

Sustainable Drainage System Strategy

Site Address

99 Atbara Road Teddington TW11 9PA

Client Jamie and Beverley McDaid

Report Reference

SWDS-2024-000036

Prepared By

STM Environmental Consultants Ltd

Date 21/08/2024

CONSULTING ENVIRONMENTAL ENGINEERS AND SCIENTISTS

Our mission - to deliver innovative solutions that enable our clients to achieve their objectives in the most cost effective manner possible whilst protecting or enhancing the environment

Document Control

Sustainable Drainage System Strategy					
Site Address:	99 Atbara Road Teddington TW11 9PA				
National Grid Reference:	517085, 170948				
STM Reference:	SWDS – 2024 – 000036				
Version No:	1.0				
Prepared for:	Jamie and Beverley McDaid				
Date:	21/08/2024				
Report Author:	Yonas Makoni (BSc) Junior Environmental Consultant & Georgia Travers (BSc) Environmental Consultant				
Authorised by:	Matthew Ashdown (BSc) Senior Environmental Consultant				

Contents

1	Document Control	2
2	Abbreviations	5
3	Disclaimer	6
3.1	Executive Summary	7
4	Introduction	9
4.1	Proposed Development	9
4.2	Report Aims and Objectives	9
4.3	Legislative and Policy Context	9
4.4	LLFA Planning Policy - Richmond upon Thames	12
5	Site Characteristics	14
5.1	Location and Area	14
5.2	Current Site and Surrounding Uses	16
5.3	Site Topography	16
5.4	Site Investigation	
5.5	Flood Risk Summary	17
5.6	Existing Surface Water Drainage Features	
6	Hydrological Run-off Assessment	17
6.1	Existing and Proposed Ground Cover	18
6.2	Peak Flow Control	18
6.3	Volume Control Requirements	19
6.4	Run-off and Storage Calculations	19
7	SuDS	20
7.1	SuDS Hierarchy	20
7.2	Drainage Hierarchy Discussion	21
7.3	Appraisal of Potential SuDS Options	22
7.4	SuDS Strategy	23
7.5	Maintenance and Adoption of SuDS	25
8	Conclusion and Recommendations	26
9	References	27
10	Appendices	28
10.1	Appendix 1 – Development Plans & Photos	28
10.2	2 Appendix 2– Site Topography and Drainage Characteristics	31
10.3	Appendix 3 – Flood Risk Mapping	39
10.4	Appendix 4 – Runoff Rate and Storage Calculations	43
10.5	5 Appendix 5 – Drainage	47

10.6	Appendix 6 – SuDS Suitability Assessment	49
10.7	Appendix 7 – Details of Proposed Of SuDS	50
10.8	Appendix 7 - Drainage Modelling	53
10.9	Appendix 8 – SuDS Maintenance Manual	56

List of Tables

Table 1: Asset Information	. 17
Table 2: Breakdown of Ground Cover in the Proposed Development	. 18
Table 3: Summary of Permeable and Impermeable Areas	. 18
Table 4: Calculation of post-development run-off rates for the site.	. 19
Table 5: Modified Rational Method (MRM)	. 19
Table 6: SuDS Appraisal; Feasibility of various SuDS and the potential uses on s	site.
	. 22
Table 7: Proposed SuDS	. 23

List of Figures

Figure 1: Site location map and aerial photo	. 1!	5
--	------	---

2 Abbreviations

Abbreviation	Description
STM	STM Environmental Consultants Limited
BGS	British Geological Survey
EA	Environment Agency
OS	Ordnance Survey of Great Britain
FRA	Flood Risk Assessment
NPPF	National Planning Policy Framework
FWD	Floodline Warning Direct
FRMS	Flood Risk Management Strategy
LLFA	Lead Local Flood Authority
SWMP	Surface Water Management Plan
SFRA	Strategic Flood Risk Assessment
CDA	Critical Drainage Area
SuDS	Sustainable Drainage Systems
GWSPZ	Groundwater Source Protection Zone

3 Disclaimer

This report and any information or advice which it contains, is provided by STM Environmental Consultants Ltd (STM) and is solely for use by Jamie and Beverley McDaid (Client).

STM has exercised such professional skill, care and diligence as may reasonably be expected of a properly qualified and competent consultant when undertaking works of this nature. However, STM gives no warranty, representation or assurance as to the accuracy or completeness of any information, assessments or evaluations presented within this report. STM accepts no liability for the performance of any drainage system based upon the recommendations of this report. Furthermore, STM accepts no liability whatsoever for any loss or damage arising from the interpretation or use of the information contained within this report. Any party using or placing reliance upon any information contained in this report, do so at their own risk.

3.1 Executive Summary

BACKGROUND						
Location	99 Atbara Road, Teddington TW11 9PA Grid reference: 517085, 170948					
Site Area	374m ²					
Proposed Development	Demolition of the existing residential bungalow and construction of a new 2-storey residential dwelling with a loft space.					
Current Site and Surrounding Uses	The site is a residential dwelling with associated garden, garage and amenity space. It is located in a mainly residential area, with 2no. sports grounds and a small number of commercial uses within the vicinity.					
<u>Topography</u>	The ground level at the site (southwest).	e ranges from 6	.34mAOD (northe	east) to 6.93mAOD		
<u>Hydrology</u>	A watercourse connected with of the site. The River Thames					
<u>Geology</u>	BGS information indicates tha Park Gravel Formation while the Formation.					
<u>Hydrogeology</u>	BGS information indicates tha Unproductive bedrock aquifer		ed upon a Principa	al superficial and an		
Permeability	BGS information indicates that the superficial deposits are free draining and the bedrock is classified as poorly draining.					
Infiltration Potential	 BGS information indicates that there are opportunities for bespoke infiltration SuDS. Infiltration testing was undertaken on the 10 – 12th June, 2024. TP01 encountered dark brown Top Soil to a depth of 0.3mbgl, becoming wet, light, brown/orange Sandy Clay to a level of 1.1mbgl. Groundwater was not detected. The infiltration rate obtained on site is indicated to be 1.4x10⁻⁶m/s in TP01, which is considered to be a moderate rate. However, this rate is insufficient to discharge all surface waters to ground and ensure a suitable half drain down time. As such, a combined system allowing for infiltration and discharge to the public surface water sewer will be required. 					
Fluvial Flood Risk	Medium – the site lies within I flood risk to the site is availab			formation regarding		
<u>Surface Water</u> <u>Flood Risk</u>	Very Low – The site remains regarding flood risk to the site					
<u>Groundwater</u> <u>Flood Risk</u>	Low - the EA mapping indica occur for properties below grou for at least part of the year.					
	Ground Cover	Existing (m ²)	Proposed (m ²) (Without SuDS)	Proposed (m ²) (With SuDS)		
Existing and	Buildings	107	118	118		
Proposed	Driveways/Patio (Imermeable)	145	165	96		
<u>Site Layout</u>	Driveways/Patio (Permeable)	0	0	69		
	Gardens/ Soft landscaping	122	91	91		
	Total Impermeable Area	252	283	214		

Changes in Impermeable Without SuDS, the proposed development would increase the impermeable area of the site by $31m^2$ (8.3%) and therefore increase the post development runoff rate and volume. With SuDS, the proposed development would decrease the impermeable area by $38m^2$ (10.2%).							
	PROPOSED SUDS						
Run-Off Rates	Greenfield (GF) (l/s) MRM Pre - Development (l/s) MRM Post Development Without SuDS (l/s)						
Qbar	0.06	-	-				
1 in 1	0.05	3.7	4.2				
1 in 30	0.13	8.8	9.8				
1 in 100	0.18	11.1	12.4				
1 in 100 + CC (40%)	0.27	-	-				
<u>SuDS Target</u> <u>Requirement</u>	As the development is taking place on a previously developed site, the non-statutory technical standards for sustainable drainage systems S3 (peak flow) and S5 and S6 (volume controls) apply. The proposal should aim to achieve the greenfield runoff rate of 0.06/s for all storm events. However, achieving a discharge a rate this low may not be practical, and may give rise to blockages in the proposed system.						
<u>Drainage</u> <u>Hierarchy</u>	The proposed development cannot discharge to a watercourse. The proposal will allow for infiltration and controlled discharge to the public surface water sewer to ensure suitable half drain down times are achieved.						
<u>Storage Required</u> to meet Planning <u>Requirement</u>	To achieve a discharge rate of 1.0 l/s post development, 8 - $12m^3$ of storm water attenuation is required. When not including the permeable paving as part of the impermeable catchment area, $5 - 8m^3$ of storm water attenuation is required.						
SuDS Strategy	 The proposal will introduce permeable paving, a rainwater butt, geocellular attenuation within the rear garden and front of the property. The combination of the SuDS measures introduced will provide 200L rainwater re-use and 5.8m³ of attenuation. The SuDS strategy introduced will implement a protected Orifice Control Chamber as to limit the discharge to 1.0 l/s for all storm events into the receiving surface water sewer. 						
Conclusion		e proposed developmen	ave been outline introduced into t will reduce local flood risk and nning policy and the NPPF.				

4 Introduction

STM Environmental Consultants Limited have been appointed by Jamie and Beverley McDaid to undertake a Sustainable Drainage System (SuDS) Strategy for a proposed development at 99 Atbara Road, Teddington TW11 9PA.

4.1 **Proposed Development**

The SuDS report is required to support a planning application for the demolition of the existing residential bungalow and construction of a new 2-storey residential dwelling with a loft space. Copies of the development plans are presented in <u>Appendix 1</u>.

4.2 Report Aims and Objectives

This report sets out the proposed drainage strategy that will be employed in the designs to meet the requirements of the planning condition and the National Planning Policy Framework.

4.3 Legislative and Policy Context

4.3.1 Legislative Context

Section H3 of the Building Regulations 2010 requires that adequate provision is made for rainwater to be carried from the building roofs and paved areas. and be preferentially discharged to soakaways or some other adequate infiltration system. Where that is not reasonably practicable, a watercourse; or sewer can be used.

The Flood and Water Management Act was introduced in 2010. The Act defines the role of lead local flood authority (LLFA) for an area. All LLFA are required to develop, maintain, apply and monitor a strategy for local flood risk management in its area, called "local flood risk management strategy".

Alongside the Act, Flood Risk Regulations (2009) outline the roles and responsibilities of the various authorities, which include preparing Flood Risk Management Plans and identifying how significant flood risks are to be mitigated.

4.3.2 Policy Context

The National Planning Policy Framework (NPPF) sets out the Government's economic, environmental and social planning policies for England. The policies set out in this framework apply to the preparation of local and neighbourhood plans and to decisions on planning applications.

Paragraph 173 of the National Planning Policy Framework (NPPF) states that:

When determining any planning applications, local planning authorities should ensure that flood risk is not increased elsewhere. Where appropriate, applications should be supported by a site-specific flood-risk assessment (See Note 1) Development should only be allowed in areas at risk of flooding where, in the light of this assessment (and the sequential and exception tests, as applicable) it can be demonstrated that:

- within the site, the most vulnerable development is located in areas of lowest flood risk unless there are overriding reasons to prefer a different location
- the development is appropriately flood resistant and resilient such that, in the event of a flood, it could be quickly brought back into use without significant refurbishment;
- it incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;
- any residual risk can be safely managed; and
- safe access and escape routes are included where appropriate, as part of an agreed emergency plan.

Applications for some minor development and changes of use (See Note.2) should not be subject to the sequential or exception tests but should still meet the requirements for site-specific flood risk assessments set out in (See Note 1).

Paragraph 175 states that:

Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

take account of advice from the lead local flood authority;

- have appropriate proposed minimum operational standards;
- have maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development; and
- where possible, provide multifunctional benefits.

A major development is defined as:

- a residential development: 10 dwellings or more or residential development with a site area of 0.5 hectares or more where the number of dwellings is not yet known
- a non-residential development: provision of a building or buildings where the total floor space to be created is 1000 square metres or more or where the floor area is not yet known, a site area of 1 hectare or more.

Note. 1 - A site-specific flood risk assessment should be provided for all development in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.

Note. 2 - This includes householder development, small non-residential extensions (with a footprint of less than 250m²) and changes of use; except for changes of use to a caravan, camping or chalet site, or to a mobile home or park home site, where the sequential and exception tests should be applied as appropriate.

4.3.3 The London Plan - Policy SI 13 Sustainable drainage

Lead Local Flood Authorities should identify – through their Local Flood Risk Management Strategies and Surface Water Management Plans – areas where there are particular surface water management issues and aim to reduce these risks. Increases in surface water run-off outside these areas also need to be identified and addressed.

Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:

- rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation);
- rainwater infiltration to ground at or close to source;
- rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens);
- rainwater discharge direct to a watercourse (unless not appropriate);
- controlled rainwater discharge to a surface water sewer or drain;
- controlled rainwater discharge to a combined sewer;

Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surfaces such as front gardens and driveways.

Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency, improved water quality, and enhanced biodiversity, urban greening, amenity and recreation.

4.4 LLFA Planning Policy - Richmond upon Thames

4.4.1 Policy LP 21 - Flood Risk and Sustainable Drainage

"All developments should avoid, or minimise, contributing to all sources of flooding, including fluvial, tidal, surface water, groundwater and flooding from sewers, taking account of climate change and without increasing flood risk elsewhere. Unacceptable developments and land uses will be refused in line with national policy and guidance [and] the Council's Strategic Flood Risk Assessment (SFRA)".

Sustainable drainage

The Council will require the use of Sustainable Drainage Systems (SuDS) in all development proposals. Applicants will have to demonstrate that their proposal complies with the following:

 A reduction in surface water discharge to greenfield run-off rates wherever feasible.
 Where greenfield run-off rates are not feasible, this will need to be demonstrated by the applicant, and in such instances, the minimum requirement is to achieve at least a 50% attenuation of the site's surface water runoff at peak times based on the levels existing prior to the development.

Also relevant is policy S1 12 of the London Plan (2020) which outlines Flood Risk Management, it states that:

- Current and expected flood risk from all sources across London should be managed in a sustainable and cost-effective way in collaboration with the Environment Agency, the Lead Local Flood Authorities, developers and infrastructure providers;
- Development Plans should use the Mayor's Regional Flood Risk Appraisal and their Strategic Flood Risk Assessment as well as Local Flood Risk Management Strategies, where necessary, to identify areas where particular and cumulative flood risk issues exist and develop actions and policy approaches aimed at reducing these risks. Boroughs should cooperate and jointly address crossboundary flood risk issues including with authorities outside London;
- Development proposals should ensure that flood risk is minimised and mitigated, and that residual risk is addressed. This should include, where possible, making space for water and aiming for development to be set back from the banks of watercourses;
- Developments Plans and development proposals should contribute to the delivery of the measures set out in Thames Estuary 2100 Plan. The Mayor will work with the Environment Agency and relevant local planning authorities, including authorities outside London, to safeguard an appropriate location for a new Thames Barrier;
- Development proposals for utility services should be designed to remain operational under flood conditions and buildings should be designed for quick recovery following a flood.

5 Site Characteristics

5.1 Location and Area

The site is centred at national grid reference 517085, 170948 and has an area of $374m^2$.

It falls within the jurisdiction of the London Borough of Richmond upon Thames in terms of the planning consultation process on flood risk and surface water management. Figure 1 provides the site location map and aerial imagery.

Figure 1: Site location map and aerial photo

5.2 Current Site and Surrounding Uses

The site is currently used a residential dwelling. It is located in a mainly residential area, with 2no. sports grounds and a small number of commercial uses within the vicinity.

5.3 Site Topography

The mapping provided in <u>Appendix 2</u> shows the 1m LiDAR DTM (2022) ground elevations within the site. A topographical survey is also available in Appendix 2.

The ground level at the site ranges from 6.34mAOD in the soft landscaping in the rear garden (northeast) to 6.93mAOD at the roadway (southwest). The surrounding area gradually rises in topography from the lowest elevation, where the River Thames is located, in the east.

5.4 Site Investigation

Infiltration testing was undertaken on the 10th to 12th June, 2024. A trial pit was excavated to a depth of 1.1mbgl for undertaking infiltration testing in accordance with BRE DG 365.

TP01 encountered dark brown Top Soil to a depth of 0.3mbgl, becoming wet, light, brown/orange Sandy Clay to a level of 1.1mbgl. Groundwater was not encounter.

The trial pit was rapidly filled with water from a 1.2m³ water bowser. The trial pit was left to drain for a 24 - hour period or until nearly empty. The water level was continuously monitored using a water level logger. The water level achieved within the trial pit was used as the effective storage depth.

The data from the testing was used to calculate the infiltration rate. The infiltration rate was calculated to be 1.4×10^{-6} m/s in TP01. This is classified as a moderate rate of infiltration.

Full details including photos, graphs, location map and results of the infiltration testing are available in <u>Appendix 6.</u>

5.5 Flood Risk Summary

The overall flood risk to the site is considered to be Medium, with the main source of flooding being the River Thames.

Further information regarding flood risk to the site is available in FRA – 2023 – 000041.

The flood risk maps area available in Appendix 3

5.6 Existing Surface Water Drainage Features

Drainage plans showing the existing surface water drainage system at the site are presented in <u>Appendix 5</u>.

A utility search was undertaken which identified Thames Water as the local sewage undertaker.

Table	1:	Asset	Information

Asset ID	Asset Type	Distance (m) / Location	Manhole Cover Level (mAOD)*	Manhole Invert Level (mAOD)	Depth (m)
0908	SW	13m SW on Atbara Rd	7.09	N/A	N/A
1908	SW	63m NE on Broom Rd	6.27	N/A	N/A
0806	SW	111m SE on Atbara Rd	7.40	N/A	N/A

*Cover Levels taken from DTM LiDAR mapping

A CON29DW Drainage & Water Enquiry was undertaken, confirming the existing surface water connection, and is available in <u>Appendix 5</u>.

6 Hydrological Run-off Assessment

To minimise the impact of the new development on local flood risk, the NPPF requires that the water drainage arrangements for any development site are that the volumes and peak flow rates leaving the site post-development are improved upon those of the existing conditions. The following run-off assessment predicts the Greenfield, pre- and post-development run-off rates and provides the required SuDS necessary for complying with the relevant planning policies.

6.1 Existing and Proposed Ground Cover

Ground Cover	Existing Development Area		Proposed Develo	Difference (m ²)	
	m²	%	m²	%	Difference (m ²)
Buildings	107	28.6	118	31.6	11
Hard Standing	145	38.8	165	44.1	20
Soft landscaping	122	32.6	91	24.3	31
Total	374	100	374	100	

Table 2: Breakdown of Ground Cover in the Proposed Development

Table 3: Summary of Permeable and Impermeable Areas

	Impermeable Area		Permeable Area		Total Area
	m²	%	m2	%	m²
Existing Site	252	67.4	122	32.6	374
Proposed Site	283	75.7	91	24.3	374
Difference	31	8.3	-31	-8.3	

The proposed development increases the impermeable area of the site by 8.3% to $31m^2$. As such this will have a negative impact on the runoff rate without the introduction of SuDS.

6.2 Peak Flow Control

With regard to peak flow control, the non-statutory technical standards for sustainable drainage systems state that:

S3 For developments which were previously developed, the peak runoff rate from the development to any drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event must be as close as reasonably practicable to the greenfield runoff rate from the development for the same rainfall event, but should never exceed the rate of discharge from the development prior to redevelopment for that event.

The London Plan SI.13 states that development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. The London Plan Sustainable Design and Construction SPG (section 3.4.10) states that all developments on Greenfield sites must maintain Greenfield runoff rates. On previously developed sites, runoff rates should not be more than three times the calculated Greenfield rate.

6.3 Volume Control Requirements

With regard to volume control, the non-statutory technical standards for sustainable drainage systems state that:

- S5 Where reasonably practicable, for developments which have been previously developed, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event must be constrained to a value as close as is reasonably practicable to the greenfield runoff volume for the same event, but should never exceed the runoff volume from the development site prior to redevelopment for that event.
- S6 Where it is not reasonably practicable to constrain the volume of runoff to any drain, sewer or surface water body in accordance with S4 or S5 above, the runoff volume must be discharged at a rate that does not adversely affect flood risk.

6.4 Run-off and Storage Calculations

The IH124 & MRM methods were applied to calculate the Greenfield, pre and postdevelopment run-off rates including allowances for climate change. The full calculations and results are presented in <u>Appendix 4</u>. The table below gives a summary of the results:

	Greenfield (I/s)	Pre - Development (I/s)	Post Development (I/s)
Qbar	0.06	0.15	0.16
1 in 1	0.05	0.13	0.14
1 in 30	0.13	0.35	0.37
1 in 100	0.18	0.48	0.52
1 in 100 + CC	0.27	0.71	0.77

Table 4: Calculation of post-development run-off rates for the site.

Table 5: Modified Rational Method (MRM)

	Pre – Development (I/s)	Pre - Development No SuDS (I/s)
1 in 1	3.7	4.2
1 in 30	8.8	9.8
1 in 100	11.1	12.4

As the development is taking place on a previously developed site S3 (peak flow) and S5 and S6 (volume controls) apply.

The Qbar (0.06 l/s) for the greenfield runoff rate should be the aim for the postdevelopment scenario. However, achieving a discharge a rate this low may not be practical, and may give rise to blockages in the proposed system.

The storage volume required to achieve the 1.0 l/s discharge rate for all storm events, is estimated to be up to $8 - 12m^3$.

When taking into consideration the installation of permeable paving, in place of hardstanding, the storm water attenuation volume reduces to $5 - 8m^3$.

Screenshots of the quick storage estimate and variables are available Appendix 4.

7 SuDS

7.1 SuDS Hierarchy

The SuDS Hierarchy sets out the preferred method of selecting which Sustainable Drainage System should be used.

- rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation);
- rainwater infiltration to ground at or close to source;
- rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens);
- rainwater discharge direct to a watercourse (unless not appropriate);
- controlled rainwater discharge to a surface water sewer or drain;
- controlled rainwater discharge to a combined sewer;

The table outlined on the page below summarises the available SuDS, there potential suitability and the benefits.

7.2 Drainage Hierarchy Discussion

7.2.1 Rainwater Harvesting

The development has good potential to provide rainwater harvesting. As such, this is recommended in the form of rainwater butts.

7.2.2 Green, Blue or Brown Roofs

Based on the proposed roof design, which include pitched roofs, the use of alternative roofing is not deemed to be suitable.

7.2.3 Infiltration To Ground

On site infiltration testing was undertaken. The data from the testing was used to calculate the infiltration rate. The infiltration rate was calculated to be 1.4×10^{-6} m/s in TP01. This is classified as a moderate rate of infiltration.

Based on these findings, infiltration SuDS methods are considered to be partially suitable for the site. The discharge rate achieved cannot ensure suitable half drain down times within 24 hours, so an alternative discharge point will be required.

7.2.4 Permeable Surfaces and Filter Drains

32% of the development will consist of outdoor space and patios, which can be formed from alternative permeable surfaces. On site infiltration has been shown to be successful, but is too low to accommodate additional inflow areas. As such the permeable surfaces may discharge directly to ground and will not be included in the total positive catchment area.

21

7.3 Appraisal of Potential SuDS Options

7.3.1 SuDS Options

Table 6: SuDS Appraisal; Feasibility of various SuDS and the potential uses on site.

able 0. Oubo Ap	praisal, reasibility of var		ne potential a												
Кеу	Н	М	L	Y	?	N	N/A								
Details	High Impact	Medium	Low Impact	Yes	Maybe	No	Not Applicable				_				
								Flow Rate Control / Events							
Main Category	SuDS Features	Total Suspended Solids Removal	Heavy Metals Removal	Nutrient Removal	Bacteria Removal	Dissolved Pollutants	Runoff Volume Reduction	1-2 Years	10 - 30 Years	100 Years	Site Potential	Included	Discussion / Details	Potential Storage Provided	Potential Storage Provided
Source Control	Green / Brown Roof	NA	NA	NA	NA	н	Н	Н	Н	L	Ν	Ν	Poorly compatible with proposed;	0	0
Measure	Rain Water harvesting	Μ	L	L	L	NA	М	М	Н	L	Y	Y	Good compatibility - Rain Water Butts	200L	200L
	Infiltration trench	Н	н	Н	М	н	н	Н	Н	L	N	Ν	Limited Infiltration	0	0
Infiltration Methods	Permeable Pavement	н	н	н	н	н	н	н	н	н	Y	Y	Limited Space Available for Paving to be Useful. Will not act as impermeable catchment, and will act as conveyance route	0	0
	Infiltration basin	Н	Н	Н	М	Н	Н	н	Н	н	N	N	Limited Space	0	0
	Soakaway	Н	н	н	М	Н	Н	н	н	L	N	Ν	Limited Infiltration	0	0
	Filtration Surface sand	Н	Н	Н	М	Н	L	Н	Н	L	Ν	N	Limited Space	0	0
	Sub-surface sand filter	Н	н	Н	М	Н	L	н	Н	L	N	N	Limited Space	0	0
Filtration	Perimeter sand filter	н	н	Н	М	н	L	н	н	L	Ν	Ν	Limited Space	0	0
	Bioretention/filter strips	Н	н	н	м	Н	L	н	н	L	Y	N	Partially Suitable through SuDS Planters	0	0
	Filter trench	Н	Н	Н	М	Н	L	Н	Н	L	N	Ν	Limited Space	0	0
	Open channels Conveyance	Н	М	М	М	Н	М	Н	Н	Н	Ν	N	Limited Space	0	0
Channels Features (Open)	Enhanced dry swale	Н	н	н	м	Н	м	н	н	н	N	N	Limited Space	0	0
(open)	Enhanced wet swale	Н	н	М	н	н	L	н	н	н	N	Ν	Limited Space	0	0
	Wetland Shallow wetland	Н	М	Н	М	Н	L	Н	М	L	N	Ν	Limited Space	0	0
	Extended detention wetland	Н	М	Н	М	Н	L	Н	М	L	N	Ν	Limited Space	0	0
Wet SuDS	Pond / wetland	Н	М	Н	М	Н	L	Н	м	L	N	Ν	Limited Space	0	0
wet SuDS	Pocket wetland	Н	М	Н	М	Н	L	Н	М	L	N	Ν	Limited Space	0	0
	Submerged gravel wetland	Н	М	Н	М	Н	L	Н	м	L	Ν	N	Limited Space	0	0
	Wetland channel	Н	М	Н	М	Н	L	Н	М	L	Ν	N	Limited Space	0	0
Retention	Retention pond	Н	М	М	М	Н	L	Н	Н	Н	Ν	Ν	Limited Space	0	0
Detention	Detention basin	М	М	L	L	L	L	Н	Н	Н	Ν	Ν	Limited Space	0	0
Tank Storage	Sub-surface storage (Tank)	L	L	L	L	L	L	Н	Н	Н	Y	Y	Good Compatibility	5.8	5.8
														Total	5.8

7.4 SuDS Strategy

7.4.1 SuDS Options

The proposal will introduce a rainwater butt, permeable paving and Geocellular attenuation storage.

The SuDS strategy introduced will implement an protected Orifice Control Chamber, to limit the discharge to 1.0 l/s, during all storm events into the receiving surface water sewer. The combination of the SuDS measures introduced will provide 5.8m³ of attenuation; the details are outline in the table below.

Table 7: Proposed SuDS

Option A					
Location	Drop could $\Lambda rop (m^2)$	SuDS Option	Estimated Storage Provided		
Location	Proposed Area (m ²)	SuDS Option	(m ³)		
Rear Garden	-	Rainwater Butt	200L		
Rear Garden	20	0.25m thick Geocellular Attenuation	4.8		
Front of Site	2	0.5m thick Geocellular Attenuation	1.0		
Total			5.8		

The drainage layout, model sections and model results are available in Appendix 7

The descriptions of the proposed SuDS and how they interact with the different features is outlined below.

7.4.2 Rainwater Butt

1no. Rainwater harvesting Butt (200 litre) will be fitted to the rear garden downpipe to allow for rainwater re-use within the garden.

Excess storm water will discharge into the geocellular attenuation structure, feeding into the attenuation once at capacity.

7.4.3 Geocellular Attenuation

The geocellular storage will be placed below the patio at the front of the property, and below the patio within the rear garden.

The front structure will cover a total area of $2m^2$ with a thickness of 0.5m. The rear structure will cover a total area of $20m^2$ with a thickness of 0.25m. The geocellular storage crates (<u>AquaCell Drainage Crates</u> or similar) will have a porosity of 95% and will be stacked together to create the desired storage volume $5.8m^3$.

7.4.4 Surface Water Discharge Points

The surface water will discharge via the existing surface water connection into the public sewer network, as discussed is <u>Section 5.6</u>.

7.4.5 Treatment of Run-off

Treatment of roof water runoff will be provided through the provision of the permeable paving, rainwater butt and the inspection chamber sumps to intercept gross solids and sediment; guidance will be provided to the developer on appropriate maintenance requirements including regular cleaning of gullies.

7.4.6 Exceedance Flows

The ground level at the site ranges from 6.34mAOD (northeast) to 6.93mAOD (southwest).

The elevation review of the LIDAR 1m DTM Mapping indicates that in the event of exceedance on the site upon completion, overland flows will be retained within the soft landscaping on site, away from the building ensuring safe access and egress can be maintained during such an event. It should be noted that CFS will allow for the excavation of land to the rear of the site, providing a substantial area for storage within the soft landscaping.

7.5 Maintenance and Adoption of SuDS

All SuDS features will be properly installed by competent persons. They will be maintained regularly to ensure that their design capacity and attenuation characteristics provide the required storage volume.

Landscaping and adjacent areas will be designed such that they do not cause soil, mulch and other materials to be washed onto the permeable surfaces and into drains causing clogging.

Owners of the properties/persons responsible for maintenance of SuDS components will be provided with operation and maintenance manuals which will include information such as:

the location of SuDS components;

- an explanation of design intent and objective of the SuDS;
- the requirements for regular and occasional inspection and maintenance;
- visual indicators that may trigger maintenance.

Regular maintenance of SuDS components is relatively straightforward with the main tasks consisting of:

- Regular visual inspections checking inlets are not blocked and verifying that clogging has not occurred;
- Litter and debris removal;
- Grass cutting;
- Preventive sweeping;
- Weeding and invasive plant control;
- Soli and stain removal.

Occasional maintenance activities to ensure the long-term performance of the SuDS features include:

- Sediment removal
 - Vegetation and plant replacement

Site Address: 99 Atbara Road, Teddington TW11 9PA

These simple measures will ensure that the storage capacity of the system is maintained and that the need for reconstruction and replacement of components is minimised.

Further details on SuDS maintenance measures that will be employed at the site can be found in <u>Appendix 8</u>.

8 **Conclusion and Recommendations**

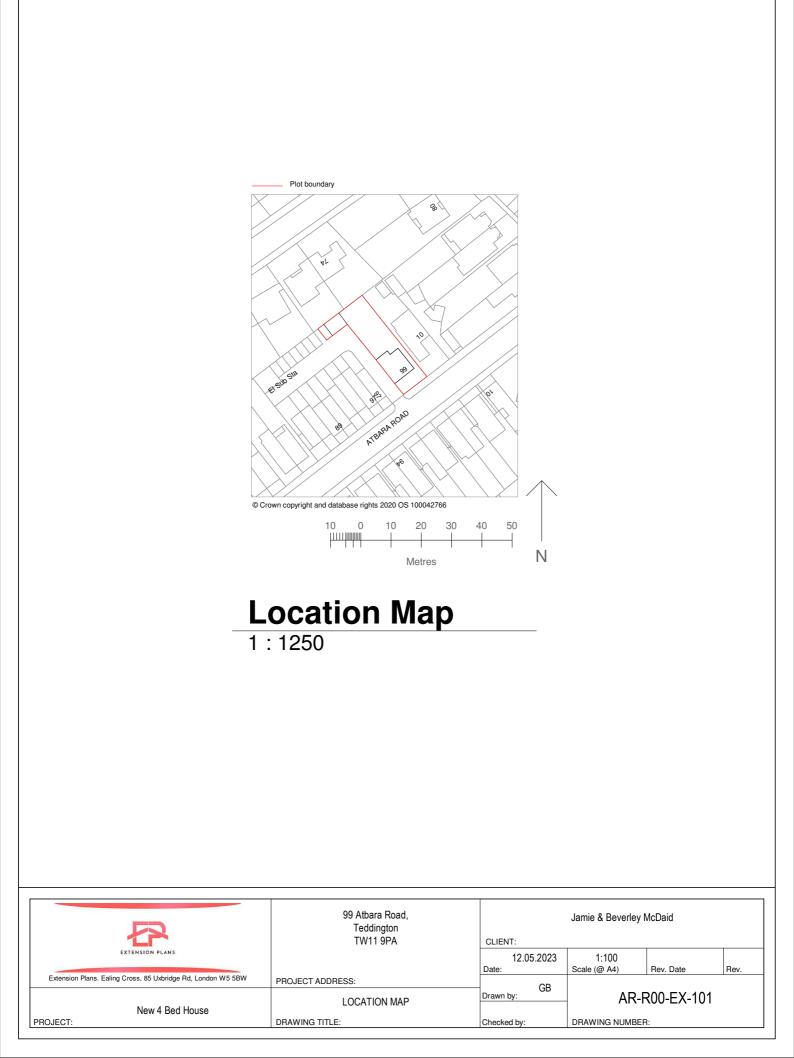
With the proposed SuDS mitigation measures in place, it is considered that the proposed development will reduce local flood risk and enhance the local environment and will therefore be in compliance with the LLFA's current planning policy and the NPPF.

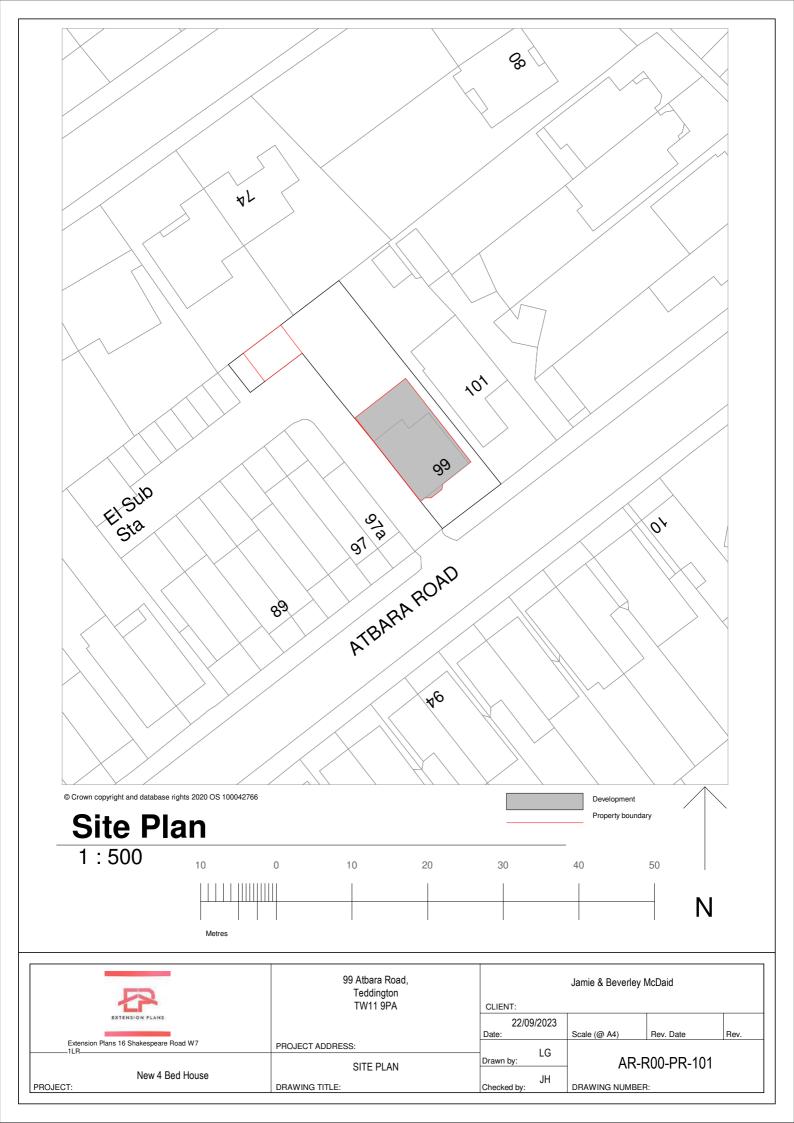
9 References

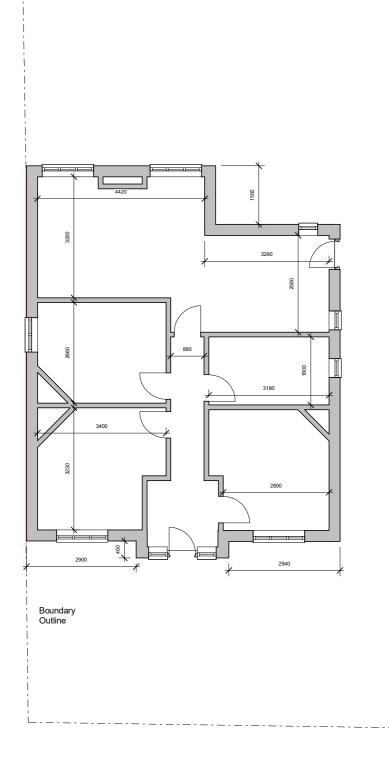
- 1. Communities and Local Government National Planning Policy Framework NPPF, 2019.
- 2. The London Plan The Spatial Development Strategy for Greater London March 2021
- 3. CIRIA, Defra, Environment Agency UK SuDS Manual, 2015.
- 4. Local Plan, London Borough of Richmond upon Thames, 2018.
- Sustainable drainage systems -<u>https://new.enfield.gov.uk/services/planning/sustainable-drainage-systems/</u> -Accessed Nov 2023.

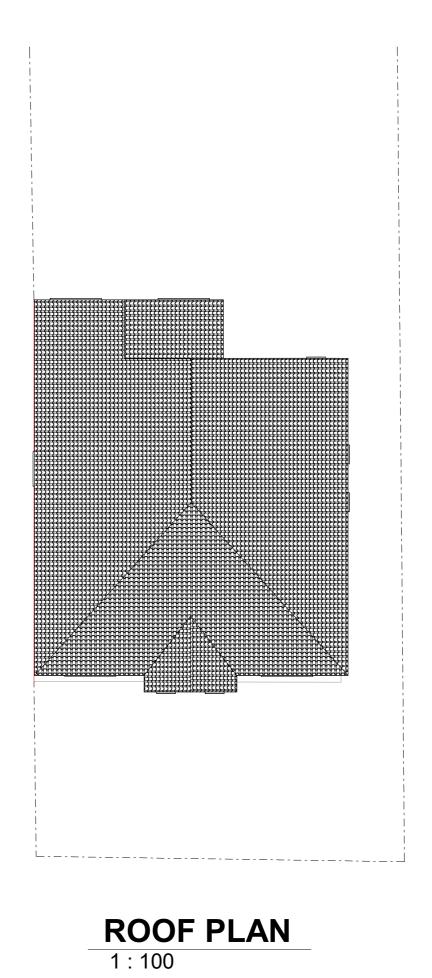
Site Address: 99 Atbara Road, Teddington TW11 9PA

10 Appendices

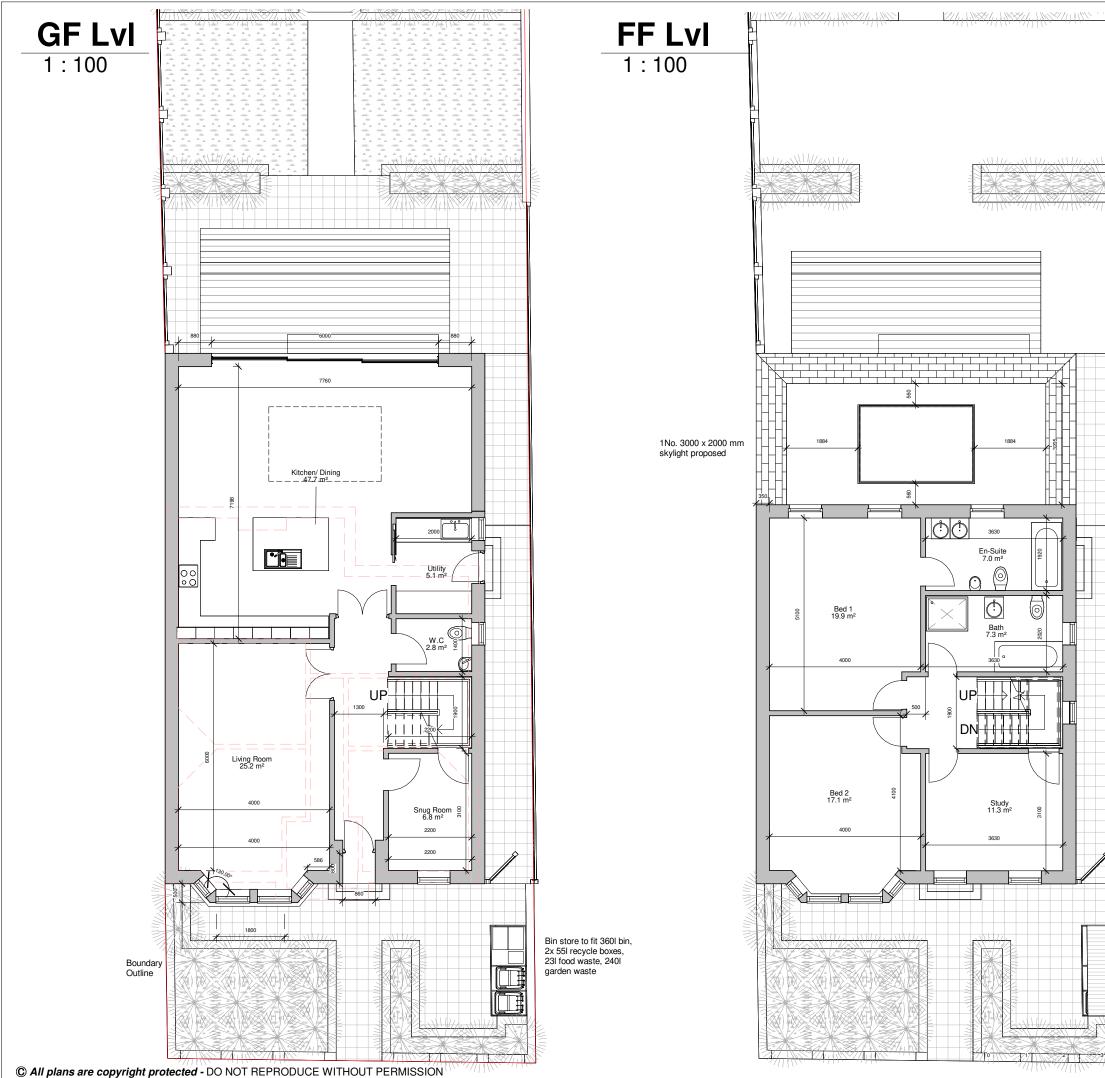

10.1 Appendix 1 – Development Plans & Photos

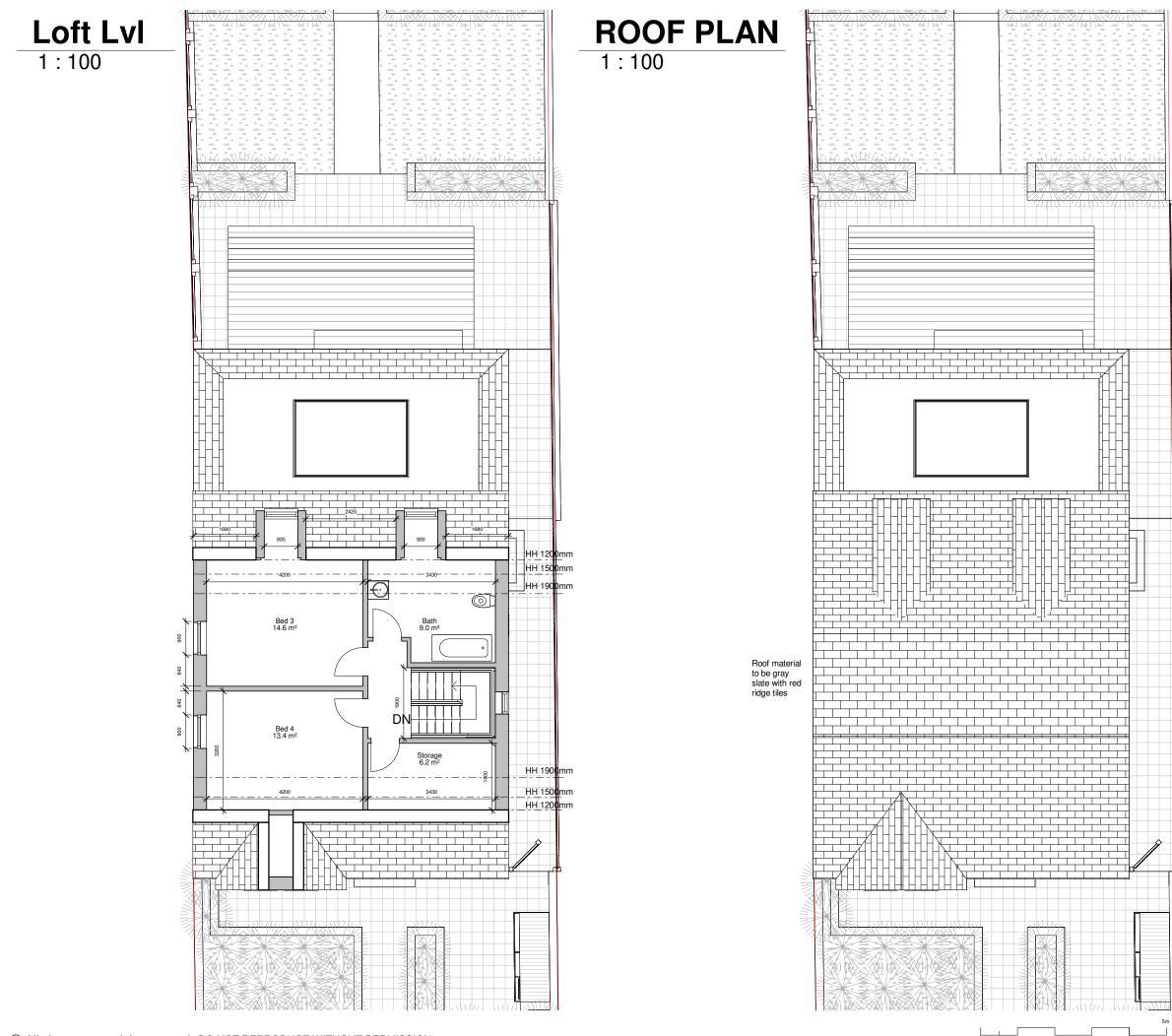

10.1.1 Development Plans


PDF to follow this page.

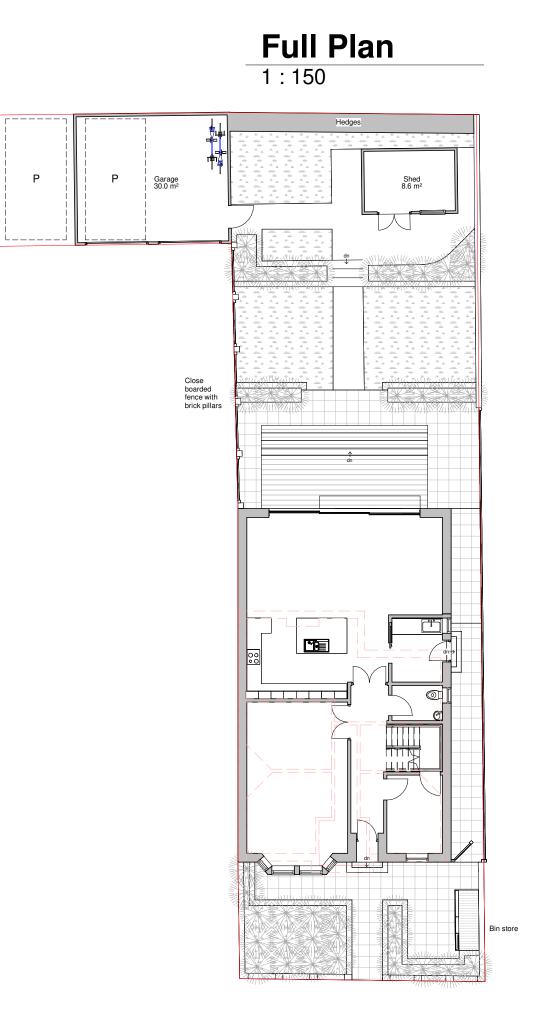

Report Reference: SWDS – 2024 – 000036

Site Address: 99 Atbara Road, Teddington TW11 9PA





PROGRAMME:				
REVISION NOTES:				
REV: DATE: DESCRIPTION	UN:			
GENERAL NOTES:				
1. All Dimensions are in millimetres				
building regulations 1991 (includ	ordance with the current edition of the ing amendments) and all relevant british			
	the correct setting out of the works on			
commencement of works.	d prior to fabrication of materials and			
4. This Drawing is to be read in cor specifications	njunction with all relevant drawings and			
5. Exact SVP and Boiler position to 6. Steels imbedded into ceiling may	be determined onsite by contractor			
contractor				
7. All proposed materials are to be existing house, unless otherwise				
	the roof slope by more than 150mm he added floor area will result in extra			
charges for S.A.P Calculations				
EXTENS	SION PLANS			
	JON PERKS			
Extension Plans. 16 Shakespeare Road W7 1LR				
Jamie & Beverley McDaid <u>CLIENT:</u>				
New 4 Bed House				
PROJECT:				
99 Atbara Road, Teddington				
	W11 9PA			
PROJECT ADDRESS:				
EXISTING FLOOR PLANS				
DRAWING TITLE:				
LG DRAWN BY:	JH CHECKED BY:			
22/09/2023 DATE: Rev:	Rev. DATE:			
1:100	HR-R00-EX-102			
SCALE@A3:	DRAWING No:			


_____3

	-				
PROGR	AMME:				
KEY:					
	Neighbourir	ng context	F	WP	Rain Water Pipe
	Existing wal	ls	S	VP	Soil Vent Pipe
	Proposed w	alls			Boundary line
	Proposed ro	ooflight			Existing removed
МН	Manhole				Existing beam
В	Boiler				1.2 m head height
EM	Electric Met	er			1.5 m head hieght
GM	Gas Meter				Ridge line
REVISIO	ON NOTES	S:			
REV: D	ATE: DI	ESCRIPTI	ON:		
GENER	AL NOTES	<u>.</u>			
		-			
	nsions are in to be carried				
-	ns and all rele				
					g out of the works on on of materials and
	cement of wo wing is to be		niunctior	n with all re	elevant drawings and
specifica	tions		-		-
		•			site by contractor designs if the toilet
	s away from			acertain	
7. Steels im contracto		ceiling ma	y be cha	rged additi	ionally by your
		s are to be	similar i	n appearai	nce to that of the
	nouse, unless			f clone by	more than 150mm
					a will result in extra
charges	for S.A.P Ca	lculations			
	l glazing and				bove must be
12. Load-bea	aring partition	is and/or p	osts are	shown in	a rough position.
The exac	t position is t				al engineer prior
to construction.					
				2.1	
		1			
		EXTEN	SION PI	ANS	
Extens	ion Plans. Ea	aling Cros	s, 85 Uxl	oridge Rd,	London W5 5BW
	.1	amia & I	Rovorla	av McDa	id
CLIENT: Jamie & Beverley McDaid					
New 4 Bed House					
PROJECT:					
99 Atbara Road,					
Teddington					
TW11 9PA					
PROJECT ADDRESS:					
PROPOSED FLOOR PLANS					
DRAWING 1	ITLE:				
	LG				JH
DRAWN BY	:		CHEC	KED BY:	011
DATE: 22	2/09/2023	Rev:		Rev. DA	ATE:
		1	1		
SCALE@A3	1:100)	DRAW	ING No:	AR-R02-PR-102

	PROGF	RAMME:			
	KEY:				
¥.	7/////	Neighbourir	ng context	RWP	Rain Water Pipe
		Existing wal	-	SVP	Soil Vent Pipe
		Proposed w	alls		Boundary line
		Proposed ro	ooflight		Existing removed
	мн	Manhole			Existing beam
	в	Boiler			1.2 m head height
	EM	Electric Met	er		1.5 m head hieght
	GM	Gas Meter			Ridge line
	REVISI	ON NOTES	S:		
	REV: D	DATE: D	ESCRIPTIO	N:	
	GENER	AL NOTES	S:		
				unless otherwis	
				dance with cur standards/cod	
					ting out of the works on ation of materials and
	commer	ncement of wo	orks.		I relevant drawings and
	specifica	ations			-
			-		onsite by contractor in designs if the toilet
	location	is away from	existing SV	0	
- L	7. Steels in contract		celling may	be charged add	ditionally by your
		osed materials house, unless			rance to that of the
		-		-	by more than 150mm
		which exceed for S.A.P Ca		e added floor a	rea will result in extra
	11. Window	rs on a side el	evation at fi	st floor level or le below 1.7m	above must be
					in a rough position.
		ct position is t			ural engineer prior
-	to const				
_					
-					
_				ON PLANS	
			EXTERS	ON FEARS	
					and the second se
-	Exten	sion Plans. Ea	aling Cross,	85 Uxbridge R	d, London W5 5BW
		J	amie & B	everley McE	Daid
	CLIENT:			,	
			New 4	Bed House	
	PROJECT:				
				bara Road, Idington	
				11 9PA	
	PROJECT	ADDRESS:			
		PRO	OPOSED	FLOOR PL	ANS 2
	DRAWING	TITLE:			
	DRAWN B	: LG		CHECKED BY	, JH
			I		·
4 F .	DATE: 2	22/09/2023	Rev:	Rev. I	DATE:
1:100	SCALE@A	1:100 3:		DRAWING No	AR-R02-PR-103

PROGR	AMME:				
KEY:					
	Neighbouring context	RWP	Rain Water Pipe		
	Existing walls	SVP S	Soil Vent Pipe		
	Proposed walls	E	Boundary line		
	Proposed rooflight	E	Existing removed		
мн	Manhole	E	Existing beam		
В	Boiler	1	1.2 m head height		
EM	Electric Meter	1	1.5 m head hieght		
GM	Gas Meter	F	Ridge line		
REVISIO	ON NOTES:				
REV: D	ATE: DESCRIPT	ION:			
GENER	AL NOTES:				
 GENERAL NOTES: 1. All Dimensions are in millimetres unless otherwise stated 2. All work to be carried out in accordance with current building regulations and all relevant british standards/codes of practice. 3. The Contractor is responsible for the correct setting out of the works on site, all dimensions to be checked prior to fabrication of materials and commencement of works. 4. This Drawing is to be read in conjunction with all relevant drawings and specifications 5. Exact SVP and Boiler position to be determined onsite by contractor 6. A 'macerator toilet' would be required for a certain designs if the toilet location is away from existing SVP 7. Steels imbedded into ceiling may be charged additionally by your contractor 8. All proposed materials are to be similar in appearance to that of the existing house, unless otherwise stated. 9. Skylights must not protrude past the roof slope by more than 150mm 10. Glazing which exceeds 25% of the added floor area will result in extra charges for S.A.P Calculations 11. Windows on a side elevation at first floor level or above must be obscured glazing and non openable below 1.7m 12. Load-bearing partitions and/or posts are shown in a rough position. The exact position is to be confirmed by a structural engineer prior to construction. 					
	20120	SION PLANS			
Extens	ion Plans. Ealing Cros	s, 85 Uxbridge Rd, I	_ondon W5 5BW		
CLIENT:	Jamie &	Beverley McDai	d		
PROJECT:	New	4 Bed House			
99 Atbara Road, Teddington TW11 9PA					
PROJECT A	DDRESS:				
FULL PLAN DRAWING TITLE:					
DRAWN BY	LG :	CHECKED BY:	JH		
DATE: 22	2/09/2023 Rev:	Rev. DA	TE:		
SCALE@A3	1:150	DRAWING No:	AR-R02-PR-104		

PROGRAMME	
-----------	--

KEY:

	Neighbouring context	RWP	Rain Water Pipe
	Existing walls	SVP	Soil Vent Pipe
	Proposed walls		Boundary line
	Proposed rooflight		Existing removed
мн	Manhole		Existing beam
в	Boiler		1.2 m head height
EM	Electric Meter		1.5 m head hieght
GM	Gas Meter		Ridge line

REVISION NOTES:

REV: DATE: DESCRIPTION:

GENERAL NOTES:

- 1. All Dimensions are in millimetres unless otherwise stated 2. All work to be carried out in accordance with current building
- regulations and all relevant british standards/codes of practice. 3. The Contractor is responsible for the correct setting out of the works on
- site, all dimensions to be checked prior to fabrication of materials and commencement of works. 4. This Drawing is to be read in conjunction with all relevant drawings and
- specifications
- 5. Exact SVP and Boiler position to be determined onsite by contractor
- 6. A 'macerator toilet' would be required for a certain designs if the toilet location is away from existing SVP
- 7. Steels imbedded into ceiling may be charged additionally by your contractor
- 8. All proposed materials are to be similar in appearance to that of the existing house, unless otherwise stated.
- 9. Skylights must not protrude past the roof slope by more than 150mm 10. Glazing which exceeds 25% of the added floor area will result in extra
- charges for S.A.P Calculations
- 11. Windows on a side elevation at first floor level or above must be obscured glazing and non openable below 1.7m
- 12. Load-bearing partitions and/or posts are shown in a rough position. The exact position is to be confirmed by a structural engineer prior to construction.

Extension Plans. Ealing Cross, 85 Uxbridge Rd, London W5 5BW

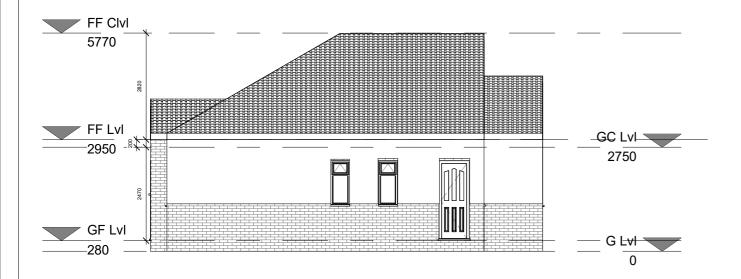
Jamie & Beverley McDaid

CLIENT:

PROJECT:

SCALE@A3:

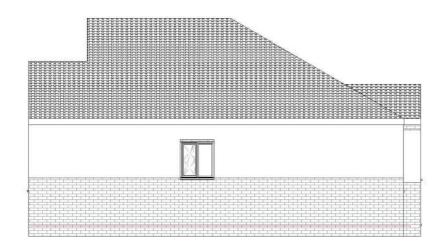
5m ______1:100


New 4 Bed House

99 Atbara Road, Teddington TW11 9PA

PROJECT ADDRESS:

PROPOSED STREET SCENE							
DRAWING TITLE:	DRAWING TITLE:						
DRAWN BY:	CHECKED BY:						
DATE: 22/09/2023 Rev:	Rev. DATE:						
1:100	AR-R02-PR-107						


DRAWING No:

RH	ELI	EV	ATI	ON
1:1	00			

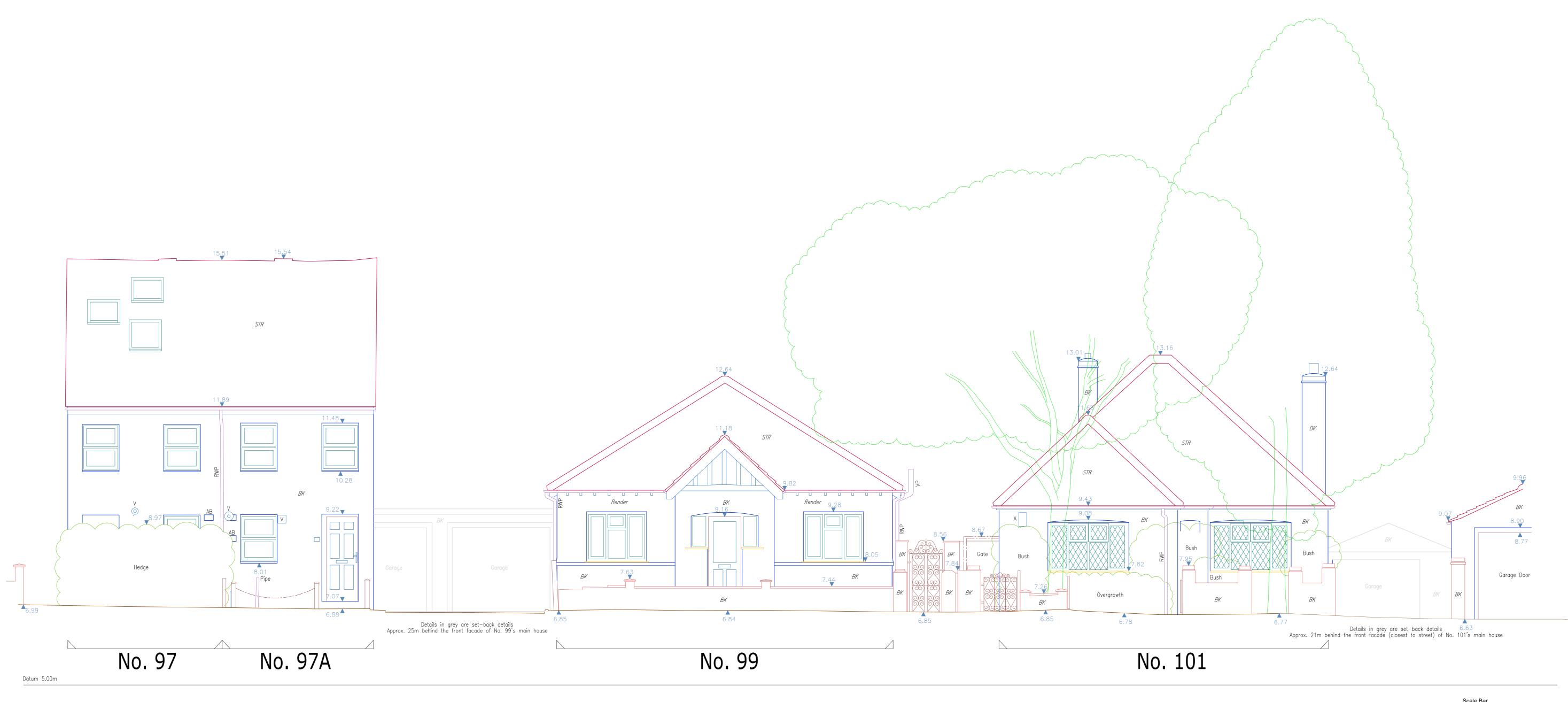
FRONT	ELEVATION
1:100	

PROGRAMME:		
REVISION NOTES:		
REV: DATE: DESCRIPTION:		
GENERAL NOTES:		
1. All Dimensions are in millimet		
2. All work to be carried out in accordance with the current edition of the building regulations 1991 (including amendments) and all relevant british		
standards/codes of practice. 3. The Contractor is responsible for the correct setting out of the works on		
site, all dimensions to be checked prior to fabrication of materials and commencement of works. 4. This Drawing is to be read in conjunction with all relevant drawings and		
specifications		
	n to be determined onsite by contractor nay be charged additionally by your	
contractor 7. All proposed materials are to l	be similar in appearance to that of the	
existing house, unless otherw 8. Skylights mustn't protrude part		
8. Skylights mustn't protrude past the roof slope by more than 150mm9. Glazing which exceeds 25% of the added floor area will result in extra		
charges for S.A.P Calculation	S	
EXTE	NSION PLANS	
Extension Plans 1	6 Shakespeare Road W7 1LR	
Jamie & Beverley McDaid		
Nev PROJECT:	w 4 Bed House	
99	Atbara Road,	
Teddington TW11 9PA		
PROJECT ADDRESS:		
	ING ELEVATIONS	
DRAWING TITLE:		
LG DRAWN BY:	JH CHECKED BY:	
22/09/2023		
DATE: Rev:	Rev. DATE:	
SCALE@A3: 1:100	DRAWING No:	

FRONT ELEVATION

RH ELEVATION

	PROGR	AMME:		
	KEY:			
		Neighbouring context	RWP SVP	Rain Water Pipe
		Existing walls Proposed walls	375	Soil Vent Pipe Boundary line
		Proposed rooflight		Existing removed
	мн	Manhole		Existing beam
	В	Boiler		1.2 m head height
	EM	Electric Meter		1.5 m head hieght
	GM	Gas Meter		Ridge line
		ON NOTES:		
	REV: DA	ATE: DESCRIPTIC	N:	
	GENER	AL NOTES:		
	1. All Dimer 2. All work t regulatior 3. The Cont site, all di commend	nsions are in millimetres to be carried out in acco ns and all relevant british tractor is responsible for imensions to be checked cement of works. wing is to be read in con	rdance with cur standards/cod the correct set prior to fabrica	rrent building les of practice. ting out of the works on ation of materials and
	5. Exact SV 6. A 'macera	/P and Boiler position to ator toilet' would be requ	ired for a certa	-
		s away from existing SV bedded into ceiling may		ditionally by your
	8. All propos	sed materials are to be s nouse, unless otherwise		rance to that of the
	9. Skylights	must not protrude past	the roof slope l	
		which exceeds 25% of the for S.A.P Calculations	e added floor a	rea will result in extra
		s on a side elevation at fi I glazing and non openal		above must be
		aring partitions and/or po t position is to be confiru uction.		
			PANS	
	Extens	ion Plans. Ealing Cross	85 Uxbridge R	ld, London W5 5BW
	CLIENT:	Jamie & B	everley Mc	Daid
	PROJECT:	New 4	Bed House	
		Te	bara Road, ddington /11 9PA	
	PROJECT A			
	DRAWING T		D ELEVATI	ONS
	DRAWN BY:	LG :	CHECKED BY	/: JH
5m	DATE: 22	2/09/2023 Rev:	Rev.	DATE:
1:100	SCALE@A3	1:100	DRAWING No	AR-R02-PR-105



LH ELEVATION

1:100


PROG	RAMME:								
KEY:									
	Neighbo	uring context	RWP	Rain Water Pipe					
	Existing	walls	SVP	Soil Vent Pipe					
	Propose	d walls		Boundary line					
	Propose	d rooflight		Existing removed					
мн	Manhole)		Existing beam					
в	Boiler			1.2 m head height					
ЕМ	Electric	Meter		1.5 m head hieght					
GM	Gas Me	er		Ridge line					
				Ū					
REV:	DATE:	DESCRIPTIO	N:						
GENE	RAL NOT	ES:							
	nonsions are	e in millimetres u	inless otherwi	ise stated					
2. All wo	k to be carr	ied out in accore	dance with cu	rrent building					
		relevant british							
				tting out of the works on attion of materials and					
	encement of		unction with a	Il relevant drawings and					
	cations	be read in conji		in relevant drawings and					
		-		onsite by contractor					
		would be requi		ain designs if the toilet					
		•		ditionally by your					
	7. Steels imbedded into ceiling may be charged additionally by your contractor								
	8. All proposed materials are to be similar in appearance to that of the existing house, unless otherwise stated.								
9. Skylig	 Skylights must not protrude past the roof slope by more than 150mm 								
	10. Glazing which exceeds 25% of the added floor area will result in extra								
-	charges for S.A.P Calculations 11. Windows on a side elevation at first floor level or above must be								
obscu	red glazing a	and non openab	le below 1.7m	l					
	12. Load-bearing partitions and/or posts are shown in a rough position.								
	act position struction.	is to be confirm	ied by a struc	tural engineer prior					
		EXTENSI	ON PLANS						
Exte	nsion Plans	. Ealing Cross,	85 Uxbridge F	Rd, London W5 5BW					
		0 /	Ū	,					
CLIENT:		Jamie & Be	everley McI	Daid					
CLIENT.									
	-	New 4	Bed House)					
PROJECT	:								
			ara Road,						
		1 1 1	dington						
DDO IS C			dington 11 9PA						
PROJECT	ADDRESS		11 9́PA						
PROJECT	ADDRESS	: PROPOSEI	11 9́PA	ONS					
DRAWING			11 9́PA	ONS					
DRAWING	G TITLE:	PROPOSEI	11 9́PA	JH					
	G TITLE:	PROPOSEI	11 9́PA	JH					
DRAWING	G TITLE:		11 9PA DELEVATI CHECKED BY	JH					
DRAWING	G TITLE: BY: LG 22/09/2023	PROPOSEI	11 9PA DELEVATI CHECKED BY	y: ^{JH} DATE:					
DRAWING	G TITLE: BY: LG 22/09/2023 1:	PROPOSEI	11 9PA DELEVATI CHECKED BY	Y: JH DATE: AR-R02-PR-106					

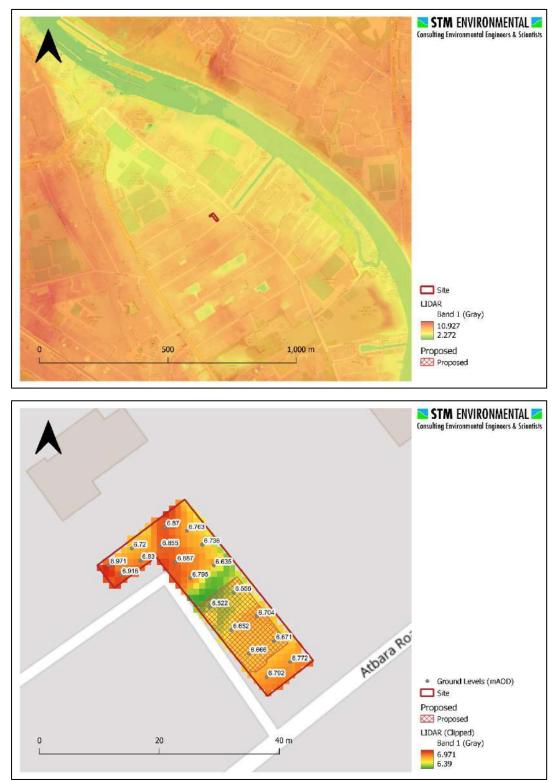
Street Scene Elevation

Scale Bar 0 1 2 3 4 HILL HILL HILL metres

ACU BK CO	Alarm Box Air Brick	L RWP	Light Rain Water Pipe	
ACU BK CO		1 X V V F	Rain water Pine	
CO	Air Conditioning Unit	STR SVP	Sloping Tiled Ro Soil Vent Pipe Telecoms Box	of
CM	Air Conditioning Unit Brick	SVP	Soil Vent Pipe	
	Column Cos Meter	TB	Telecoms Box Vent	
	Gas Meter Handrail	VP	Vent Pipe	
HR JB	Junction Box	ŴP	Waste Pipe	
Survey	Datum			
	ce Datum Newlyn (OD) related to OSGM15	N) - GPS De	erived Orthometrie	С
Locatio	n Plan			
Rev	Notes		Date	Ву
Rev	Notes Added set-back d	letails	Date 13/07/23	By LW
		letails		
		letails		
		letails		

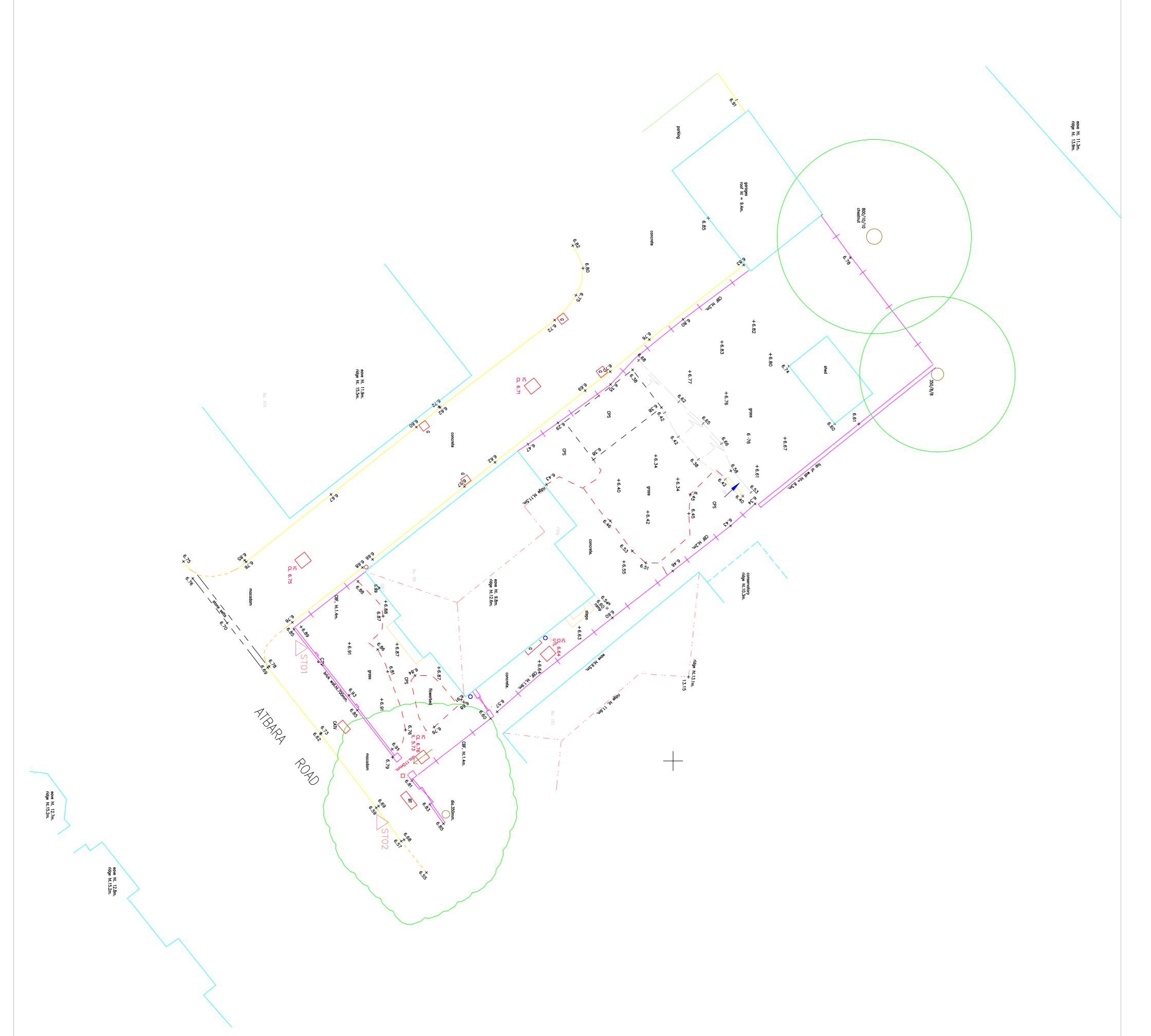
10.1.2 Site Photos

Report Reference: SWDS – 2024 – 000036
 Site Address: 99 Atbara Road, Teddington TW11 9PA

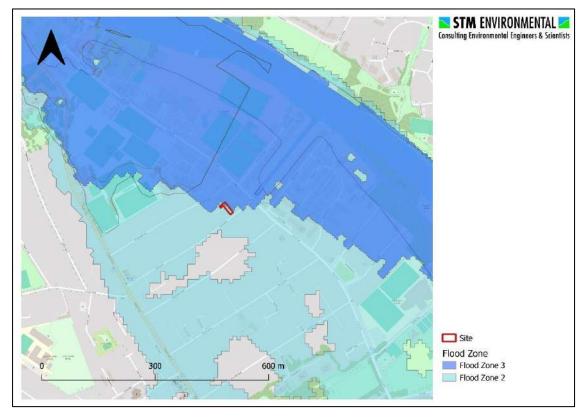


Report Reference: SWDS – 2024 – 000036
 Site Address: 99 Atbara Road, Teddington TW11 9PA

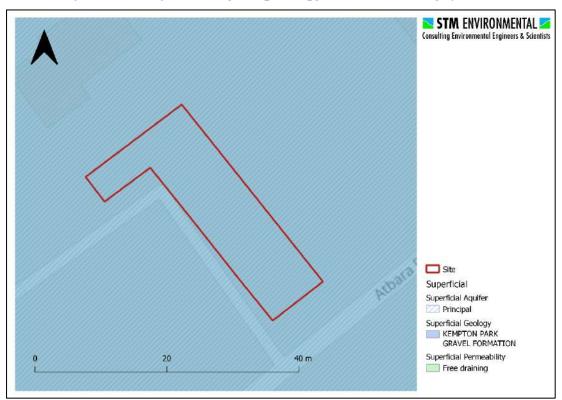
10.2 Appendix 2– Site Topography and Drainage Characteristics


10.2.1 LIDAR Mapping showing Site Topography - (Source: LiDAR DTM 2022)

10.2.2 Topographic Survey PDF to follow this page.


Report Reference: SWDS – 2024 – 000036

T vi	CZDZ	00 19 Number 20-S20
Date MAY 2023	TY Date Checked AY 2023 AT	SITE SURVE
	ROAD	Project 99, ATBARA TEDDINGTON TW11 9PA Drawing Title
LIABILITY +44 (0) 1425 479480 +44 (0) 7901 686777 n@atlandsurveys.com ww.atlandsurveys.com	LAND SURVEYS Vn Gardens, Hampshire Web w	P R E C I S AT LAND SUR 86, Hightown Gau Ringwood, Hamp BH24 3EJ
A at May 2024 Suff App Date		Trees removed Revision
Level 6.85 Noil Noil	SURVEY STATIONS 517094.19 170934.95 517103.16 170934.95	Station ST01 ST02
ght(m) ert if identification e shown. ire not measured	dia.(mm)/spread(m)/he be checked by an exp spread unless otherwis visual estimation and	rmation bc cies sho l. hts are
ch the physical I boundaries. ection only and accuracy the title wing by racy of	phic survey and as su re not necessarily lega tion is by surface insp iteed. been carried out at an th the scale shown on th the scale shown on wing. Enlarging the dra not increase the accu	NOTE. 1. This is a topogra features shown a 2. Drainage informa cannot be guarar 3. This survey has I commensurate wi block of this dray digital means will
beari beari n 0.S. ne sur ne sur ne sur ne sur nces. d to	Net) OSGB3 re and a fur ate a true O s are based s applied to tem is Arbitr tem which v lied to all di lied to all di	O.S. Active N True OSGB36 point near th point establis angle orienta No scale fact thus the Coc true O.S. Co scale factors The Survey S any on-site
Soff Unat Vent Was Was Sterm	Fire Hydrant Fence Post Gate Post Gully Kerb Outlet Letter Box been oriented to the been oriented to the solution	(OSGB
Sluice Va Telephone Tactile Pc Ticket Ma Telephone	Column Downpipe Damp Proof Course Electricity Cover Electricity Pole	Wire Security Iron Railing
 Parking Meter F Post and Rail Fence IF Post and Wire Fence Rodding Eye Road Sign Stop Cock 	BWFBarbed Wire FencePMCATVCable Television CoverPRFCTVCable Television PointPWFCTVCable Board FenceRECBFClose Board FenceRSCLFChainlink FenceRSCLFConcrete paving slabs SC	Surface Change FENCES Chain Link ++- Board Wooden rail
Lamp Post S Lamp Post Short H Manhole Service Marker Post F Open Board Fence	Anchor Point Air Valve Borehole Bollard British Telecom cover	Kerb Drop kerb Overhead /canopy Building

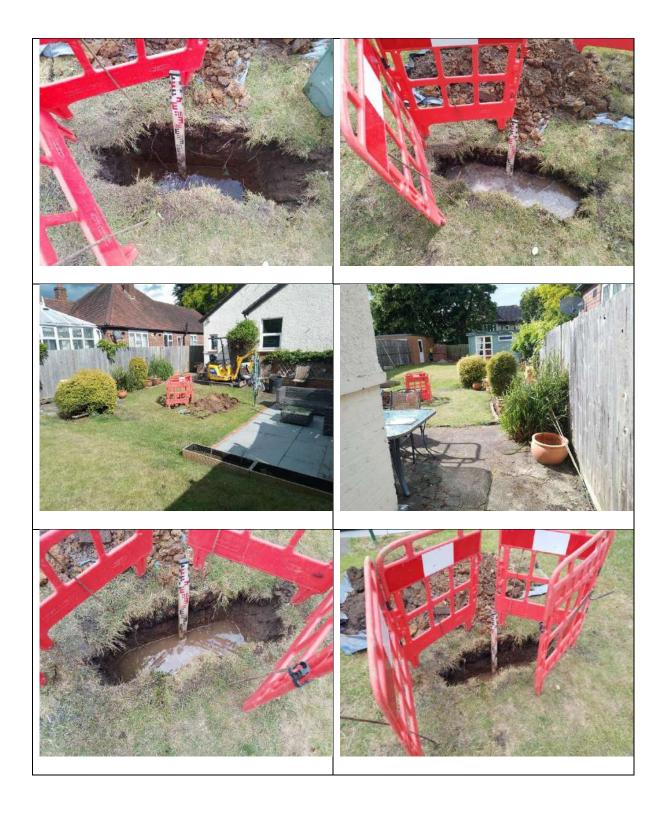

10.2.3 Hydrology Map

10.2.4 Bedrock Geology, Hydrogeology & Permeability (Source: BGS, 2016)

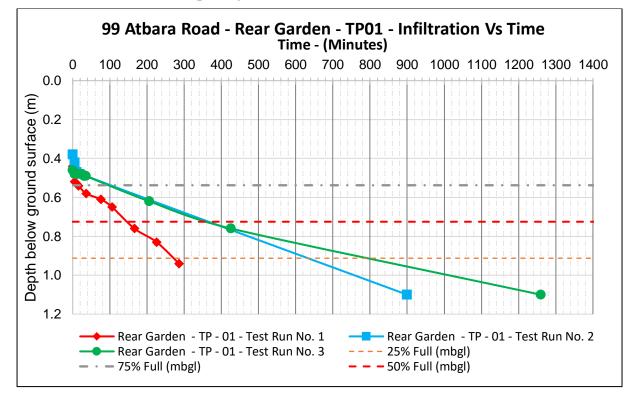
10.2.5 Superficial Deposits, Hydrogeology, & Permeability (Source: BGS, 2016)

10.2.6 Infiltration Drainage Potential (Source: BGS, 2016)

Report Reference: SWDS – 2024 – 000036
 Site Address: 99 Atbara Road, Teddington TW11 9


Report Reference: SWDS – 2024 – 000036

10.2.8 Site Investigation Photos PDF to follow this page.

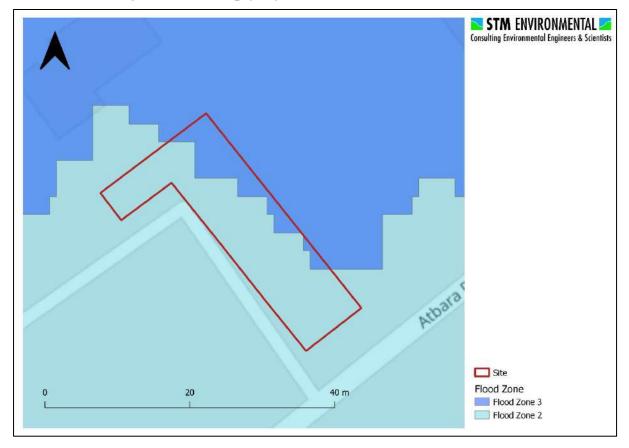

Report Reference: SWDS – 2024 – 000036

10.2.9 Infiltration Testing Graph

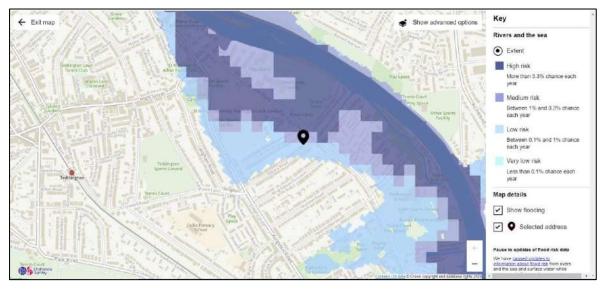
10.2.10 Infiltration Data and Results

		Rear Garde				en - TP - 01 - Test Run No. 1				
			insert time ac	cording to the measured	d units					
Dip Readng	Water Level Above Base	Depth (mbgl)	Time (hours)	Time (minutes)	Time (s)		Time	25% Full (mbgl)	50% Full (mbgl)	75% Full (mbgl)
	0.66	i 0.4	0.00	0		0:00	11:44:00	0.9125	0.73	0.537
	0.58		0.08	5			11:49:00			
	0.57	0.5	0.17	10	600.00	0:10	11:54:00	0.9125	0.73	0.537
	0.56	0.5	0.27	16	960.00	0:16	12:00:00	0.9125	0.73	0.537
	0.52	0.6	0.60	36	2160.00	0:36	12:20:00	0.9125	0.73	0.537
	0.49	0.6	1.27	76	4560.00	1:16	13:00:00	0.9125	0.73	0.537
	0.45	0.7	1.77	106	6360.00	1:46	13:30:00	0.9125	0.73	0.537
	0.34	0.8	2.77	166	9960.00	2:46	14:30:00	0.9125	0.73	0.537
	0.27	0.8	3.77	226	13560.00	3:46	15:30:00	0.9125	0.73	0.537
	0.16	0.9	4.77	286	17160.00	4:46	16:30:00	0.9125	0.73	0.537
				496		8:16	20:00:00	0.9125	0.73	0.537
				1560		02:00				0.537
					Reac	ned 25	% within 24	hours. Second run undertake	n.	r
				R	ear Gardei	ו - T	- TP - 01 - Test Run No. 2			
			insert time ac	cording to the measured	d units					
Dip Readng	Water Level Above Base	Depth (mbgl)	Time (hours)	Time (minutes)	Time (s)		Time	25% Full (mbgl)	50% Full (mbgl)	75% Full (mbgl)
	0.72	0.4	0.00	0	0	0:00	16:40:00	0.9125	0.73	0.537
	0.68	0.4	0.08	5	300.00	0:05	16:45:00	0.9125	0.73	0.537
	0.63		0.17	10			16:50:00			
	C	1.1	15.00	900	54000.00	15:00				
					Reac	ned 25	% within 24	hours. Second run undertake	n.	
				R	ear Gardei	ו - T	P - 01 - 1	Fest Run No. 3		
			insert time ac	cording to the measured	d units					
Dip Readng	Water Level Above Base	Depth (mbgl)		Time (minutes)		-	Time	25% Full (mbgl)	50% Full (mbgl)	75% Full (mbgl)
					Time (s)					
		4 (3 7		Time (finitures)	Time (S)		mine	25% rull (111591)		
	0.64		0.00	0		0:00	08:54:00			0.537
	0.64	0.5		· ·	0			0.9125	0.73	
		0.5	0.00	0	0.00	0:05	08:54:00	0.9125 0.9125	0.73	0.537
	0.62	0.5 0.5 0.5	0.00 0.08	0	0 300.00 600.00	0:05 0:10	08:54:00 08:59:00	0.9125 0.9125 0.9125	0.73 0.73 0.73	0.537 0.537
	0.62	0.5 0.5 0.5 0.5	0.00 0.08 0.17	0 5 10	0 300.00 600.00 900.00	0:05 0:10 0:15	08:54:00 08:59:00 09:04:00	0.9125 0.9125 0.9125 0.9125 0.9125	0.73 0.73 0.73 0.73 0.73	0.537 0.537 0.537
	0.62 0.62 0.62	0.5 0.5 0.5 0.5 0.5 0.5	0.00 0.08 0.17 0.25	0 5 10 15	0 300.00 600.00 900.00 1500.00	0:05 0:10 0:15 0:25	08:54:00 08:59:00 09:04:00 09:09:00	0.9125 0.9125 0.9125 0.9125 0.9125 0.9125	0.73 0.73 0.73 0.73 0.73 0.73	0.537 0.537 0.537 0.537
	0.62 0.62 0.62 0.62 0.62	0.5 0.5 0.5 0.5 0.5 0.5	0.00 0.08 0.17 0.25 0.42	0 5 10 15 25	0 300.00 600.00 900.00 1500.00 1800.00	0:05 0:10 0:15 0:25 0:30	08:54:00 08:59:00 09:04:00 09:09:00 09:19:00	0.9125 0.9125 0.9125 0.9125 0.9125 0.9125 0.9125	0.73 0.73 0.73 0.73 0.73 0.73 0.73	0.53 0.53 0.53 0.53 0.53 0.53
	0.62 0.62 0.62 0.62 0.62 0.61	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.00 0.08 0.17 0.25 0.42 0.50	0 5 10 15 25 30	0 300.00 600.00 900.00 1500.00 1800.00 2100.00	0:05 0:10 0:15 0:25 0:30 0:35	08:54:00 08:59:00 09:04:00 09:09:00 09:19:00 09:24:00	0.9125 0.9125 0.9125 0.9125 0.9125 0.9125 0.9125 0.9125	0.73 0.73 0.73 0.73 0.73 0.73 0.73	0.537 0.537 0.537 0.537 0.537 0.537 0.537
	0.62 0.62 0.62 0.62 0.61 0.61 0.61	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.00 0.08 0.17 0.25 0.42 0.50 0.58 3.43	0 5 10 15 25 30 35 206	0 300.00 600.00 900.00 1500.00 1800.00 2100.00 12360.00	0:05 0:10 0:15 0:25 0:30 0:35 3:26	08:54:00 08:59:00 09:04:00 09:09:00 09:19:00 09:24:00 09:29:00 12:20:00	0.9125 0.9125 0.9125 0.9125 0.9125 0.9125 0.9125 0.9125	0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73	0.537 0.537 0.537 0.537 0.537 0.537 0.537
	0.62 0.62 0.62 0.62 0.63 0.61	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.00 0.08 0.17 0.25 0.42 0.50 0.58	0 5 10 15 25 30 35	0 300.00 600.00 900.00 1500.00 1800.00 2100.00 12360.00 25560.00	0:05 0:10 0:15 0:25 0:30 0:35 3:26 7:06	08:54:00 08:59:00 09:04:00 09:09:00 09:19:00 09:24:00 09:29:00 12:20:00 16:00:00	0.9125 0.9125 0.9125 0.9125 0.9125 0.9125 0.9125 0.9125	0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73	0.537 0.537 0.537 0.537 0.537 0.537 0.537

10.2.11 Soakaway Test Location Map

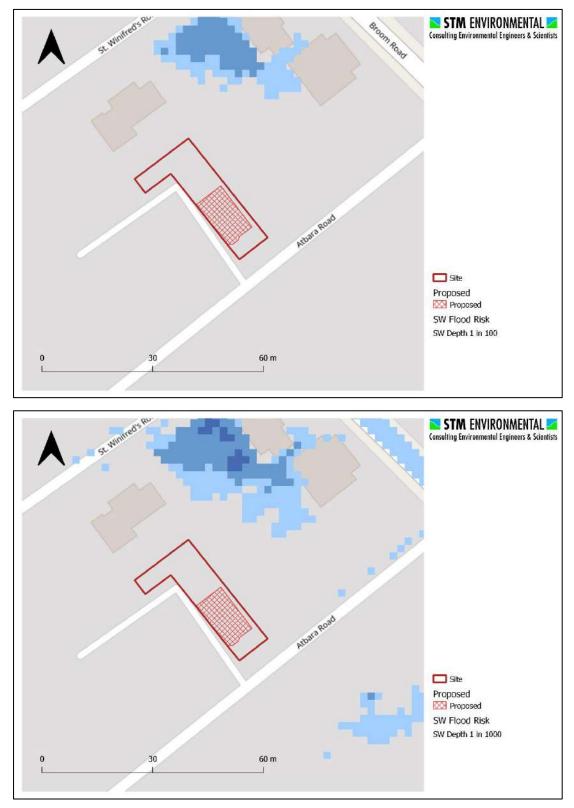


Report Reference: SWDS – 2024 – 000036

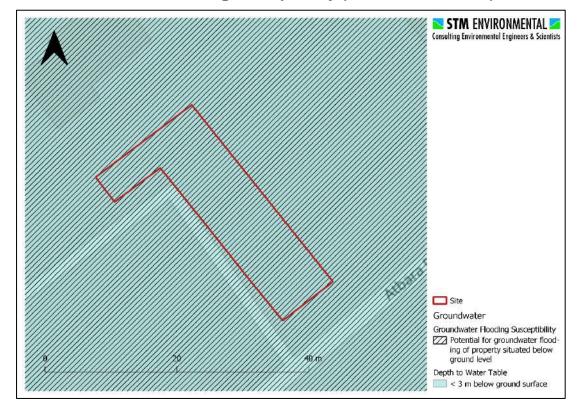

10.3 Appendix 3 – Flood Risk Mapping

10.3.1 Flood Map For Planning (EA)

10.3.2 Long Term Fluvial Flood Risk Map (EA)


10.3.3 Long Term Pluvial Flood Risk Map (EA)

Report Reference: SWDS – 2024 – 000036



10.3.4 Surface water flood depth during the 1 in 100 and 1 in 1000 year rainfall return periods (Source: EA, 2016).

Report Reference: SWDS – 2024 – 000036
 Site Address: 99 Atbara Road, Teddington TW11 9F

10.3.5 Groundwater flooding susceptibility (Source: BGS, 2016).

Report Reference: SWDS – 2024 – 000036

10.4 Appendix 4 – Runoff Rate and Storage Calculations

10.4.1 UK SuDS

PDF to follow this page.

Report Reference: SWDS – 2024 – 000036

Yonas Makoni

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Jul 24 2024 15:44

Site Details

Site name:	TW11 9PA	Latitude:	51.42536° N
Site location:	TW11 9PA	Longitude:	0.31715° W
This is an estimatic criteria in line with	n of the greenfield runoff rates that a Environment Agency guidance "Rainfa	are used to meet normal best practice Reference: Il runoff management for	2775768639

criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis Date:

standards for oubo (bena, 2015). This information of greenheid function rates may be the basis	Data
for setting consents for the drainage of surface water runoff from sites.	Date
To setting consents for the drainage of surface water funor from sites.	

Runoff estimation	approach	IH124			
Site characteristic	cs		Notes		
Total site area (ha): 0.1			(1) Is Q _{BAR} < 2.0 l/s/ha?		
Methodology Q _{BAR} estimation method: SPR estimation method: Calculate from SOIL type			When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.		
Soil characteristic	S Default	Edited	(2) Are flow rates < 5.0 l/s?		
SOIL type:	2	2	Where flow rates are less than 5.0 l/s consent		
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage		
SPR/SPRHOST:	0.3	0.3	from vegetation and other materials is possible. Lower consent flow rates may be set where the		
Hydrological characteristics SAAR (mm):	Default 600	Edited	blockage risk is addressed by using appropriate drainage elements.		
Hydrological region:	6	6	(3) Is SPR/SPRHOST ≤ 0.3?		
Growth curve factor 1 year.	0.85	0.85	Where groundwater levels are low enough the		
Growth curve factor 30 years:	2.3	2.3	use of soakaways to avoid discharge offsite would normally be preferred for disposal of		
Growth curve factor 100 years:	3.19	3.19	surface water runoff.		
Growth curve factor 200 years:	3.74	3.74			

Q _{BAR} (I/s):	0.15	0.15
1 in 1 year (l/s):	0.13	0.13
1 in 30 years (l/s):	0.35	0.35
1 in 100 year (l/s):	0.49	0.49
1 in 200 years (l/s):	0.57	0.57

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

hrwallingford

Surface water storage requirements for sites

Jul 24 2024 15:48

www.uksuds.com | Storage estimation tool

Calculated by:	Yonas Makoni	Site Det	ails
Site name:	TW11 9PA	Latitude:	51.42536° N
Site location:	TW11 9PA	Longitude:	0.31712° W
	n of the storage volume requirement ria in line with Environment Agency gu		3638428206

for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). It is not to be used for detailed design of drainage systems. It is recommended that hydraulic modelling software is used to calculate volume requirements and design details before finalising the design of the drainage scheme.

100

0

10

0

10

66

0.03

0.03

30

SPR:

Methodology 0.0374 IH124 esti **QBAR** estimation 0.0091 Calculate from SPR and SAAR method: 0.0283000000000000002 Calculate from SOIL type SPR estimation method: 0.0283 Soil characteristics Default Edited 2 2 SOIL type: 0.3 0.3

Date:

Hydrological		
characteristics	Default	Edited
Rainfall 100 yrs 6 hrs:		63
Rainfall 100 yrs 12 hrs:		97.79
FEH / FSR conversion factor:	1.27	1.27
SAAR (mm):	600	600
M5-60 Rainfall Depth (mm):	20	20
'r' Ratio M5-60/M5-2 day:	0.4	0.4
Hydological region:	6	6
Growth curve factor 1 year:	0.85	0.85
Growth curve factor 10 year:	1.62	1.62
Growth curve factor 30 year.	2.3	2.3

Growth curve factor 30 year.

Design criteria

Total site area (ha):

Significant public open space (ha):

Area positively drained (ha):

Impermeable area (ha):

Percentage of drained area that is impermeable (%):

Impervious area drained via infiltration (ha):

Return period for infiltration system design (year):

Impervious area drained to rainwater harvesting (ha):

Return period for rainwater harvesting system (year):

Compliance factor for rainwater harvesting system (%):

Net site area for storage volume design (ha):

Net impermable area for storage volume design (ha):

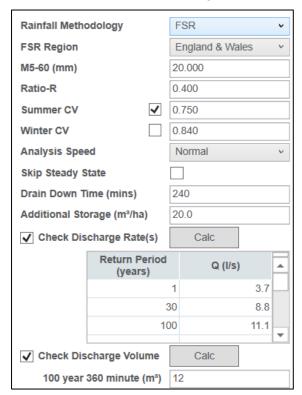
Pervious area contribution to runoff (%):

* where rainwater harvesting or infiltration has been used for managing surface water runoff such that the effective impermeable area is less than 50% of the 'area positively drained', the 'net site area' and the estimates of QBAR and other flow rates will have been reduced accordingly.

Climate change allowance factor:	1.4		Growth curve factor 100 years:	3.19	3.19
Urban creep allowance factor:	1.1		Q _{BAR} for total site area (l/s):	0.06	0.06
Volume control approach	Use long te	rm storage	Q _{BAR} for net site area (l/s):	0.04	0.04
Interception rainfall depth (mm):	5				
Minimum flow rate (l/s):	2				

Site discharge rates	Default	Edited	Estimated storage volumes	Default	Edited
1 in 1 year (l/s):	2	2	Attenuation storage 1/100 years (m³):	7	7
1 in 30 years (l/s):	2	2	Long term storage 1/100 years (m³):	0	0
1 in 100 year (l/s):	2	2	Total storage 1/100 years (m³):	7	7

This report was produced using the storage estimation tool developed by HRWallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at http://uksuds.com/terms-and-conditions.htm. The outputs from this tool have been used to estimate storage volume requirements. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of these data in the design or operational characteristics of any drainage scheme.


10.4.2 IH24 Method

	1				
Item	Value		Greenfield Run-off Rate -1 in 100 + CC (I/s)	0.2691	
			Total Post Development Run-off Rate - 1 in 100 + CC		
Climate Change Allowance Factor	1.40		(l/s)	0.7656	
			Difference between Greenfield and Post Development Run Off Rates		
SAAR(mm) - Current	600.00		- 1 in 100 + CC (Vs) Volume of Storage Required to meet Greenfield Discharge - Difference between Post Development and	0.4965	
SAAR (mm) + CC	840.00		Greenfield 1 in 100 + CC volumes (m3) Difference between 3 *	10.7248	
SPR (Greenfield)	0.30		Greenfield and Post Development 1 in 100 + CC Run Off Rates	-0.0417	
SPR (Impermeable)	0.53		Volume of Storage Required to meet 3 * Greenfield Discharge - Difference between Proposed Development and 3 * Greenfield 1 in 100 +CC (m3)	-0.9015	
Site Area (ha) Impermable Area (Pre Development - ha)	0.0374 0.02520				
				Pre - Development	
Permeanble Area (Pre Development - ha))	0.0122000		Greenfield (I/s)	(l/s)	Post Development (I/s)
Impermable Area (Post Development - ha)	0.0283000	Qbar 1 in 1	0.06	0.15	0.16
Permeanble Area (Post Development - ha) GCF (1 in 1)	0.0091000	1 in 30	0.05	0.35	0.14 0.37
GCF (1 in 30)	2.30	1 in 100	0.18	0.48	0.52
GCF (1 in 100) Hyrdological Region	3.19	1 in 100 + CC	0.27	0.71	0.77
Soil Type	2				
Rainfall 100 Yrs 6 hours mm	63			3 times	Volume (6 hr) - Standard
GREENFIELD RUN-OFF	QBAR50	Run-Off Rate I/s	l/s/ha (QBarA)	greenfield (l/s)	(m3)
Qba	76.0847	0.0569	1.5217		
1 in 1 1 in 30		0.0484	1.2934 3.4999	0.1451 0.3927	1.0449 2.8274
1 in 100		0.1309	4.8542	0.3927	3.9214
GREENFIELD RUN-OFF + CC		0.0844	2.2558	0.2531	1.8223
Qbar Impermeable 1 in 1 +CC		0.0844 0.0717	2.2558	0.2531 0.2151	1.8223
1 in 30 + CC	:	0.1940	5.1883	0.5821	4.1913
1 in 100 + CC PRE -DEVELOPMENT RUN-OFF (i.e. same		0.2691 Impermeable Surface Run-Off (//	7.1959	0.8074	5.8132 Volume (6 hr)
Impermeable Surface Calculation					
Qbar Impermeable		0.1318	5.2318 4.4470	0.3955	2.8478 2.4206
1 in 1 1 in 30		0.3032	12.0332	0.3362	6.5499
1 in 100)	0.4206	16.6895	1.2617	9.0844
Permeable Surface Calculation Qbar Permeable	76.0847	Permeable Surface Run-off (I/s) 0.0186	2.0401	0.0557	
1 in 1		0.0158	1.7341	0.0473	0.3408
1 in 30		0.0427	4.6922	0.1281	0.9223
	Impermeable Su	face Calculation + Permeable Su	rface Calculation		
Qbar 1 in 1		0.1504	7.2719 6.1811	0.4512	2.8478 2.7615
1 in 30		0.3459	16.7253	1.0378	7.4722
1 in 100 PRE DEVELOPMENT RUN-OFF + CC (incre		0.4798	23.1973	1.4394	10.3636
Impermeable Surface Calculation		Impermeable Surface Run-Off (I/	s)		
Qbar Impermeable		0.1954	6.9062		4.2216
1 in 1 +CC 1 in 30 + CC		0.1661	5.8702 15.8842		3.5884 9.7097
1 in 100 + CC		0.6235	22.0306		13.4669
Permeable Surface Calculation Qbar Permeable	112.7891	Permeable Surface Run-off (I/s) 0.0275	3.0242	0.0826	
1 in 1 +CC	5	0.0234	2.5706	0.0702	0.5053
1 in 30 + CC 1 in 100 + CC		0.0633	6.9557 9.6473	0.1899	1.3672 1.8963
	Impermeable Su	face Calculation + Permeable Su	rface Calculation		
Qbar 1 in 1 +CC	500.5754	0.2230	9.9304 8.4408	0.0826	4.2216 4.0936
1 in 30 + CC	:	0.5128	22.8399	0.1899	11.0769
1 in 100 + CC POST DEVELOPMENT RUN-OFF (i.e. same	rainfall)	0.7113 Impermeable Surface Run-Off (//	31.6780	0.2634	15.3632 Volume (6 hr)
Impermeable Surface Calculation					
Qbar Impermeable	261.5909	0.1481 0.1259	5.2318 4.4470	0.4442	
1 in 1 1 in 30)	0.1259 0.3405	4.4470 12.0332	0.3776	2.7184 7.3556
1 in 100		0.4723	16.6895	1.4169	10.2020
Permeable Surface Calculation Qbar Permeable	76.0847	Permeable Surface Run-off (I/s) 0.0138	1.5217	0.0415	
1 in 1		0.0118	1.2934	0.0353	0.2542
1 in 30 1 in 100		0.0318	3.4999 4.8542	0.0955	0.6879 0.9541
		Impermeable Surface Calculation	n + Permeable Surface Calcul	ation	
Qbar Permeable 1 in 1		0.1619	6.7535 5.7405	0.4857	2.9726
1 in 30	0.0000	0.3724	15.5331	1.1172	8.0436
1 in 100	0.0000	0.5165	21.5437	1.5495	11.1561
POST DEVELOPMENT RUN-OFF + CC (inc	reased rainfall)	Impermeable Surface Run-Off (I/	s)		
Impermeable Surface Calculation Qbar Impermeable	387.7863	0.2195	7.7557		4.7409
1 in 1 +CC	:	0.1866	6.5924		4.0298
1 in 30 + CC		0.5048	17.8382		10.9041
1 in 100 + CC Permeable Surface Calculation		0.7002 Permeable Surface Run-off (I/s)	24.7408		15.1235
Qbar Permeable	112.7891	0.0205	2.2558	0.0616	
1 in 1 +CC 1 in 30 + CC		0.0174	1.9174 5.1883	0.0523	0.3769
1 in 100 + CC	;	0.0655	7.1959	0.1964	
Qba		rface Calculation + Permeable Su 0.2400		0.0616	4,7409
1 in 1 +CC	:	0.2040	8.5098	0.0523	4.4067
1 in 30 + CC		0.5520	23.0265	0.1416	11.9239 16.5380
1 in 100 + CC		0.7656	31.9367		

Report Reference: SWDS – 2024 – 000036

10.4.3 MRM - Pre - Development

10.4.4 MRM - Post - Development

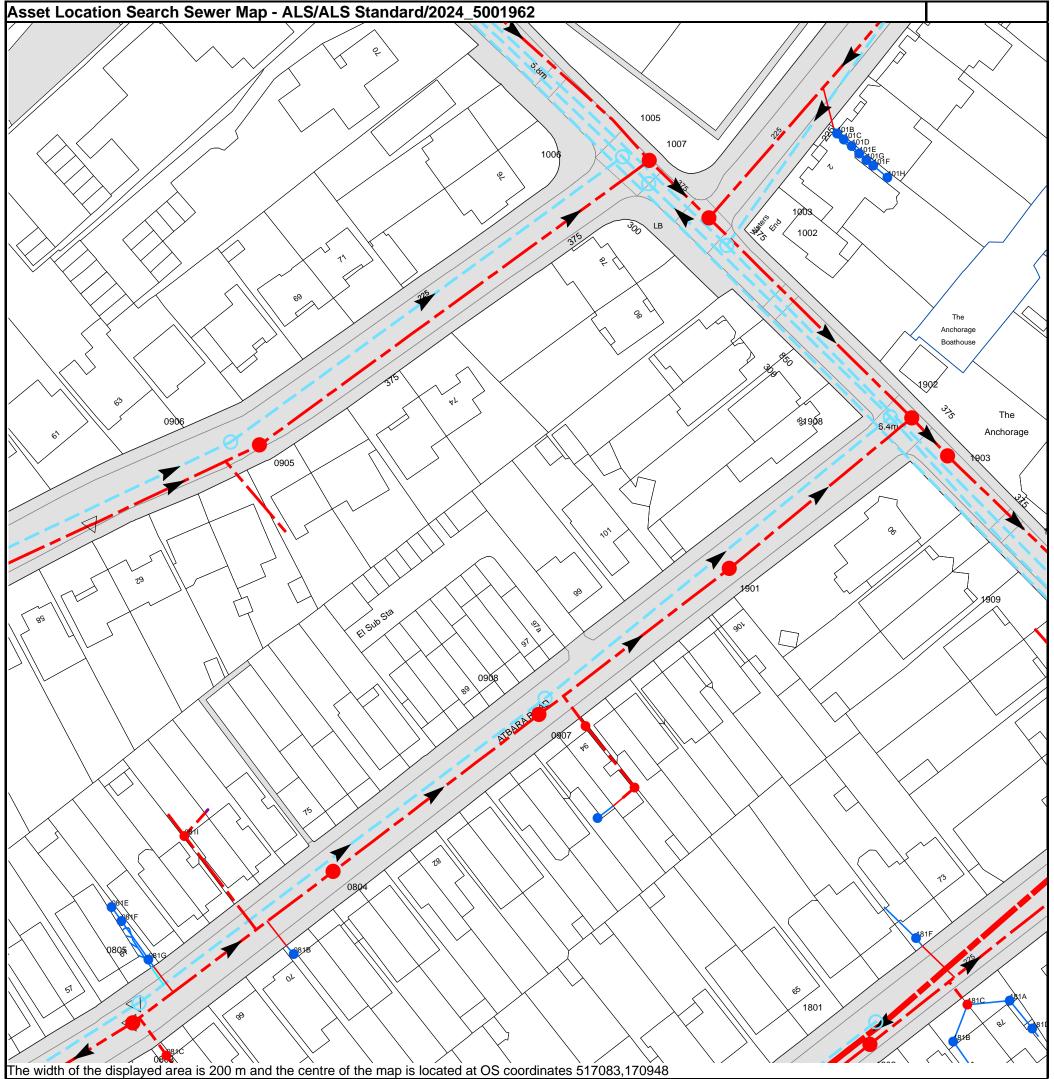
Rainfall Metho	odology	F	SR	~
FSR Region		E	England & Wa	iles v
M5-60 (mm)		20	0.000	
Ratio-R		0.400		
Summer CV	\checkmark	0.	750	
Winter CV		0.	.840	
Analysis Speed		Ν	lormal	Ŷ
Skip Steady State]	
Drain Down Time (mins)		240		
Additional Storage (m ³ /ha)		20	0.0	
✓ Check Discharge Rate(s)			Calc	
	Return Period (years)		Q (I/s)	^
		1		4.2
	:	30		9.8
	1	00		12.4
Check Dis	charge Volume		Calc	
100 year	360 minute (m³)	1;	3	

10.4.5 Causeway Flow Calculations – With Permeable Paving

Storage Estimate			
Return Period (years)	100		OK
Climate Change (%)	40]	Cancel
Impermeable Area (ha)	0.028	Update	
Peak Discharge (l/s)	1.000		
Infiltration Coefficient (m/hr) (leave blank if no infiltration)	0.00500	Calc	
Required Storage (m ³)	Calc		
from	8		
to	12]	
With infiltration (m ³)			
from	8		
to	12		

10.4.6 Causeway Flow Storage Calculations – Without Permeable Paving

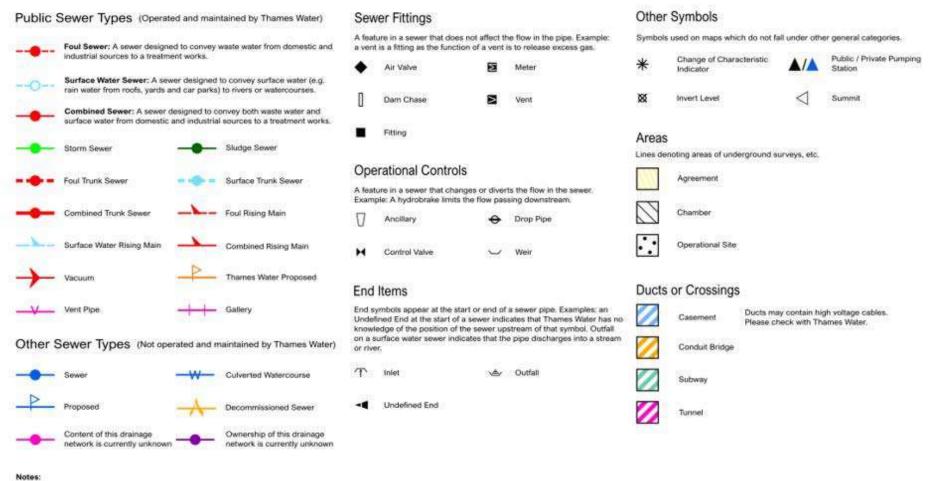
Storage Estimate			
Return Period (years)	100		OK
Climate Change (%)	40		Cancel
Impermeable Area (ha)	0.021	Update	
Peak Discharge (I/s)	1.000		
Infiltration Coefficient (m/hr) (leave blank if no infiltration)	0.00500	Calc	
Required Storage (m ³)	Calc		
from	5		
to	8		
With infiltration (m ³)			
from	5		
to	8		


46

10.5 Appendix 5 – Drainage

10.5.1 Drainage Asset Search PDF to follow this page.

Report Reference: SWDS – 2024 – 000036


The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Manhole Reference	Manhole Cover Level	Manhole Invert Level
1006	n/a	n/a
1007	n/a	n/a
1005	n/a	n/a
1003	n/a	n/a
1002	n/a	n/a
1901	n/a	n/a
101B	n/a	n/a
101C	n/a	n/a
101D	n/a	n/a
101E	n/a	n/a
101G	n/a	n/a
101F	n/a	n/a
101H	n/a	n/a
1908	n/a	n/a
1902	n/a	n/a
1903	n/a	n/a
191A	n/a	n/a
081E	n/a	n/a
081F	n/a	n/a
0803	n/a	n/a
0805	n/a	n/a
081G	n/a	n/a
0811	n/a	n/a
0906	n/a	n/a
0905	n/a	n/a
081B	n/a	n/a
0804	n/a	n/a
0907	n/a	n/a
0908	n/a	n/a
09ZX	n/a	n/a
08ZT	n/a	n/a
18ZY	n/a	n/a
1803	n/a	n/a
1801	n/a	n/a
181F	n/a	n/a
181B	n/a	n/a
181C	n/a	n/a
181A	n/a	n/a
181D	n/a	n/a
081C	n/a	n/a
		d the accuracy cannot be guaranteed. Service pipes are no y Thames Water for any error or omission. The actual positic

Asset Location Search - Sewer Key

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plan are metric.

3) Arrows (on gravity fed servers) or flecks (on rising mains) indicate the direction of flow.

4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in millimeters. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

10.5.2 Thames Water Drainage Enquiry (2016)

PDF to follow this page.

Report Reference: SWDS – 2024 – 000036

Residential

The Law Society's CON29DW Drainage & Water Enquiry

PALI 27 Woodstock Road Croydon CR0 8YD

99, Atbara Road, Teddington, TW11 9PA
5989
DWS/DWS Standard/2016_3333104
20 May 2016
20 May 2016

Important information – changes effective from 9 May ... The content of the Law Society's CON29DW is being updated to reflect changes to legislation impacting the water industry. In summary, from 9th May the key changes to both the CON29DW and CommercialDW enquiries will be as follows:

1.Inclusion of details on private pumping stations (Q. 2.4.1 and 2.5.1)
 2.Impact of sustainable drainage systems (SUDs) on newly adopted sewerage networks (Q. 2.2)
 3.Removal of water quality information as this is not property specific; however this information will still be available on individual water companies' web sites (was Q. 3.5)
 4.Provision of water hardness information (will become the new Q. 3.5)
 For further information please visit www.thameswater-propertysearches.co.uk

X

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

I)

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

CON29DW DRAINAGE AND WATER ENQUIRY

Residential CON29DW Drainage & Water Enquiry

Property Searches Thames Water

Man

Summary Answer

Maps		Stattered y Amond
1.1	Where relevant places in the	
1.2	Where relevant, please include a copy of an extract from the public sewer map.	Map Provided
	entroit relevant, please include a copy of an extract from the map of waterworks.	Map Provided
Draina 2.1	ge	
	Does foul water from the property drain to a public sewer?	Connected
2.2	Does surface water from the property drain to a public sewer?	Connected
2.3	Is a surface water drainage charge payable?	Charge Payable
2.4	Does the public sewer map indicate any public sewer, disposal main or lateral drain within the boundaries of the property?	No
2.4.1	Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the boundaries of the property?	No
2.5	Does the public sewer map indicate any public sewer within 30.48 metres (100 feet) of any buildings within the property?	Yes
2.5.1	Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the 50metres of any buildings within the property?	No
2.6	Are any sewers or lateral drains serving, or which are proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?	No
2.7	Has a sewerage undertaker approved or been consulted about any plans to erect a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain?	No
2.8	Is the building which is or forms part of the property, at risk of internal flooding due to overloaded public sewers?	Not At Risk
2.9	Please state the distance from the property to the nearest boundary of the nearest sewage treatment works.	3.54 Kilometres
Water		
3.1	Is the property connected to mains water supply?	Connected
3.2	Are there any water mains, resource mains or discharge pipes within the boundaries of the property?	No
3.3	Is any water main or service pipe serving or which is proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?	No
3.4	Is the property at risk of receiving low water pressure or flow?	No
	What is the classification of the water supply for the property?	Hard
3.5	Please include details of the location of any water meter serving the property.	No Meter
3.6	Picase include detail	
Charg	Who are the sewerage undertakers for the area?	Thames Water
4.1.1	Who are the sewerage under an area?	Thames Water
4.1.2	Who are the water undertakers for the area?	Thames Water
	Who bills the property for sewerage services?	77
4.2	Vito ono div P	Thames Water
4.2 4.3	the water services?	Thames Water
	Who bills the property for water services? What is the current basis for charging for sewerage and/or water services at the property? Will the basis for charging for sewerage and water services at the property Will the basis for charging for sewerage of occupation?	See Details

Thames Water Utilities Ltd. Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Page 2 of 27

Residential CON29DW Drainage & Water Enquiry

Search address supplied: 99, Atbara Road, Teddington, TW11 9PA

Any new owner or occupier will need to contact Thames Water on 0800 316 9800 or log onto our website water there and drainage website www.thameswater.co.uk and complete our online form to change the water and drainage

The following records were searched in compiling this report: - the Map of Public Sewers, the Map of Waterworks, W Waterworks, Water and Sewer billing records, Adoption of Public Sewer records, Building Over Public Sewer records, the Register of Properties subject to Internal Foul Flooding, the Register of Properties Subject to Poor Water Pressure and the Drinking Water Register. Thames Water Utilities Ltd (TWUL), Clearwater Court, Vastern Road, Reading RG1 8DB, holds all of these.

TWUL, trading as Property Searches, are responsible in respect of the following:-

(i) any negligent or incorrect entry in the records searched;

(ii) any negligent or incorrect interpretation of the records searched;

(iii) and any negligent or incorrect recording of that interpretation in the search report

(iv) compensation payments

Please refer to the attached Terms & Conditions.

Thames Water Property Searches is an Executive member of CoPSO (Council of Property Search Organisations).

Residential CON29DW Drainage & Water Enquiry

Interpretation of CON29DW Drainage and Water Search

Appendix 1 contains definitions of terms and expressions used in this report.

For your guidance:

- Thames Water Property Searches Complaints Procedure:
 - o Thames Water Property Searches offers a robust complaints procedure. Complaints can be made by telephone, in writing, by email (searches@thameswater.co.uk) or through our website (www.thameswater-propertysearches.co.uk)

As a minimum standard Thames Water Property Searches will:

- o endeavour to resolve any contact or complaint at the time of receipt. If this isn't possible, we will advise of timescales;
- o investigate and research the matter in detail to identify the issue raised (in some cases third party consultation will be required);
- o provide a response to the customer within 10 working days of receipt of the complaint;
- o provide compensation, if no response or acknowledgment that we are investigating the case is given within 10 working days of receipt of the complaint;
- o keep you informed of the progress and, depending on the scale of investigation required, update with new timescales as necessary;
- o provide an amended search, free of charge, if required;
- o provide a refund if we find your complaint to be justified; take the necessary action within our power to put things right.

If you want us to liaise with a third party on your behalf, just let us know.

If you are still not satisfied with the outcome provided we will refer the matter to a Senior Manager for resolution who will respond again within 5 working days.

If you remain dissatisfied with our final response you may refer your complaint for consideration under The Property Ombudsman scheme (TPOs). Please refer to the final page of the search for further details.

Residential CON29DW Drainage & Water Enquiry

Maps

1.1 – Where relevant, please include a copy of an extract from the public sewer map.

A copy of an extract of the public sewer map is included, showing the public sewers, disposal mains and lateral drains in the vicinity of the property.

For your guidance:

- The Water Industry Act 1991 defines Public Sewers as those which Thames Water have responsibility for. Other assets and rivers, watercourses, ponds, culverts or highway drains may be shown for information purposes only.
- The company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains.
 If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.
- Assets other than public sewers may be shown on the copy extract, for information.

1.2 - Where relevant, please include a copy of an extract from the map of waterworks.

A copy of an extract of the map of waterworks is included, showing water mains, resource mains or discharge pipes in the vicinity of the property.

For your guidance:

- The "water mains" in this context are those, which are vested in and maintainable by the water company under statute.
- · Assets other than public water mains may be shown on the plan, for information only.
- Water companies are not responsible for private supply pipes connecting the property to the public water main and do not hold details of these. These may pass through land outside of the control of the seller, or may be shared with adjacent properties. The buyer may wish to investigate whether separate rights or easements are needed for their inspection, repair or renewal.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL 1 4WW, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk 1 www.thameswater-propertysearches.co.uk

Residential CON29DW Drainage & Water Enquiry

Drainage

2.1 - Does foul water from the property drain to a public sewer?

Records indicate that foul water from the property drains to a public sewer.

For your guidance:

- Water companies are not responsible for any private drains that connect the property to the public sewerage system and do not hold details of these. The property owner will normally have sole responsibility for private drains serving the property. These may pass through land outside the control of the seller and the buyer may wish to investigate whether separate rights or easements are needed for their inspection, repair or renewal.
- If foul water does not drain to the public sewerage system, the property may have private facilities in the form of a cesspit, septic tank or other type of treatment plant.
- An extract from the public sewer map is enclosed. This will show known public sewers in the vicinity
 of the property and it should be possible to estimate the likely length and route of any private drains
 and/or sewers connecting the property to the public sewerage system.

2.2 - Does surface water from the property drain to a public sewer?

Records indicate that surface water from the property drains to a public sewer.

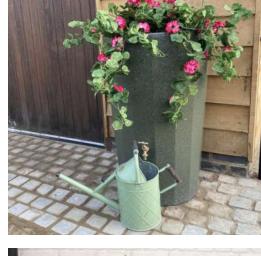
For your guidance:

- Sewerage Undertakers are not responsible for any private drains that connect the property to the
 public sewerage system, and do not hold details of these.
- The property owner will normally have sole responsibility for private drains serving the property. These private drains may pass through land outside of the control of the seller and the buyer may wish to investigate whether separate rights or easements are needed for their inspection, repair or renewal.
- In some cases, 'Sewerage Undertakers' records do not distinguish between foul and surface water connections to the public sewerage system.
- At the time of privatisation in 1989, Sewerage Undertakers were sold with poorly-kept records of sewerage infrastructure. The records did not always show which properties were connected for surface water drainage purposes. Accordingly, billing records have been used to provide an answer for this element of the drainage and water search.
- Due to the potential inadequacy of 'Sewerage Undertakers' infrastructure records with respect to surface water drainage, it is the customer's responsibility to inform the Sewerage Undertaker that they do not receive the surface water drainage service. If on inspection, the buyer finds that surface water from the property does not drain to a public sewer, then the property may be eligible for a rebate of the surface water drainage charge. For further information, please contact Thames Water on Tel: 0800 316 9800, or refer to the website at <u>www.thameswater.co.uk</u>.
- If surface water from the property does not drain to the public sewerage system, the property may
 have private facilities in the form of a soakaway or private connection to a watercourse.
- An extract from the public sewer map is enclosed. This will show known public sewers in the vicinity
 of the property and it should be possible to estimate the likely length and route of any private drains
 and/or sewers connecting the property to the public sewerage system.

Thames Water Utilities Ltd. Property Searches, PO Box 3169, Slough SL1 4WW, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk 1 www.thameswater.propertysearches.co.uk

10.6 Appendix 6 – SuDS Suitability Assessment

SuDS Technique	Typical Uses	Potential Issues	Potential Suitability	
Rainwater harvesting	Capture of rainwater into a tank(s) for use (usually non-potable) such as irrigation, toilet flushing, vehicle or plant cleansing.	Care is needed to prevent the development of bacteria, algae and insect infestation.	Suitable – Rainwater Butt	
Infiltration: Soakaways Infiltrations trenches and basins	Infiltration components are used to capture surface water runoff and allow it to infiltrate (soak) and filter through to the subsoil layer, into the groundwater.	Limited Space away from Foundations; Contamination; Could increase flood risk. Maintenance	Suitable – Partially	
Green/brown /blue roofs	Used on flat or shallow pitched roofs to provide a durable roof covering which also provides thermal insulation, amenity space, biodiversity habitat as well as attenuation of rainwater.	Maintenance - Ensuring safe access	Suitable – Partially	
Raingardens	Creation of planted landscaped areas to allow the diversion of a portion of rainwater from either downpipes or surrounding paved surfaces. Raingardens can either allow infiltration into the ground or have tanked systems for water retention.	Space Required; Require maintenance;	Suitable - Partially	
Permeable pavements / surfaces	Permeable hard surfaces that allow rainwater to pass through either into the ground or to tanked systems. Good as interception storage.	Potential impact of saturation on pavement stability to be considered. May require extensive use of impermeable membranes and under- drainage. Maintenance required.	Suitable – Partial infiltration – Connection to other SuDS features/discharge point;	
Swales	Dry ditches used as landscape features to allow the storage and infiltration of rainwater. Often used as linear features alongside roads, footpaths or rail lines but capable of being integrated into the design of many open spaces.	Finding available space in proposed site layout	Unsuitable - Space	
Detention basin/ponds	Landscape features designed to store and in some cases infiltrate rainwater. Detentions basins are usually dry, whereas a pond should retain water. These features need areas of open space but can often be combined with other sustainable drainage techniques.	Potential health and safety issues. Finding available space in proposed site layout	Unsuitable - Space	
Storage tanks/ Geocellular storage	Usually below ground level, they attenuate rainwater for later slow release back into the drainage system.	Pumping may sometimes be required to empty the tank into the drainage system	Suitable	
Oversized piping	Using larger than necessary pipework creates additional space to store rainwater.	Lacks the wider benefits of the green infrastructure-based techniques	Suitable	


10.7 Appendix 7 – Details of Proposed Of SuDS

10.7.1 Rainwater Butt

PDF to follow this page.

Report Reference: SWDS – 2024 – 000036

Ecosure Etills Ltd Unit 1, Whiting Way Melbourn, Royston SG8 6NA

Phone: 01763 261781 Email: sales@ecosure.co.uk Website: www.ecosure.co.uk

PILLAR WATER BUTTS INSTALLATION GUIDE

ECESURE

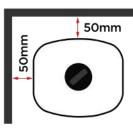
THANK YOU

Thank you for purchasing the Ecosure Pillar Water Butt. We hope that you are happy with your purchase.

Although your water butt has been tested in accordance with our quality control procedures, please check it thoroughly to ensure that no damage has occurred in transit and report any damage within 48 hours of delivery.

PLEASE NOTE

The hole at the front of the 525 litre mini pillar water butt is part of the manufacturing process and is not intended to be used as an inlet or outlet. It is covered when the lid is in place.



PILLAR WATER BUTT INSTALLATION GUIDE

a. The water butt must be sited on a flat, level paved or concrete base.

b. Please leave at least a 50mm gap all around the water butt. This will allow for the natural expansion of the water butt when full of water. In particular, be sure to leave at least 50mm between the centre of the back of the water butt and any wall it is sited against.

c. Choose which threaded outlet you wish to use and drill out the plastic behind the brass insert using a hole-saw or a spade bit.Be careful not to damage the outlet itself.

d. When fixing a tap or a hose connector to a threaded outlet, use PTFE tape and do not overtighten. If the tap points in the wrong direction after tightening, more tape is required. We recommend about 5 full turns of PTFE tape as a good starting point.

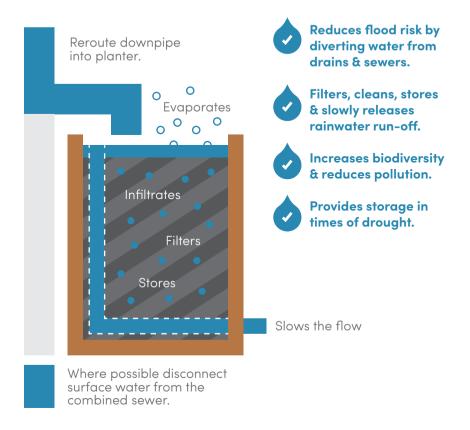
e. Rainwater diverters can be installed approximately 40mm below the top of the water butt and away from edges and corners. Please remember to keep the connecting hose running from the water butt to the down-pipe level, to act as an overflow.

IMPORTANT SAFETY INSTRUCTIONS

- When fixing your tap or valve to the brass moulded outlets, use 4 or 5 layers of PTFE tape and **DO NOT OVERTIGHTEN**. Hand tighten only; do not use a spanner or wrench.
- When using any power tools, be aware of others around you and wear suitable PPE.

10.7.2 SuDS Planters PDF to follow this page.

Report Reference: SWDS – 2024 – 000036


Meet the SuDSPlanter

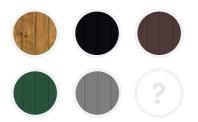
SuDSPlanter is a uniquely designed rain garden which captures rainwater runoff from roofs, rather than leaving it to flow into the drains and sewers, potentially overloading the system. It's a cleaner, greener more sustainable way to guard against today's increasing risk of flooding and contamination.

The SuDSPlanter provides water storage in dry or drought conditions, as well as storm storage designed to cope in wet environments. This makes the planter ideal for our changing weather patterns, combatting the increasing flood risk and water scarcity which we face.

How it works

The SuDSPlanter is designed to capture rainwater run-off from roofs by rerouting the downpipe into the planter instead of directly into the drains. The planter is made up of a series of layers, acting as both a sponge and a natural filter, attenuating flow and removing sediment and bird poo as the water soaks through to the reservoir below.

Our specially designed growing media provides the perfect environment for plants to thrive; nutrient and water retention, filtration and soil volume to sustain plant growth in both wet and dry conditions.


Recycled lumber

These are manufactured using a plastic coated metal frame with recycled plastic lumber infills. All materials are 100% recycled or recyclable.

Sizes

1200mm x 600mm x 950mm1600mm x 600mm x 950mm2000mm x 600mm x 950mm

Colours

Bespoke colours available on request.

100% recycled materials.

No treatment required prior to use.

Minimum 15 year life expectancy.

Fully recyclable at the end of its use.

Graffiti resistant.

Installation

For DIY installations, we provide an instruction manual with your planter, which has handy maintenance tips too. If you would like us to install your SuDSPlanter for you, simply ask us when you place your order

Solid timber

Our timber planters are made from the finest water resistant softwoods naturally impregnated with natural oils to reduce the need for tanalith.

Sizes

1200mm x 600mm x 950mm 1600mm x 600mm x 950mm

Colours

Bespoke colours available on request.

UK sourced, FSC accredited wood.

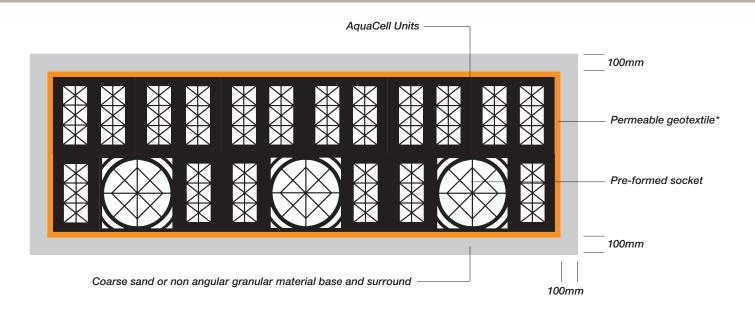
No treatment required prior to use.

Minimum 15 year life expectancy.

Fully recyclable at the end of its use.

Planting

Your SuDSPlanter is a great way to increase biodiversity, as it works best with as wide a variety of plants as possible. For the best results, choose from our list of suitable plants, or we can supply you with a selection of young plants for establishing: simply ask when you place your order.



10.7.3 Geocellular Storage PDF to follow this page.

Report Reference: SWDS – 2024 – 000036

Guidance Note 1 – Typical Soakaway Installation Method

Example shows the use of AquaCell Eco. However, a soakaway can also be installed as shown using either of the other versions of AquaCell units (Prime, Core or Plus) as appropriate.

* The geotextile should be selected according to specific site conditions. Typically, however, a 300g non-woven material will be suitable. Specialist advice should be sought if surrounding soil characteristics exhibit a high degree of fines/low infiltration capacity and/or there is a high risk of damage from ground contaminants.

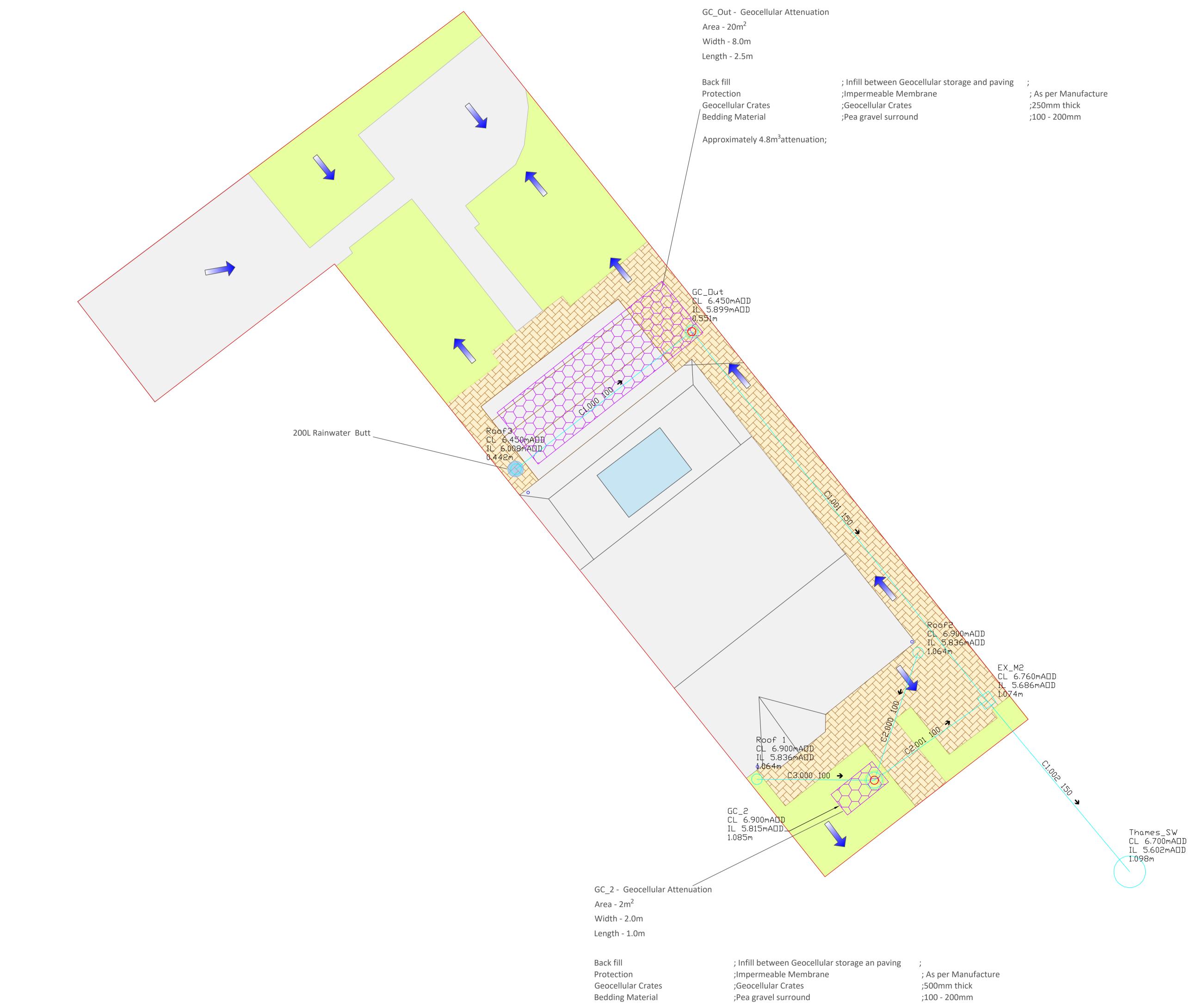
Typical Installation Procedure

- 1. Excavate the trench to the required depth ensuring that the plan area is slightly greater than that of the AquaCell units.
- 2. Lay 100mm bed of coarse sand or non angular granular material, level and compact.
- 3. Lay the geotextile* over the base and up the sides of the trench.
- 4. Lay the AquaCell units parallel with each other. In multiple layer applications, wherever possible, continuous vertical joints should be avoided. AquaCell units can be laid in a 'brick bonded' formation (i.e. to overlap the joints below). For single layer applications use the AquaCell Clips and for multi layers use the AquaCell Clips and the AquaCell Shear Connectors (vertical rods).
- 5. Fix the Adaptors to the AquaCell units as required and connect pipework.
- 6. In order to prevent silt from entering the tank, clogging inlet pipework and reducing storage capacity, it is recommended that the Domestic Silt Trap (6LB300) or the standard Silt Trap (6LB600) is installed prior to the inlet pipework.
- 7. Wrap and overlap the geotextile covering the entire AquaCell structure.
- 8. Lay 100mm of coarse sand or non angular granular material between the trench walls and the AquaCell structure and compact.
- 9. Lay 100mm of coarse sand or non angular granular material over the geotextile and compact.
- 10. Backfill with suitable material.
- 11. Rainwater from roof areas may discharge directly into the soakaway but rainwater from carparks must discharge through a catchpit manhole and/or a petrol interceptor.

Orders 0844 856 5152 Technical Advice 0844 856 5165

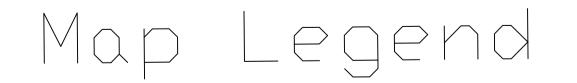
Email technical.design@wavin.co.uk

Website aquacell.wavin.co.uk



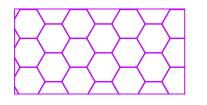
10.8 Appendix 7 - Drainage Modelling

10.8.1 Drainage Layout PDF to follow this page.


Report Reference: SWDS – 2024 – 000036

Approximately 1.0m³attenuation;

Project Site	:SWDS - 2024 - 000036 :99 Atbara Road, :Teddington :TW11 9PA
Company	:STM Environmental
Client	:Jamie and Beverley McDaid
Issue	:No.1.0
By	:Georgia Travers


- MH4 88.700(mADD) 87.400(mADD) 1.300(m)
 - Surface Water Manhole
- \bigcirc

0

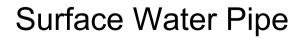
- Surface Water Inspection Manhole
- Flow Control Chamber

Rainwater Butt

- - - Rainwater Down Pipe



Geocellular Storage


Hardstanding (Impermeable Catchment)

Soft Landscaping

Permeable Paving

#1.008 150ø → 0.120m

Perforated Pipe

Slot Drainage Channel

Overflow Flow Route

10.8.2 Drainage Results PDF to follow this page.

CAUSEWAY	3		nental Consi	N G			I Page 1	-
			D	Design Set	<u>ttings</u>			
M5-60	years) 1 w (%) 0 egion E (mm) 2 atio-R 0 CV 0	England a 20.000	and Wales	Maxir	M Minim P Inclu	e of Concentra aximum Rainfa Minimum Vel Conne num Backdrop referred Cover ude Intermedia best practice d	III (mm/hr) 5 ocity (m/s) 1 ection Type Le Height (m) 0 Depth (m) 1 ite Ground \checkmark	
			<u>Adopt</u>	able Mar	<u>nhole Typ</u>	<u>e</u>		
Ma	ax Width	(mm) I 374 499	1	1200 1350	Max Wid	th (mm) Dia 749 900	meter (mm) 1500 1800	
			>9(00 Link+9	00 mm			
r	Max Dept	:h (m) I	Diameter (n	nm) 1050	Max Dep	th (m) Diam 99.999	eter (mm) 1200	
		1.500	1					
		1.500		rcular Lin	<u>k Type</u>			
		1.500 Shape Barrels	<u>Cir</u> Circular	rcular Lin	Increme	nt (mm) 75 Ground x		
		Shape	<u>Cir</u> Circular 5 1 Availal	rcular Lin Auto ble Diamo	Increme	Ground x		
		Shape	<u>Cir</u> Circular 5 1 Availal	rcular Lin Auto ble Diamo	Follow Follow eters (mm 150	Ground x		
Name		Shape	<u>Cir</u> cular 5 1 Availal Cover D Level	Auto Auto ble Diamo 100	Follow Follow eters (mm 150	Ground x	Northing (m)	Depth (m)
	Area	Shape Barrels T of E	<u>Cir</u> cular 5 1 Availal	rcular Lin Auto ble Diame 100 <u>Node</u> Diameter	eters (mr 150 Width	Ground x 1) Easting	-	-
Name	Area (ha)	Shape Barrels T of E (mins)	Circular 5 1 Availal Cover D Level (m)	rcular Lin Auto ble Diamo 100 <u>Node</u> Diameter (mm)	eters (mr 150 Width	Ground x n) Easting (m)	(m)	(m)
Name Roof3	Area (ha)	Shape Barrels T of E (mins)	Circular 5 1 Availal Cover D Level (m) 6.450	rcular Lin Auto ble Diamo 100 <u>Node</u> Diameter (mm) 400	eters (mm 150 S Width (mm)	Ground x h) Easting (m) 517081.188	(m) 170946.540	(m) 0.692
Name Roof3 EX_M2 Thames_SW GC_Out	Area (ha)	Shape Barrels T of E (mins)	Circular 5 1 Availal Cover D Level (m) 6.450 6.700 6.450	rcular Lin Auto ble Diame 100 <u>Node</u> Diameter (mm) 400 500 1200 450	eters (mm 150 S Width (mm)	Ground x h) Easting (m) 517081.188 517099.372 517104.795 517088.279	(m) 170946.540 170937.337 170930.827 170951.651	(m) 0.692 1.074 1.098 0.801
Name Roof3 EX_M2 Thames_SW	Area (ha)	Shape Barrels T of E (mins)	Circular 5 1 Availal Cover D Level (m) 6.450 6.760 6.700	rcular Lin Auto ble Diame 100 Node Diameter (mm) 400 500 1200	eters (mm 150 S Width (mm)	Ground x Easting (m) 517081.188 517099.372 517104.795	(m) 170946.540 170937.337 170930.827	(m) 0.692 1.074 1.098

AUSE	WAY			Enviror	imenta	l Consulta	Ne Ge	le: 99 A [.] etwork: eorgia T)/08/20	99 A rave	Atbara R		Ра	ge 2		
							<u>Links</u>								
Name	US Node		DS lode	Len (n	-	s (mm) /	US IL			Fall (m)	Slope (1:X)	Dia (mm)	T of) (mir		Rain m/hr)
1.000	Roof3	GC(-	1) 741	n 0.600	(m) 6.008	•	-	0.109	80.0	(mm) 100	-	15) (m 17	50.0
1.001	GC_Out	_		18.3		0.600	5.900			0.214	84.6	150		45	50.0
2.000	 Roof2	GC_2			120	0.600	5.836			0.021	243.8	100			50.0
3.000	Roof 1	GC_2			454	0.600	5.836	5 <u>5.8</u> 1	15	0.021	212.1	100		14	50.0
2.001	GC_2	EX_N			238	0.600	5.815			0.129	40.6	100		25	50.0
1.002	EX_M2	Than	nes_SW	/ 8.4	472	0.600	5.686	5 5.60)2	0.084	100.9	150) 5.	59	50.0
	Ν	ame	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Deptl	ΣAı h (ha		Σ Add Inflow	Pro Depth		Pro locity		
			(1173)	(1/3)	(1/3)	(m)	(m)		aj	(I/s)	(mm)		m/s)		
	1.	.000	0.861	6.8	2.2	0.342	0.45	<mark>1</mark> 0.0)16	0.0	39)	0.764		
			1.093	19.3	2.2	0.400	0.924		016	0.0	34		0.722		
			0.488	3.8	0.4	0.964	0.98		003	0.0	22		0.316		
			0.524 1.213	4.1 9.5	0.3 0.7	0.964 0.985	0.98 0.974)02)05	0.0 0.0	18 18		0.293 0.704		
			1.213	9.5 17.7	0.7 2.8	0.985	0.97)05)21	0.0	41		0.704 0.736		
						<u>Pipel</u>	ine Sch	<u>edule</u>							
	Link L	.ength (m)	Slope (1:X)				S CL (m)	US IL (m)		Depth m)	DS CL (m)	DS II (m)		Depth m)	
	1.000	8.741	80.0	-				6.008	-	0.342	6.450	5.899	-	0.451	
		18.110	84.6					5.900		0.400	6.760	5.686		0.924	
	2.000	5.120	243.8	3 10	0 Cir	cular 6	.900	5.836		0.964	6.900	5.815	5	0.985	
	3.000	4.454	212.1					5.836		0.964	6.900	5.815		0.985	
	2.001	5.238	40.6					5.815		0.985	6.760	5.686		0.974	
	1.002	8.472	100.9) 15		cular 6	.760 !	5.686		0.924	6.700	5.602	2	0.948	
Link	US	Dia	Wio		Node	MI -		DS		, Dia	Widt		Node -		н
1.000	Node Roof3	(mm 400		•	Type Ianhole	Typ Adopt		Nod GC Out		(mm 450		•	Type 1anhole	-	pe ptable
1.000	GC_Out				lanhole			EX_M2		500			1anhole		table
2.000	Roof2	400			lanhole			GC_2		600			1anhole		table
3.000	Roof 1	400	C	N	Ianhole			GC_2		600		N	1anhole		table
2.001	GC_2	600			lanhole			EX_M2		500			1anhole		table
1.002	EX_M2	500	0 5	00 N	lanhole	e Adopt	able	Thames	s_SW	/ 1200)	N	1anhole	e Adop	table
						<u>Manh</u>	ole Sch	<u>edule</u>							
Node	Ea	asting	N	orthing		•			Vidt		nnectio	ns	Link	IL	Dia
Roof3	E17	(m) 081.18	Q 170	(m) 946.54	(n) 0 6.4			nm) (400	(mm))				(m)	(mm)
RUUIS	517	001.10	5 170	940.94	0 0.4	50 0.0	52 4	400		(J ⁷⁰				
												0	1.000	6.008	100
EX_M2	517	099.37	2 170	937.33	7 6.7	60 1.0	74 !	500	500	0 2	~	1	2.001	5.686	100
											\sum	2	1.001	5.686	150
										1	\sim	0	1.002	5.686	150
Thames S	SW 517	104.79	5 170	930.82	7 6.7	00 1.0	98 1	200				1	1.002	5.602	150
	227										\sim	-			200
											Ċ				

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Width (mm)	Connection	S	Link	IL (m)	Dia (mm)
GC_Out	517088.279	170951.651	6.450	0.801	450		\bigcirc	1	1.000	5.899	100
							1 0	0	1.001	5.900	150
GC_2	517095.103	170934.301	6.900	1.335	600		2	1	3.000	5.815	100
							1	2	2.000	5.815	100
								0	2.001	5.815	100
Roof 1	517090.649	170934.338	6.900	1.064	400						
							→ o				
								0	3.000	5.836	100
Roof2	517096.768	170939.143	6.900	1.064	400						
							\mathcal{P}	0	2 000	5.026	100
							0	0	2.000	5.836	100

Simulation Settings

Rainfall Methodology	FSR	Additional Storage (m³/ha)	20.0
FSR Region	England and Wales	Check Discharge Rate(s)	\checkmark
M5-60 (mm)	20.000	1 year (l/s)	4.2
Ratio-R	0.400	30 year (l/s)	9.8
Summer CV	0.750	100 year (l/s)	12.4
Analysis Speed	Normal	Check Discharge Volume	\checkmark
Skip Steady State	х	100 year 360 minute (m ³)	13
Drain Down Time (mins)	240		

Storm Durations

15 60 360 2160

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
1	0	0	0
30	0	0	0
100	0	0	0
100	40	0	0

Pre-development Discharge Rate

Site Makeup	Brownfield	Time of Concentration (mins)	5.00
Brownfield Method	MRM	Betterment (%)	0
Contributing Area (ha)	0.028	Q 1 year (l/s)	4.2
PIMP (%)	100	Q 30 year (l/s)	9.8
CV	0.750	Q 100 year (l/s)	12.4

Pre-development Discharge Volume

Site Makeup	Brownfield	CV	0.750	Betterment (%)	0
Brownfield Method	MRM	Return Period (years)	100	PR	0.750
Contributing Area (ha)	0.028	Climate Change (%)	0	Runoff Volume (m ³)	13
PIMP (%)	100	Storm Duration (mins)	360		

CAUSEWAY	al Consultant	File: 99 Atbara Network: 99 A Georgia Trave 20/08/2024	Atbara Rd	Page 4
Node	e GC_Out Onl	ine Orifice Con	<u>trol</u>	
Flap Valve x Replaces Downstream Link √ Invert Level (m) 5.900	Design De Design Fl Diamo			oefficient 0.600
No	de GC_2 Onlir	ne Orifice Contr	ol	
Flap Valve x Downstream Link 2.001 Replaces Downstream Link √	Invert Le Design De Design Fl			neter (m) 0.021 oefficient 0.600
Node GC	Out Depth/	Area Storage St	<u>ructure</u>	
Base Inf Coefficient (m/hr) 0.00500 Side Inf Coefficient (m/hr) 0.00500		actor 2.0 rosity 0.95	Invert Time to half em	Level (m) 5.899 pty (mins) 77
DepthAreaInf Area(m)(m²)(m²)0.00020.012.0	Depth Are (m) (m 0.250 20	²) (m²)	DepthArea(m)(m²)0.2510.0	Inf Area (m²) 24.0
Node G	C_2 Depth/A	rea Storage Stru	ucture	
Base Inf Coefficient (m/hr) 0.00500 Side Inf Coefficient (m/hr) 0.00500		actor 2.0 rosity 0.95	Invert Time to half em	Level (m) 5.815 pty (mins) 14
DepthAreaInf Area(m)(m²)(m²)0.0002.06.0	Depth Are (m) (m 0.500 2		Depth Area (m) (m²) 0.501 0.0	Inf Area (m²) 7.0
	<u>Other (a</u>	defaults)		
	y Loss (junctio t Loss (junctio		Apply Recommer Flc	nded Losses x ood Risk (m) 0.300
	<u>Approva</u>	I Settings		
Node Size Node Losses Link Size Minimum Diameter (mm) Link Length Maximum Length (m) Coordinates Accuracy (m) Crossings Cover Depth Minimum Cover Depth (m) Maximum Cover Depth (m) Backdrops Minimum Backdrop Height (m)	<pre>√ √ √ 150 √ 100.000 √ 1.000 √ 1.200 3.000 √ 0.200</pre>	Maximum Pr	Return Period Time to Half Return Period Discharge 1 ye	(years) 100 y (m/s) 0.750 y (m/s) 3.000 Depth \checkmark (years) 100 oth (m) 0.100 ooding \checkmark (years) 30 Empty \checkmark (years) 60
Maximum Backdrop Height (m) Full Bore Velocity Minimum Full Bore Velocity (m/s) Maximum Full Bore Velocity (m/s)	1.500 √ 1.000 3.000	100 yea	100 ye Discharge V ar +40% 360 minu	

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
1 year 15 minute summer	109.521	30.991	100 year 15 minute summer	348.738	98.681
1 year 60 minute summer	48.435	12.800	100 year 60 minute summer	153.288	40.510
1 year 360 minute summer	14.169	3.646	100 year 360 minute summer	40.484	10.418
1 year 2160 minute summer	3.574	0.988	100 year 2160 minute summer	9.021	2.493
30 year 15 minute summer	268.706	76.035	100 year +40% CC 15 minute summer	488.233	138.153
30 year 60 minute summer	116.589	30.811	100 year +40% CC 60 minute summer	214.603	56.713
30 year 360 minute summer	31.221	8.034	100 year +40% CC 360 minute summer	56.677	14.585
30 year 2160 minute summer	7.160	1.979	100 year +40% CC 2160 minute summer	12.630	3.490

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

Results for 1 year Critical Storm Duration	. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	Roof3	9	6.051	0.043	2.1	0.0367	0.0000	ОК
60 minute summer	EX_M2	42	5.704	0.018	0.5	0.0044	0.0000	ОК
60 minute summer	Thames_SW	42	5.619	0.017	0.5	0.0000	0.0000	ОК
60 minute summer	GC_Out	43	5.952	0.053	1.4	1.0067	0.0000	ОК
60 minute summer	GC_2	41	5.869	0.054	0.4	0.1175	0.0000	ОК
60 minute summer	Roof 1	38	5.869	0.033	0.2	0.0054	0.0000	ОК
60 minute summer	Roof2	40	5.869	0.033	0.3	0.0060	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Roof3	1.000	GC_Out	2.1	1.070	0.312	0.0205	
60 minute summer	EX_M2	1.002	Thames_SW	0.5	0.439	0.029	0.0098	1.8
60 minute summer	GC_Out	Orifice	EX_M2	0.3				
60 minute summer	GC_Out	Infiltration		0.0				
60 minute summer	GC_2	Orifice	EX_M2	0.2				
60 minute summer	GC_2	Infiltration		0.0				
60 minute summer	Roof 1	3.000	GC_2	0.2	0.173	0.045	0.0146	
60 minute summer	Roof2	2.000	GC_2	0.3	0.334	0.068	0.0167	

Results for 30	year Critical Storm Duration.	Lowest mass balance: 100.00%

Node Event	US Node Roof3	Peak (mins) 10	Level (m) 6.080	Depth (m) 0.072	Inflow (I/s) 5.3	Node Vol (m³) 0.0611	Flood (m³) 0.0000	Status OK
60 minute summer 60 minute summer	EX_M2 Thames_SW	44 44	5.709 5.625	0.023 0.023	0.9 0.9	0.0058 0.0000	0.0000 0.0000	ОК ОК
60 minute summer	GC_Out	47	6.032	0.133	3.5	2.5396	0.0000	ОК
60 minute summer	GC_2	41	5.952	0.137	0.7	0.2999	0.0000	SURCHARGED
60 minute summer 60 minute summer	Roof 1 Roof2	41 41	5.952 5.952	0.116 0.116	0.4 0.7	0.0190 0.0212	0.0000 0.0000	SURCHARGED SURCHARGED

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Roof3	1.000	GC_Out	5.3	1.178	0.778	0.0510	
60 minute summer	EX_M2	1.002	Thames_SW	0.9	0.517	0.050	0.0145	4.7
60 minute summer	GC_Out	Orifice	EX_M2	0.6				
60 minute summer	GC_Out	Infiltration		0.0				
60 minute summer	GC_2	Orifice	EX_M2	0.3				
60 minute summer	GC_2	Infiltration		0.0				
60 minute summer	Roof 1	3.000	GC_2	0.2	0.131	0.056	0.0348	
60 minute summer	Roof2	2.000	GC_2	0.5	0.334	0.130	0.0401	

Results for 100 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status
15 minute summer	Roof3	10	6.097	0.089	6.8	0.0760	0.0000	ОК
60 minute summer	EX_M2	45	5.711	0.025	1.0	0.0063	0.0000	ОК
60 minute summer	Thames_SW	45	5.627	0.025	1.0	0.0000	0.0000	ОК
60 minute summer	GC_Out	49	6.075	0.176	4.6	3.3795	0.0000	SURCHARGED
60 minute summer	GC_2	42	6.009	0.194	0.9	0.4233	0.0000	SURCHARGED
60 minute summer	Roof 1	42	6.009	0.173	0.6	0.0282	0.0000	SURCHARGED
60 minute summer	Roof2	42	6.009	0.173	0.9	0.0315	0.0000	SURCHARGED

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Roof3	1.000	GC_Out	6.7	1.203	0.991	0.0634	
60 minute summer	EX_M2	1.002	Thames_SW	1.0	0.542	0.059	0.0164	6.2
60 minute summer	GC_Out	Orifice	EX_M2	0.7				
60 minute summer	GC_Out	Infiltration		0.0				
60 minute summer	GC_2	Orifice	EX_M2	0.4				
60 minute summer	GC_2	Infiltration		0.0				
60 minute summer	Roof 1	3.000	GC_2	0.3	0.228	0.077	0.0348	
60 minute summer	Roof2	2.000	GC_2	0.6	0.327	0.160	0.0401	

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	Roof3	11	6.244	0.236	9.6	0.2005	0.0000	FLOOD RISK
60 minute summer	EX_M2	51	5.714	0.028	1.3	0.0070	0.0000	OK
60 minute summer	Thames_SW	51	5.629	0.027	1.3	0.0000	0.0000	ОК
60 minute summer	GC_Out	52	6.164	0.265	6.1	4.8016	0.0000	FLOOD RISK
60 minute summer	GC_2	44	6.102	0.287	1.2	0.6276	0.0000	SURCHARGED
60 minute summer	Roof 1	44	6.103	0.267	0.8	0.0435	0.0000	SURCHARGED
60 minute summer	Roof2	44	6.103	0.267	1.2	0.0485	0.0000	SURCHARGED

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Roof3	1.000	GC_Out	9.0	1.182	1.335	0.0684	
60 minute summer	EX_M2	1.002	Thames_SW	1.3	0.575	0.073	0.0190	8.6
60 minute summer 60 minute summer	GC_Out GC_Out	Orifice Infiltration	EX_M2	0.8 0.0				
60 minute summer 60 minute summer	GC_2 GC_2	Orifice Infiltration	EX_M2	0.5 0.0				
60 minute summer 60 minute summer	Roof 1 Roof2	3.000 2.000	GC_2 GC_2	0.4 0.8	0.273 0.323	0.107 0.213	0.0348 0.0401	

10.8.3 Drainage Sections PDF to follow this page.

Report Reference: SWDS – 2024 – 000036

CAUSE		STM Environmental Consultants	File: 99 Atbara Rd_V3.pfd Network: 99 Atbara Rd Georgia Travers 20/08/2024	Page 1	
Node Name	Roof3			GC_Out	EX_1
A4 drawing					
Hor Scale 300 Ver Scale 50					
Datum (m) 3.000					
Link Name	1.000			1.001	
Section Type	100mm			150mm	
Slope (1:X)	80.0			84.6	
Cover Level (m)	6.450			6.450	6.760
Invert Level (m)	6.008	5.899		5.900	5.686
Length (m)	8.741			18.110	
	0.741		1988-2024 Causeway Technologies Ltd	13.110	

CAUSEWAY	STM Environmental Consultants	File: 99 Atbara Rd_\ Network: 99 Atbara Georgia Travers 20/08/2024		Page 2
Node Name		EX_M2	Thames_SW	
			-	
A4 drawing				
Hor Scale 300 Ver Scale 50				
Datum (m) 3.000				
Link Name		1.002		
Section Type		150mm		
Slope (1:X)		100.9		
Cover Level (m)		6.760	6.700	
Invert Level (m)		5.686 5.602		
Length (m)		8.472		
·	Flow+ v10.8 Copyright © 1988-2		nologies Ltd	

A4 drawing Image: Constraint of the second sec	CAUSEWAY 🛟	STM Environmental Consultants	File: 99 Atbara Rd_V3.pfd Network: 99 Atbara Rd Georgia Travers 20/08/2024	Page 3
In Scale 300 (er Scale 50 200 2.001 Datum (m) 3.000 2.000 2.001 ink Name 2.000 100mm Section Type 100mm 100mm Jope (1:X) 243.8 40.6 Cover Level (m) 00 00 nvert Level (m) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	Node Name	Roof2		GC_2 EX_M2
In Scale 300 (er Scale 50 200 2.001 Datum (m) 3.000 2.000 2.001 ink Name 2.000 100mm Section Type 100mm 100mm Jope (1:X) 243.8 40.6 Cover Level (m) 00 00 nvert Level (m) 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00				
Ver Scale 50 Mane 2.000 2.001 2.001 ink Name 2.000 2.001 100mm section Type 100mm 100mm 100mm Slope (1:X) 243.8 40.6 96 Cover Level (m) 000000000000000000000000000000000000	A4 drawing			
Link Name 2.00 2.001 2.001 Section Type 100mm 100mm 100mm Solope (1:X) 243.8 40.6 40.6 Cover Level (m) 000000000000000000000000000000000000	Hor Scale 300 Ver Scale 50			
Link Name 2.00 2.011 2.001 Section Type 100mm 100mm 100mm Solope (1:X) 243.8 40.6 40.6 Cover Level (m) 000000000000000000000000000000000000	Datum (m) 3.000			
Silope (1:X) 40.6 Cover Level (m) 069 nvert Level (m) 988 5 Silope (1:X) 989 5	Link Name			
Cover Level (m) ²	Section Type			
nvert Tehel (m)	Slope (1:X)			
	Cover Level (m)	6.900		6.900
ength (m) 5.120 5.238	Invert Level (m)	5.836 5.815		5.815 5.686
	Length (m)	5.120		5.238

	STM Environmental Consultants	File: 99 Atbara Rd_V3.pfd Network: 99 Atbara Rd Georgia Travers 20/08/2024	Page 4
Node Name	Roof 1 GC_2		
A4 drawing			
Hor Scale 300 Ver Scale 50			
Datum (m) 3.000	2,000		
Link Name	3.000		
Section Type Slope (1:X)	100mm 212.1		
Cover Level (m)			
	006.9		
Invert Level (m)	5.836 5.815		
Length (m)	4.454		
		1988-2024 Causeway Technologies Ltd	÷

10.9 Appendix 8 – SuDS Maintenance Manual

All maintenance activities will be the responsibility of Jamie and Beverley McDaid. They will appoint a management company to undertake the general maintenance duties within the site and will join service agreements with the suppliers and manufactures of the SuDS/Pumps when required.

The information presented below is taken from the CIRIA SuDS Manual (Report c753) and <u>SuDS</u>. Further details on installation and maintenance can be found detailed below and online.

Report Reference: SWDS – 2024 – 000036

10.9.1 Geo-Cellular Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility	
	Inspect for sediment and debis in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings.	Annually.		
Regular maintenance	Cleaning of gutters and any filters on downpipes.	Annually (or as required based on inspections).	will be responsible for setting up the management company.	
	Trimming any roots that may be causing blockages.	Annually (or as required).		
Occasional maintenance	Remove sediment and debris from manhole, storage structure and components and floor of inspection tube or chamber and inside of concrete manhole rings.	As required, based on Inspections.		
	Reconstruct geocellular and/or replace or clean void fill, if performance failure occurs	As required		
Remedial actions	Replacement of clogged geotextile (will require reconstruction of soakaway).	As required.	will be responsible for setting up the management company.	
	Inspect silt raps and note rate of sediment accumulation.	Monthly in the first year and then annually.		
Monitoring	Check soakaway to ensure emptying is occurring.	Annually.		

Report Reference: SWDS – 2024 – 000036

Maintenance will usually be carried out manually, although a suction tanker can be used for sediment / debris removal for large systems. If maintenance is not undertaken for long periods, deposits can become hard-packed and require considerable effort to remove.

Replacement of the geocellular units will be necessary if the system becomes blocked with silt. Effective monitoring will give information on changes in infiltration rate and provide a warning of potential failure in the long term.

Areas draining to infiltration components should be regularly swept to prevent silt being washed off the surface. This will minimize the need for maintenance.

Maintenance responsibility should be placed with an appropriate organisation, and maintenance schedules should be developed during the design phase.

Report Reference: SWDS – 2024 – 000036

10.9.2 SuDS Planters Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris in inlet and outlet components	Quarterly; As required.	
Regular maintenance	Inspection & Cleaning of gutters and any filters on downpipes feeding into rain gardens as required.	Quarterly; As required.	
	Remove, replace and maintain vegetation as required; Ensuring cuttings are removed to prevent debris	Monthly inspections during Spring / Summer	
	build up; Weeding of flower bed to maintain the desired vegetation, density and biodiversity - Vegetation management	Autumn / Winter - As required.	CompanyName will be responsible for
	Replace dead vegetation as required.	As required.	setting up the management company.
Remedial actions	Cut back vegetation as required.	As required.	
Monitoring	Inspect silt traps / discharge points and note rate of sediment accumulation and ensure no erosion pathways forming.	Monthly in the first year and then annually.	
	Check Planters are emptying as required following a storm event occurring.	After storms; When possible.	

Maintenance will be carried out manually. All monitoring and maintenance will be carried out by the appointed estate management company that undertakes the general landscaping maintenance.

Report Reference: SWDS – 2024 – 000036

10.9.3 SuDS Rain Water Butt Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
Regular maintenance	Inspect for sediment and debris in inlet and outlet components; Inspection & Cleaning of gutters and any filters on downpipes feeding into the Rain Water Butts.	Quarterly; As required. Increase freq. to Monthly during Autumn; Quarterly; Increase freq. to Monthly during Autumn;	
Remedial actions	Cleaning of the water butt. Fully drain the water butt and clear out debris and enable access; Scrub out the inside of the butt or tank with a coarse brush, if accessible, using a proprietary cleaning product such as Just Water Butt Cleaner or garden disinfectant; Rinse with clean water; Cleaning of Gutters; Clean or fit a new filter;	Annually; Or as required.	will be responsible for setting up the management company.
Remedial actions	Use water/empty water butts - to clean, water plants (inside & out); Empty water Butt more frequently during the winter, to allow for storage during storms and to keep the water fresh;	Once every two weeks; as required	

Maintenance will be carried out manually. All monitoring and maintenance will be carried out by the appointed estate management company that undertakes the general landscaping maintenance.

10.9.4 Flow Control Maintenance

Maintenance Schedule	Required Action	Typical Frequency	Responsibility
	Inspect for sediment and debris;	Quarterly; As required.	
Devide	Inspection & Cleaning of SuDS components	Quarterly;	
Regular	upstream of flow control element.	Increase freq. to Monthly	
maintenance		during Autumn;	
Remedial actions	Removal of debris and sediment;	Annually; Or as required.	
Remedial actions	Replacement of parts; Manhole cover, filters or	As required;	
	components of flow control device;		
Monitoring	Ensure flow control device is function correctly	Monthly; During 1 st year of	will be responsible
	during and after storm events;	installation or during and	for setting up the
		after storm event; When	management
	Check water levels up stream and downstream	possible	company.
	of flow control device		
		Reduce to Quarterly	
		following the 1 st year;	
	Check for damage to flow control components	Annually;	
	Check for securely fitting manhole lid;	Annually;	
	Ensures debris cannot enter the system		
	unfiltered;		