16	mg/kg		0.132	mg/kg	0.0000132 %	✓	
		benzo[k]fluoranthe		131 24 2									
21		601-036-00-5	205-916-6	207-08-9	-	0.15	mg/kg		0.124	mg/kg	0.0000124 %	✓	
		chrysene	203-310-0	201-00-9	+					-			
22		601-048-00-0	205-923-4	218-01-9	-	0.29	mg/kg		0.239	mg/kg	0.0000239 %	✓	
		dibenz[a,h]anthrac		210-01-9	+								
23		601-041-00-2	200-181-8	53-70-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_	fluoranthene	200-101-0	55-70-5	+								
24		- Indorantinene	205-912-4	206-44-0	-	0.36	mg/kg		0.297	mg/kg	0.0000297 %	✓	
	_	fluorene	203-912-4	200-44-0	╁								
25	0	iluolelle	201-695-5	86-73-7	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	indeno[123-cd]pyre	1	00-73-7	+	-							
26	0	macho[120 ca]pyn	205-893-2	193-39-5	-	0.21	mg/kg		0.173	mg/kg	0.0000173 %	✓	
		naphthalene	203-033-2	190-09-0	+								
27		601-052-00-2	202-049-5	91-20-3	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		phenanthrene	202-043-3	31-20-3	+								
28	(1)	Prierialiulielle	201-581-5	85-01-8	-	0.11	mg/kg		0.0908	mg/kg	0.00000908 %	✓	
		pyrene	E01-001-0	00 01-0	\vdash								
29	0	ругопе	204-927-3	129-00-0	-	0.33	mg/kg		0.272	mg/kg	0.0000272 %	✓	
\vdash		TPH (C6 to C40) p		120-00-0	+								
30	0	11 11 (CO to C40) p	T T T T T T T T T T T T T T T T T T T	TPH	-	79	mg/kg		65.175	mg/kg	0.00652 %	✓	
	Ш			ILU						Total:	0.0428 %	\vdash	
										IUIAI.	0.0420 /0		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free phase hydrocarbons identified during site investigation.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00652%)

Classification of sample: WS02-3-0.50m-20220201

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Entry:

Sample details

Sample name: WS02-3-0.50m-20220201 LoW Code: Chapter: Sample Depth:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05

0.50m m Moisture content:

10.5%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 10.5% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		7.16 pH		7.16 pH	7.16 pH		
2	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
3	4	arsenic { arsenic trioxide } 033-003-00-0		11 mg/kg	1.32	12.999 mg/kg	0.0013 %	√	
4	æ	boron { boric acid; [1] boric acid [2] } 005-007-00-2		<1 mg/kg	5.719	<5.719 mg/kg	<0.000572 %		<lod< td=""></lod<>
5	4	cadmium { cadmium fluoride } 048-006-00-2		0.9 mg/kg	1.338	1.078 mg/kg	0.000108 %	√	
6	æ	copper { tetracopper hexahydroxide sulphate; [1] tetracopper hexahydroxide sulphate hydrate [2] } 029-018-00-7		20 mg/kg	1.779	31.851 mg/kg	0.00319 %	√	
7	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		24 mg/kg	1.462	31.394 mg/kg	0.00314 %	√	
8	æ	215-160-9 1308-38-9 chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<1 mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< td=""></lod<>
9	4	lead { lead compounds with the exception of those specified elsewhere in this Annex (worst case) }	1	56 mg/kg		50.12 mg/kg	0.00501 %	✓	
10	æ	mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }	1	<0.17 mg/kg	ı	<0.17 mg/kg	<0.000017 %		<lod< th=""></lod<>
	_	080-002-00-6 nickel { nickel(II) carbonate }							
11	4	1028-010-00-0 222-068-2 [1] 3333-67-3 [1] 240-408-8 [2] 16337-84-1 [2] 265-748-4 [3] 65405-96-1 [3] 235-715-9 [4] 12607-70-4 [4]		18 mg/kg	2.022	32.581 mg/kg	0.00326 %	✓	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< th=""></lod<>

Report	created	hv	Flliott	Rell	οn	28	Mar	2022
Lebour	Citaltu	IJУ	LIIIOII	Dell	UH	20	iviai	2022

	_				_				rep	oit oitd	ted by Elliott Bell o	// / /	J IVIAI ZUZZ
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
- Ai	2	zinc { trizinc bis(or	thophosphate) }		+								
13	•	,	231-944-3	7779-90-0	-	51	mg/kg	1.968	89.847	mg/kg	0.00898 %	✓	
		acenaphthene	201 344 0	1113 30 0	+								
14	-	acenaphinene	201-469-6	83-32-9	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	+	acenaphthylene	201-409-0	03-32-9	+								
15 🕛		acenaphiniyiene	DOE 017 1	208-96-8	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
-	+		205-917-1	200-90-0	+								
16	1	anthracene	004.074.4	400 40 7	_	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
	+.		204-371-1	120-12-7	+							-	
17		penz[a]anthracene				0.13	mg/kg		0.116	mg/kg	0.0000116 %	✓	
_	+		200-280-6	56-55-3	+						,	-	
18			enzo[def]chrysene			0.2	mg/kg		0.179	mg/kg	0.0000179 %	1	
	6	01-032-00-3	200-028-5	50-32-8								1	
19		penzo[b]fluoranthe				0.22	mg/kg		0.197	mg/kg	0.0000197 %	1	
	6	01-034-00-4	205-911-9	205-99-2								ľ	
20	ŀ	oenzo[ghi]perylene	e			0.12	mg/kg		0.107	mg/kg	0.0000107 %	1	
20	r		205-883-8	191-24-2	1	0.12	mg/kg		0.107	mg/kg	0.0000107 /6	~	
21	ŀ	penzo[k]fluoranthe	ne			0.08	ma/ka		0.0716	ma/ka	0.00000716 %	,	
21	6	01-036-00-5	205-916-6	207-08-9	1	0.08	mg/kg		0.0716	mg/kg	0.00000716 %	✓	
00	(chrysene	1	*		0.47			0.450		0.0000450.0/	1	
22	6	01-048-00-0	205-923-4	218-01-9	-	0.17	mg/kg		0.152	mg/kg	0.0000152 %	✓	
	+	dibenz[a,h]anthrac	1										
23		01-041-00-2	200-181-8	53-70-3	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
04	١,	fluoranthene			T								
24 🕛	ŀ	Tabla III I I I I	205-912-4	206-44-0	-	0.26	mg/kg		0.233	mg/kg	0.0000233 %	✓	
+	f	luorene	200 512 4	200 44 0	+							H	
25 "	Ľ		201-695-5	86-73-7	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
	+	ndeno[123-cd]pyre		00-73-7	-								
26 🕛	<u> </u>			400.00.5	_	0.15	mg/kg		0.134	mg/kg	0.0000134 %	✓	
-	+		205-893-2	193-39-5	-								
27		naphthalene				< 0.03	mg/kg		< 0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
-	+	01-052-00-2	202-049-5	91-20-3	-								
28 🕛	F	ohenanthrene				0.09	mg/kg		0.0805	mg/kg	0.00000805 %	√	
			201-581-5	85-01-8									
29 🕛	F	oyrene				0.22	mg/kg		0.197	mg/kg	0.0000197 %	√	
	Ţ		204-927-3	129-00-0			39			و٠٠٠ق		ľ	
20 0	. [-	TPH (C6 to C40) p	etroleum group			14	mg/kg		12.53	mg/kg	0.00125 %	1	
30 "			• .										
30	_			TPH		14	IIIg/kg		12.55	mg/kg	0.00125 /6	~	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free phase hydrocarbons identified during site investigation.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00125%)

Classification of sample: WS03-4-0.60m-20220201

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: WS03-4-0.60m-20220201 LoW Code: Chapter:

17: Construction and Demolition Wastes (including excavated soil Sample Depth: from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 0.60m m Entry:

Moisture content:

3.9%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 3.9% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		8.45	рН		8.45	рН	8.45 pH		
2	4	exception of compl	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
3	4	arsenic { arsenic tr	l <mark>ioxide</mark> } 215-481-4	1327-53-3		7	mg/kg	1.32	8.882	mg/kg	0.000888 %	√	
4	4	boron { boric acid;		10043-35-3 [1] 11113-50-1 [2]		<1	mg/kg	5.719	<5.719	mg/kg	<0.000572 %		<lod< td=""></lod<>
5	4			7790-79-6		0.8	mg/kg	1.338	1.029	mg/kg	0.000103 %	√	
6	4	copper { tetracopper tetracopper hexahy	er hexahydroxide su vdroxide sulphate hy 215-582-3 [1] 215-582-3 [2]	lphate; [1]		9	mg/kg	1.779	15.39	mg/kg	0.00154 %	✓	
7	4	chromium in chromoxide (worst case)	nium(III) compounds			13	mg/kg	1.462	18.259	mg/kg	0.00183 %	√	
8	4	compounds, with the of compounds special	nium(VI) compounds ne exception of baric cified elsewhere in t	s { chromium (VI) um chromate and		<1	mg/kg	2.27	<2.27	mg/kg	<0.000227 %		<lod< td=""></lod<>
9	4		pounds with the exce e in this Annex (wor		1	62	mg/kg		59.582	mg/kg	0.00596 %	√	
10	4	mercury { inorganio	c compounds of med ric sulphide and tho nnex }		1	2.53	mg/kg		2.431	mg/kg	0.000243 %	√	
11	4	nickel { nickel(II) ca 028-010-00-0		3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		12	mg/kg	2.022	23.322	mg/kg	0.00233 %	√	
12			n compounds with t lenide and those sp			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>

Report	created	by Elliot	t Bell on	28	Mar 2022

_									кер	ort crea	ted by Elliott Bell o	[] Z	3 Mai 2022
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
	æ <u>k</u>	zinc { trizinc bis(or	thophosphate) }		F								
13	•	030-011-00-6	231-944-3	7779-90-0	-	98	mg/kg	1.968	185.38	mg/kg	0.0185 %	✓	
14	0	acenaphthene				0.02	mg/kg		0.0192	mg/kg	0.00000192 %	✓	
14			201-469-6	83-32-9		0.02			0.0192		0.00000192 /6	v	
15	0	acenaphthylene				0.02	mg/kg		0.0192	mg/kg	0.00000192 %	√	
			205-917-1	208-96-8	1							Ľ	
16	0	anthracene				0.1	mg/kg		0.0961	mg/kg	0.00000961 %	✓	
			204-371-1	120-12-7	-								
17		benz[a]anthracene	200-280-6	56-55-3	-	0.55	mg/kg		0.529	mg/kg	0.0000529 %	✓	
			enzo[def]chrysene	00-00-3	+							H	
18		601-032-00-3	200-028-5	50-32-8	-	0.59	mg/kg		0.567	mg/kg	0.0000567 %	✓	
40		benzo[b]fluoranthe		1-7	T	0.05	"		0.005		0.0000005.0/		
19		601-034-00-4	205-911-9	205-99-2	1	0.65	mg/kg		0.625	mg/kg	0.0000625 %	✓	
20	0	benzo[ghi]perylend	e	`		0.26	mg/kg		0.25	mg/kg	0.000025 %	✓	
20			205-883-8	191-24-2		0.20	mig/kg		0.23		0.000025 76	٧	
21		benzo[k]fluoranthe				0.27	mg/kg		0.259	mg/kg	0.0000259 %	√	
		601-036-00-5	205-916-6	207-08-9	1							Ľ	
22		chrysene				0.64	mg/kg		0.615	mg/kg	0.0000615 %	✓	
		601-048-00-0	205-923-4	218-01-9	-								
23		dibenz[a,h]anthrac		F2 70 2	_	0.06	mg/kg		0.0577	mg/kg	0.00000577 %	✓	
		601-041-00-2	200-181-8	53-70-3	-								
24	0	fluoranthene	205-912-4	206-44-0	_	1.2	mg/kg		1.153	mg/kg	0.000115 %	✓	
	_	fluorene	203-912-4	200-44-0	+								
25		THE STOTE OF THE S	201-695-5	86-73-7	-	0.03	mg/kg		0.0288	mg/kg	0.00000288 %	✓	
00	0	indeno[123-cd]pyr		(0.04	,,		0.007		0.000007.0/		
26			205-893-2	193-39-5	1	0.34	mg/kg		0.327	mg/kg	0.0000327 %	✓	
27		naphthalene		`		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3		VO.00			V0.00	mg/kg	<0.000000 70		\
28	0	phenanthrene				0.5	mg/kg		0.481	mg/kg	0.000048 %	√	
			201-581-5	85-01-8	1							Ľ	
29	0	pyrene				1	mg/kg		0.961	mg/kg	0.0000961 %	✓	
		TDI (00 : 040)	204-927-3	129-00-0	-								
30	•	TPH (C6 to C40) p	petroleum group	TPH	_	130	mg/kg		124.93	mg/kg	0.0125 %	✓	
		benzene		IPH	+							H	
31		601-020-00-8	200-753-7	71-43-2	-	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		toluene	-30.00.	p 1 10 2	+								
32		601-021-00-3	203-625-9	108-88-3	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
20	0	ethylbenzene	1		T	.0.04	/I-		.0.04	ma c: /l :	-0.000004.0/	П	.1.00
33		601-023-00-4	202-849-4	100-41-4	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		o-xylene; [1] p-xyle	ene; [2] m-xylene; [3] xylene [4]	Г								
34		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
35		tert-butyl methyl er 2-methoxy-2-meth	ylpropane	4004.04.4		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4						Total	0.0457.9/		
										Total:	0.0457 %	丄	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free phase hydrocarbons identified during site investigation.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0125%)

Page 10 of 23 L0031-257J1-9Q2SB www.hazwasteonline.com

Classification of sample: WS03-2.00m-20220201

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS03-2.00m-20220201 Chapter:

Sample Depth:

2.00m m Entry:

Moisture content: 2.8%

(wet weight correction)

/:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 2.8% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound cor	nc.	Classification value	MC Applied	Conc. Not Used
1	0	рН	<u> </u>	PH		10.9	рН		10.9 p	Н	10.9 pH		
2	*	exception of compl	of hydrogen cyanide lex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<1	mg/kg	1.884	<1.884 n	ng/kg	<0.000188 %		<lod< td=""></lod<>
3	4	arsenic { arsenic tr		1327-53-3		6	mg/kg	1.32	7.7 n	ng/kg	0.00077 %	√	
4	4	boron { boric acid; 005-007-00-2		10043-35-3 [1] 11113-50-1 [2]		<1	mg/kg	5.719	<5.719 n	ng/kg	<0.000572 %		<lod< td=""></lod<>
5	4	cadmium { cadmiu 048-006-00-2		7790-79-6	_	0.9	mg/kg	1.338	1.17 n	ng/kg	0.000117 %	√	
6	4	tetracopper hexahy 029-018-00-7	er hexahydroxide su ydroxide sulphate hy 215-582-3 [1] 215-582-3 [2]			12	mg/kg	1.779	20.754 n	ng/kg	0.00208 %	√	
7	4	chromium in chromoxide (worst case)	nium(III) compounds			53	mg/kg	1.462	75.294 n	ng/kg	0.00753 %	√	
8	4	chromium in chrom	nium(VI) compounds ne exception of bariu cified elsewhere in t	G { chromium (VI)		<1	mg/kg	2.27	<2.27 n	ng/kg	<0.000227 %		<lod< td=""></lod<>
9	4	lead {	pounds with the exc e in this Annex (wor		1	27	mg/kg		26.244 n	ng/kg	0.00262 %	√	
10	4		c compounds of med uric sulphide and the unnex }		1	2.15	mg/kg		2.09 n	ng/kg	0.000209 %	√	
11	4	nickel { nickel(II) ca 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]	-	33	mg/kg	2.022	64.871 n	ng/kg	0.00649 %	1	
12	**	,	compounds with telenide and those sp			<1	mg/kg	1.405	<1.405 n	ng/kg	<0.000141 %		<lod< td=""></lod<>

Report cr	reated	hν	FIliott	Bell	on	28	Mar	2022

									кер	or creat	ted by Elliott Bell o	JII Z	o iviai 2022
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		zinc { trizinc bis(ort	thonhosphato))									+	
13		030-011-00-6	231-944-3	7779-90-0	4	86	mg/kg	1.968	164.542	mg/kg	0.0165 %	✓	
		acenaphthene	231-944-3	1779-90-0	+								
14	0	acenaphinene	201-469-6	83-32-9	4	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		acenaphthylene	201-409-0	03-32-9	+								
15	0	acenaphiniyiene	205-917-1	208-96-8	_	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		onthroons.	205-917-1	200-90-0	+								
16	0	anthracene	004 074 4	400 40 7		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			204-371-1	120-12-7	+							-	
17		benz[a]anthracene		E0 EE 0	4	<0.04	mg/kg		< 0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			200-280-6	56-55-3	+								
18		benzo[a]pyrene; be		F0.00.0	4	<0.04	mg/kg		< 0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			200-028-5	50-32-8	+								
19		benzo[b]fluoranthe		ho. = 00 0		< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	-								
20	0	benzo[ghi]perylene				< 0.05	mg/kg		< 0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			205-883-8	191-24-2									
21		benzo[k]fluoranthe				<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9	_								
22		chrysene				<0.06	mg/kg		< 0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9									
23		dibenz[a,h]anthrac	ene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	\perp								
24	0	fluoranthene				<0.08	mg/kg		<0.08	ma/ka	<0.000008 %		<lod< td=""></lod<>
			205-912-4	206-44-0						99			
25	0	fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-695-5	86-73-7						99			
26	0	indeno[123-cd]pyre	ene			<0.03	mg/kg		< 0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			205-893-2	193-39-5						99			
27		naphthalene				<0.03	mg/kg		< 0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3		10.00	9/.19			9,9			1202
28	0	phenanthrene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< td=""></lod<>
			201-581-5	85-01-8		10.00	9/119			9/119	3.000000 70		1_05
29	0	pyrene				<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lod< td=""></lod<>
تا			204-927-3	129-00-0		30.07	g/ikg		33.01	g/itg	-3.000001 /0		
30	0	TPH (C6 to C40) p	etroleum group	·		105	mg/kg		102.06	mg/kg	0.0102 %	√	
				TPH		100	mg/kg		102.00		0.0102 /0		
			<u></u>							Total:	0.0477 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free phase hydrocarbons identified during site investigation.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0102%)

Page 12 of 23 L0031-257J1-9Q2SB www.hazwasteonline.com

Classification of sample: WS04-5-1.00m-20220201

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: WS04-5-1.00m-20220201 LoW Code:

Chapter: Sample Depth:

1.00m m Entry:

Moisture content:

7.6%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 7.6% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		7.7	рН		7.7	рН	7.7 pH		
2	**	exception of compl	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
3	4	arsenic { arsenic tr		1327-53-3		15	mg/kg	1.32	18.3	mg/kg	0.00183 %	√	
4	4	boron { boric acid; 005-007-00-2		10043-35-3 [1] 11113-50-1 [2]		<1	mg/kg	5.719	<5.719	mg/kg	<0.000572 %		<lod< td=""></lod<>
5	*	cadmium { cadmiui		7790-79-6		1	mg/kg	1.338	1.236	mg/kg	0.000124 %	√	
6	4	copper { tetracopper tetracopper hexahy 029-018-00-7	er hexahydroxide su vdroxide sulphate hy 215-582-3 [1] 215-582-3 [2]	lphate; [1]		20	mg/kg	1.779	32.883	mg/kg	0.00329 %	✓	
7	4	chromium in chromoxide (worst case)	nium(III) compounds			24	mg/kg	1.462	32.411	mg/kg	0.00324 %	√	
8	4	chromium in chrom	nium(VI) compounds ne exception of bariu cified elsewhere in t	G { chromium (VI)		<1	mg/kg	2.27	<2.27	mg/kg	<0.000227 %		<lod< td=""></lod<>
9	4	lead {	pounds with the exce e in this Annex (wor		1	143	mg/kg		132.132	mg/kg	0.0132 %	√	
10	4	mercury { inorganio	c compounds of mel ric sulphide and tho nnex }		1	<0.17	mg/kg		<0.17	mg/kg	<0.000017 %		<lod< td=""></lod<>
11	4	nickel { 	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]	-	20	mg/kg	2.022	37.374	mg/kg	0.00374 %	√	
12	4	,	n compounds with t lenide and those sp			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>

Pick Everard **HazWasteOnline**[™] Report created by Elliott Bell on 28 Mar 2022 Determinand Classification Appli Conc. Not Conv User entered data Compound conc # Used Factor value EU CLP index EC Number CAS Number number 13 zinc { trizinc bis(orthophosphate) } 79 mg/kg 1.968 143.685 mg/kg 0.0144 % 030-011-00-6 7779-90-0 231-944-3 acenaphthene 14 <LOD < 0.01 < 0.01 <0.000001 % mg/kg mg/kg 201-469-6 83-32-9 acenaphthylene 15 mg/kg 0.0185 0.00000185 % 0.02 mg/kg 205-917-1 208-96-8 anthracene 16 0.05 mg/kg 0.0462 mg/kg 0.00000462 % 204-371-1 120-12-7 benz[a]anthracene 17 0.26 mg/kg 0.24 mg/kg 0.000024 % 601-033-00-9 200-280-6 56-55-3 benzo[a]pyrene; benzo[def]chrysene 18 0.29 mg/kg 0.268 mg/kg 0.0000268 % 601-032-00-3 200-028-5 50-32-8 benzo[b]fluoranthene 19 0.36 0.333 mg/kg 0.0000333 % mg/kg 205-911-9 601-034-00-4 205-99-2 benzo[ghi]perylene 20 0.13 mg/kg 0.12 mg/kg 0.000012 % 205-883-8 191-24-2 benzo[k]fluoranthene 21 0.14 0.129 mg/kg 0.0000129 % mg/kg 601-036-00-5 205-916-6 207-08-9 chrysene 22 0.31 mg/kg 0.286 mg/kg 0.0000286 % 601-048-00-0 205-923-4 218-01-9 dibenz[a,h]anthracene 23 mg/kg < 0.04 < 0.000004 % <LOD < 0.04 mg/kg 601-041-00-2 200-181-8 53-70-3 fluoranthene 24 0.517 0.0000517 % 0.56 mg/kg

0.0092

0.157

0.222

0.434

48.972

< 0.01

< 0.01

<0.01

< 0.02

<0.01

< 0.03

mg/kg

Total:

0.01

0.17

< 0.03

0.24

0.47

53

< 0.01

< 0.01

<0.01

< 0.02

<0.01

0.000000924 %

0.0000157 %

<0.000003 %

0.0000222 %

0.0000434 %

0.0049 %

<0.000001 %

< 0.000001 %

<0.000001 %

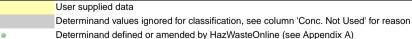
<0.000002 %

<0.000001 %

0.0461 %

<LOD

<LOD


<LOD

<LOD

<LOD

<LOD

Key

206-44-0

86-73-7

193-39-5

91-20-3

85-01-8

129-00-0

TPH

71-43-2

108-88-3

100-41-4

95-47-6 [1]

106-42-3 [2]

108-38-3 [3] 1330-20-7 [4]

1634-04-4

205-912-4

201-695-5

205-893-2

202-049-5

201-581-5

204-927-3

200-753-7

203-625-9

202-849-4

o-xylene; [1] p-xylene; [2] m-xylene; [3] xylene [4]

202-422-2 [1]

203-396-5 [2]

203-576-3 [3]

215-535-7 [4]

216-653-1

TPH (C6 to C40) petroleum group

fluorene

naphthalene

601-052-00-2

phenanthrene

pyrene

benzene

toluene

601-020-00-8

601-021-00-3

ethylbenzene

601-023-00-4

601-022-00-9

603-181-00-X

indeno[123-cd]pyrene

25

26

27

28

29

30

31

32

33

34

35

ď Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration <LOD

tert-butyl methyl ether; MTBE;

2-methoxy-2-methylpropane

Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free phase hydrocarbons identified during site investigation.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0049%)

Classification of sample: WS05-6-0.70m-20220201

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: WS05-6-0.70m-20220201 LoW Code: Chapter:

17: Construction and Demolition Wastes (including excavated soil Sample Depth: from contaminated sites) 0.70m m 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry:

Moisture content:

5.8% (wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 5.8% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound (conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH		PH		6.73	рН		6.73	рН	6.73 pH		
2	₫	exception of compl	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	s ferrocyanides,		<1	mg/kg	1.884	<1.884	mg/kg	<0.000188 %		<lod< td=""></lod<>
3	æ\$	arsenic { arsenic tri	i <mark>oxide</mark> } 215-481-4	1327-53-3		11	mg/kg	1.32	13.681	mg/kg	0.00137 %	√	
4	4	boron { boric acid; 005-007-00-2		10043-35-3 [1] 11113-50-1 [2]		<1	mg/kg	5.719	<5.719	mg/kg	<0.000572 %		<lod< td=""></lod<>
5	*	cadmium { cadmiui 048-006-00-2	n fluoride }	7790-79-6		1.1	mg/kg	1.338	1.386	mg/kg	0.000139 %	√	
6	4	tetracopper hexahy	er hexahydroxide surdroxide sulphate hy 215-582-3 [1] 215-582-3 [2]	lphate; [1]		21	mg/kg	1.779	35.199	mg/kg	0.00352 %	✓	
7	4	oxide (worst case)	ium(III) compounds			25	mg/kg	1.462	34.42	mg/kg	0.00344 %	✓	
8	4	chromium in chrom compounds, with the of compounds spec	nium(VI) compounds ne exception of baric cified elsewhere in t	s { chromium (VI) um chromate and		<1	mg/kg	2.27	<2.27	mg/kg	<0.000227 %		<lod< td=""></lod<>
9	4		pounds with the exc e in this Annex (wor		1	81	mg/kg		76.302	mg/kg	0.00763 %	√	
10	4	mercury { inorganio	c compounds of me ric sulphide and tho nnex }	,	1	<0.17	mg/kg		<0.17	mg/kg	<0.000017 %		<lod< td=""></lod<>
11	4	nickel { nickel(II) ca	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		23	mg/kg	2.022	43.818	mg/kg	0.00438 %	✓	
12	4		n compounds with t lenide and those sp			<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>

Report	created	bv	Elliott	Bell	on	28	Mar	2022

_									Rep	ort crea	ted by Elliott Bell o	111 Z	5 IVIAI ZUZZ
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	æ	zinc { trizinc bis(or	thophosphate) }		F								
13	•	030-011-00-6	231-944-3	7779-90-0	1	54	mg/kg	1.968	100.128	mg/kg	0.01 %	✓	
14	0	acenaphthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
14			201-469-6	83-32-9		VO.01	ilig/kg			ilig/kg	<0.000001 <i>/</i> 8		LOD
15	0	acenaphthylene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-917-1	208-96-8	1								
16	0	anthracene				<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			204-371-1	120-12-7	-							H	
17		benz[a]anthracene		F0 FF 0	4	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6 enzo[def]chrysene	56-55-3	+							Н	
18		601-032-00-3	200-028-5	50-32-8	4	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[b]fluoranthe		00-32-0								Н	
19		601-034-00-4	205-911-9	205-99-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
60	0	benzo[ghi]perylen		1	t		,,				0.000027.01		
20		15 11 7	205-883-8	191-24-2	+	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
21		benzo[k]fluoranthe	ene			.0.07			-0.07		-0.000007.0/		<lod< td=""></lod<>
21		601-036-00-5	205-916-6	207-08-9	1	<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lud< td=""></lud<>
22		chrysene		`		<0.06	mg/kg		<0.06	ma/ka	<0.000006 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9		40.00				mg/kg			100
23		dibenz[a,h]anthrac	cene			<0.04	mg/kg		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3		10.01				9/9			
24	0	fluoranthene				<0.08	mg/kg		<0.08	mg/kg	<0.000008 %		<lod< td=""></lod<>
			205-912-4	206-44-0	-							L	
25	0	fluorene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		. 1 1400 17	201-695-5	86-73-7	-						<u> </u>	Н	
26	0	indeno[123-cd]pyr		402.20 5	4	<0.03	mg/kg		< 0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		naphthalene	205-893-2	193-39-5	-				<u> </u>		<u> </u>	Н	
27		601-052-00-2	202-049-5	91-20-3	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		phenanthrene	202 043 0	01 20 0	1								
28		prioria in in orio	201-581-5	85-01-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
00	0	pyrene				0.07			0.07		0.000007.0/		
29			204-927-3	129-00-0	1	<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lod< td=""></lod<>
30	0	TPH (C6 to C40) p	petroleum group			1	mg/kg		0.942	mg/kg	0.0000942 %	,	
30				TPH			mg/kg		0.542	ilig/kg	0.0000942 /6	✓	
31		benzene			Γ	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
Ľ.		601-020-00-8	200-753-7	71-43-2		-0.01	9/119			9/1.9			
32		toluene				<0.01	mg/kg		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	1		<u> </u>			J 9		L	
33	0	ethylbenzene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	-							H	
34		601-022-00-9	ene; [2] m-xylene; [202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
35		tert-butyl methyl ei 2-methoxy-2-meth	ther; MTBE; ylpropane			<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	\perp					Tot-1	0.0349.0/	H	
										Total:	0.0318 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

<u>HP 3(i): Flammable</u> "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because No free phase hydrocarbons identified during site investigation.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00009%)

Page 18 of 23 L0031-257J1-9Q2SB www.hazwasteonline.com

Classification of sample: WS06-7-0.30m-20220201

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: WS06-7-0.30m-20220201 LoW Code:

Chapter: Sample Depth:

0.30m m Entry:

Moisture content:

9.2%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 9.2% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	pH PH		8.43 pH		8.43 pH	8.43 pH		
2	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<1 mg/kg	1.884	<1.884 mg/kg	<0.000188 %		<lod< th=""></lod<>
3	4			10 mg/kg	1.32	11.989 mg/kg	0.0012 %	√	
4	æ			<1 mg/kg	5.719	<5.719 mg/kg	<0.000572 %		<lod< th=""></lod<>
5	4	cadmium { cadmium fluoride } 048-006-00-2 232-222-0 7790-79-6		0.8 mg/kg	1.338	0.972 mg/kg	0.0000972 %	✓	
6	4			11 mg/kg	1.779	17.772 mg/kg	0.00178 %	√	
7	æ	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		17 mg/kg	1.462	22.561 mg/kg	0.00226 %	√	
8	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<1 mg/kg	2.27	<2.27 mg/kg	<0.000227 %		<lod< td=""></lod<>
9	4		1	54 mg/kg		49.032 mg/kg	0.0049 %	✓	
10	æ	mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }	1	0.29 mg/kg		0.263 mg/kg	0.0000263 %	√	
11	4	080-002-00-6 nickel { nickel(II) carbonate } 028-010-00-0 222-068-2 [1] 3333-67-3 [1] 240-408-8 [2] 16337-84-1 [2] 265-748-4 [3] 65405-96-1 [3]		14 mg/kg	2.022	25.709 mg/kg	0.00257 %	√	
12	44	235-715-9 [4] 12607-70-4 [4] selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< th=""></lod<>

IIUZ		u J	-	U			
Report created	hv	FIliott	Rell	on	28	Mar	2022

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound of	conc.	Classification value	MC Applied	Conc. Not Used
13	_	zinc { trizinc bis(ort				36	mg/kg	1.968	64.343	mg/kg	0.00643 %	✓	
			231-944-3	7779-90-0									
14	0	acenaphthene				<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-469-6	83-32-9	-								
15	0	acenaphthylene		1000 000		<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			205-917-1	208-96-8	-							Н	
16	Θ	anthracene	004.074.4	400 40 7	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
			204-371-1	120-12-7	\vdash							Н	
17		benz[a]anthracene 601-033-00-9		F0 FF 0		0.04	mg/kg		0.0363	mg/kg	0.00000363 %	✓	
			200-280-6	56-55-3	\vdash								
18		benzo[a]pyrene; be 601-032-00-3	200-028-5	50-32-8	-	0.04	mg/kg		0.0363	mg/kg	0.00000363 %	✓	
		benzo[b]fluoranthe		pu-32-0									
19			205-911-9	205-99-2	-	0.05	mg/kg		0.0454	mg/kg	0.00000454 %	✓	
		benzo[ghi]perylene		200-33-2	\vdash								
20			205-883-8	191-24-2	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		benzo[k]fluoranther		101212	-								
21			205-916-6	207-08-9	-	<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lod< td=""></lod<>
		chrysene		F0. 00 0									
22		•	205-923-4	218-01-9	1	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		dibenz[a,h]anthrace				2.24			0.04				
23			200-181-8	53-70-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
~4	0	fluoranthene	J.	1		0.00	,,		0.00	,,	0.000000.00		1.00
24			205-912-4	206-44-0	1	<0.08	mg/kg		<0.08	mg/kg	<0.000008 %		<lod< td=""></lod<>
25	0	fluorene		,		-0.01			<0.01	nn a /l ca	-0.000004.0/		-1.00
25			201-695-5	86-73-7	1	<0.01	mg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
26	0	indeno[123-cd]pyre	ene			0.03	mg/kg		0.0272	mg/kg	0.00000272 %	✓	
ر کا			205-893-2	193-39-5		0.00	mg/kg		0.0272	g/kg	0.00000272 /0	'	
27		naphthalene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3		40.00				9/119	40.000000 70		1200
28	0	phenanthrene				<0.03	mg/kg		<0.03	ma/ka	<0.000003 %		<lod< td=""></lod<>
Ľ			201-581-5	85-01-8		10.00			,,,,,	9,9			
29	0	pyrene				<0.07	mg/kg		<0.07	mg/kg	<0.000007 %		<lod< td=""></lod<>
Ľ			204-927-3	129-00-0						9			
30	0	TPH (C6 to C40) p	etroleum group			<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
				TPH									
										Total:	0.021 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Appendix A: Classifier defined and non GB MCL determinands

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H332\ ,\ Acute\ Tox.\ 4;\ H302\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H334\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ Resp.\ Sens.\ 1;\ H315\ ,\ Resp.\ 1;\ H315\ ,\ H31$

Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

 ${\bf Data\ source:\ http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2;

H411

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 1; H330, Acute Tox. 1; H310, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

" TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

GB MCL index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied.

Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

Appendix B: Rationale for selection of metal species

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Most likely worst case.

arsenic {arsenic trioxide}

Most likely worst case.

boron {boric acid; [1] boric acid [2]}

Most likely worst case.

cadmium {cadmium fluoride}

Most likely worst case.

copper {tetracopper hexahydroxide sulphate; [1] tetracopper hexahydroxide sulphate hydrate [2]}

Most likely worst case.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Worst case species (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species (edit as required)

lead {lead compounds with the exception of those specified elsewhere in this Annex (worst case)}

Most likely worst case.

mercury {inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex}

Most likely worst case.

Page 22 of 23 L0031-257J1-9Q2SB www.hazwasteonline.com

nickel {nickel(II) carbonate}

Most likely worst case.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Most likely worst case.

zinc {trizinc bis(orthophosphate)}

Most likely worst case.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2017.202.300.300 (23 Mar 2022)

HazWasteOnline Database: 2022.81.5064.9565 (22 Mar 2022)

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

Final Test Report

Envirolab Job Number: 22/01085

Issue Number: 1 Date: 18-Feb-22

Client: Pick Everard

Halford House Charles Street Leicester LE1 1HA

Project Manager: Elliot Bell/Ross Goodband

Project Name: RBG Kew Project Ref: 210699 Order No: 92092

Date Samples Received: 7-Feb-22
Date Instructions Received: 8-Feb-22
Date Analysis Completed: 18-Feb-22

Notes - Soil analysis

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones >10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab.

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample

 $\textbf{Secondary Matrix Codes:} \ A = \text{contains stones}, \ B = \text{contains construction rubble}, \ C = \text{contains visible hydrocarbons}, \ D = \text{contains glass/metal}, \ E = \text{contains roots/twigs}.$

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

HWOL TPH Code: EH_CU_1D_AL: Extractable hydrocarbons - i.e. everything extracted by the solvent(s), Clean-up - e.g. by florisil, silica gel, GC - Single coil gas chromatography, Aliphatics only

Approved by:

Danielle Brierley

Deputy Client Services Supervisor

Landfill WAC analysis must not be used for hazardous waste classification purposes. This analysis is only applicable for landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

	•	s											
ab Sample ID	Method	ISO17025	MCERTS	22/01085/1		Landfill Waste Acceptance Criteria Limits							
Client Sample Number				1									
Client Sample ID				BH01		1							
Depth to Top				0.5		1	Stable Non-reactive						
Depth to Bottom						Inert Waste Landfill	Hazardous Waste in Non-Hazardous	Hazardous Waste Landfill					
Date Sampled				01/02/2022)		Landfill	Landini					
Sample Type				Soil - ES									
Sample Matrix Code				4AB									
Solid Waste Analysis													
pH (pH Units) _D	A-T-031	N	Ν	8.84		-	>6	-					
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	Ν	0.51		-	to be evaluated	to be evaluated					
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.14		-	to be evaluated	to be evaluated					
Loss on Ignition (%) _D	A-T-030	N		2.4		-	-	10					
Fotal Organic Carbon (%) _D	A-T-032	N	N	0.82		3	5	6					
PAH Sum of 17 (mg/kg) A	A-T-019	N	N	0.67		100	-	-					
Mineral Oil (mg/kg) _{A EH_CU_1D_AL}	A-T-007	N	N	<10		500	-	-					
Sum of 7 PCBs (mg/kg) _A	A-T-007	N		<0.007		1	-	_					
Sum of BTEX (mg/kg) _A	A-T-004 A-T-022	N		<0.007		6							
outil of BTEX (mg/kg) _A	A-1-022	IN	IN	10:1	10:1	-	s for compliance leachin	a tast usina					
Eluate Analysis				mg/l	mg/kg		l 12457-2 at L/S 10 l/kg (r						
Arsenic	A-T-025	N	N	0.006	0.060	0.5	2	25					
Barium	A-T-025	N		0.008	0.000	20	100	300					
Cadmium	A-T-025	N		<0.001	<0.01	0.04	1	5					
Chromium	A-T-025	N		0.002	0.020	0.5	10	70					
Copper	A-T-025	N	N	0.002	0.060	2	50	100					
Mercury	A-T-025	N	N	<0.0005	<0.005	0.01	0.2	2					
Molybdenum	A-T-025	N	N	0.002	0.020	0.5	10	30					
Nickel	A-T-025	N	N	<0.001	<0.01	0.4	10	40					
_ead	A-T-025	N		0.116	1.160	0.5	10	50					
Antimony	A-T-025	N	N	0.001	0.010	0.06	0.7	5					
Selenium	A-T-025	N	N	<0.001	<0.01	0.1	0.5	7					
Zinc	A-T-025	N	N	0.003	0.030	4	50	200					
Chloride	A-T-026	N	N	1	12	800	15000	25000					
Fluoride	A-T-026	N	N	1.3	13.0	10	150	500					
Sulphate as SO ₄	A-T-026	N	N	9	90	1000	20000	50000					
Total Dissolved Solids	A-T-035	N	N	62	620	4000	60000	100000					
Phenol Index	A-T-050	N	N	<0.01	<0.1	1	-	-					
Dissolved Organic Carbon	A-T-032	N	N	<2.0	<200	500	800	1000					
each Test Information	332			0	-200								
pH (pH Units)	A-T-031	N	N	8.1									
" ,	A-T-037	N		124									
Conductivity (uS/cm)	557	Ë	H	0.211									
Conductivity (µS/cm) Mass Sample (kg)													