
Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Imagery © 2024 Google Earth.

Contract No./Report Type: 24-077/P1&P2 Produced for The White House Design Ltd

Report Title

Phase 1 & 2 Desk Study & Contamination Investigation

Project	Project No./Report Type
14 - 16 Tudor Road, Hampton	24-077/P1&P2

Client Name

The White House Design Ltd

Issue Date/Version	Status	Comments, Description of Amendments
21 st November 2024	Final	-

Report F	Report Prepared by:				
André Gilleard	Director SiLC QP CSci CEnv BEng(Hons) andre@ag-geoconsultants.co.uk Tel: 07395 100 727	DoW CoP Sustainable Reuse of Solls SPECIALIST IN LAND CONDITION André Gilleard Reg No. A1201	Aques		

Specialist In Land Condition (SILC) No. A1201 Qualified Person (QP), No.086 (CL:AIRE Definition of Waste, Industry Code of Practice, DoWCoP)

This report is provided for the benefit of the Client. We do not accept responsibility in the event that the report contents are used in whole or in part by a third party and we exercise no duty of care to any such third party. © AG Geo-Consultants Ltd

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Contents

Execu	tive S	ummary	3				
1	Intro	duction	1				
1.1		Introduction and Brief	. 1				
1.2		Proposed Development	. 1				
1.3		Scope of Works					
1.4		Limitations	2				
2	Phas	e 1 Desk Study (Inc Preliminary Risk Assessment)	3				
2.1		Introduction	3				
2.2		Desk Study	3				
2.3		Preliminary Conceptual Model & Risk Assessment	7				
		2.3.1 General	7				
		2.3.2 Preliminary Conceptual Model & Risks	8				
3	Phas	e 2 Site Investigation					
3.1		General					
3.2		Dynamic Sampling	11				
3.3		Dynamic Probing					
3.4		Backfilling and Installations					
3.5		In-Situ Testing and Monitoring					
3.6		Sample Collection and Laboratory Analysis					
4	Grou	nd Conditions					
4.1		General					
4.2		Groundwater					
4.3		Contamination Indications					
4.4		Underground Services Encountered					
5	Asse	ssment of Contamination & Environmental Risks					
5.1		Tier 1 Generic Quantitative Risk Assessment - Soil Risks to Humans					
-		5.1.1 General					
		5.1.2 Metals					
		5.1.3 Organics – General					
		5.1.4 Organics – TPH					
		5.1.5 Organics – Polyaromatic Hydrocarbons (PAHs)					
		5.1.6 Other					
5.2		Tier 2 Detailed Quantitative Risk Assessment - Soil Risks to Humans					
5.3		Soil Risks to Plants (Phytotoxicity)					
5.4		Soil Risks to Water Supply Pipes					
5.5		Tier 1 Generic Quantitative Risk Assessment – Risks to Water Resources					
		5.5.1 Soil Risks to Water Resources					
		5.5.2 Groundwater Risks to Water Resources					
5.6		Tier 2 Detailed Quantitative Risk Assessment – Risks to Water Resources					
5.7		``Ground/Landfill Gas Risks to Humans					
5.8		Radon Risk to Humans					
5.9		Chemical Vapour Risks to Humans					
5.10		Final Conceptual Model and Risk Assessment					
5.11		Strategy for Risk Reduction & Remediation					
		5.11.1 Introduction					
		5.11.2 General					
		5.11.3 Pre-Commencement "Remediation" Requiring Validation					

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

	5.11.4	Post-Commencement Risk Reduction Measures Requiring Validation	31
	5.11.5	Post-Commencement Risk Reduction Measures Not Requiring Validation	
	5.11.6	Summary of Risk Reduction and Remediation Measures and Validation	35
	5.11.7	Validation Report	37
6	Other Aspe	cts	38
6.1	"Site H	&S File"	38
6.2	Soil/M	aterials Reuse & Disposal	38
	6.2.1	General	
	6.2.2	Transfer for Reuse on Another Site	39
	6.2.3	Soil Treatment Facilities	39
	6.2.4	Disposal to Licensed Waste Sites	39
	6.2.5	Asbestos Content to Soils	41
6.3	Furthe	r Data and Investigation	41

Appendices

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Executive Summary

Client	The White House Design Ltd					
Site and	14 - 16 Tudor Road, Hampton					
Location	Approximate postcode = TW12 2NQ					
	Change of use from mixed use, comprising ground floor car motor garage (B2) and ancillary first floor					
Proposed	flat(C3) to residential (C3) including alterations to the front and rear facades, the construction of					
Development			irden areas are proposed.			
Client Brief	Address the contaminated land planning conditions for the site. The planning conditions contain the usual requirement for a Phase 1 desk study, Phase 2 ground investigation, etc.					
History of Site & Surroundings	On Site Fields then detached building in the SW of the site by 1933. The building is replaced (by 1960) by the current larger building (in the NW of the site) which is a disused vehicle service garage on the ground floor ,with vehicle inspection pits. There are also garage buildings to the rear of the property, which have apparent asbestos cement roofs In the Surroundings Fields and then increasingly developed (includes a petrol station (just NW, <1934?, now remediated due to groundwater impact, and replaced by housing) and builder's yard (N) within 50m of the site).					
		eum Officer) s	suggest the following on site.			
	Tank Ref & Capacity	Date of	Notes			
		installation				
	- (250g)	1946 (?)	Paraffin in rear yard. Possibly above ground (?).			
	- (250g)	1946 (?)	Bunded above-ground Heating Oil in rear yard.			
	- (500g?)	1946 (?)	Removed and replaced in 1970 by T1/T2/T3 below.			
	- (500g?)	1946 (?)				
	T1 (2000g petrol)	1970	3-compartment single skin tank to replace existing 1946 5000g			
Fuel	T2 (2000g petrol)		tank. Believed to be at the exact same locations as the old			
Infrastructure	T3 (1000g petrol)		tanks. Decommissioned by foam filling in 1998.			
	T4 (500g)		Paraffin. Appears to be underground and so formerly petrol or			
	14 (500g)		diesel(?). Unknown status.			
	3-stage interceptor		Appears to still be present.			
		o for the cite	expired in November 1994.			
	 The petroledificens The status of T4 is un 		expired in November 1994.			
		-	<i>leaks or spills at this site.</i> At some stage the pumps were removed.			
			ouses have a basement.			
	_		ge on the opposite side of the road (9, Tudor Rd), found that:			
			vated concentrations of benzene & xylene (Petrol), and TPH			
Nearby	(probably diese	-				
ground		-	found (presumably from degradation of petroleum hydrocarbons).			
investigation	• Free-phase petroleum hydrocarbons were found upon the groundwater.					
	Remediation included groundwater pumping and treatment, plus removal of 5no. underground storage					
	tanks and a single abov		аде тапк.			
	BGS Mapping Suggests:					
	Drift Deposits: Taplow Gravel (TG).					
	Solid Geology: London Clay Formation (clay and silt).					
	The investigation just V					
Ground			vorked, brown, sandy, gravelly clay)			
Conditions			aplow Gravel Member (f-c sands over f-c gravels or sandy gravel,			
	occasionally slightly	/ clayey),				
	 over London Clay. 					

Phase 1 & 2 Desk Study & Contamination Investigation

14 - 16 Tudor Road, Hampton

	Our investigatio	n found:				
	Depth Encountered (mBGL)		Typical			
	Strata	Тор	Bottom	Thickness (m)	Description & Comments	
	MG: concrete	0 0.3 0.2	0.15 to 0.2 0.35 0.6	0.15	All holes. DS2, 2 nd (buried) slab. DS4, 2 nd (buried) slab	
	MG: clays, sands, gravels, cobbles	0.15 to 0.35	1.0 to 1.9 also >3.0, >3.0	-	Mixed grading. Clays are soft. Base of MG not proven in DS2 and DS6.	
	MG: Black Ash	1.10 to 1.15	1.25 to 1.35	0.2	DS1 and DS6 only	
	SAND/GRAVEL and CLAY. Alternating layers.	1.0 to 1.9	>4.0	-	Clays are soft and firm. Sands and gravels are loose, dense & medium dense.	
	Watercours	es: None wit	hin 250m.			
	Source Prote	ection Zones	(SPZ): None wi	thin 250m.		
					vater & surface water).	
					ck= Unproductive strata	
Hydrogeology	-	• •	-	•	e found (in 2014) groundwater lying at 2.5-	
& Hydrology		. ,			ously anticipated to be to the south towards	
	•		•	•	produced from data collected on 14th April	
					e <u>north</u> . Our investigation found standing	
					e flow direction of eastwards.	
	-			cords relating to		
			-	-	prise: brick, metal, rare glass, and occasional	
		•			JISE. DIICK, IIIELAI, TATE glass, and occasional	
		d ash layers.			idential with and without plant what is) for	
				low soils (vs res i	idential with- and without- plant uptake), for	
			DS1 and DS3.			
			c, plus PAHs, in l			
	• PAH ratios to BaP for the soils , were within the Culp ranges and so BaP is a suitable surrogate marker for comparison against the BaP GAC. All PAH concentrations except BaP, can be ignored.					
			were found in th			
	• Despite the soils having some elevated chemical concentrations, we do not expect any significant risks to plants .					
Contamination	• During monitoring, groundwater in all wells was found to exhibit hydrocarbon/organic odours. There was also a very faint sheen, or oily sheen, in 3no. of the 5no. wells. DS6 (forecourt) is the worse for impact, followed by DS3 and DS5, which lie (at the rear of the site) ENE of DS6.					
Considerations	• Soils tests found hydrocarbon concentrations in DS6 at 2.6m depth that are likely to impact groundwater quality.					
	• During groundwater monitoring, one visit found just elevated concentrations of TPH in DS6					
	(forecourt), but then a 2 nd visit found elevated TPH in all 5no. wells, plus elevated MTBE in 3no. wells.					
	Such suggests a plume originating at ~DS6 and flowing past DS3 and DS5 (both in the rear of the site).					
	• PVC water supply pipes might be accepted, but we'd recommend installing barrier pipes. It would be					
	prudent to replace existing water pipes with such.					
	Ground Gases, Ra	don and Ch	emical Vapours			
				rotection agains	t Radon.	
				-	e site. No other potential unlicensed landfilling	
			-	-	ganic content. Our monitoring (2 visits) proved	
			t ground gas risl			
 There were slight and strong hydrocarbon odours in DS1 and DS6, 			1 and DS6, next to the tanks. below 1.35m and			
2.4m depth. Our 5no. 2.0 to 3.6m deep monitoring wells found PID readings <0.7ppm.						
Other	• The site appears not at risk of flooding from surface waters, but at moderate-high risk from					
Considerations						
	-	-	tentially conser	vatively) deeme	d moderate risk, for UXO presence.	

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

	Our 5no. groundwater monitoring wells must be protected from damage until no longer required. Risks derive from the made ground, and soils impacted by petroleum hydrocarbons (and thus risks to
	groundworkers and site end-users, plus to groundwater). There is also a risk of UXO presence.
	To remove the human health risks:
Strategy for Remediation & Risk Reduction	 The hardstanding at former tanks T0 and T00 shall be removed to prove that the tanks were not underground ones and then the soils under the subbase shall be checked for contamination. The remaining underground tanks (T1-T4) shall be removed from site, along with any concrete cradles and along with any soils impacted (visual and olfactory) by hydrocarbons. Site, landscape and maintenance workers should wear gloves, boots and overalls and wash their hands before eating, drinking and smoking. Excessive dust generation should be avoided. Barrier water supply pipes. Excavations or below ground voids should be checked for the presence of harmful gases and vapours prior to personnel entry. For the new garden areas, a "clean cover" layer should be placed over any contaminated soils that remain in place. If food crops/fruit trees could be planted in the above areas, then the clean cover layer needs to be 0.57m thick (or 0.43m if gardens with no food crops). If there will just be landscaping areas with no food crops/fruit trees, then clean cover can reduce to 0.3m thickness. Clean cover should include 0.2m of clay, below topsoil. Rainwater from gardens shall be drained to surface water systems. We recommend that a >=1200g membrane be retrofitted to the ground floor slabs, with all joints and service ducts entries (coming through the ground floor slabs) to be made gas tight (e.g. expanding foam). Wall cavities to be made gas proof. A watching brief should be kept during siteworks for any unforeseen/unsuspected contamination (e.g. along drain runs). If such is found, then work should stop and a competent person should be contacted for advice and assessment. Also watch for potential UXO. Any asbestos cement fragments spotted during groundworks, should be litter picked & removed off site. Any recycled aggregates that are planned to be imported to site, should be assessed for contamination (especia
Reuse of Soils on or Off site	To avoid Landfill Tax reuse as much soil on site as possible (ensure legitimate reuse and only in the quantity required. Follow waste protocols). By following waste protocols, surplus natural soils can be exported to other development or construction sites. Contaminated Made ground can only be exported to soil treatment facilities, or other
	permitted/exempt sites. Clean made ground could go to other construction sites.
Further Data	• The vehicle inspection pits should be uncovered and a geo-environmental engineer should inspect them for possible risk of contamination.
& Investigation	• Following the removal of underground tanks, vent pipe, fuel lines and interceptors, retest groundwater quality in our wells.

This is only a summary and should not be read in isolation from the main text.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

1 Introduction

1.1 Introduction and Brief

AG Geo-Consultants Ltd (AGGC) were commissioned by and on behalf of The White House Design Ltd (the Client) to produce a Phase I & II Desk Study and Contamination Investigation report for a site known as 14 – 16, Tudor Road, Hampton, TW12 2NQ (the "Site", see *proposed site plan* boundary in Appendix A).

The client's brief was to *address the contaminated land planning conditions for the site.* The planning conditions contain the usual requirement for a Phase 1 desk study, Phase 2 ground investigation, etc (see Table 2.1).

1.2 Proposed Development

The proposed development (see location plan in Appendix A) comprises change of use from mixed use, comprising ground floor car motor garage (B2) and ancillary first floor flat(C3), to residential (C3) including alterations to the front and rear facades, the construction of front and rear extensions. New front and rear garden areas are proposed.

1.3 Scope of Works

The client accepted AGGC's proposed detailed scope of work for a Phase 1 Desk Study, followed by a Phase 2 investigation (based on the findings of the desk study). The scope was designed to primarily identify if any significant contamination could exist across the site, with recommendations on remediation measures considered necessary, should any material contamination risks be identified. The client declined an assessment of any geotechnical risks.

The objectives of the work were to determine the sub-surface conditions in respect of:

Contamination/Environmental Aspects:

- Contamination assessment to consider potential significant pollutant linkages arising from historic and current land uses, on and off site. This includes:
 - Local Authority (LA) **Environmental Search** (for records that only the LA hold).
 - Local Authority **Petroleum Tank Search**.

This report should be submitted to the LPA to satisfy the relevant planning conditions, but also to seek their "**no objection**" to the potential employment of the **CL:AIRE** *Definition of Waste Code of Practice* (DoWCoP) at the site (i.e. in case there will be surplus natural soils and transfer of such soils to other development sites for reuse, is a consideration).

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

1.4 Limitations

Until all invoices associated with the production of this report have been paid in full, then it remains the property of AGGC and not the client, and AGGC do not grant legal reliance upon it to satisfy (or remove) planning permission conditions, or to be used for engineering design, etc.

This report is provided for the benefit <u>only</u> of the party to whom it is addressed and their advisors. <u>No other developer or party may use it without our express written permission (i.e.</u> reassignment). We do not accept responsibility to any other third party for the whole or any part of the contents and we exercise no duty of care in relation to this report to any third party.

Where intrusive investigations have been completed, information, comments and opinions given in this report are based on the ground conditions encountered during the site work and on the results of laboratory and field tests performed during the investigation. However, subsoils are inherently variable and hidden from view such that no investigation can be exhaustive to the extent that all soil conditions are revealed. Conditions may therefore be present beneath the site that were not apparent in the data reviewed as part of this assessment. In particular, it should be noted that groundwater levels vary due to seasonal and other effects, and may at times differ to those measured during the investigation.

This assessment has been based to some extent on data acquired from Third Parties. This data has been accepted as correct and has not been subjected to any additional validation.

Unless specifically noted to the contrary, it should be assumed that this report has not been submitted to any other regulatory authorities for approval.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

2 Phase 1 Desk Study (Inc Preliminary Risk Assessment)

2.1 Introduction

There has been a **desk study** produced for the site, and the detailed findings are included in:

Table 2.1

Report type	Details	Comments
Phase 1 Preliminary	Desk Study report, 14-16 Tudor	This has been submitted to planning, but
Risk Assessment	Road, Hampton, TW12 2NQ,	there is no evidence (at 13/8/24) that it
(Desk Study)	January 23, Ref YEX4748	has been accepted and so signed off

The following sections contain information located/obtained by ourselves, with any new significant information from the above reports, added.

2.2 Desk Study

Table 2.2: Desk Study

-	
Planning conditions	We have inspected the planning portal for the site's permission 23/1175/FUL and found further site plans etc. The planning conditions contain the usual generic contaminated land conditions. Additionally, NPPF reminds developers (Cl 184) that they are responsible for providing developments that are free of significant risks (both contamination and geotechnical). Furthermore, there are ground assessment requirements within Building Regulations. Potential risks to groundworkers should also be considered.
Current Use of Site and Surroundings	On Site Conditions Disused vehicle service garage on the ground floor and an occupied apartment on the first floor. There are also garage buildings to the rear of the property. Within the
N=North E=East S=South W=West	ground floor of the main building there is hard-surfaced flooring with vehicle inspection pits. The garages to the rear have apparent asbestos cement roofs. In the Surroundings Primarily residential area, but with a former petrol station (now housing) directly
Historical Land	opposite (NW). On Site
Uses (from previous desk study maps)	Fields then detached building in the SW of the site by 1933. The building is replaced (by 1960) by the current larger building, in the NW of the site. In the Surroundings
	Fields and then increasingly developed (includes a garage (NW, <1934?) and builder's yard (N) within 50m of the site).
Aerial Photographs	Show nothing extra or significant.
Other	 Our research herein, and the desk study found: Planning consent 70/1733 was granted in November 1970 for the removal of three existing pumps and tanks (fuel) and installation of a 5000 gallon underground petrol storage tank. It is assumed that the earlier tanks were present at the site pre 1948, the earliest date which planning consents can be traced. marketing report refers to decommissioning of on site underground fuel tanks in 1998 by 'Tanksafe Ltd'. The tanks, all petrol, included a 1000 gallon (5000 litres) and 2no. 2000 gallon (10000 litres) tanks that were foam filled. A formal certificate of these works (Ref. 98/002) is included for reference. The locations of these decommissioned underground fuel tanks are not recorded,

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Local Authority (LA) Environmental Records Local Authority Petroleum Tank Search	 Three (3no.) representing fuel tanks. an applica directly oppo (5no) underg Also ground hydrocarbon Contrary to the drain appears suitable for S to buildings. The RSK site investig opposite side of the Groundwater towards the F from data con towards the <u>m</u> Free-phase pe Groundwater and TPH (prob A risk from petroleum hyd An Environmental se They supplied the fol Ground inves Part B list. Private water The records appear t enquiries (discussed A petroleum tank se Key points are as foll The original pla Esso. 	surface insp the filling p ation to rede posite the site ground storag dwater pur s. age strategy SUDS and the ation (2014) road (9, Tudo flow directio flow	on was previously anticipated to be to the south by, however the piezometric surface plan produced 4th April 2014 indicates a general flow direction rocarbons were found upon the groundwater. evated concentrations of benzene & xylene (Petrol), as was found (presumably from degradation of dered from the LA and is contained in Appendix F. ds: bort for the garage immediately NW. s list. thing that we do not already know from other dered from the LA and is contained in Appendix D. Instruction(?), was dated 24th July 1970 and was for
			changes to the fuel infrastructure, to provide a uilt?) dated 23 rd Dec 1970.
	Tank Ref & Capacity	Date of installation	Notes
	- (250g)(call this T0)	1946 (?)	Paraffin in rear yard. Possibly above ground (?).
	- (250g)(call this T00)	1946 (?)	Bunded above-ground Heating Oil in rear yard.
	- (500g?)	1946 (?)	Removed and replaced in 1970 by T1/T2/T3 below.
	- (500g?)	1946 (?)	
	T1 (2000g petrol)	1970	3-compartment single skin tank to replace existing
	T2 (2000g petrol)		1946 5000g tank. Believed to be at the exact same
	T3 (1000g petrol)		locations as the old tanks
	T4 (500g)		Paraffin. Appears to be underground and so formerly
	2 stago intercentor		petrol or diesel(?)
	3-stage interceptor		l -

Phase 1 & 2 Desk Study & Contamination Investigation

14 - 16 Tudor Road, Hampton

	The petroleum records also show that:
	 The petroleum license for the site expired in November 1994.
	 Tanksafe Ltd decommissioned the T1/T2/T3 tank by foam filling in 1998.
	 The status of T4 is unknown. The interceptors are believed to still exist.
	• There are no recorded incidents of leaks or spills at this site.
	Neither of the two neighbouring houses have a basement.
	The records contain no further detail. At some stage the pumps were removed.
	No further information about the tanks has been located.
	Full detailed information about the tanks is irrelevant. What is more important is if
	any contamination from them has gotten into the ground and for that we are checking
	every tank location for contamination anyway during Phase 2.
Anticipated	BGS Mapping Suggests:
Ground	 Fault Lines: None lie significantly close enough to the site.
Conditions	 Made ground (MG): None >1m thickness shown.
	 Drift Deposits: Taplow Gravel (TG).
	 Solid Geology: London Clay Formation (clay and silt).
	 The nearest relevant BGS boreholes (on the same geology) suggest:
	- Om to 1-1.5m: made ground, over
	 Im-2m: soft brown sandy gravelly CLAY (possibly absent on site), over
	 - 1.5-2m – 3.5-5m: very dense light brown (clayey) SAND & GRAVEL (TG).
	 >3.5-5m: London Clay (firm to start)
	The investigation just W of our site found:
	O to 0.4-1.5m: made ground (reworked, brown, sandy, gravelly clay)
	 0.4-1.5m to 4.0-4.25m: (dense) Taplow Gravel Member (f-c sands over f-c
	gravels or sandy gravel, occasionally slightly clayey)
	 over London Clay.
	Other
	From our significant experience, we'd expect ~0.5-2.5m of man-made ground.
Hydrology and	Watercourses: None within 250m.
Hydrogeology	 Source Protection Zones (SPZ): None within 250m.
,	 Abstractions: nearest are 843m E and 709m S (groundwater & surface water).
	 Aquifers: Superficial Deposits = Principal Aquifer. Bedrock= Unproductive strata
	 Groundwater (GW): expected to lie at 2.5-3m depth (ref the investigation just W)
	of our site).
Environmental	Flood risk data is contained herein, but a drainage engineer should be consulted to
Datasheets	assess and comment upon sources of flood risk. The site appears not at risk of
(from previous	flooding from surface waters, but at moderate-high risk from groundwater flooding.
desk study)	Other potentially significant aspects are:
	On Site
	No Radon protection is required for new buildings (<1% homes exceed action level).
	The probability result is only valid for properties above ground. All basement and
	cellar areas are considered to be at additional risk from high radon levels.
	In the Surroundings
	 Other potential sources are not considered significant as they all lie >109m away.
Landfills?	No licensed ones shown on or significantly near to the site.
Lanamor	No other potential unlicensed landfilling is evident.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Deterrial UVO				
Potential UXO	Yes			
Risk?	• From a basic map search (via Zetica), the Site is assessed as moderate # risk of			
	Unexploded Ordnance (UXO) being present. Furthermore: there are no strategic			
	targets shown near to the site; there are no post-WW2 airfields shown (which			
	could suggest WW2 airfields having been deleted from mapping of the time).			
	Bomb Map: n/a			
	#: Moderate: Areas indicated as having a bombing density of 15 to 49 bombs per 1000acre.			
Potential Ground	The following <i>Environmental/Contaminated-Land Type</i> risks could exist, which we			
Risks	recommend further assessment of:			
	• Petroleum vapours from possible impacted soils around the tanks.			
	• Methane as degradation product of the above.			
	• Impacted soils around the tanks, and infilled vehicle inspection pits, and their			
	risk to humans and groundwater.			
	Made ground, inc asbestos cement fragments close to buildings.			
	Nearby garages and petrol station.			
	There is no significant recorded Radon risk (<1% properties exceed action level).			
	There could also be <i>Geotechnical Risks</i> (e.g. to foundations, etc) which one should			
	consider assessment of:			
	 Shrink/swell risks especially from removal or retention of trees (a tree survey is recommended and especially before any are removed), 			
	Possible shallow groundwater (unsuitable for soakaways).			
	Possible sulphate attack on buried concrete.			
	Other risks:			
	 A need to expose existing foundations to establish any constraints. 			

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

2.3 Preliminary Conceptual Model & Risk Assessment

2.3.1 General

The following is <u>our</u> opinion of risks (rather than those presented within the desk study by others).

The assessment of contamination risks and other environmental risks uses the **Source-Pathway-Receptor** principle.

The site characterisation attempts to identify potential previous and existing **sources** of contamination (or environmental risk) on-site, as well as off-site ones sufficiently close to the site to potentially affect it. The conceptual model links the identified sources likely to cause harm, via **pathways** to identified critical **receptors**.

In the event of a change of land use to a more sensitive use, the town planning regime will require assessment of the new site development layout within the context of the sources of risk and introducing new exposure pathways. The assessment is also used to determine if the site, once developed, would be classed as "contaminated land" under the definition provided by the Part 2A of the Environment Act 1990 as defined in the Environment Protection Act 1995.

The conceptual model is therefore based on a number of identified source-pathway-receptor scenarios. For land to pose a risk (or be classified as "contaminated" under Part 2a) a significant pollutant linkage between source and receptor needs to be identified, which will include each component of the conceptual model.

Risk assessment is always based upon the <u>current</u> state of the site, <u>in case the client does</u> <u>nothing</u> with surfacing, potential hotspots, etc, during the (re)development. The risk assessment does not discuss the <u>post-development</u> risks at the site, because there are required to be no significant ones (Ref. NPPF).

The absence or removal of a source, or interception of a pathway, will 'break' the pollutant linkage and remove the risk.

The conceptual model is characterised by identification of plausible pathways between the following:

- **On-site** sources, which may impact **on-site** receptors.
- On-site sources, which may impact off-site receptors.
- Off-site sources, which may impact on-site receptors.

The hazard, consequence and degree of risk all remain as 'potential' until assessed by intrusive investigation.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

2.3.2 Preliminary Conceptual Model & Risks

Table 2.3: Potential Risks

Feature	Potential Risks and Contaminants of Concern [#] (CoC)
On-Site: Localised	
 Asbestos containing materials (ACM): As asbestos cement debris/fragments in the near- surface soils around buildings clad with asbestos. 	Asbestos fragments and loose fibres in the soils.
 Potential for automotive hydrocarbons tipped down drains (and so along surface water drainage runs), from spillages from the fuel pumps (impact on shallow soils) and during tank refilling via the direct-fill manholes (and so around and under tanks), under above-ground tanks (e.g. probable paraffin & heating oil), around petrol interceptors, fuel lines and vent pipes. 	Oils, Petrol, Diesel (TPH, PAHs). Chemical vapours.
On-Site: Site-wide	
Made ground	Heavy Metals, hydrocarbons (TPH, PAHs), asbestos.
Unexploded Ordnance.	Explosion. There is always a risk of UXO being present on any site, but for this site the potential presence, and risk to construction workers forming excavations, is considered very low.
Off-Site	
None.	

#: From industry profiles, experience, etc.

There are not considered to be any significant risks from:

- The remaining tanks themselves (since they have been emptied and foam-filled).
- \circ Radon Gas.
- The former petrol station, lying ~10m W of our site. Groundwater would be the migration pathway for any petroleum hydrocarbons. Groundwater flow direction was considered to be northwards and so not towards our site. That site was remediated some years ago (including removal of 5no. fuel tanks).

A **preliminary** conceptual model is indicated in the following tables (the model is finalised following intrusive site investigation, see Section 6).

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Hotspots could comprise along fuel lines, vent pipes & drainage runs, and around and under tanks and the petrol interceptors.

Table 2.4: On-Site to the On-Site Source – Pathway	v – Receptor Model

Source		Pathway	Receptor	Potential	
General	Hazard	rauiway	Receptor	Linkage?	
General impact (made ground) from former site usage, i.e Total soils concentrations	Contamination of groundwater by leached contaminants (leachate).	Migration of leachate through unsaturated zone; Then Migration through saturated zone/groundwater.	Groundwater	Unlikely at present due to the site's hard cover. Removal of hard cover to form gardens could increase the risk	
(e.g. heavy metals and hydrocarbons).	Impact on	Ingestion of and dermal contact with soil & household dust;	Construction workers.	Yes	
	Human health.	Inhalation of dust (indoor household and outdoor fugitive).	Site end-users.	Yes	
		Growing then eating food crops.	Site end-users.	Yes	
	Vegetation poisoning.	Plant root uptake.	Plants.	Yes, but unlikely	
Hydrocarbon vapours at hotspots	Explosion (accumulation of methane and volatiles).	Preferential flow paths into buildings through unsaturated zone. Inhalation of indoor vapours/gases and possible explosion.		Yes	
Ground Gases from degradation of petroleum hydrocarbons at hotspots.	Asphyxiation (resulting from elevated levels of carbon dioxide,	Preferential flow paths into buildings via piled foundations vibro columns, etc . Inhalation of indoor vapours/gases and possible explosion.	Site end-users	No new significant foundations are planned, and they would not require piling	
	methane etc).	Inhalation of outdoor		Negligible risk	
		vapours/gases.	Groundworkers	Yes	
Ground Gases from: - natural soils with organic content (e.g. peat, alluvium)	Explosion (accumulation of methane).	Preferential flow paths into buildings through unsaturated zone. Inhalation of indoor vapours/gases and possible explosion.		Unlikely	
 made ground with organic content. Landfill Gases from landfilled material within 	Asphyxiation (resulting from elevated levels of carbon dioxide,	Preferential flow paths into buildings via piled foundations vibro columns, etc . Inhalation of indoor vapours/gases and possible explosion.	Site end-users.	Unlikely	
say 250m of the site.	methane etc).	Inhalation of outdoor gases.		Negligible risk	
		-	Groundworkers	Unlikely	
Liquid contaminants Hotspots and impact to	Contamination of	Migration through unsaturated zone to groundwater .	Groundwater and/or	Yes	
soils:	groundwater.	Via piled foundations.	ecosystem.	n/a	
Petrol around and under the tanks.	Impact on Human health.	Permeation into PE Water supply pipes.	Human drinking water.	Yes	
Paraffin under the		Ingestion of and dermal contact	Site end-users	Yes.	
former tank locations		with soil.	Groundworkers	Yes	
UXO.	Explosion.	Hit during excavations using mechanical excavators.	Construction workers	Yes, but unlikely	

Linkages: likely to exist, might exist; unlikely to exist

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Source		Dathurau	Decentor	Potential
General	Hazard	Pathway	Receptor	Linkage?
Total soils concentrations (e.g. heavy metals and hydrocarbons):	Contamination of groundwater.	Migration of leachate through unsaturated zone; Then Migration through saturated zone/groundwater.	Off-site groundwater	Yes
General impact (made ground) from former site usage.	Impact on Human health.	Inhalation of dust (indoor household and outdoor fugitive).	Adjacent land users.	No
Contaminated groundwater due to impact from chemical hotspots in soil.	Contamination of groundwater.	Migration through saturated zone/groundwater.	Off-site groundwater	Yes
Gases from degradation of petroleum hydrocarbon hotspots Hydrocarbon vapours	Explosion (accumulation of methane and volatiles) Asphyxiation (resulting from elevated levels of carbon dioxide, methane etc).	Preferential flow paths into buildings through unsaturated zone, Inhalation of indoor vapours/gases and possible explosion.	Adjacent land users.	Yes, but unlikely

Table 2.5: On-Site to Off-Site Source – Pathway – Receptor Model

There are not considered to be any significant off-site to on-site pathways or risks.

As usual, we plan to undertake a **walkover survey** (to confirm the suspected risks and to identify any new ones), at the start of the first day of Phase 2 siteworks. If required, then the Phase 2 scope will be immediately modified in order to pick up newly identified potential risks. Photographs of the site condition will also be taken.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

3 Phase 2 Site Investigation

3.1 General

An intrusive site investigation was carried out on the 10th and 11th October 2024 and employed Dynamic (windowless) Sampling (DS) and a dynamic probe. The client dictated the use of a dynamic sample rig, rather than our preferred auger rig.

The holes are summarised as follows, with any targeted and non-targeted holes/sampling shown:

Exploratory Hole ID	Technique	Hole Depth (mBGL)		Well Depth (mBGL)	Targeted?	Comments & Reasons for Holes
		Target	Actual			
DS1	Dynamic	1m below	3.0	2.0	Yes, ~4no.	Need to get wells all
DS2	(windowless)	GW level	3.0	3.0	underground fuel	around the site and
	sampling	(thus 3.5-4m			tanks	to target fuel tanks
DS3		expected) or	4.0	2.9	Yes, former fuel tank	
DS4		below base of	0.65	-	Yes, Fuel line runs	
DS5		tanks (say	3.6	3.6	Yes, Lube store	
DS6		expected 3m)	3.0	2.5	Yes, fuel tanks	

Table 3.1: Exploratory Hole Details

DS4 was halted by a 2nd/buried slab. We managed to make a small hole through it and then continued to investigate the soils using a dynamic probe.

A plan showing the exploratory hole locations is presented as Appendix B. Such also shows the locations of the potential sources of contamination/risk.

Final hole locations are measured or estimated and were not surveyed.

3.2 Dynamic Sampling

6no. dynamic sample holes (DS)(windowless, WS) were advanced using a tracked drilling rig.

The dynamic sampling retrieved continuous soil samples from the holes, which were logged by an onsite engineer. In addition, SPT/SPT(c) tests were taken at regular intervals to give an indication of the strength/density profile of the underlying strata.

Representative samples were taken for chemical laboratory analysis.

Detailed log sheets for the dynamic sample holes are included in Appendix C.

3.3 Dynamic Probing

1no. dynamic probe test was advanced using a tracked drilling rig. This was used to inform the depth to the surface of the London Clay

Dynamic probe results are included in Appendix C.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

3.4 Backfilling and Installations

On completion, most holes were fitted with (gas and) groundwater monitoring standpipes. For each well, the standpipe comprised a 50mm internal diameter (ID) UPVC riser pipe with screw connectors. The lower part (the "response zone") is slotted to allow the free ingress of water and gas. The annulus between the riser pipe and the borehole wall was filled with pea gravel. Above the gravel and slotted pipe, the annulus was filled with a cement bentonite grout and a lockable flush stopcock cover was installed at ground level. Details are shown on the logs. For all wells, the tops of the response zones lie at 1m depth.

No gas risk was expected, but gas taps were fitted and gas measurements were taken whilst on site measuring groundwater levels.

The wells should be protected and retained until the drainage engineer no longer requires groundwater information and until the LA has accepted the groundwater and ground gas risk assessment.

On completion DS4 was backfilled with arisings, as shown on the log.

Table 3.2: Well Details

Exploratory Hole ID	Well Depth (mbgl)	Response Zone (mbgl)(RZ)	Comments
DS1	2.0	1.0-2.0	RZ within inert MG, but having hydrocarbon odour.
DS2	3.0	1.0-3.0	RZ within inert MG.
DS3	2.9	1.0-2.9	RZ primarily within non-organic natural soils.
DS5	3.6	1.0-3.6	RZ within non-organic natural soils.
DS6	2.5	1.0-2.5	RZ within inert MG, but having hydrocarbon odour.

3.5 In-Situ Testing and Monitoring

Whilst on site we undertook SPT tests in one hole for future reference (e.g. any foundation design). Similarly, the probe results can be used for, say any foundation design.

Given the absence of any gas risk, then return visits to site were just undertaken to measure groundwater levels, but whilst there we measured gases and gas flow rates anyway, to confirm our opinion of there being no risk.

Groundwater samples were obtained for potential laboratory testing using low flow techniques, because petroleum hydrocarbons had been noted in the soils at a few well locations).

3.6 Sample Collection and Laboratory Analysis

Samples obtained during the investigation were subjected to a range of chemical testing at appropriate UKAS accredited laboratories.

Soil samples were sent for **chemical laboratory analysis** to be analysed for the *contaminants of concern* detailed in Table 3.3, as follows.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Table 3.3: Soil Sample Chemical Tests

Testing:	Number of Samples Tested	
	Made Ground	Natural Soils
AGGC Full suite comprising: arsenic, cadmium, copper, total chromium, chromium VI, lead, mercury, nickel, selenium, zinc, Speciated Polyaromatic Hydrocarbons (PAH), speciated Total Petroleum Hydrocarbons (TPH-CWG), soil organic matter content (SOM), pH and soluble sulphate.	4 (for soils coming to within 0.15-0.45mbegl)	0
Asbestos Screen & ID.	4	0
Speciated TPH (CWG) & BTEX & MTBE	5 (4no. of which are at 2-2.6m depth)	1

Deep soils were tested near to the tank bases, but most of such samples were (deep) made ground.

10no. groundwater samples were obtained from completed wells using low-flow sampling (due to the risk of free product, or mobile hydrocarbons in the surrounding soils). Water samples were analysed for the *contaminants of concern* detailed in Table 2.3, as follows.

Table 3.4: Groundwater Sample Tests

Testing:	Number of Samples Tested
Speciated TPH (CWG) & BTEX & MTBE	10
pH and sulphate (for buried concrete design).	2

All soil samples were collected using either clean stainless steel utensils or clean disposable gloves and placed directly into clean containers provided by the laboratory.

The chemical laboratory test results are presented in Appendix H.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

4 Ground Conditions

4.1 General

The following table provides a summary of the strata encountered in the exploratory holes and the depth to the base of each stratum. MG = man-made ground.

Table 4.1: Typical Strata

Strata	Depth Enco	untered (mBGL)	Typical	Description & Commonts
Strata	Тор	Bottom	Thickness (m)	Description & Comments
	0	0.15 to 0.2		All holes.
MG: concrete	0.3	0.35	0.15	DS2, 2 nd (buried) slab.
	0.2	0.6		DS4, 2 nd (buried) slab
MG: clays, sands,		1.0 to 1.9		Mixed grading.
gravels, cobbles	0.15 to 0.35	also >3.0, >3.0	-	Clays are soft.
gravels, cobbles		aiso >3.0, >3.0		Base of MG not proven in DS2 and DS6.
MG: Black Ash	1.10 to 1.15	1.25 to 1.35	0.2	DS1 and DS6 only
SAND/GRAVEL				
and	1.0 to 1.9			Clays are soft and firm.
CLAY.	1.0 10 1.9	>4.0	-	Sands and gravels are loose, dense & medium dense.
Alternating layers.				

Anthropogenic components of the made ground comprised, brick, metal, rare glass, and occasional concrete and ash layers.

4.2 Groundwater

Groundwater observations were as follows:

	Depth to Groundwater (mBGL)			
Exploratory Hole	During site works	Standing Depths Post-site works		
DS1	1.75	1.71, 1.96		
DS2	1.50	1.57, 1.83		
DS3	2.70	2.38, 2.57		
DS4	Dry to hole base at 0.65m.	-		
DS5	2.75	2.42, 2.60		
DS6	2.75, rose to 2.40	1.84, 2.18		

Using just the **depths (mbegl)**, then these depths suggest groundwater flow to the east, during both monitoring visits.

That means that the petrol station directly to the west of the site could have impacted our site historically. That site was remediated when redeveloped, but there is still a chance of residual hydrocarbons in the soils under the road between the two sites.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

4.3 Contamination Indications

Indications of contamination are noted on the logs and are summarised as follows (shaded cells show positive indications).

No free product was observed during site works and only sheens existed during monitoring.

Hole Ref	Stratum or Groundwater	Visual and Olfactory Indications (Shaded cells show positive indications (e.g. blue for GW))					
	MG	Slight hydrocarbon odour at 1.35-1.9m depth					
	Natural soils	None					
DS1	GW	None noted during drilling. During monitoring visit number: 1. Weak h/c odour noted, no sheen 2. Organic odour, no sheen					
	All Stratum	None					
DS2	GW	None noted during drilling. During monitoring visit number: 1. Weak h/c odour noted, no sheen 2. Organic odour, no sheen					
	All Stratum	None					
DS3	GW	 None noted during drilling. During monitoring visit number: Weak h/c odour noted and v.faint sheen noted. h/c odour, no sheen 					
	All Stratum	None, but refused too shallow (0.65m) to comment					
DS4	GW	n/a					
	All Stratum	None					
DS5	GW	 None noted during drilling. During monitoring visit number: Weak h/c odour and v.faint sheen noted h/c odour, no sheen 					
	MG	Strong hydrocarbon odour at 2.4->=3.0m depth					
DS6	GW	None noted during drilling. During monitoring visit number: 1. h/c odour and oily sheen noted 2. h/c odour and v.faint sheen					

 Table 4.3:
 Summary of Visual and Olfactory Contamination Observations

DS6 is the worse for impact, followed by DS3 & DS5, which lie (at the rear of the site) ENE of DS6.

PID readings recorded during monitoring are summarised in the following table.

Table 4.4: Summary of PID Readings

Hole Ref	Steady State PID Reading (ppm): 25 th Oct 2024
DS1	0.6
DS2	0.2
DS3	0.5
DS5	0.7
DS6	0.3

4.4 Underground Services Encountered

None were found in the inspection pits, nor subsequent exploratory holes.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

5 Assessment of Contamination & Environmental Risks

5.1 Tier 1 Generic Quantitative Risk Assessment - Soil Risks to Humans

5.1.1 General

Results for soils that lie below about 1m depth have not been assessed for human health, but have been used for risks to groundwater.

The proposed redevelopment of the Site is residential with some private gardens, therefore, to identify chemicals of potential concern, the analytical data has initially been compared against the relevant available guidelines for *residential with plant uptake* end-use (i.e. with and food crops, including fruit trees). *Residential without plant uptake* guidelines are given for information.

The maximum results, have been used for subsequent comparison with the following 4no. sets of GAC:

1. Firstly against Category 4 (Cat 4) Screening Levels, SP1010, 24th September 2014, by CL:AIRE.

2. Then:

- a. CI:AIRE/EIC/AGS **Soil Generic Assessment Criteria** (GAC) for Human Health Risk assessment, January 2010.
- b. The LQM/CIEH **S4ULs** for Human Health Risk Assessment. Ref: S4UL3269, released January 2015 (with update in August 2015), Land Quality Press, Nottingham.
- c. **EA Science Reports** SC050021, SR2 & SR3.

5.1.2 Metals

The CLEA model has separate Soil Guideline Values (SGVs) for different forms of mercury. However, the SGV report states that for general surface contamination, and to simplify the assessment, the chemical analysis results for total mercury content can just normally be compared with the SGVs for inorganic mercury (e.g. 40mg/kg for private gardens)(this is because the equilibrium concentrations of elemental and methyl mercury compounds are likely to be very low).

The following table summarises the results (**Bold** and/or highlight shows exceedances):

Compound	No. of samples	Maximum values (mg/kg)	SGV or GAC (1% SOM) mg//kg (Residential <u>with</u> plant uptake)	SGV or GAC (1% SOM) mg/kg (Residential <u>without</u> plant uptake)
Arsenic	4	42.6	37	40
Cadmium	4	4.8	11	85
Chromium	4	298	910 #	910 #
Chromium VI	4	0.19	6	6
Copper	4	689	2,400	7,100
Mercury (Inorganic)	4	8.7	40	56
Nickel	4	54.1	180	180
Lead	4	266,281,1100	200	310
Selenium	4	<3	250	430
Zinc	4	1,440	3,700	40,000

Table 5.1:Values for Metals in Soils

#Chromium III

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Lead concentrations exceeded the **with- and without- plant uptake GAC** in DS1 and DS3. Arsenic concentrations exceeded the **with- and without- plant uptake GAC** in DS3

5.1.3 Organics – General

Soil Organic Matter (SOM) tests were undertaken on 4no. samples. The results ranged from 2.66% to 23.2% and so a conservative figure of 1% SOM has been adopted when selecting the Generic Assessment Criteria (GAC) screening values for organics in the following sections.

5.1.4 Organics – TPH

The following table summarises the results (**Bold** and/or highlight shows exceedances):

Compound	No. of samples	Maximum values (mg/kg)	SGV or GAC (1% SOM) mg/kg (Residential <u>with</u> plant uptake)	SGV or GAC (1% SOM) mg/kg (Residential <u>without</u> plant uptake)
Aliphatic				
EC 5-6	4	<0.1	42	42
EC> 6-8	4	<0.1	100	100
EC> 8-10	4	<0.1	27	27
EC> 10-12	4	4.0	130	130
EC> 12-16	4	10.2	1,100	1,100
EC> 16-35	4	173.1	65,000	65,000
EC> 35-44	4	19.7	65,000	65,000
Aromatic				
EC 5-7(benzene)	4	<0.01	70	370
EC> 7-8 (toluene)	4	<0.01	130	860
EC>8-10	4	<0.01	34	47
EC>10-12	4	12.2	74	250
EC>12-16	4	124	140	1,800
EC>16-21	4	615, 820	540#	1,900
EC>21-35	4	1680	1,500#	1,900
EC>35-44	4	281	1,100	1,900

 Table 5.2:
 Values for Speciated Hydrocarbons in Soils

#: 2.5% SOM GAC used (and shown) since the results exceeded the conservative 1% SOM GAC

C12-21 aromatic concentrations exceeded the **with-plant uptake GAC** in DS2 and DS3.

All BTEX (petrol)(Benzene, Toluene, Ethylbenzene, Xylene) results were below the limits of detection (LOD).

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

5.1.5 Organics – Polyaromatic Hydrocarbons (PAHs)

The following table summarises the results (**Bold** and/or highlight shows exceedances):

Compound	No. of samples	Maximum values (mg/kg)	SGV or GAC (1% SOM) mg/kg (Residential <u>with</u> plant uptake)	SGV or GAC (1% SOM) mg/kg (Residential <u>without</u> plant uptake)
Naphthalene	4	2.92	5.6#	5.6#
Acenaphthylene	4	4.97	170	2,900
Acenaphthene	4	7.06	210	3,000
Fluorene	4	12.4	170	2,800
Phenanthrene	4	136.0	220#	1,300
Anthracene	4	33.4	2,400	31,000
Fluoranthene	4	216.0	280	1,500
Pyrene	4	174.0	620	3,700
Benzo(a)anthracene	4	14.9, 75.2	11#	14#
Chrysene	4	72.7	22#	31#
Benzo(b)fluorathene	4	13.5, 76.6	3.3#	4.0#
Benzo(k)fluorathene	4	35.7	77	110
Benzo(a)pyrene	4	10.3, 47.7##	2.7#	3.2#
Indeno(123-ed)pyrene	4	37.4	36#	45
Dibenzo(ah)anthracene	4	1.55, 10.4	0.28#	0.32#
Benzo(ghi)perylene	4	28.9	320	360

Table 5.3: Values for Speciated PAH in Soils

#: 2.5% SOM GAC used (and shown) since the results exceeded the conservative 1% SOM GAC ##:SOM for this result was 23.3%

All of the PAH exceedances (generally exceeding both the with- and without- plant uptake GAC) were in DS2 and DS3.

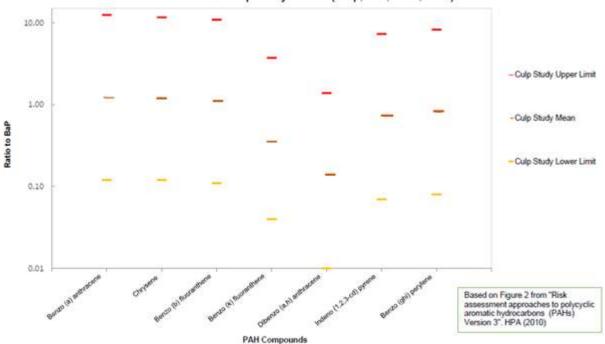
5.1.6 Other

Asbestos was screened for in 4no. made ground samples and none was found.

5.2 Tier 2 Detailed Quantitative Risk Assessment - Soil Risks to Humans

The purpose of *detailed quantitative risk assessment* (DQRA) is to establish and use more detailed site-specific information and criteria to decide whether the elevated results do indeed pose unacceptable risks. Whether such further assessment is worthwhile can depend on a number of factors, especially whether the developer is happy with the currently required clean cover thickness.

The driver for risks from the soils appears to be **PAH concentrations**, and then **Lead concentrations**.


The Lead in the soils is likely to be due to Leaded fuel and so bio-accessibility tests are considered unlikely to lower the bio-accessible fraction of the GAC and so unlikely to change the acceptable concentrations.

The assessment of PAHs as **single chemicals** is likely to be inappropriate for the majority of sites, due to the fact that they are usually present in soils as **mixtures**. An assessment of **mixtures** was therefore judged by SOBRA (Society Of Brownfield Risk Assessment)(2010) to be more suitable, since it takes into account the fact that **PAH mixtures** have been found to be comparatively more toxic than individual PAH compounds, and a mixture assessment will therefore provide a more

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

appropriate level of conservatism when assessing exposure to soil. Such considerations underpin the surrogate marker approach.

Therefore, in accordance with HPA guidance 13 and as detailed in SP101014, PAH profiling has been undertaken to determine the suitability of the Benzo(a)pyrene (BaP) surrogate marker approach in assessing the significance of the elevated PAHs. The Culp Study found the PAH profile across most sites to be as the plot below.

Profile of PAHs in selected soil samples expressed as a ratio to benzo(a)pyrene compared with Culp Study results (Culp, S.J., et al., 1998)

We had single PAH exceedances as follows:

Table 5.4 Exceedances by Single PAHs

Exploratory	DS2, 0.4m		DS3, 0.2m			
Exploratory Hole Ref:	Result (mg/kg)	Ratio to BaP	Result (mg/kg)	Ratio to BaP		
BaA	14.9	1.45	75.2	1.58		
Chrysene	14.3	1.39	72.7	1.52		
BbF	13.5	1.31	76.6	1.61		
BkF	6.2	0.60	35.7	0.75		
BaP	10.3		47.7			
Dibenzo'	1.55	0.15	10.4	0.22		
Indeno	7.59	0.74	37.4	0.78		
BghiP	5.75	0.56	28.9	0.61		

Green= within Culp study ranged and thus BaP suitable as surrogate marker.

All of our **single PAH** ratios to BaP, were within the Culp ranges and so BaP is a suitable surrogate marker for comparison against the BaP GAC.

24-077 14-16TudorRd Phase1and2 GeoReport.docx

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Our BaP concentrations in DS2 and DS3 still exceed the GAC, but the required clean cover thickness (based on BaP alone) is now reduced (other single PAH concentrations can be ignored).

5.3 Soil Risks to Plants (Phytotoxicity)

It is not possible to produce a definitive list of phytotoxic substances on account of numerous variables. However, a number of metals are repeatedly cited as commonly occurring priority pollutants. As a result, the following list is adopted as indicators of the potential for phytotoxicity: As, B, Cr, Cu, Ni and Zn.

For the guideline values, the most authoritative source is the British Standard for topsoil (**BS3882**), but this only lists three elements. CLR 11 states that the **ICRCL Guidance Note 70/90** can be used for initial screening criteria. This approach has been adopted where BS3882 is lacking, but where an ICRCL 70/90 criterion is lacking, the next lowest criterion, has been adopted.

Compound	Generic Assess	ment Criteria (GA	GAC Source		
compound	рН 5.0 - <5.5	рН 5.5 - <6.0	рН 6.0 - <7.0	pH >7.0	
Boron		3			1987: ICRCL 59/83 (also New Zealand)
Chromium VI		25			1990: ICRCL 70/90
Chromium III		400			1998: MAFF Agricultural Practice for
Arsenic		250 ("applicable	to plants")		sewage sludge
Copper (Cu)	80	100	135	200	2015: BS3882
Nickel (Ni)	50	60	75	110	&
Zinc (Zn)	200	200	200	300	1996: DoE #

Table 5.5: GAC for Phytotoxic Risks

#: Department of the Environment Publication, Code of Practice for Agricultural Use of Sewage Sludge, 1996

The pH results varied from 8.1 to 10.2 and so concentrations determined of Cu and Zn exceeded the stated guidelines. Additionally, there were a few significant results for other heavy metals (which can also be potentially phytotoxic).

From our experience however, we do not anticipate these concentrations to pose any significant risk to plants.

5.4 Soil Risks to Water Supply Pipes

The future routes of water supply pipes had not been provided at the time of this report, hence the investigation and sampling strategy may not be fully compliant with UK Water Industry Research (UKWIR) recommendations.

To assess possible risks to proposed water supply pipes, the laboratory test results have been subject to initial assessment against the GAC presented in UKWIR. Full testing has not been undertaken to determine the suitability of metallic pipe materials.

It is assumed that water pipes will be placed no deeper than 1m below existing ground level and results that relate to strata below 1m are not considered in the following table. Assessment of the results (**for <1.2m depth**) versus the GAC is summarised as follows:

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Table 5.6: GAC for Water Supply Pipes

Devementer	GAC (mg/kg)		Results exceeding the GAC (mg/kg)		
Parameter	PE pipes	PVC pipes	PE pipes	PVC pipes	
BTEX (<c11)< td=""><td>0.1</td><td>0.03</td><td><0.06</td><td><0.06</td></c11)<>	0.1	0.03	<0.06	<0.06	
Mineral Oil C11-C20	10	Suitable	14.1, 227, 260.7, 37.3	None	
Mineral Oil C21-C40	500	Suitable	926, 2141	None	

Other parameters within UKWIR have not been assessed since they are not potential contaminants of concern for this site.

Visual or olfactory indications of chemicals, or petroleum hydrocarbons (e.g. oil, petrol, diesel) were noted on site. Such indications comprised:

- Slight hydrocarbon odour at 1.35-1.9m depth in DS1,
- Strong hydrocarbon odour at >2.4m depth in DS6.

Both locations are on the forecourt around the tanks. Although at DS6 the contam is too deep to affect pipes, there is expected to be shallow contam from forecourt spillages.

Given that impacted soils may lie at proposed pipe levels, then we would recommend that barrier pipe materials be used on site for any new pipework. It would be prudent to replace existing water pipes with such.

Given the above, then we consider that the local water supply company might accept the use of PVC water supply pipe materials on site, but are more likely to require barrier pipes

It is recommended that this assessment be given to the relevant water supply company at an early stage (ideally prior to an application for planning permission being made) to confirm its requirements, which may not necessarily be the same as those recommended by UKWIR.

5.5 Tier 1 Generic Quantitative Risk Assessment – Risks to Water Resources

5.5.1 Soil Risks to Water Resources

Groundwater has been found to stand at ~1.6-2.6m depth.

From Table 4.3 there were:

- Slight hydrocarbon odour at 1.35-1.9m depth, in DS1 and
- Strong hydrocarbon odour at 2.4->=3.0m depth in DS6.

Soils testing found the following notable findings:

- Aliphatic C8-10: 383mg/kg in DS6 at 2.6m depth
- EPH C10-12: 362mg/kg in DS6 at 2.6m
- EPH C12-16 466mg/kg in DS6 at 2.6m
- No BTEX found.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

5.5.2 Groundwater Risks to Water Resources

Groundwater samples have been collected from the 5no. wells and tested for hydrocarbons. See table below.

Because the nearest critical receptor is the underlying aquifer and hence current or future nearby water abstractions, then the results of groundwater tests are compared against the UK Drinking Water Standards (DWS), the World Health Organisation (WHO) guidelines and EA publications. The Environmental Quality Standards (EQS) for freshwater systems are also given for reference.

Table 5.7: Maximum Values for Contaminants in Groundwater (Bold and/or highlight shows exceedances)

Analyte	Samples Tested	Maximum values, or all values exceeding GAC	Maximum values, or all values exceeding GAC	Freshwater EQSI	UK Drinking Water
		Visit 1	Visit 2		
Benzene (ug/l)	10	<1	<1	10	1
Toulene (ug/l)	10	<1	<1	50	700
EthylBenzene (ug/l)	10	<1	3.7	20	300
Xylene (ug/l)	10	<2	10.1	30	500
MTBE (ug/l)	10	<1	26.1, 185, 282	-	15
Total Petroleum Hydrocarbons (TPH)(mg/l)	10	3.18	0.0238, 0.357, 1.31, 6.95,36.9	0.01	0.01

Groundwater during visit 2 (and therefore samples) were \sim 0.2-0.35m deeper than during visit 1. In summary....

Table 5.8 Discussion of Results

Visit No.	Exceedances in water	Comments
1	TPH in DS6 (forecourt)	-
2	TPH in <u>ALL</u> wells	Concentrations suggest the source to be nearest DS6 with a plume possibly heading ENE past DS3 (and clipping DS5)
	MTBE in DS1 & DS2 (forecourt) and DS5 (rear of site)	MTBE suggests leakage or spillages of modern unleaded petrol. DS5 could be picking up the edge of a plume as it was the lower of the three exceedances.

5.6 Tier 2 Detailed Quantitative Risk Assessment – Risks to Water Resources

Given the remediation that we are recommending (full removal of all tanks in order to reveal impacted soils around and below them), then we have not currently undertaken a Tier 2 detailed quantitative risk assessment (DQRA).

5.7 ``Ground/Landfill Gas Risks to Humans

No potential sources of ground gas have been found under the site (i.e. soils with significant organic content that could degrade) and none (including from historic or recent landfills) have been found close enough to the site to pose potential significant risk.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Methane had the potential to be present as a petroleum degradation product. Gases were checked during the 2no. site visits to obtain groundwater samples.

In order to assess the significance of potential ground gases at the site measured concentrations (by volume in air) and flow rates have been used to generate Gas Screening Values (GSVs). These have then been compared to CIRIA Report 665. BS8485 has also been referenced.

It is recommended that the gas risk should be assessed by the consideration of pathways to human receptors as follows:

- Gas entering the dwelling through the substructure and building up to hazardous levels.
- Subsequent householder exposure in garden areas, which can include outbuildings and extensions and where there may also be excavations for garden features.

The following ground gas parameters have been recorded over 2no. gas monitoring rounds (results are contained in Appendix G):

0	A maximum 'initial' methane con	Below limit of detection (<0.1%)	
0	A maximum 'initial' flow rate of	0.1 l/hr	
0	A maximum 'steady state' carbon concentration of	2.6%	
0	A maximum 'steady state' flow rate of		0.1 l/hr
0	Atmospheric pressures were 1003mb (steady), 101		۱mb (steady) <i>,</i>

Negative flow rates are taken as being zero since they do not indicate gas generation, but usually indicate dropping water levels within monitoring wells, or well/atmospheric pressures equalising.

The worst-case Gas Screening Values (GSV) for both methane and carbon dioxide have been calculated, in order to see if any gas protective measures are required in the new development.

The GSV for methane is calculated to be 0l/hr and for carbon dioxide it is 0l/hr.

The strategy (later) is to remove petroleum hydrocarbon hotspots and so remove any potential to generate methane.

In accordance with CIRIA C665 and NHBC guidance, the type of buildings proposed are residential (not "low-rise")(and no vented void) and fall under the CIRIA C665 guidance.

The site falls into 'Characteristic Situation' **1 (CS1)(very low hazard)** in Table 8.5 of CIRIA 665. This indicates that no special protection measures are required in the new buildings.

Note that gas protection should be designed in accordance with BS8485 and by someone familiar with the standard.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

5.8 Radon Risk to Humans

The chance of a property having a radon level that is at least as high as the **Action Level**, is called the **Radon Potential**.

For this area the environmental data sheets show the Radon Potential to be **0-1% (low risk)**(i.e. up to 1% of properties in this area could <u>exceed</u> the action level), for which **no radon protection** is required for new buildings or extensions on site.

Even though the Radon potential shows "no" Radon protection to be required, many developers are nonetheless adopting "Basic" protection and we would recommend such be considered here. The reason is that protection is obligatory only where >3% of properties exceed the Radon Action Level, but that still leaves 3% potentially at risk from Radon.

5.9 Chemical Vapour Risks to Humans

Chemical vapours were noted in the unsaturated zone in DS1, and such have the potential to exist in other parts of the forecourt area (as a result of refilling of the tanks with fuel, and refuelling cars).

5.10 Final Conceptual Model and Risk Assessment

The preliminary conceptual model and risk assessment has been updated in light of the findings of the Phase 2 work as shown in the following tables.

The method used for risk evaluation is qualitative based on interpretation of the available geoenvironmental and geotechnical data in order to provide an overall impression of the potential risks present at the site. This is described in terms of two variables as follows:

- "Probability" being the likelihood that a hazard is present on site or in the surroundings.
- "Consequence" being the potential outcome of the hazard.

The combination of these is used to define the risk. Clearly if a hazard is not present there can be no consequence. Similarly hazards that are potentially present will have different degrees of potential consequence. The combination of the presence of a hazard, and the potential severity of outcome of such a hazard within any event, can be used to manage the approach to management of the risk.

The **probability** (likelihood) of an event can be classified on a four point system using the following terms and definitions based on CIRIA C552:

- **Highly likely**: The event appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution;
- Likely: It is probable that an event will occur, or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term;
- Low likelihood: Circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term;
- **Unlikely**: Circumstances are such that it is improbably the event would occur even in the long term.

An extra class is added to those of C552, that of "**negligible likelihood**", which is an amount or effect that is negligible, i.e. is so small that it is not worth considering or worrying about.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

The **consequence** (severity) can be classified using a similar system also based on CIRIA C552. The terms and definitions relating to consequence are:

- Severe: Short term (acute) risk to human health likely to result in 'significant harm'¹. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short term risk to an ecosystem or organism forming part of that ecosystem¹;
- **Medium**: Chronic damage to human health ('significant harm'¹), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem¹;
- Mild: Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm'¹). Damage to sensitive buildings, structures or the environment; and
- **Minor**: Harm, not necessarily significant, but that could result in financial loss or expenditure to resolve. Non-permanent human health effects easily prevented by use of personal protective clothing. Easily repairable damage to buildings, structures and services.

(¹ Defined in Defra Circular on "Contaminated Land', EPA 1990 Part 2a", 01/2006, September 2006.)

Once the probability of an event occurring and its consequence have been classified, a risk category can be assigned as in the following table.

			-					
			Consequence					
			Severe	Medium	Mild	Minor		
	ity	Highly likely	Very high	High	Moderate	Moderate/Low		
	bility	Likely	High	Moderate	Moderate/Low	Low		
	bba	Low likelihood	Moderate	Moderate/Low	Low	Very Low		

Low

Table 5.9:Risk Classification System (CIRA 552)

Moderate/Low

Unlikely

Ž

	Risk Level	Action		
Low to Very Low None				
Moderate to Undertake appropriate mitigation measures to reduce the risk level by appropriate on-site p				
	Moderate/Low	additional cost.		
	High to Very High	Designers should take such risks into account and avoid or reduce risk level to acceptable levels. Additional		
		resources required.		

Very Low

Very Low

The following duplicates the **preliminary potential risks** from Table 2.3 and discusses whether they have now been proven to be risks.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Table 5.10: Proven Risks

Feature	Now proven to be a risk?				
On-Site					
Asbestos containing	None have been found but such still could exist				
materials (ACM) in the					
near-surface soils across					
the entire site.					
Potential for automotive	Yes				
hydrocarbons in the soils					
Made ground	Yes				
Unexploded Ordnance.	A risk could always exist				
Off-Site					
Remediated and	Not originally thought to be a risk due to lying, what was thought to be,				
redeveloped Petrol station	across hydraulic gradient from our site. Groundwater depths, plus the				
immediately west of the	finding of petroleum impact to groundwater at the back (east of the site),				
site.	suggests groundwater flow direction is now eastwards. That means that				
	the petrol station directly to the west of the site could have impacted our				
	site historically. That site was remediated when redeveloped, but there is				
	still a chance of residual hydrocarbons in the soils under the road between				
	the two sites.				
exists or likely to exist, might exist; unlikely to exist					

The tables that follow provide a summary of the data reference points, together with an indication of the hazards, probabilities, consequences and degrees of risk.

This assessment indicates the site and environs are considered as **Very Low to High** risk with respect to contamination. **Indicators above low risk** comprise:

- Composition of made ground and risks to ground workers and site end-users.
- Hydrocarbon impacted soils and risks to ground workers and site end-users.
- Hydrocarbon impact to groundwater and the risks to off-site groundwater abstractions
- The always possible risk of UXO presence.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Table 5.11: On-Site to On-Site Source – Pathway Receptor Model

Source		Pathway	Becenter	Drobability	Conconverse	Potential
General	Hazard	Pathway	Receptor	Probability	Consequence	Risk?
General impact (made ground) from former site usage	Contamination of groundwater	Migration of leachate through unsaturated zone; Then Migration through saturated zone/groundwater.	Groundwater	Low likelihood	Mild	Low
Total soils	Human health	Ingestion of and dermal contact with soil & household dust;	Construction workers	Highly Likely	Medium	High
concentrations (e.g. heavy metals		Inhalation of dust (indoor household & outdoor fugitive).	Site end- users	Likely	Medium	Moderate
General impact (made ground) from former site usage Total soils concentrations (e.g. heavy metals and hydrocarbons): Hydrocarbon vapours at hotspots Ground Gases from degradation of petroleum hydrocarbons at hotspots. Ground Gases from: - natural soils with organic content (e.g. peat, alluvium) - made ground with organic content. Landfill Gases from landfilled material within say 250m of the site. Liquid contaminants Hotspots and impact to soils: Petrol around and under the tanks. Paraffin under the former tank		Growing then eating food crops.	Site end- users	Low Likelihood	Medium	Low / moderate
	Vegetation poisoning.	Plant root uptake	Plants	Low likelihood	Mild	Low
Hydrocarbon vapours at	Explosion (accumulation of methane and	Preferential flow paths into buildings through unsaturated zone Inhalation of indoor vapours/gases and possible explosion.		Low Likelihood	Medium (Inhalation of indoor vapours/ gases) Severe	Low/ moderate
	volatiles)		Site end-		(possible explosion)	Moderate
degradation of petroleum hydrocarbons at hotspots.	Asphyxiation (resulting from elevated levels of carbon dioxide, methane etc).	Preferential flow paths into buildings via piled foundations vibro columns, etc Inhalation of indoor vapours/gases and possible explosion.	users	Unlikely (limited new foundations planned and not piled)	Medium	Low
		Inhalation of outdoor		Unlikely	Medium	Low
		vapours/gases.	Groundworkers	Likely	Medium	Moderate
Ground Gases from: - natural soils with organic content (e.g. peat, alluvium)	Explosion (accumulation of methane).	Preferential flow paths into buildings through unsaturated zone. Inhalation of indoor vapours/gases and possible explosion.	Site end-	Unlikely	Medium	Low
 made ground with organic content. Landfill Gases from landfilled material 	Asphyxiation (resulting from elevated levels of carbon dioxide, methane etc).	Preferential flow paths into buildings via piled foundations vibro columns, etc . Inhalation of indoor vapours/gases and possible explosion.	users.	Unlikely	Medium	Low
within say 250m of		Inhalation of outdoor gases.		Unlikely	Medium	Low
the site. Liquid	Contamination of	Migration through unsaturated	Groundworkers	Unlikely	Medium	Low
contaminants	groundwater	zone to groundwater	Groundwater	Highly likely	Mild	Moderate
impact to soils:		Via piled foundations		n/a	Mild	n/a
Petrol around and under the tanks. Paraffin under the former tank locations	Impact on Human health	Permeation into PE Water supply pipes	Human drinking water	Likely	Mild	Low/ moderate
		Ingestion of and dermal	Site end- users	Low likelihood	Medium	Low/ moderate
		contact with soil	Groundworkers	Likely	Medium	Moderate
UXO	Explosion	Hit during excavations, piling or borehole drilling	Construction workers & drillers	Low likelihood	Severe	Moderate

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Source		Pathway	December	Duck skiller	Consequence	Potential
General Hazard		Falliway	Receptor	Receptor Probability		Risk?
Total soils concentrations (e.g. heavy metals and hydrocarbons): General impact	Contamination of groundwater	Migration of leachate through unsaturated zone; Then Migration through saturated zone/groundwater	Off-site groundwater	Unlikely	Mild	Very Low
(made ground) from former site usage	Human health	Inhalation of dust (indoor household and outdoor fugitive).	Adjacent land users	n/a	Medium	n/a
Contaminated groundwater due to impact from chemical hotspots in soil.	Contamination of groundwater	Migration through saturated zone/ groundwater	Off site groundwater	Highly likely	Mild	Moderate
Gases from degradation of petroleum	Explosion (accumulation of methane and volatiles)				Medium (Inhalation of indoor vapours/ gases)	Low/ moderate
hydrocarbon hotspots Hydrocarbon vapours	oots (resulting from Inhalation of indoor vapours/gases and	Adjacent land users	Low Likelihood	Severe (possible explosion)	Moderate	

Table 5.12: On-site to Off-Site Source – Pathway – Receptor Model

The petrol station to the west (apparently up hydraulic gradient) has been remediated, but our well DS2 is picking up TPH and MTBE. This could just be due to localised flow directions around the tanks, but could also indicate that hydrocarbons from that petrol station still lie under the road. With groundwater lying quite shallow then there is the potential for vapour risk.

Table 5.13: Off-Site to On-Site Source – Pathway – Receptor Model

Source		Pathway	Receptor	Probability	Consequence	Potential
General	Hazard	radiway	Receptor	Probability	consequence	Risk?
Gases from	Explosion	Preferential flow			Medium	
degradation of	(accumulation of	paths into buildings			(Inhalation	Low
petroleum	methane and volatiles)	through			of indoor	Low/ moderate
hydrocarbon		unsaturated zone	Human	Low	vapours/	moderate
hotspots	Asphyxiation (resulting	Inhalation of	beings	likelihood	gases)	
	from elevated levels of	indoor	_		Severe	
Hydrocarbon	carbon dioxide,	vapours/gases and			(possible	Moderate
vapours	methane etc).	possible explosion.			explosion)	

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

5.11 Strategy for Risk Reduction & Remediation

5.11.1 Introduction

There are two ways to reduce contamination/environmental type risks:

- "remediation" of soil and/or groundwater.
- Other **risk reduction measures** (that can only be completed post-commencement, such as clean cover in final garden areas, gas protection, or special water supply pipe materials).

Timescales for the construction and implementation of risk-reduction measures, are unknown.

5.11.2 General

If free-product is encountered upon the water in any excavation, then it's removal shall be attempted using a skimming pump. Pumped product shall be carefully collected into an IBC or similar and disposed of off site (or water could be treated on site and returned, clean, to the ground).

Given the existence of made ground on the site and the site's past usage, vigilance should be maintained during any groundworks, in case any further areas of suspected contamination are encountered. If areas are found, then work will stop in that area, a suitably qualified and experienced geo-environmental engineer will be contacted to assess the situation and potentially undertake appropriate sampling, testing and further risk assessment. The Engineer may also contact the Local Authority (LA) Environmental Health Officer (EHO) to discuss the situation and agree a way forward.

If any amendments to this Remediation Method Statement are required as a result of unforeseen contamination, then these will be agreed in writing with the Contaminated Land Officer before being carried out on site.

5.11.3 Pre-Commencement "Remediation" Requiring Validation

The following measures require implementation before the "development" can proceed.

The **vehicle inspection pits** should be uncovered and a geo-environmental engineer should inspect them for possible risk of contamination (e.g. waste oils having been tipped into them). If a risk is considered to exist, then they should be removed and the surrounding soils checked for contamination. If there is no suspicion of risks, then then can be infilled to permit development.

After the work below, then groundwater shall then be retested and TPH concentrations need to be below the EQS/DWS limits before development can proceed.

<u>Hotspots</u>

Some of the historic sources have been proven to have **hydrocarbon hotspots** and such could still exist at other potential current and historic sources.

The 2no. small tanks (T0 and T00) appears to have been above-ground. The hardstanding there shall be removed to prove such and then the soils under the subbase checked for contamination. Any such, shall be removed as a hotspot.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

There is a high risk that surface water drain runs could have contained hydrocarbon impacted waters, which have leaked out at joints and so caused contamination along such pipe runs.

Impacted soils shall be removed until soils show no visual or olfactory indications of petroleum hydrocarbons. The hotspots will require removal as deep below groundwater as possible. This work shall be validated by a **contaminated land consultant**.

Fuel Tanks plus Fuel Lines to the Pumps and Vent Pipe Runs, and Interceptors

Standard industry practice (and usually required by the **Environment Agency** (or **Local Authority**)) is to fully remove from the ground, fuel tanks (even if decommissioned). The reason is that usually soils around and under fuel tanks are impacted by petroleum hydrocarbons and the tanks require removal in order to be able to access and remove those impacted soils (and so remove such as being a long-term source (and liability) for contamination of groundwater).

The tanks lie at such a distance from the building that excavations to remove the tanks should not affect foundations.

The underground fuel tanks (T1 to T4), fuel lines, pumps, vent pipes and interceptors, should be removed from the ground **as soon as possible**. The tank inverts could lie at 2-3m depth. Fuel lines and vent pipes should be carefully removed as they often still contain fuel.

Any concrete surrounds/cradles to the tanks should also be removed, to leave only soils in the voids, because unless they are removed it is impossible to see if there is any gross contamination under them which could lead to long-term ongoing contamination of groundwater.

Historic Drainage Runs

Some such hold a high risk of having carried chemicals or hydrocarbons, and such having leaked from the drains and then impacted the drainage trench fill and migrated along such fill.

Impacted Soils

Impacted soils around and below the above features, shall be removed until soils show no visual or olfactory indications of petroleum hydrocarbons. Such will require removal as deep below groundwater as possible.

A contaminated land consultant should attend site immediately that the above features are removed. They will direct the **removal of any significantly contaminated soils** around and below them (i.e. grey/black stained, or exhibiting (strong) hydrocarbon odours) and will take samples to prove (validation) that remaining soils are not significantly contaminated and no longer pose significant risks.

Note that given the fuel tanks and interceptors on site, and likely soils around them that have been contaminated by leakages and spills (plus drainage runs which could be holding petroleum hydrocarbons), then as hard cover and fuel tanks, etc, get removed during enabling works, petroleum hydrocarbons could be released into or onto the groundwater (in higher concentrations than at present), which could then carry hydrocarbons off-site. The developer should assess this and the risk that it could pose to surrounding land users, groundwater abstractions, and surface waters, and take necessary precautions (e.g. creating a sump on the down-hydraulic-gradient edge of the site and pumping out water to carbon filtration tank and/or oil separators).

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

5.11.4 Post-Commencement Risk Reduction Measures Requiring Validation

General

The following measures are undertaken as part of the development/construction and are "post-commencement".

Measures to overcome unacceptable risks identified in the previous sections are as follows.

All validation shall be undertaken by a suitably qualified and experienced geo-environmental engineer.

If free-product is encountered upon the water in any excavation, then it's removal shall be attempted using a skimming pump. Pumped product shall be carefully collected into an IBC or similar and disposed of off site (or water could be treated on site and returned, clean, to the ground).

Soil Risks to Humans

A practical solution to the presence of soil contaminants that pose a risk to humans is often to provide a clean cover layer in any garden or landscaped areas to any contaminated soils <u>that will</u> <u>be left in place</u> (or if contaminated soil is <u>relocated</u> to beneath such areas)(If the full depth of contaminated soil ends up being removed, then clean cover is no longer required). This could be achieved either by placing uncontaminated soil (i.e. **topsoil and subsoil**) directly onto the contaminated soils, hence raising ground levels, or by removal of part of the contaminated soil and backfilling with uncontaminated topsoil and subsoil, or by a combination of these means. The cover system is designed to reduce the exposure to contaminants of residents and other site users to an acceptable level. The cover layer should also reduce any risks to plant growth.

The required depth of clean cover can be calculated using BRE report BR465 (An AGS review in July 2019 found this document to *still be considered technically fit for purpose* and that the *basic science is still considered very sound. Also that the practice of requiring a blanket 0.6m cover thickness is unsustainable*.

The following assumptions have been made:

- using maximum values for the existing ground contamination and
- clean cover concentrations that are a quarter# of the guideline values

(#: if actual clean cover concentrations are higher or lower, then the cover thickness will increase or decrease respectively. Any soils used as clean cover should be tested to ensure that they are uncontaminated, and it is generally advisable to test a minimum of three samples so that a representative mean value can be calculated and so the validity of this clean cover model can be checked).

Area-specific assumptions and the results are shown in the table below.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Area	Target Concentration Criteria for clean cover soils #	Mixing depth assumed (mm)	Clean Cover thickness required (mm)	If required then the addition of a Geo-fabric separation layer can reduce some of these thicknesses as follows:
Any areas where owners could grow crops and fruit trees (e.g. Rear gardens)	1/4X Residential <u>with</u> plant uptake GAC	600	570mm	Say 450mm (clean cover over separation fabric, but requires clause in contracts ^{3,4})
Areas where crops and fruit trees <u>cannot and</u> <u>will not</u> be grown (often, but not always, front gardens)	1/4X Residential <u>without</u> plant uptake GAC (conservative)	450 ²	430mm	Say 300mm (clean cover over separation fabric, but requires clause in contracts ^{3,4})
Landscaping areas (with no crop or fruit tree growing)	1/4X Residential <u>without</u> plant uptake GAC.	300²	300mm ¹	N/A
Hardstanding areas and below buildings	Areas having such constr pathways from the soil "clean cover" is required.		None	N/A

Table 5.14: Summary of Clean Cover Requirements

#: GAC are given in Tables 5.1, 5.2 & 5.3.

(1): the minimum clean cover system thickness that BRE recommends is 300mm.

(2): BRE465 permits alternative mixing depths for front gardens and other areas where crop growth is unlikely, therefore 450mm mixing depth has been chosen.

(3): Subject to LA agreement.

(4): This would require a clause in homeowners' contracts to require that if food crops are grown in front gardens then their roots do not penetrate through the membranes at this shallow depth. If not feasible then revert to non-membrane clean cover thickness stated above.

Given the nature of the contaminated soils and that the designed clean cover thickness assumes <u>full mixing</u> (i.e. **mixing not prevented** by a geo-fabric layer), then **no geo-fabric is required to separate the clean cover from the underlying contaminated soils**. That is unless the client wants to try and reduce thicknesses, in which case see note (3) and (4) above.

The clean cover system will also reduce any potential risks that have been identified for plants. Trees will be planted deeper, through any clean cover and into contaminated soil, and so should be placed in decent sized tree pits with associated clean topsoil backfill including all around the root bowl.

The BRE report recommends a minimum clean cover thickness of 300mm and that any clean cover layer should ideally incorporate a topsoil layer at least 150mm thick (or 30% of the total cover depth, whichever is the greater). The report also states that clean cover should not be used on slopes greater than 1 in 12.

The total thickness of clean cover is subject to council approval and the type of soil should be adequate for plant cultivation.

The proposed imported soils should be tested to confirm that they are uncontaminated (see **Risks from Imported Materials and Recycled Aggregates** section) and the final thickness of the cover will require validating by a suitably qualified and experienced geo-environmental engineer. In accordance with clean cover testing recommendations within NHBC Technical Extra Note 8 (Nov 2012), for this site 1no. validation pit will be formed in every plot (with a minimum of 3nr pits) and will be accompanied by photographic evidence to prove the soil depth (i.e. tape measure against a horizontal bar/staff).

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

If not already tested herein, site-derived topsoil shall be tested for suitability for reuse (i.e. contamination).

Water Supply Pipe Risks

The local water supply company <u>might</u> accept the use of PVC water supply pipe materials on site but are more likely to insist on barrier pipe. This would be prudent given the potential for shallow hotspots to remain following redevelopment.

Radon, Gas and Chemical Vapour Risks to End Users

No Radon protection measures are required for new buildings or extensions on site.

Despite no ground-gas risk being found, **hydrocarbon vapours** have been found in the shallow soils. As this is not a new-build, then we have to work with the existing building. We recommend installing **some basic chemical vapour protection measures**, as follows:

- Floor slabs, ventilation: These are likely to be ground bearing and so it is not feasible to add any underfloor ventilation.
- **Floor slabs, make**-up: The existing ground floor slabs might however be reinforced due to the vehicle loads that it historically had to carry.
- Retrofit a chemical-vapour membrane: >=1200g DPM, having joints and services entries taped with proprietary gas tape. All rips and tears should be properly repaired with gas tape prior to the membrane being covered by screed.
- Internal annulus of **services ducts entries** (coming through the ground floor slabs) to be made gas tight (e.g. expanding foam)
- Gas proof wall cavities (e.g. use of gas-tight cavity trays. or fill below ground level with concrete).

Excavations or below ground voids should be checked for the presence of harmful gases and vapours prior to personnel entry.

Leaching Risk

The site is currently primarily covered in hardstanding so the potential for leaching is limited. It is planned that new small front and rear gardens be added (removal of hardcover) and so leaching risk could increase. We recommend that the clean cover (see earlier) should include a 0.2m layer of clay subsoil below the topsoil and that water percolating through the topsoil should be collected by filter drains or similar and the clean water diverted to surface water drainage systems (to prevent it percolating through the clay subsoil).

Hotspot Risks

Given the site history, then (as well as the known hotspots) numerous unforeseen hotspots should be expected and allowed for. Impacted soils shall be dealt with as detailed in the earlier "Impacted Soils" section

Following the removal of any hotspots, validation will be required to prove the remaining soils to be clean and would normally comprises soil sampling of the base and each side of the excavation (at least 1no. sample per surface, increasing with excavation size).

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Risks from Imported Materials and Recycled Aggregates

For **sustainability**, recycled aggregates should be considered. Any recycled aggregates that are planned to be imported to site, and **any derived from on-site**, shall be assessed for asbestos content (and any other contaminants that might be present at the source site), prior to import.

All imported fill, topsoil and sub-soil shall be tested for a general suite of contaminants (e.g. "AGGC's Full Suite" herein, plus asbestos if derived from brownfield or recycling. Target concentrations shall be as per the targets given in Tables 5.1-5.3 *residential with plant uptake* end-use. For topsoil and subsoil, chemical test results shall be obtained from the supplier prior to import. Once imported the topsoil/subsoil shall be sampled and tested in order to prove that the import is not significantly different (worse) than as promised.

Topsoil and subsoil can contain naturally occurring contamination such as arsenic and lead. The results shall be assessed for any exceedances of guidelines.

Prior to import, test results should be obtained and checked. Once imported, and <u>prior to</u> placement, the material shall be tested at a rate of 1no. sample per 100m³ (with a minimum of 2 samples per soil source). This is to ensure that the soils are as promised by the supplier.

It may make commercial sense to import soils that are surplus on other development (donor) sites. Surplus soils become waste as soon as they leave donor sites, unless they are being transferred to another "development" or "construction" (receiver) site for reuse. Such transfer means that such soils do not class as waste, provided that an assessment (Definition of Waste: Industry Code of Practice (DoWCoP), or waste exemption) is completed. There must be a predetermined use at the receiving site and the soils must be proven, via the assessment, not to pose any unacceptable risks at the receiving site (and not to class as "waste").

Unforeseen Contamination

A site investigation samples a very small portion of the overall site soils. Given the existence of made ground on the site, vigilance should be maintained during site clearance and construction, in case any areas of suspected **unforeseen contamination** are encountered. If areas are found then a suitably qualified person (e.g. AGGC) should undertake appropriate sampling, testing and further risk assessment.

5.11.5 Post-Commencement Risk Reduction Measures Not Requiring Validation

Asbestos cement fragments have not yet been found on site, but are to be expected. **Risks from asbestos can be reduced by removing such fragments from site.** Although we have past experience of offering advice to reduce asbestos-in-soils risks, we are now not insured to do so and so **you should seek advice from a suitably qualified and insured consultant**. We expect however that they might advise the following:

- Before any heavy plant tracks the site (i.e. before site clearance), fragments lying at ground level should be litter picked and disposed of off-site.
- Litter picking should be repeated once the site is cleared and again for any fragments spotted during all excavations and groundworks.

Site, landscape and maintenance workers should wear gloves, boots and overalls and wash their hands before eating, drinking and smoking. Excessive dust generation should be avoided.

Excavations or below ground voids should be checked for the presence of harmful gases and vapours prior to personnel entry.

24-077 14-16TudorRd Phase1and2 GeoReport.docx

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

With regard to possible UXO risk, the client should consider the recommendations of CIRIA C681 and either:

- 1. Undertake a preliminary UXO assessment, or
- 2. Require their site contractors (once appointed) to consider such.

Either way, an UXO watching brief should be implemented (e.g. because the development is unlikely to involve piled foundations).

5.11.6 Summary of Risk Reduction and Remediation Measures and Validation

The measures required, the data that will be gathered to prove correct implementation and parties to validate them are as follows:

Of the aforementioned measures, there is no "remediation" that can feasibly be undertaken precommencement, all is post-commencement, as follows:

Measure:	Data to be gathered:	Party to validate:
Remove Fuel Tanks (T1-	Supply sheets showing removal of tanks and any	Tank contractor
T4, plus concrete	contents and fuel/vent lines.	to supply to
cradles), plus Fuel Lines		Contaminated
to the Pumps, Vent Pipe		Land Engineer
Runs, and Interceptors.		(e.g. AGGC).
Following the	Take and test water samples	Contaminated
aboveRetest		Land Engineer
groundwater quality in		(e.g. AGGC).
our wells		
Remove any grossly h/c	Direct the removal of any grossly contaminated soils.	Contaminated
impacted soils from	Take and test soil samples to prove none such	Land Engineer
around and below tanks	remains. Take at least one sample from each side of	(e.g. AGGC).
(T0, T00, T1-T4), fuel	the resulting void and at least one from the base	
lines, vent pipes and	(more if the excavation size warrants).	
interceptors.		
Remove known	Direct the removal of any grossly contaminated soils.	Contaminated
hotspots and any	Take and test soil samples to prove none such	Land Engineer
current unknown ones	remains. Take at least one sample from each side of	(e.g. AGGC).
	the resulting void and at least one from the base	
	(more if the excavation size warrants).	

Table 5.15: Pre-Commencement Validation

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Measure:	Data to be gathered:	Party to validate:
Check thicknesses of clean cover	 Provide a clear statement of the thickness of capping installed in each of the plots. A site plan with inspection pit locations shown. Plot-specific photographic evidence of the appropriate soils being used. Plot-specific evidence of the appropriate thickness being in place using a rigid measuring staff and evidence of the presence of a geotextile in those areas requiring it. 	Contaminated Land Engineer (e.g. AGGC).
Special water pipe materials (if required by water company)	Paperwork from Water Company confirming acceptable installation.	Water Company via Client/client's contractors
Residual h/c vapour protection: Install fully taped DPM, fully sealed at services entries. Repair any rips and punctures to floor membranes prior to covering	Photographs and sign off sheets to prove installation (due to low risks)	Contractor/installer to provide photographs and paperwork to Contaminated Land Engineer (e.g. AGGC)
Remove any significant contamination hotspots	Not possible to determine scope at present.	Contaminated Land Engineer (e.g. AGGC)
Test any imported topsoil and subsoil and any recycled aggregates.	 Information on the history of the donor site(s). Estimate on the volume of soil/aggregate imported. Contamination concentrations required for imported soils/aggregates prior to import (not just BS3882). Confirmatory sampling and testing of: 3no. samples per soil type after placement. recycled aggregates, 1no. sample per 100m³ after delivery to site. 	Client/Supplier to provide history, volume and test results to Contaminated Land Engineer (e.g. AGGC) for assessment prior to import. Contaminated Land Engineer (e.g. AGGC).
Assess any unforeseen/new contamination found	Not possible to determine scope at present.	Contaminated Land Engineer (e.g. AGGC).

Table 5.16: Post-Commencement Validation

Once all of the above risk reduction measures have been completed, and then a Validation Report will be prepared to confirm that such measures have been undertaken in accordance with the requirements herein.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

5.11.7 Validation Report

If planning conditions require such, then in order to achieve sign-off by the Regulators, a final Validation Report will be established for their review and agreement, following substantial completion of the development (but prior to first occupation). Validation might still be prudent in order to satisfy lenders or site purchasers. The report's aim is to validate the measures in Section 5.11.3 and 5.11.4 as having been completed, and completed correctly.

Validation shall be undertaken by a suitably qualified and experienced geo-environmental engineer. Any Validation Report shall include the following information as a minimum:

- Validation of the aforementioned measures (where required).
- Copies of all chemical testing results of soils and for all materials tested.
- Figures and drawings (or discussion) detailing the locations of all samples retrieved for chemical testing.
- Copies of any correspondence with the Regulators.

The client shall separately maintain copies of all Duty of Care Consignment Notes for off-site treatment, re-use and/or disposal of materials. Information regarding such materials and their volumes will be required to validate any DoWCoP *Materials Management Plan* (MMP). This information is usually provided within a final Verification report and such can be one in-the-same as the Validation report for contamination risks.

A copy of the final Validation Report (following sign-off by the Regulators if applicable) shall be incorporated within the Site File in accordance with the CDM Regulations (2015).

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

6 Other Aspects

6.1 "Site H&S File"

The remediation and risk-reduction measures discussed earlier are designed to protect **end-users** of the site. Others at risk compromise **post-construction groundworkers** and **utilities workers**, etc, for which it is not usually economically viable to remove all risks.

Accordingly, and as with most sites, some sources of risk will, or could, remain as follows. Such should be added to, and discussed in, the "Site H&S File" (or similar document):

- Ground gas and Petroleum hydrocarbon vapour risks in excavations (esp confined spaces).
- Made ground remaining in place that contains elevated contaminants.

6.2 Soil/Materials Reuse & Disposal

6.2.1 General

Carbon & Sustainability

Final site levels should be designed to accommodate as much surplus soils/materials[#] from construction, as is legitimately possible (without been seen to be trying to lose such on site, in which case they would class as "waste").

Conduct a cut/fill assessment to establish any surpluses or deficits of soil/materials#.

Any deficit can be resolved by obtaining surplus soils from other development sites by using a **U1 Waste Exemption** or the **Definition of Waste Code of Practice** (DoWCoP).

It may be possible for any surplus soils/materials[#] posing hazards, to be reused in areas where they will not pose hazard.

#: e.g. brick, tiles, concrete and tarmac, crushed for reuse as fill, provided that tarmac/asphalt does not contain hazardous concentrations of **coal-tar**.

In order to prevent excessive costs and reduce the environmental impact of the development (**sustainability**), it is recommended that removal of wastes from the site, including waste soils, is kept to a minimum by:

- firstly trying to balance cut/fill earthworks operations to retain soils on site,
- or removing from site for reuse at other construction/development sites, that require soil:
 - by employing U1 Waste Exemptions (use of waste in construction),
 - $\circ~$ and/or Definition of Waste: Industry Code of Practice (DoWCoP) assessment,
 - and/or exporting to a soil treatment hub,
- with the last resort being disposal to a licensed waste disposal site (subject to Landfill Tax).

<u>To avoid the risk that any surplus soils remain classed as waste</u>, then a *Materials Management Plan* (MMP) is required <u>before</u> employing the DoWCoP and is strongly recommended for all other situations (e.g. in case it is later decided to employ the DoWCoP).

A MMP must be drafted to show the intent for surplus soils, before they are excavated otherwise the client may have to landfill natural soils that had been planned for reuse off-site, or made ground soils that had been planned for reuse on site.

AGGC's DoWCoP Qualified Person can assist with these assessments.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

If removing to a licensed disposal site, then *Waste Acceptance Criteria* (WAC) test results and other chemical test results should be given to the waste disposal site for classification, along with the exploratory hole logs (which show sample locations and depths) to show which soils are natural and which are man-made. Note that WAC alone cannot classify waste soils.

The lab results to enable *Initial Waste Characterisation* are contained in Appendix H.

6.2.2 Transfer for Reuse on Another Site

Surplus soils become waste as soon as they leave site, unless they are being transferred to another "development" or "construction" site for reuse. Such transfer means that such soils do not class as waste, provided that a waste assessment is completed (e.g. by a DoWCoP Qualified Person) to prove compliance with the 4no. (DoWCoP type) factors.

Soil types can be transferred as follows:

- Utilising DoWCoP: Currently only natural soils can be transferred via a DoWCoP.
- Utilising U1 Waste Exemption: Limited quantities of both natural soils and made ground can be transferred via a U1, provided that they pose no risks to humans, nor the environment.
- **Transfer to a licensed, fixed or temporary, soil treatment facility/hub:** usually reserved for made ground.
- Transfer to an exempt or permitted site: Usually a last resort before landfilling.

Certain other materials may also be reused on other "Construction" sites by employing a U1 Waste Exemption.

6.2.3 Soil Treatment Facilities

Made ground and a wide range of hazardous wastes (including Waste Acceptance Criteria (WAC) failing materials), can avoid landfill disposal by being treated at a number of *Soil Treatment Facilities* around the UK. Such disposal is exempt from Landfill Tax.

6.2.4 Disposal to Licensed Waste Sites

To evaluate the various on-site soils for potential off-site disposal, soils are classified in accordance with the Hazardous Waste Directive (HWD) that enables the provision of a European Waste Catalogue (EWC) Code for use during offsite disposal and a Hazardous or Non-Hazardous Classification.

- Non-Hazardous material is suitable for disposal in a Non-Hazardous landfill;
- however, disposal to an **Inert** Landfill requires further Waste Acceptance Criteria (WAC) testing in accordance with BS EN 12457–3.
- Material classed as **Hazardous** also requires WAC testing to assign a suitable hazardous classification.

The Landfill Regulations require that all Hazardous and Non-Hazardous solid waste must be treated prior to offsite disposal to landfill. You can define 'treatment' by using the following 'three-point test'. All three criteria must be satisfied for all of the waste to qualify as being treated:

1. It must be a physical, thermal, chemical or biological process including sorting.

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

- 2. It must change the characteristics of the waste.
- 3. It must do so in order to:
 - a. Reduce its volume; or
 - b. Reduce its hazardous nature; or
 - c. Facilitate its handling; or
 - d. Enhance recovery.

It should be noted that a site investigation is unable to identify all below ground conditions at a site and therefore, if during construction works soils that require offsite disposal are identified as being different to what has been preliminarily tested in this report, additional testing will be required by a suitably qualified environmental consultant prior to disposal or recovery at a licensed offsite facility.

It is also recommended that prior to offsite disposal or recovery of any waste soils; the receiving licensed treatment/landfill facility should be sent copies of all relevant chemical analysis, **plus exploratory hole logs** showing the engineering descriptions of the soils to which the sample depths relate.

All producers of waste have a **duty of care** to ensure that any waste they produce is handled safely and within the law. They must **check** that anyone they pass waste on to is **authorised** to take it. This includes the authorised site earmarked to handle the waste and any haulier (licensed waste carrier) used to transport the waste between the sites.

All waste holders must act to keep waste safe against:

- 1. Corrosion or wear of waste containers;
- 2. Accidental spilling or leaking or inadvertent leaching from waste unprotected from rainfall;
- 3. Accident or weather breaking open contained waste and allowing it to escape;
- 4. Waste blowing away or falling while stored or transported;
- 5. Scavenging of waste by vandals, thieves, children, trespassers or animals.

Holders should protect waste against the above risks while it is in their possession and they should also protect it for its future handling requirements. Waste should reach not only its next holder but a licensed facility or other appropriate destination without escape. It is recommended that the container used to transport the waste is suitable not only to prevent solid and liquid residues escaping, but also any potentially dangerous vapours or odours associated with the waste.

Segregation of different categories of waste where they are produced may be necessary to prevent the mixing of incompatible wastes. Segregation may assist the disposal of waste to specialist outlets. Where segregation is practiced on sites, the waste holder should ensure that his employees and anyone else handling waste there are aware of the locations and uses of each segregated waste container.

Waste handed over to another person should be in some sort of container, which might include a skip. The only reasonable exception would be loose material loaded into a vehicle and then covered sufficiently to prevent escape before being moved. Waste containers should suit the material put in them.

A waste transfer note (WTN) is a document that must accompany any transfer of waste between different holders. The purpose of a WTN is to allow other people who handle your waste to know what they are dealing with so that they can manage it safely and properly. A WTN must be created

Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

for each load of waste that leaves the site and must contain enough information about the waste to enable anyone coming into contact with it to handle it safely, and either dispose of it or allow it to be recovered within the law. If insufficient information is given on the WTN the responsible party may liable to be prosecuted.

Records of all waste transferred or received must keep for at least two years.

6.2.5 Asbestos Content to Soils

Since **asbestos cement fragments** contain greater than 0.1 % asbestos by weight, then any waste consignment of soil that contains any obvious asbestos cement fragments will automatically class as hazardous waste (hence the recommendation to litter pick any fragments observed).

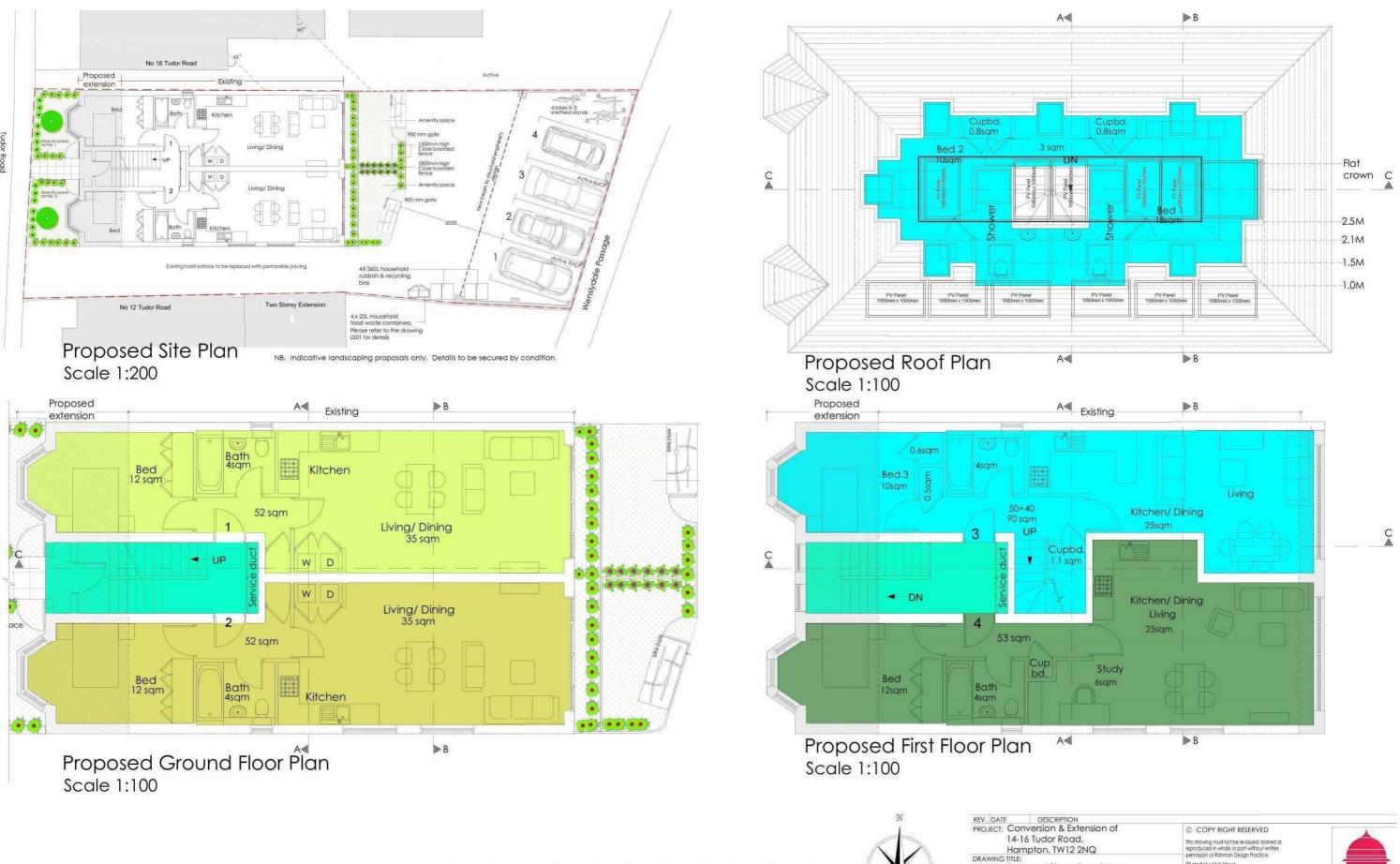
Any litter picked asbestos cement fragments disposed of separately from the man-made ground would be classed individually as Hazardous Waste.

The man-made ground that contains asbestos/ACM would be classed as a mixed waste (hazardous or non-hazardous, as discussed above) and the waste code would be 17-06-05.

6.3 Further Data and Investigation

The vehicle inspection pits should be uncovered and a geo-environmental engineer should inspect them for possible risk of contamination.

Following the removal of underground tanks, vent pipe, fuel lines and interceptors, retest groundwater quality in our wells.


Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Appendices

- A. Proposed Development Plan
- B. Exploratory Hole Locations (existing site plan)
- C. Exploratory Hole Logs, Probe Plots, SPT Hammer Calibration
- D. Petroleum Search
- E. Further Tank Details from the DAS
- F. LA Search
- G. Monitoring Results
- H. Chemical Laboratory Results

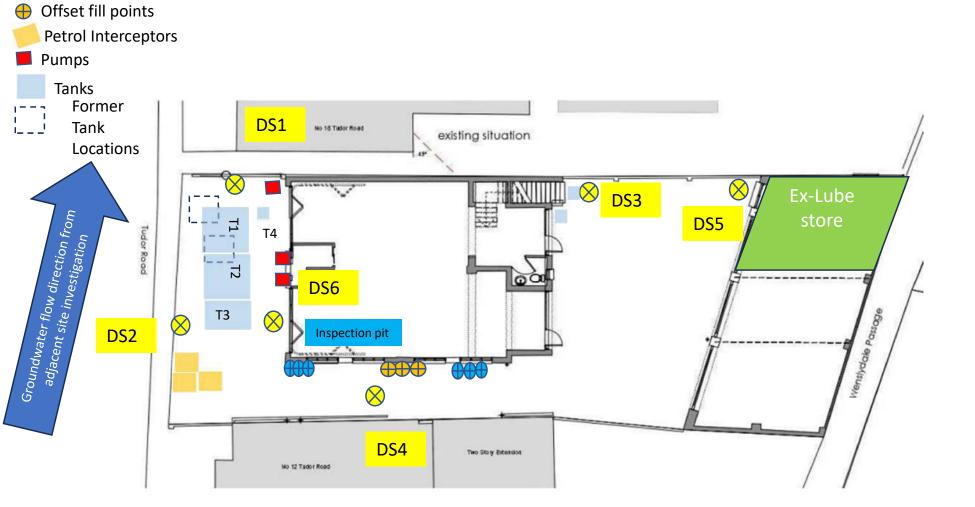
Phase 1 & 2 Desk Study & Contamination Investigation 14 - 16 Tudor Road, Hampton

Appendix A

10

0 1 2 3 4 5 6 7 8 9

SCALE: 1:100, 1:200


Proposed Site

oad	tension of d, 2NQ		© COPY RIGHT RESERVED This drawing must not be re-issued, loan reproduced in whole or part without w permission of Rohman Design Practice.	ned or litten		
8	Floor Plans		20 Mortloke High Street London SW14 8JN Tel/Ans: 020 8570 2646 Email: rdp@rdporchitects.com	nnn		
		DATE:	DRAWING No.	E	RDP ARCHITECTS	
	A3	23.03.2023	974/RDP/P04	DESIGNING FOR DIVERSITY		

Appendix B

Exploratory Hole Location Plan

Vent pipes

<u>Ve</u>	rsion <u>Date</u>
0	13/08/24
1	07/10/24
2	09/10/24

Appendix C

Key to Exploratory Hole Symbols and **Abbreviations**

SAMPLE TYPES

В	Bulk disturbed sample	ES	Environmental soil sample
С	Core sample	EW	Environmental water sample
CBR-D	Disturbed sample from CBR test area	G	Gas sample
CBR-U	Undisturbed sample from CBR test area	L	Liner sample
D	Small disturbed sample	SPT	SPT split spoon sample

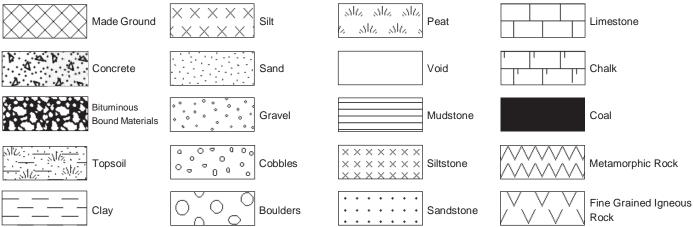
- al soil sample
- U Undisturbed sample
- UT Undisturbed thin wall sample
- W Water sample

INSTALLATION & BACKFILL DETAILS

IN-SITU TESTING

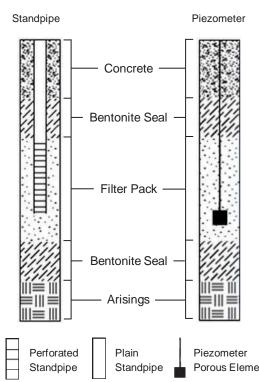
- SPTs Standard Penetration Test (using a split spoon sampler)
- SPTc Standard Penetration Test (using a solid 60 degree cone)
- Recorded SPT 'N' Value * Ν
- -/-Blows/Penetration (mm) after seating blows totalling 150 mm
- MX Mexi Probe Test (records CBR as %)
- HV Hand Shear Vane Test (undrained shear strength quoted in kPa)
- HP Hand Penetrometer Test (kg/m³)
- () Denotes residual test value
- PID Photo Ionisation Detector (ppm) *
- Kf/Kr Permeability Test (f = falling head, r = rising head quoted in ms^{-1})
- HPD High Pressure Dilatometer Test (pressure meter)
- Packer / Lugeon Permeability Test PKR
- CBR California Bearing Ratio Test

ROTARY CORE DETAILS


- TCR Total Core Recovery, %
- SCR Solid Core Recovery, %
- RQD Rock Quality Designation (% of intact core >100 mm)
- FI Fracture Spacing (average fracture spacing; in mm, over indicated length of core) *
- NI Non-Intact Core
- Assumed Zone of Core Loss AZCL

GROUNDWATER

Groundwater strike


Standing water level after 20 minutes; 1st, 2nd etc (number denotes level order)

STRATA LEGENDS - Note: Composite strata types are shown by combining symbols

Where a single value is quoted this is the uncorrected 'N' value for a full 300 mm test drive following a seating drive of 150mm. Where the full test drive penetration is not achieved the number of blows is quoted for the penetration below the test total of 300mm, e.g.: 50/75.

The minimum, average and maximum are shown e.g. 5/45/125.

STRATUM BOUNDARIES

Porous Element

Unit boundary

	Project													BOR	EHOI	LE No
		dor Road	d											_	DS1	
	Job No	0000		t Date Date		-24	Ground Lev	vel (m)	Co-Or	dinates ()					
	Contracto	0903 r	Enu	Dale	11-10	-24								Sheet		
		eosamplii	ng												1 of 1	l
ĺ	SAMP	LES & T	TESTS							STRA	TA					nt/ 1
		Туре		Water	Reduced	l _T	Depth I (Thick-				DESCR	IPTION			Geology	Instrument/ Backfill
	Depth	Ňo	Result	^	Level	Legenc	ness)								Geo	Inst Be
	-						₩ <u>0,15</u>		NCRE'		Dark orangi	sh brown sl	ightly clayey	verv		
	0,40-0,50	ES					(0,65)	sand	ly angı AVEL.	ular to subi	ounded fin	e to coarse	flint, metal ar	nd brick		
	-						0,80				Coff orangia	h brown ar	avelly CLAY	Gravalia		
	- 1,00	J					1,15	angı	ılar to	subrounde	d fine to co	arse concre	te and flint.	. Graver is		
	1,20	ES					1,35				Black ASH	ev gravelly	CLAY. Grav	vel is		R EV
	- 1,60	J					(0,55)	angu	ılar to	subrounde	d fine to co	arse brick a	nd flint. Slig	nt		
	-					0.00	8 <u>1,90</u> 7-	Dar	k orang	gish brown	sandy subr	oudned fine	e and medium	ı flint		
	-					00.0	Æ	GRA	AVEL.							
	2,50	J				0.000	(1,10)									
						0000	?-									
	-					<u> </u>	5,00									-111111-
	-															
	-						E									
	-						F									
	-						F									
24	-						F									
ber 20	-						E F									
Octok	-						F									
ate: 11	-						Ę									
BIID	-															
0.GL	-						-									
VGS 4	-						E									
STD A	-						-									
GINT	-						F									
orary:	-						F									
	-						Ę									
ND.GP	-						-									
R RO/	-	<u> </u>				<u> </u>	<u>-</u>									
TUDO	Bo	ring Prog			ter Obse Casing	ervation		F		To To		Water			NERA MARK	
903 - 7	0,00			Water Depth	Fro	m	То	Hours	From	То	Terminated					
ect: F0	3,00	11-10-24	11,00	1,		113	1.75							collapse 3.0 Groundwate	0 - 2.2	Ōm.
Proje												at 1.75m. 5 installed wit	0mm II	D Pipe		
K BH														2.00m.	1996	a
3S4 UI																
D: AC				<u> </u>										1 D		
Report ID: AGS4 UK BH Project: F0903 - TUDOR ROAD.GPJ Library: GINT STD AGS 4_0.GLB Date: 11 October 2024	All dimensions in metres Client AG Geo Scale 1:50								Plant		Da	art		Logged By	IP	

Project													BOR	EHOI	LE No
Tuo	dor Road													DS2)
Job No		Start	Date		-24	Ground Le	vel (m)	(Co-Or	dinates ()				002	•
	903	End I	Date	10-10-	-24								Ohaat		
Contractor		a											Sheet	1 of 1	1
	osamplin	-		1	1		1								
SAMP	LES & T		Water			Depth		S	TRA					gy	ment ¢fill
Depth	Type No	Test Result	Wa	Reduced Level	Legend	(Thick- ness)				DESCR	IPTION			Geology	Instrument/ Backfill
						0,20	CONC MADI		ND· (Grev anoula	r fine and n	nedium igeno	115		
0,40-0,50	ES					0,35	∖\GRAV	/EL (Typ	be 1)	Siey ungulu		lealuin igeno	/		
2,00	ES		₽			(2,65)	MADI to coar 1,00 -	2,00 Lin	nited F	Multicolourd and COBBI Recovery (1 Recovery (1	0%)	ery sandy ang c, flint and mo	/ gular fine etal.		
						3,00									
Report 17: 4054 UK BH Project: Fuel S ID Adds 4 0: GLB Late: 11 00008: 2024															
Depth	Boring Progress and Water Observations epth Date Time Casing Depth Water Dia. mm Water Depth			From		o ling	Hours	Water From	To		NERA MARA				
- Contraction 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-10-24 10-10-24	13,45 15,10	<u>De</u> 0,0 1,0	00	a. mm 113 113	Depth 1.5			5		. 1011		Terminated collapse. G encountere Limited rec 3.00m. 50n installed wi 3.00m.	due to roundw d at 1.5 overy 1 nm ID I	ground /ater 50m. .00 - Pipe
	sions in me	etres Clie	ent	AG Ge	90		PI	ant					Logged By		
Scale 1:50										Da	ILL			IP	

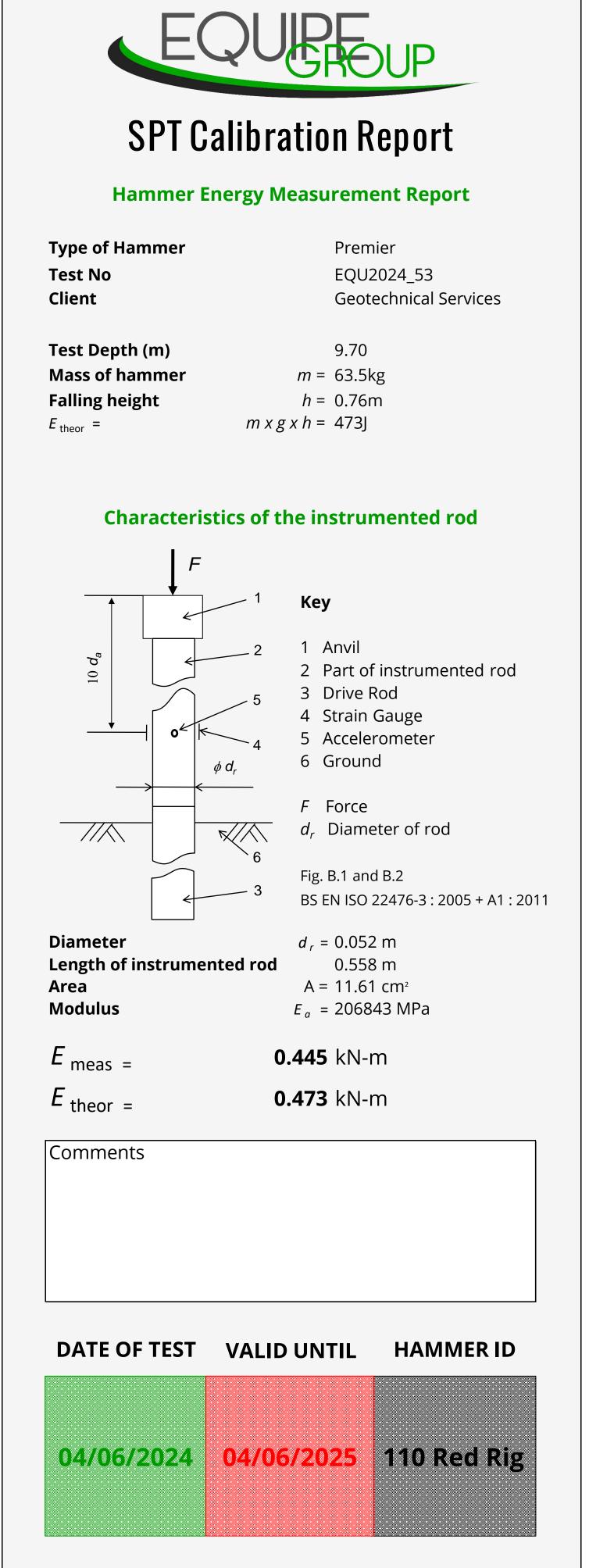
BOREHOLE LOG

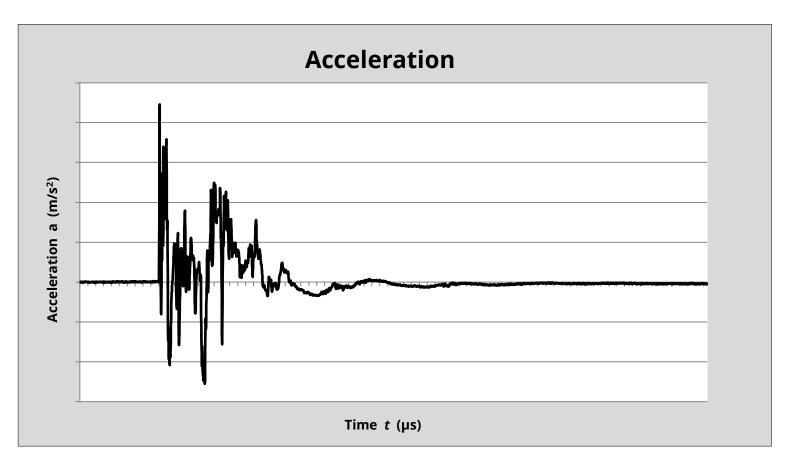
Project												BOR	EHOI	LE No
T	udor Road	ł											DS3	•
Job No		Start	Date	11-10	-24	Ground Le	/el (m)	Co-Or	dinates ()				033	
F	0903	End	Date	11-10										
Contract												Sheet		
G	eosamplir	ng											l of	
SAM	PLES & T	ESTS	r					STRA	ATA				Geology	ent/ ill
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION						Instrument/ Backfill
E						0,20			2 1	11	1			
- 0,20-0,30) ES					× 0,45	gravelly m	nedium and	l coarse SA	ND. Gravel	ery clayey ver is angular fin	e to		
						× (0,65)	MADE G	ROUND: S	Soft verv gr	avelly brow	assional cobbl m CLAY. Gra	vel is		
- 1,00	J					1,10					ck, flint and m			ه ر ال م
Ļ					0.00	Æ	Dark orag GRAVEL	nish browr	n very sandy	v subrounde	d fine to coars	se flint		
-					1.0000									
-					0.0.0	< <u>1,85</u>	Soft orang	ish grey ve	ery sandy sl	ightly grave	elly CLAY. G	ravel is		
2,00	J				0.00	2,15	subrounde	d fine flint			d fine to coars			
-			11		01.0	1 (0 (5)	GRAVEL		i very sandy	subrounde		se min		
Ē					0 0 0 0 0 0 0 0 0	2,80								
-					<u> </u>	3,10	Soft orang subrounde	d fine flint	ery sandy sl	ightly grave	elly CLAY. G	ravel is		
-							Dark oran subrounde	gish browr d fine and	n gravelly fir medium fli	ne and med	ium SAND. C	Gravel is		
L					· • · · · ·	(0,90)	subrounded fine and medium flint. (0,90)							
-					· · · · ·	4,00								
F						-								
2024						-								
tober						-	-							
ate: 11 October 2024														
Date:						-								
						-								
4 0.0						-								
AGS						-								
						-								
						-								
Librar						-								
						-								
DAD.O														
й В	oring Prog	ress and	Wat	ter Obs	ervation	ns	(Chiselling	g	Water	Added	GE		ـــــــــــــــــــــــــــــــــــــ
Depth	Boring Progress and Water Observations Depth Date Time Casing Depth Water Depth Water Depth				From	То	Hours	From	То		MAR			
0,00	0,00 11-10-24 11,00 0,00 113										Terminated collapse fro			
	4,00 11-10-24 12,45 1,00 113 2				2.7					•	Groundwate	er enco	ountered	
H										i	at 2.70m. 5 nstalled wit			
E B												2.90m.		
AGS4														
	nsions in me cale 1:50	etres Cli	ent	AG Ge	€0		Plant		Da	art		Logged By	IP	
ž S	-cale 1.30									A1 L				

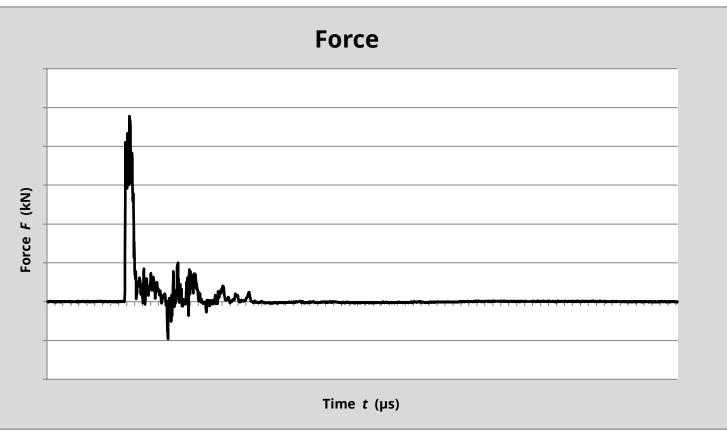
BOREHOLE LOC	3
---------------------	---

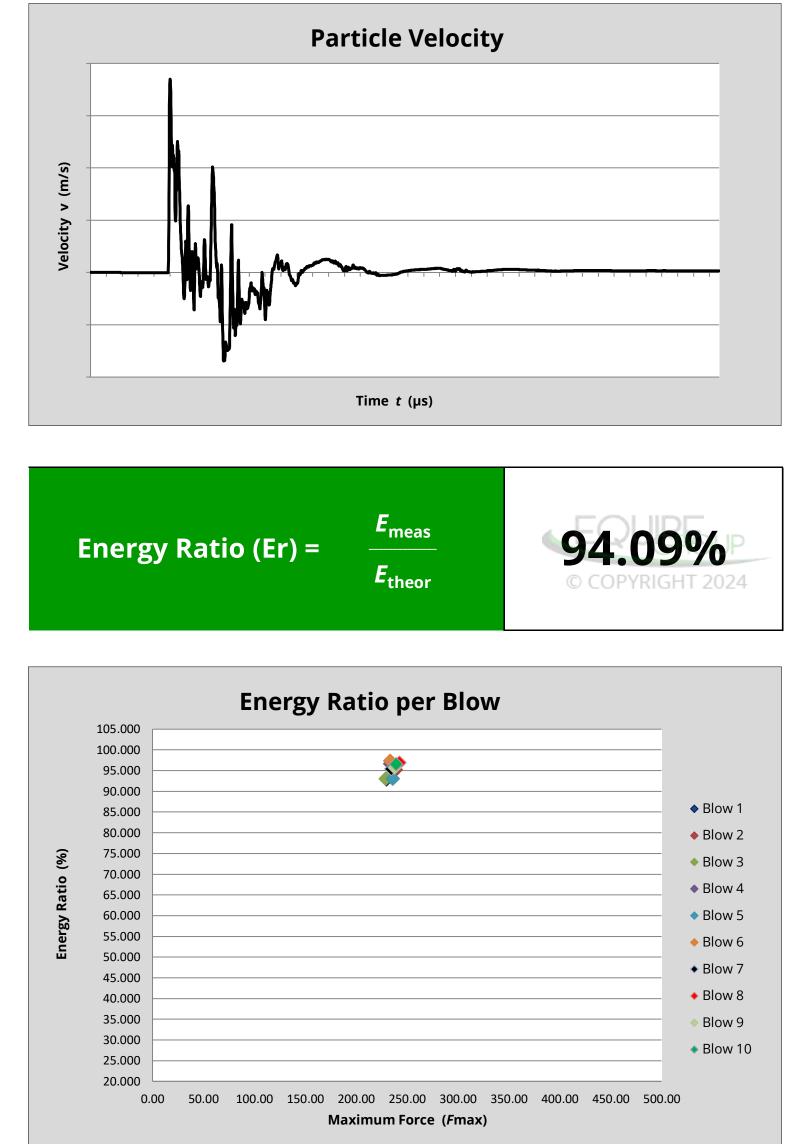
	Project													BORI	EHOI	E No
		dor Road	kk												DS4	L
	Job No	0903	Start End I	Date		-24	Ground Lev	vel (m)	Co-Or	dinates ()					
	Contracto			Dale	10-10	-24								Sheet		
														of	l	
		LES & T	-							STRA	ТА					
				Water	Daduaad		Depth			SIL	DESCR	IPTION			ogy	Backfill
	Depth	Type No	Test Result	A	Reduced Level	Legend	(Thick- ness)				DESCR	II HOIV			Geology	nstrı Bac
	-						- 0.15	CO	NCRE	TE						
	-						(0,40)	∖ MA \iger	DE GI ious Gl	ROUND: (RAVEL (1	Grey angula Type 1)	r and suban	gular fine and	1 medium		
	0,65	J					0,60	NCO.	NCRE		Dark brown	condu CL A	V	/		
	-						-	MA	DE GI	KOUND: I	Jark brown	sandy CLA	ΥΥ.	/		
	- -						Ę									
	-															
	-															
	-						-									
	-						F									
	- -															
	-						L									
	-						-									
	-						F									
	-						F									
	- 						-									
	-						- L									
24	-						-									
ber 20	-						Ę									
Octol	-						F									
te: 11	-						E									
3 Da																
0.GLE	-						-									
3S 4	-						Ę									
TD A(-															
INTS	-						L									
ary: G	-						-									
ll Libr	-						-									
GPJ	- - -						Ę									
ROAL	-						-									
DOR	Bo	ring Prog	gress and	Wat	ter Obse	ervation			C	hiselling	2	Water	Added	GEI	NERA	۱L
3 - TU	Depth	Date	Time	De	Casing pth Di	a. mm	Water Depth	Fre	om	То	Hours	From	То	REN	/ARK	(S
F090	0,00 0,65	10-10-24 10-10-24	12,00 12,30	0, 0,	00									Terminated obstruction.	upon c DPSH	oncrete follow
roject	-,		,	•,										on through base to 5m	drill cor	e hole in
H II P															sopui.	
I UK E																
Report ID: AGS4 UK BH Project: F0903 - TUDOR ROAD GPJ Library: GINT STD AGS 4_0.GLB Date: 11 October 2024																
Ц Ц Ц	All dimen	sions in me	etres Clie	ent	AG Ge				Plant			L		Logged By		
Repc	Sc	ale 1:50								Ha	nd tool a	nd break	er		IP	

Project													BOR	EHOI	LE No
Tud	or Road													DS5	
Job No		Start	Date		-24	Ground Lev	vel (m)		Co-Or	dinates ()					•
	903	End I	Date	10-10-	-24								Sheet		
Contractor	sampling	~												l of	1
		•	1							T 4			-		
SAMPI	ES & TH		Water			Depth			STRA		IDTION			2g	men kfill
Depth	Type No	Test Result	Wa	Reduced Level	Legend	(Thick- ness)				DESCR	IPTION			Geology	Instrument/ Backfill
-						0,15		ICRE							
0,40-0,50	ES					<u>↓ 0,20</u>		DE GI ous G	ROUND: (RAVEL (1	Grey angula Type 1)	r and suban	gular fine and	1 medium		
	15					(0,80)	MAl	DE GI ellv n	ROUND: I nedium and	Dark grey a coarse SA	nd brown v ND. Gravel	ery clayey ve is angular fir	ry ne to		
- 1,00-1,10	J					1,00	coar	se brio	ck, metal, f	lint and gla	ss with occa	assional cobb	es.		0 (H) 0
1,20		N3				.[SAN	D. G	ravel is sub	brown very prounded fir	e and medi	edium and co um flint.	arse		
					· · · · ·	. (0,85)									
					· · · · · · · · · · · · · · · · · · ·	1,85	Finne		aich anar r	ami condu c	lightly group	elly CLAY. (Crowal is		
2,00	J	2106			- <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0,40) 2,25	subr	ounde	d fine flint	ery sandy s	ngnuy grav	elly CLAY.	sravel is		°∂а
2,00		N26			0.00 00.00	• -		ium d	lense dark o t GRAVEI	oragnish bro	own very sa	ndy subround	ed fine to		
					<u> </u>	2,60	Firm	oran	gish grey v	ery sandy s	lightly grav	elly CLAY. (Gravel is		
		N26			0.00		Dens	se dar	d fine flint. k oragnish		sandy subr	ounded fine t	o coarse		
3,00		N36			00.00	(0,85)	flint	GRA	VEL.	5	5				
					0.0.0	3,60									
3,60		N13				-									
						-									
-						-									
5024						-									
ate: 11 October 2024						-									
						-									
ate: 1						- E									
						-									
0 0 +						-									
AGS 4															
						-									
						-									
brary:						-									
						-									
0.01						-									
бу <u>–</u>			<u> </u>			<u>+</u>					.				
Bor	ing Progr		Wat	ter Obse	rvation	ns Water			Chiselling	[Water				
$\stackrel{-}{\underset{0}{}} \frac{\text{Depth}}{0,00} 1$	Date 0-10-24	Time 08,30		Casing pth Di 00	a. mm 113	Depth 0	Fro	m	То	Hours	From	То			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0-10-24	10,45			113	2.75							Terminated collapse. Gr	oundw	/ater
Proje													encountere 50mm ID P	ipe ins	talled
													with base at	t 3.60n	n.
	ions in met lle 1:50	res Clie	ent	AG Ge	90			Plant		Da	art		Logged By	IP	
r∟ 008										50	•••			••	




BOREHOLE LOG


Project												BOR	EHOI	LE No
Tu	dor Road												DS6	
Job No		Start			-24	Ground Le	/el (m)	Co-Or	dinates ()					•
-	903	End I	Date	10-10-	-24									
Contractor		a										Sheet	l of 1	1
	osamplin	-		<u> </u>	1	1		~~~~				-		
SAMP	LES & T		Water			Depth		STRA					2g	ment cfill
Depth	Type No	Test Result	Wa	Reduced Level	Legend	(Thick- ness)			DESCR	IPTION			Geology	Instrument/ Backfill
0,20-0,30	ES					0,15 (0,95)	CONCR MADE sandy ar GRAVE	GROUND: I ngular to sub	Dark orangi rounded fin	sh brown sl e to coarse	ightly clayey flint, metal a	very nd brick		
- 1,00	J					1,10	MADE	CROUND						° CED °
						<u>} 1,25</u> ₹		GROUND: I GROUND: S		ndv CLAY				
						(0,85)			son very su		•			
2,00	J		<u>1</u>			*	MADE	GROUND: I	Dark orangi	sh brown sl	ightly gravel um flint.	ly medium		
-			Ţ			* 2,40 *					um flint. Igular and su			
2,60	ES		Ť			(0,60)	fine and	medium cor rbon odour.	ncrete and fl	int ÁRAV E	EL with a stro	ong		
-						3,00	nyaroea							
Report ID: AGS4 UK BH Project: F0903 - TUDOR ROAD GPU Library. GINT STD AGS 4_0 GLB Date: 11 October 2024 Deft 0000 BOB Deft 10000 BOB Deft 10000 BOB Deft 10000 Deft 100000 Deft 10000 Deft 100000 Deft 100000 Deft 100000 Deft 100000 Deft 100000 Deft 100000 Deft 100000 Deft 100000 Deft 1000000 Deft 1000000 Deft 1000000 Deft 10000000 Deft 1000000000 Deft 1000000000000000000000000000000000000	ing Prog	ress and	Wat	er Obse	rvation	1		Chisellin	σ	Water	Added	GEI	NERA	
Depth	Date	Time		Casing		Water Depth	From	To	Hours	From	To		NER/ MARK	
AGS4 UK BH Project: F0903 - 00'0 00'0 00'0	10-10-24 10-10-24	12,15 13,30	<u>De</u> 0,1 1,0	00	<u>a. mm</u> 113 113	<u>Depth</u> 2.75						Terminated collapse 3.0 Groundwate at 2.75m. 5 installed wit 2.50m.	due to 0-2.50 er encc 0mm II	ground m. ountered D Pipe
Te All dimen	sions in me	tres Clie	ent	AG Ge	90		Plar	nt				Logged By		
Sc Sc	ale 1:50								Da	art			IP	



Project	PROBE No												
Tudor Road	DPSH4												
Job No St	lan Dale 10-10-24	Ground Level (m)	Co-Ordinates ()		DF304								
F0903 Er	nd Date 10-10-24												
Contractor					Sheet 1 of 1								
Geosampling													
Depth Readings		Diagram (N100 V	alues)	Torque									
(m) (blows/100m	um) 5	10 15	20 25 30	(Nm)	Remarks								
	, , ,	10 15	20 25 50	, ,									
				-									
3	0			-									
4_{2}				-									
	3			0 _									
$\frac{2}{2}$													
$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$	2			-									
	1			0									
	14												
15 17 22													
$\begin{bmatrix} 15 & 17 & 22 \\ 22 & 24 & 26 \end{bmatrix}$	26			50									
$\begin{bmatrix} 3 \\ 22 \\ 21 \\ 24 \\ 22 \end{bmatrix}$				-									
E 01	22			-	-								
21 15				-									
	10			40									
				-	-								
	2			-									
				40									
	2			40 _									
J.GLB				-	-								
884 				-									
				-									
					-								
0 				-									
				-									
				-									
ан Ин Ин Ин Ин Ин Ин Ин Ин Ин Ин Ин Ин Ин				-									
				:									
Hammer Wt (kg)	63				GENERAL REMARKS								
Hammer Drop (mm)	750				PSH follow on through								
				D	S4. Terminated at								
Cone Dia (mm)	35				naximum available depth.								
Cone Type	DPSH-B												
Damper													
4 8 4 2 2 2 2 2 2 2 5 5 5 2 2 6 1 1 1 1 1 Hammer Wt (kg) 1 1 1 1 1 Hammer Drop (mm) Cone Dia (mm) Cone Type 1<	Client AG Geo	Plant	Dart	L	ogged By IP								

© Copyright 2024 **Equipe Group**, The Paddocks, Home Farm Offices, The Upton Estate, Banbury, Oxfordshire, OX15 6HU Tel: +44 (0)1295 670990 Fax: +44 (0)1295 678232 Email: info@equipegroup.com

Appendix D

Petroleum Group LFB Headquarters - 2nd Floor 169 Union Street London SE1 0LL **T** 020 8555 1200 x30859 **F** 020 7960 3624 Minicom 020 7960 3629 london-fire.gov.uk

The London Fire Commissioner is the fire and rescue authority for London

Date 7 October 2024 Our Ref 24/011240/PC Your Reference: 24-077

Mr Andre Gilleard AG Geo-Consultants Ltd 58 Church Road Bishopston Bristol BS7 8SE

Dear Mr Gilleard

THE ENVIRONMENTAL INFORMATION REGULATIONS 2004 - ENVIRONMENTAL ENQUIRY

Premises: 14-16 Tudor Road, Hampton, TW12 2NQ

The London Fire Commissioner (the Commissioner) is the fire and rescue authority for London. The Commissioner is responsible for enforcing the Petroleum (Consolidation) Regulations 2014 in London.

As requested, a petroleum environmental search has been made in respect of the above premises.

A thorough search of current and historical files and databases has revealed information for the site as detailed in the attached form and plans.

Please note that this report is restricted to matters currently known by the Commissioner. Although we hold extremely comprehensive records, it is possible that we do not hold any records whatsoever for some solid-filled and very old tanks. This will be for one of the following reasons:

- 1. The records held by the Commissioner were passed to it from the Greater London Council in 1986. In 1965 the Greater London Council inherited petroleum related records from the London County Council and the outer London Boroughs / Councils. Some of the outer London records were incomplete.
- 2. For premises where petroleum tanks have been either removed or permanently made safe, the Commissioner's records have (in a minority of cases) been destroyed; and for these cases the Commissioner does not hold any records that indicate that there was ever a 'petroleum' interest at the premises.

As you are aware, a fee is levied for the provision of this information and payment should be made in accordance with the invoice, which will be sent under separate cover.

Any queries regarding this letter should be addressed to the person named below. If you are dissatisfied in any way with the response given, please ask to speak to the Head of Petroleum quoting our reference.

Yours sincerely

Pp Philip Cater

for Assistant Commissioner (Fire Safety) Directorate of Operations petroleum@london-fire.gov.uk

Reply to Petroleum Section Direct **T** 0208 555 1200 Ext 30859

FS_B11_03 (Rev 8, 19/10/2023)

ENVIRONMENTAL ENQUIRY DETAIL FORM

Premises:

14-16 Tudor Road, Hampton, TW12 2NQ

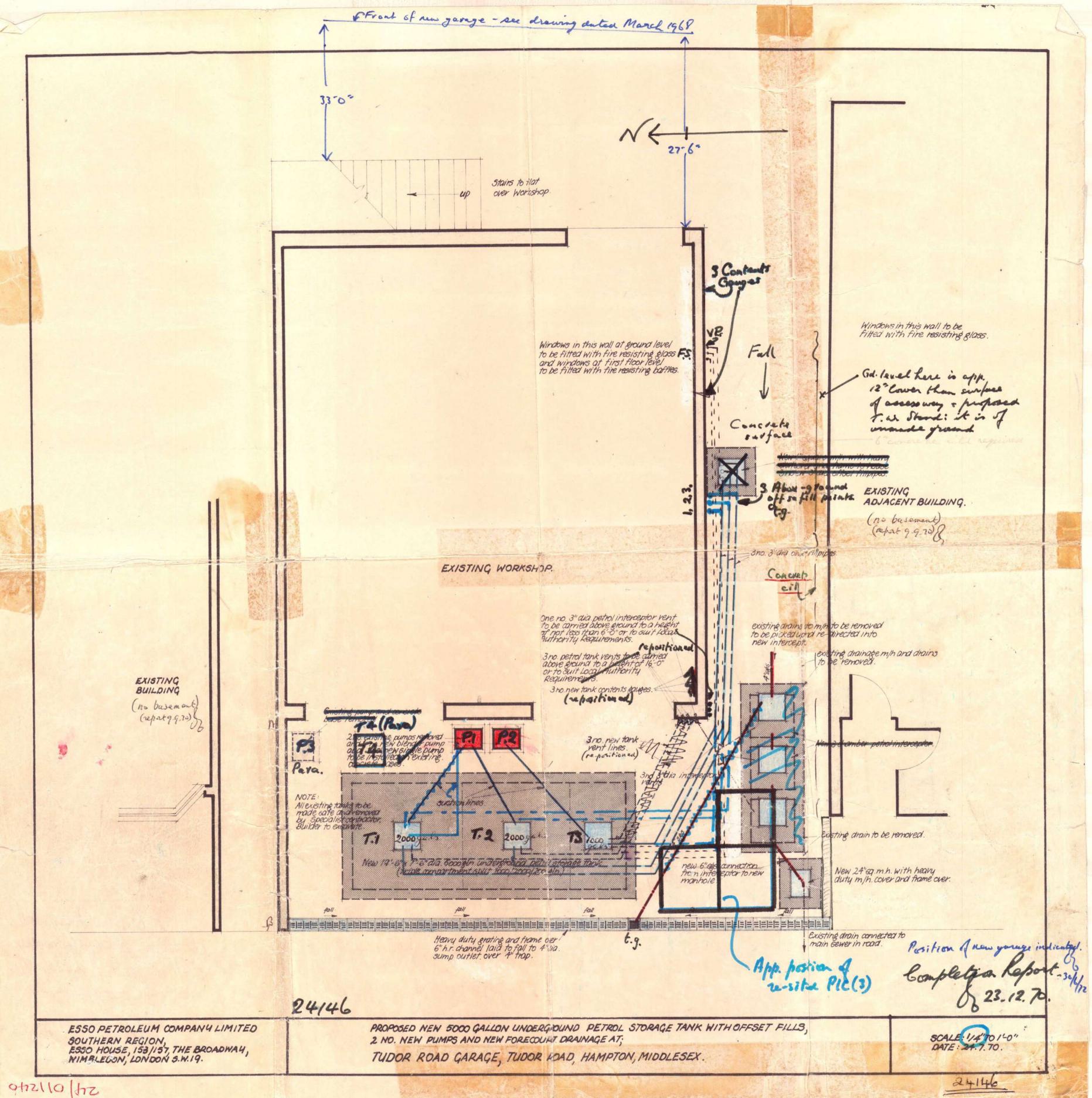
Our Reference:

24/011240

Tank No.	Compartment No.	Year	Tank Type	Tank Capacity	Fuel Type	Current Status
1	1	1970	Single Skin Steel	9092 Litres	Petrol	RG22 Foam Filled
1	2	1970	Single Skin Steel	9092 Litres	Petrol	RG 22 Foam Filled
1	3	1970	Single Skin Steel	4546 Litres	Petrol	RG22 Foam Filled
2	4	?	Single Skin Steel	2273 Litres	Paraffin	Not Known

Current licence/Petroleum Storage Certificate in force?						
YES 🗌 NO 🔀						
Date last licence(s)/storage certificate(s) issued:						
Last Licence date 30/06/65 - 30/11/94						

Known leaks or spills at this site:


No recorded incidents of leaks or spills at this site

Comments:

Records for this site are limited. A note held on file indicates that a company called Tanksafe Limited were used to fill tank 1 compartments 1,2,3 with RG22 foam on 6 January 1998. Records show that a 5000 Gallon petroleum spirit tank was removed from the site in 1970. There is also a note on file which indicates that there is a tank on the site which is used to store paraffin, the authority holds no further information on this tank. As you have requested drawings I enclose historical drawings which show the petroleum storage tanks and an earlier tank farm.

Signed:	Philip Cater
Name:	Philip Cater
Position:	Administrative Assistant
Date:	7 October 2024

27/01/240 1946 TANK FARMI Lub Stype Open-floort purking garage. Office. Awg Nol. 24146 14/16 TUDOR ROAD, Garden HAMPTON, TWICKENHAM, NE (CHMOND) SCALE: 18"-1" Removed 1/19 250 Ru Eventt . 4. 5.66 Boiler Paral Duoto 60-brick F.R. scelen at North and of precourt \$ 16.5.69 up to 1st floor flat Breeze + covrugated Brick We Store Garden Open entrance Elean Workshop. to seen glaged yard. in long First floor living odution 717 710 above. moden Blank Lolding Steeling doors metal Office. Private 0 0 PI P2 House P.3 Shop 73 60 brock asphalt DI fall 14.1. 12 2-6 12 T.1 due of Road Gulley

54 011540

Appendix E

TANKSAFE LIMITED 4/3 Gough Exprove Landain SCAA 30E Tel: 0171-583 2007 Fisic 0171-583 2008 Mobile: 0850 642828

VAT No. 626 7731 22

Ē

6th January 1998.

Tudor Road C	larage Ltd
14-16 Tudor i	Real
Hampoon	NUMBER OF
Middy	
TW12-2N0	

ENVOICE NO.980002

Re: Tudor Road Garage, 14-16 Tudor Road, Flampton, Midds.

Tim Fill 1 x 1,000 and 2 x 2,000 gallon tanks with BG22 hardfoare

Quantity used 25 cubic metres Pipework preparation prior to foam filling To bettoms tanks by tanker	1,375.00 275.00 325.00
Subtouil VAT 96-17.5%	1,975.09 345.62
TOTAL NOW DUE	2,320.62

Please make payment to Kelleck LaL,

-EAGO E

Credit terms - 28 days from date of invoice.

CA NO TROATS

the data strategy under fills somen ins have serginal to which has

Colders & Miles Reset, Resident Rill Bid, Detailant Bids Bid USLAR and any product to one place party will not established a residence of the data.

of these encounts in one Report to the second in all magnets Rathers (all property in matching and an encounter of the

Represent No. 2714129. Represent Office or atoms. A number of the Gallo, Dispose Group.

SANKSAFE LIMITED A/3 Gough Square Landon EC4A 30E Tal. 0171-563 2007 Fax: 0171-583 2008 Mobile: 0850 842828

CERTIFICATE OF TANK FILLING

Certificate No. 95/002

Customer:	Tudor Road Garage Ltd 14-15 Tudor Road Hampton Middx TW12 2NQ		
Site Name:	as above		
Address:	as above		
Date Filled:	6/1/98		
Tank No. 1 2 3	Product Petrol Petrol Petrol	Tank Capacity(fitres) 10,000 10,000 5,000	

We declare that the above tanks have been filled to capacity with RG22 hard foam in accordance with the procedures agreed with the local petroleum licensing authority.

1.1.0 e \$ 718 1992 Signed Charles . Managing Director For and on behalf of TankSafe Limited Tudor Road Garage Ltd Copies: Sanior Petroleum Officer

Senior Petroleum Officer LFCDA Section P 90 Old Town Croydon Surrey CR0 1AR

Exponent No. 2794129 Represent Office on shore. A marrier of the Gollic Bioping Oncol.

CUSTOMER COPY				TankSala Ltd	
TankSafe)			45 Graugh Signest London BCAA, 306 Tel: 3171 428 5085 or: 0171 628 4051 Pax, 0171 376 5008	
	DELIVERY	NOTE	Serial No.	757	
Date 6-1-98			JANA 13.00		
Mar 192135-> 1922	p6 ^{Km}	Tine Arring	16:30		
Centomor			Site		
Admin		Maine Address	TUDER ROLEAD		
		MOHODO	R022 F	NACON 04 	
P.O. Present: D. / No	K.				
Pipework Contractors	D.MS			-	
Fittings Used:			1 2 6		
Comments:	1.18			1.00	
Customer Contraster		Print Name:	Tens H	ETIABS	
WHITE					

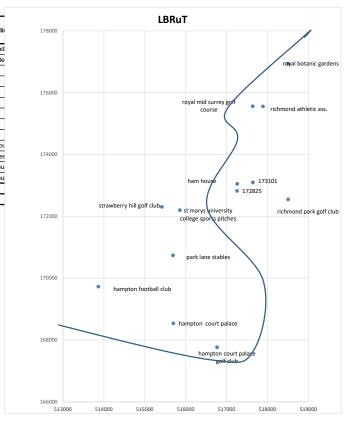
AG Geo-Consultants Ltd

Appendix F

André Gilleard (Ground & Waste Soils Specialist)

From: Sent: To: Subject: Attachments:	Gavin Day <gavin.day@merton.gov.uk> 09 September 2024 18:46 'andre@ag-geoconsultants.co.uk' hampton, tudor rd, no 14-16, TW12 2NQ - FS-Case-645545496 MapEagle.pdf; 26550R02_FINAL_RSK_Report.pdf; PWS in LBRUT 2010 plotted plus LBW equals RSP list.xls; Part B list 20240902 version2.xls</gavin.day@merton.gov.uk>
Flag Status:	Flagged
Categories:	urgent

Hello Andre,


Thank you for your mail. Please find attached results of an historic-use enquiry run in the year 2017. Yates garage at No 9 Tudor Road has our nearest investigation, and is now remediated appropriate to its new use-class. Please find that investigation attached. Please find attached our Part B list and Private Water Drinking supplies list also attached. These are about the best data we have. Trusting this information is of use.

Gavin Day Contaminated Land Officer Regulatory Services Partnership Serving Merton, Richmond and Wandsworth Councils

Friday will be a day of leave for me

From: Pollution and Air Quality <Pollution@merton.gov.uk> Sent: Monday, September 9, 2024 10:11 AM

Name of Supplier	Type of Source	Geograp	hical Location Easting	Grid Reference Northing	Estimate of No. of People Supplied	Estimate of Average Daily Volume of Water Supplied in m3	Type of Premises Suppli
Ham House	Boreholes	517258	173050		0	0	Heritage Building Ground
Hampton Court Palace	Boreholes and River	515698	168540		0	0	Palace Ground and Garde
Palm Centre Limited	Boreholes	517252	172825		0	0	Garden Centre
Ham Polo Club	River	517640	173101		0	0	Riding Establishment
Park Lane Stables	Boreholes	515689	170740		0	0	Livery Stables
Hampton Court Palace Golf Club	Boreholes	516767	167769		0	0	Golf Club Grounds
Richmond Park Golf Club	Boreholes	518502	172549		0	0	Golf Club Grounds
Royal Mid Surrey Golf Club	Boreholes	517637	175561		0	0	Golf Club Grounds
Strawberry Hill Golf Club	Boreholes	515416	172308		0	0	Golf Club Grounds
Royal Botanic Gardens	Boreholes and River	518504	176941		0	0	Botanical Gardens and Grou
St Mary's University College	Boreholes	515856	172202		0	0	University Sports Pitches
Richmond Athletic Association	Borehole	517887	175557		0	0	Rugby Club Pitch and Grou
Hampton Football Club	Borehole	513865	169727		0	0	Rugby Club Pitch and Grou
George's Hospital, Tooting	Borehole	527041		171545			hospital

LBRuT

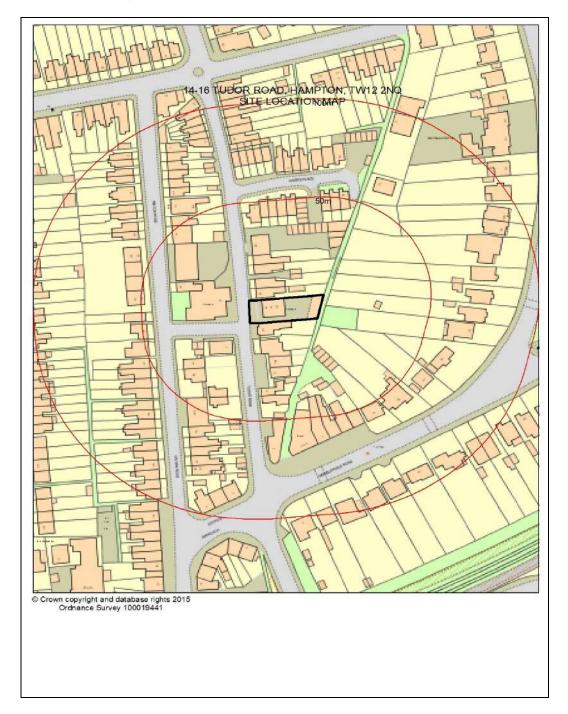
						LBRuT			
Ref EP-MM0010P+ EP-MM0202P+ D1/IPVR 02/IPVR 02/IPVR 02/IPVR 04/IPVR 04/IPVR 04/IPVR 04/IPVR 04/IPVR 04/IPVR 04/IPVR 04/IPVR 04/IPVR 12	Name Granshav & Wake Ltd H&L Moters Lottinia Crastination Shell Ouk Lane Shell Ouk Lane Shell Ouk Lane Shell Ouk Lane Shell Ouk Lane Shell Shellow P Dares Shepsing P Dares Shepsing P Cares Shepsing Rockate Service Salation Back Henz Service Salation Sanstanya Service Salation Ham Comession Sanstanya Service Salation Ham Comession Ham Comession Ham Comession Ham Comession Ham Comession MEL Dry Cleaners MEL Dry Cleaners	Addesse Justi Ha, Saundielei Industrial Estate, Odfielde Road, Hampton TW 12 2H7 TV Weilington Road, Twickerham TW2 SNX Keer Messfor PM, Richmond TW3 (EH) SH Hamman Structures and State States SH Richmond Road, Twickerham TW1 3MB 110 States Road, Twickerham TW2 States (The SHW Lower Mortlake Road, Richmond Road, Richmond TW9 4LJ 105 Hortlake Road, Richmond TW3 2L 105 Hortlake Road, Hampton TW1 StW 333 Labeloge Road, Hampton TW1 StW 333 Labeloge Road, Hampton TW1 StW 333 Usefloge Road, Hampton TW1 StW 334 Labeloge Road, Hampton TW1 StW 335 Labeloge Road, Hampton TW1 StW 337 Labeloge Road, Hampton TW1 StW 339 Labeloge Road, Hampton TW1 StW 330 Labeloge Road, Hampton TW1 StW 330 Labeloge Road, Hampton TW1 StW 334 Labeloge Road, Hampton TW1 StW 334 Labeloge Road, Hampton TW1 StW 334 Labeloge Road, Hampton TW1 StW 335 Labeloge Road, Hampton TW1 StW 34 Hall Road, T	520015 518426 514276 514589 515087 518314 518314 518314 518314 522880 522880 51952 519719 519719 519719 518315 518315 518088 518315 518088 518207	168898 171818 172424 173486 172754 168913 171931	176280 175707 175742 175045 177685 175692 175667 175314 171510 175453 175477 176685 175474	LBRUT (red=south of Thame & LB 17000 17000 17000 17000 17000 1000000	V 52200524005260052800053000 01042607 PG848 01042607 PG848	In the real model of period into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks on for the unication of petrol into stationary storage tanks and filing of vehicle petrol tanks.	State of Permit Active
LIRAUTIDC/IB LIRAUTIDC25 LIRAUTIDC27 LIRAUTIDC27 LIRAUTIDC27 LIRAUTIDC27 LIRAUTIDC27 LIRAUTIDC30	Hebb tops by Cleaners Rwy Dr (Cleaners Rwy Dr (Cleaners Preision) and General Control Preision and Control Control Register Dy Cleaners Register Dy Cleaners Register Dy Cleaners Register Dy Cleaners White Hart Dy Cleaners White Hart Dy Cleaners White Hart Dy Cleaners White Hart Dy Cleaners Caters 2 Dry Cleaners Bas and Dry Cleaners Bas and Dry Cleaners Bas and Dry Cleaners Bas and Dry Cleaners Bas Dry Cleaners Bills Dry Cleaners	374 Richmond Read, Twickenham, TW1 20X 46 Chuch Read, Bank Bank, SW1 300 45 Salates Face, Twickenham, TW2 SAH 50 Salates Face, Twickenham, TW2 SAH 200 Hex Steer, UNINO TW2 TAH 200 Loger Richmond Read West, East Steered W14 72E 200 Loger Richmond Read W14 SW1 W1 72F 201 Loger Richmond W14 W12 V12F 201 SW1 Richmond W14 W12 W12 201 SW1 Richmond W14 W12 W1 201 SW1 Richmond W14 W17 W1 201 SW1 201 SW1 Richmond W14 W17 W1 201 SW1 201 SW1 Richmond W14 W17 W1 201 SW1 201	517480 522279 514694 514694 514691 520441 516704 530582 51685 51585 51585 51488 51585 51489 517802 518035 5180555 5180555 51805555555555	174289 173763 172992 173682 174388 173151 173126 172724 171211 173371 170907 173923 171116 170907 173923 171116 169688 170965	178584 175402 175305 175584 171552 175223 174891 176448 174339 175560 175548	Me Duand Me Juai Me Shaii Me Shaii Me Shaii Me Shaii Me Juai Me Juai Me Juai Me Juai Me Juai Me Juai Me M	1143/2027 PG848 2034/2027 PG848 11142/2027 PG848 11142/2027 PG848 21142/2027 PG8	Dry Clasning Dry Clasning </td <td>Active Active Ac</td>	Active Ac
LAPPC 1 LAPPC 2 LAPPC 2 LAPPC 2 LAPPC 2 LAPPC 3 LAPPC 3 LAPPC 3 LAPPC 3 LAPPC 3 EPLAPC 3 EPLA	Sloane Demolition Kaotan Dry Cleaners Fantasy Dry Cleaners Trinity Cleaners Falcon Laundrette & Dry Cleaners	006 Campatil Lame, SW 18 (DPP) 025 Van R.ad. 2019 (BT) 020 Campatil Lame, SW 18 (LT) 021 Rohampion Lame, SW 18 (LT) 025 Shatayan Hill, SW 12 SOP 025 Shatayan Hill, SW 12 SOP 026 Lame, SW 18 (LT) 027 Lame, SW 18 (LT) 028 Lame, SW 18 (LT) 029 Lame, SW 18 (LT) 029 Lame, SW 18 (LT) 021 Lame, SW 18 (LT) 023 Lame, SW 18 (LT) 024 Lame, SW 18 (LT) 025 Lame, SW 18 (LT) 026 Lam	622016 522766 522764 522562 522577 522527 522527 522527 522577 525577 525577 525577 525577 525577 525577 525577 525577 525577 5255777 5255777 5255777 5255777 525577777 5255777777 52557777777			1968.3. Lockson Convents Limited 1969.5 Turnas: Trading List 1969.5 Turnas: Trading List 1969.5 Turnas: Trading List 1969.5 Convents 1969.5 Convents 1969.5 Convents 1979.5 C		Binding etc. buk cement Binding etc. buk cement Binding etc. buk cement Oxibie course function moble course cubes moble course cubes moble course cubes Market States Response of Read vehicles Wash O Lamer of AMW Cematolian Course of the States Wash O Lamer of AMW Cematolian Vacan Recovery Vacan Recovery Reco	
EPLAPPC125 1 2 2 3 3 2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4	Castle Sciences Dr Cleaners South Location Centratorium Antine Last Canner, Centratorium Antine Dental Tesco Tesco Dellare Wood events South Coulters Wood South Stell Paya Conter Martin Way Seruice station Shell Paya Conter Martin Way Seruice station Martin Davies Antine Martine Station Contents David Davies Martine Content Contents David Davies Martine Martine Contents Martine Joint Davies Martine Joint Davies Martine Davies Martine Davies Seruit Davies Martine Davies Seruit Davies Ser	12 Useen Tooline Road. SW17 7PG Rowan Road, Streatham, SW10 63/G Lower Horden Law, Robrien Shrifting, Came, Endeamu, Waro Bolding, Came, Bolding, Waro Shrifting, Came, Bolding, Waro Shrifting, Came, Sw10 200 Cameral Camera, Sw10 200 Cameral Camer	527959 SW 16 5.1G SW 16 5.1G SW 16 5.1G SW 16 5.2G SW 1			172317 Zaihe Azd	1400(2010) 2800(2010) 2800(20006) 2700(30206) 2700(30206) 2700(30206) 2700(30206) 2700(30206) 2700(30206) 1900(30207) 1900(3027) 1900(3	br Cleannia	

GIS SEARCH REPORT

Site Name: 14-16 Tudor Road, Hampton, TW12 2NQ

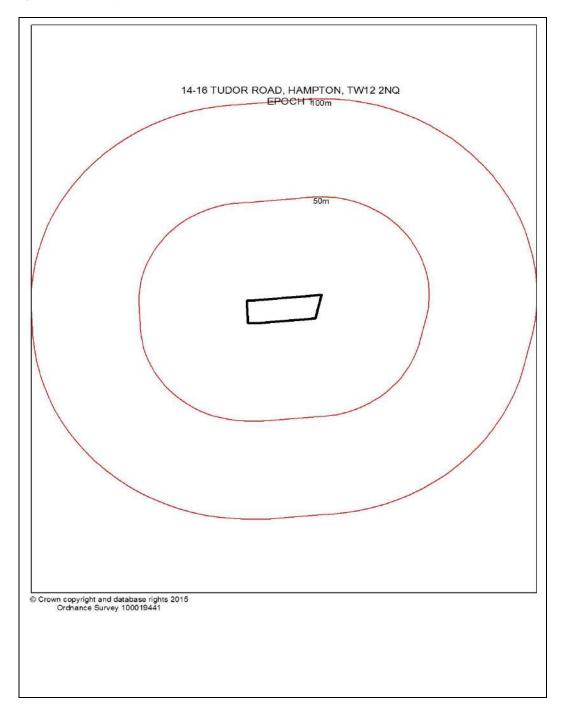
Date: 16 March 2017

On Behalf of:

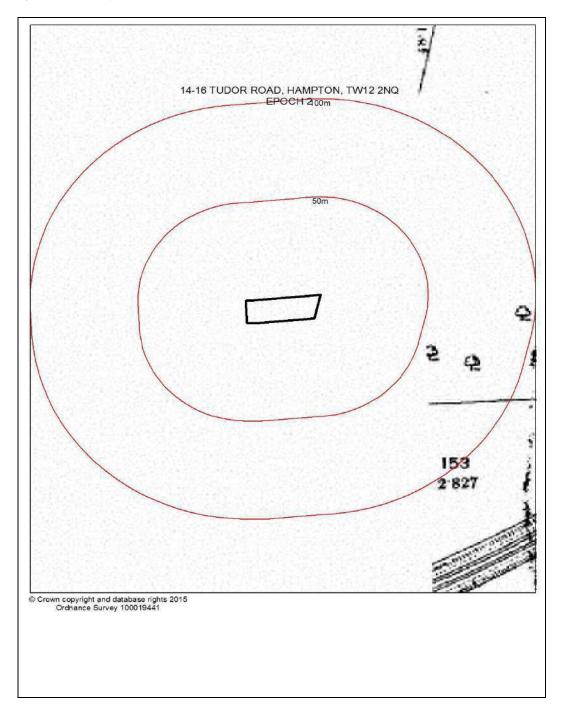

1. GIS SEARCH REPORT

DATE: 16 March 2017 TIME: 10:39

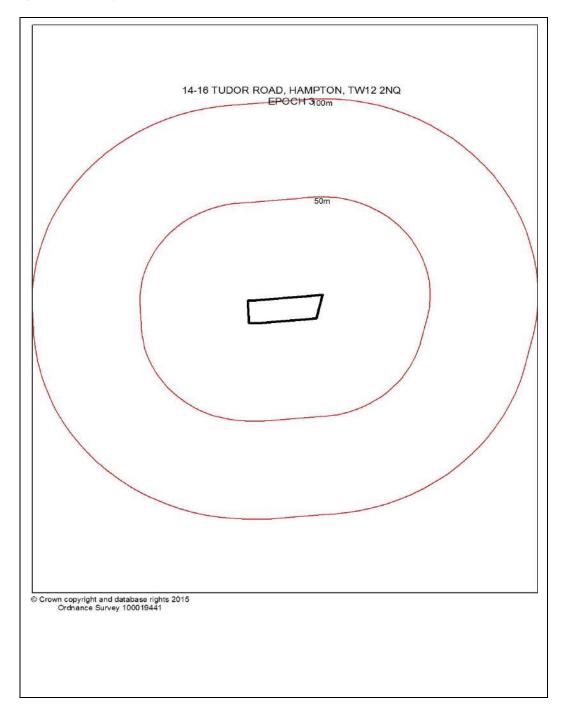
Buffer Search Radius: 50, 100, 200, 250 metres Search Feature ID: PCL000271 Search Feature Layer Name: Potential Contaminated Land Sites Approx. area of search feature: 386m² Site Centre Coordinates (British National Grid): 513444, 170017 Feature Buffer Search Selection Summary: A total of 22 features were selected on 6 out of 15 target layers (total includes the search feature).



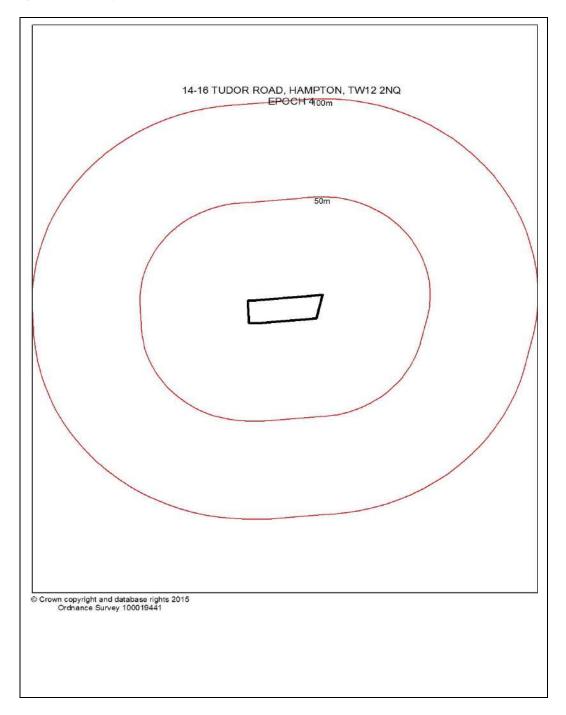
2. Site Location Map



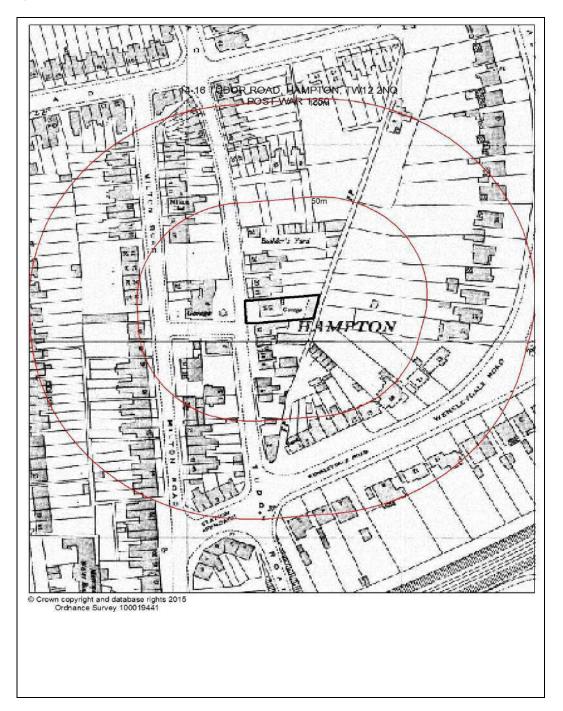
2.1 Layer Name: Epoch 1



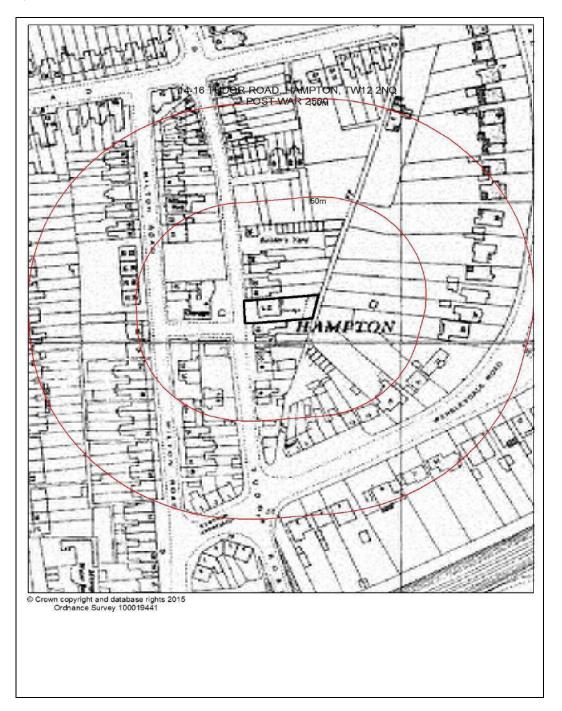
2.2 Layer Name: Epoch 2



2.3 Layer Name: Epoch 3

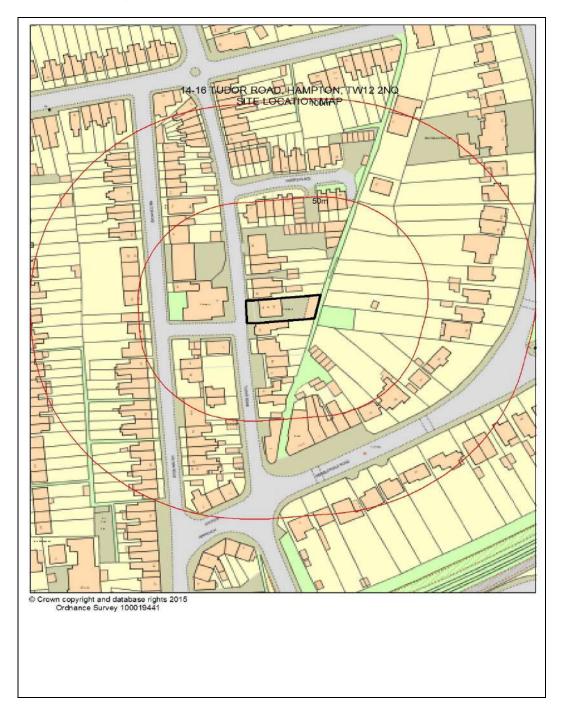


2.4 Layer Name: Epoch 4

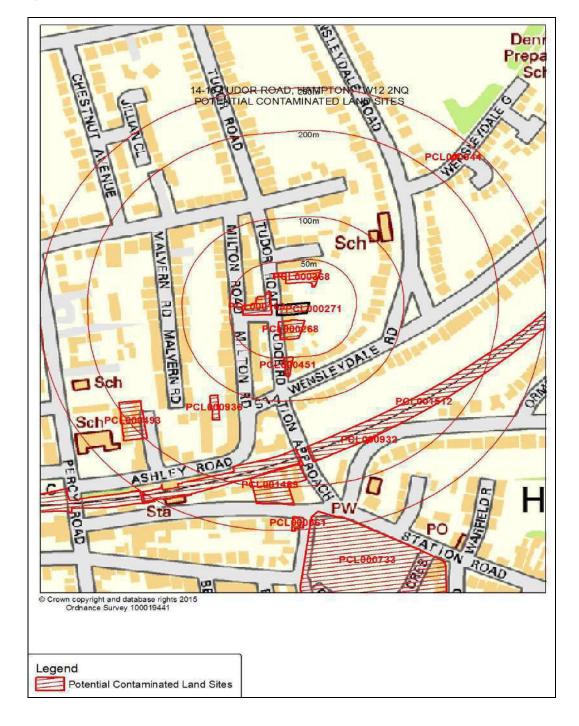


2.5 Layer Name: Post War 1250

2.6 Layer Name: Post War 2500


3. Summary Datasheet

Search Layer Name	Search Distance	Data Available	No. of features identified
Potential Contaminated Land Sites	250 m	Yes	13
Recent Planning Consultations	50 m	Yes	3
Recent Site Investigations	50 m	Yes	1
Searches_Polygons	250 m	Yes	2
airpollcont	50 m	Yes	1
Fuel Stations	50 m	Yes	2
Integrated Pollution Control Sites	50 m	No	0
Waste Treatment Sites	50 m	No	0
waterprosecutions	250 m	No	0
Geotechnical surveys and planning documents	50 m	No	0
Radioactive Licences	50 m	No	0
Historic_Landfill_Sites_010k	250 m	No	0
Authorised_Landfill_Sites_010k	250 m	No	0
Private_Water_Supplies_2015	250 m	No	0
Waste Transfer Sites	50 m	No	0


NB: Total for layer Potential Contaminated Land Sites includes the search feature.

4. Site Location Map

5. Layer Name: Potential Contaminated Land Sites

5.1 GIS Attribute Data for Potential Contaminated Land Sites

Selection Summary for layer

1 feature(s) identified on site.

4 feature(s) identified off site within 50 metres

0 feature(s) identified off site within 50 - 100 metres

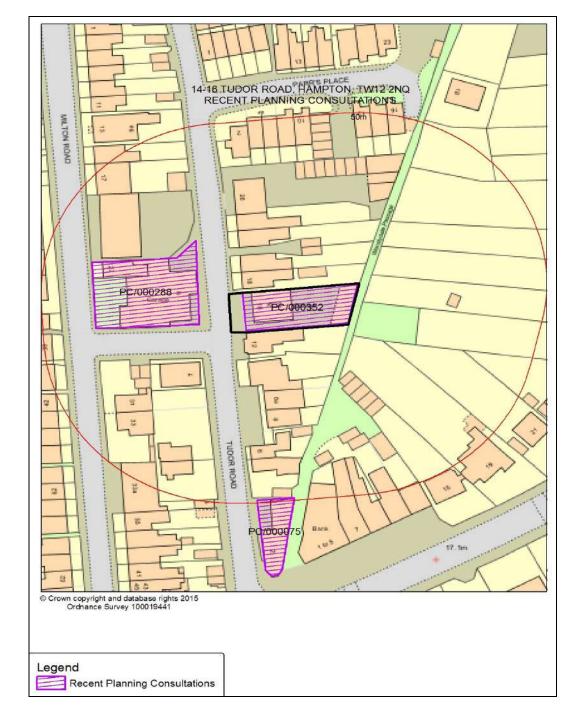
5 feature(s) identified off site within 100 - 200 metres

3 feature(s) identified off site within 200 - 250 metres

ld	Name	CURRENT_USE	Approx. distance (m)	Approx. Area (m2)	Grid Ref.					
On Site										
PCL000271	TUDOR ROAD 4	Flats with no gardens	0.00	386	513444, 170017					
Previous Indu Industry Profil Year Use Esta Year Use End Comments: m	Information from database query <u>Previous Industrial Uses</u> Industry Profile: Road vehicles: Garages and filling stations Year Use Established: 1924 Year Use Ended: 1925 Comments: motor engineer Note: No Data Area: 380									
Industry Profile: Road vehicles: Garages and filling stations Year Use Established: 1970 Year Use Ended: 1976 Comments: LM/0775. Potential Tanks. Note: LM historical tank and substation data Area: 380										
Year Use Esta Year Use End Comments: R	Industry Profile: Road vehicles: Garages and filling stations Year Use Established: 2003 Year Use Ended: 2004 Comments: R/953/03.Petrol Sales. 14/16 Tudor Road,Hampton Note: Source: environmental health Area: 380									
Year Use Esta Year Use End Comments: R	Industry Profile: Road vehicles: Garages and filling stations Year Use Established: 1923 Year Use Ended: 1924 Comments: R/531/02. Motor Car Garage.Tudor Road Garage,14 Tudor Road,Hampton Note: Kellys Kingston, Surbiton, Norbiton & District 1923 Middlesex 4 verifes the location of the address. Area: 380									
Previous Indu	Information from database query <u>Previous Industrial Uses</u> No comment was found in the database									
Identified Off-	site - Within 50m	Γ	Γ	Γ						
PCL000163	TUDOR ROAD 5	Commercial	5.22	532	513409, 170019					
Information from database query Previous Industrial Uses Industry Profile: Road vehicles: Garages and filling stations Year Use Established: 1937 Year Use Ended: 2002 Comments: motor engineers Note: No Data Area: 530 Industry Profile: Road vehicles: Garages and filling stations Year Use Established: 1961 Year Use Ended: 1971 Comments: LM/0774. Potential Tanks Note: LM historical tank and substation data										

ld	Name	CURRENT_USE	Approx. distance (m)	Approx. Area (m2)	Grid Ref.				
Area: 530									
Industry Profile: Road vehicles: Garages and filling stations Year Use Established: 2003 Year Use Ended: 2004 Comments: R/952/03. Petrol Sales. Tudor Road,Hampton, Note: Source: environmental health Area: 530									
Previous Indu	<i>om database query</i> <i>Istrial Uses</i> was found in the database								
PCL000268	TUDOR ROAD 3	Housing with gardens	6.34	504	513442, 169993				
Previous Indu Industry Profii Year Use Esta Year Use End Comments: fa Note: No Data Area: 503	Industry Profile: Metal manufacturing: Iron and steelworks								
Year Use Established. 1918 Year Use Ended: 1930 Comments: R/522/02. Farriers. 8 Tudor Road,Hampton Note: Kellys Kingston, Norbiton, Surbiton District Directory 1918 Middlesex 4 verifies the address. Area: 503 <i>Information from database query</i> <i>Previous Industrial Uses</i>									
	was found in the database	Γ	Γ		Γ				
PCL000368	TUDOR ROAD 1	Housing with gardens	18.63	529	513453, 170054				
Information from database query Previous Industrial Uses Industry Profile: Road vehicles: Garages and filling stations Year Use Established: 1981 Year Use Ended: 1993 Comments: Car Repairs Note: No Data Area: 533 Information from database query Previous Industrial Uses No comment was found in the database									
PCL000451	TUDOR ROAD 2	Commercial	49.19	151	513439, 169951				
PCL000451 TUDOR ROAD 2 Commercial 49.19 151 513439, 169951 Information from database query Previous Industrial Uses Industry Profile: Printing and bookbinding works Previous Established: 1991 Year Use Established: 1994 Commercial printers.Panda Printer Products Ltd Note: No Data Area: 157 Information from database query Previous Industrial Uses No comment was found in the database									

ld	Name	CURRENT_USE	Approx. distance (m)	Approx. Area (m2)	Grid Ref.				
Identified Off-	site - Within 50-100m								
None									
Identified Off-	site - Within 100-200m								
PCL000493	ASHLEY ROAD 1	Schools	175.53	1054	513275, 169887				
Previous Indu Industry Profi Year Use Esta Year Use End Comments: A	Information from database query <u>Previous Industrial Uses</u> Industry Profile: Metal manufacturing: Iron and steelworks Year Use Established: 1995 Year Use Ended: 2004 Comments: Architectural Metal Works.Ongoing land use in 22b. 22a has become a nursey Note: also on Address Points Area: 130								
Year Use Est Year Use End Comments: R Note: Thomso Area: 920	Industry Profile: Metal manufacturing: Iron and steelworks Year Use Established: 1999 Year Use Ended: 2003 Comments: R/1110/03.metal products fabrication.22a Ashley Road,Hampton Note: Thomson - Richmond Area 1999-2000. Currently a Nursery Area: 920								
Previous Indu	<i>rom database query <u>ustrial Uses</u> was found in the database</i>								
PCL000932	ORMOND AVENUE 1	Electricity Sub Station	160.06	22	513525, 169865				
Previous Indu Industry Profi Year Use Est Year Use End Comments: E Note: No Data Area: 21 Information fr Previous Indu	Information from database query <u>Previous Industrial Uses</u> Industry Profile: Electricity distribution inc large transformer Year Use Established: 1968 Year Use Ended: 1968 Comments: Electrical Sub Station Facilities Note: No Data Area: 21 Information from database query <u>Previous Industrial Uses</u> No comment was found in the database								
PCL000936	MILTON ROAD 1	Housing with gardens	111.93	228	513362, 169903				
Information from database query Previous Industrial Uses Industry Profile: Electricity distribution inc large transformer Year Use Established: 1971 Year Use Ended: 2004 Comments: Electrical Sub Station Facilities Note: No Data Area: 227									
Information from database query <u>Previous Industrial Uses</u> No comment was found in the database									
PCL001489	STATION ROAD TW12 11	Residential	169.69	1790	513428, 169812				
Previous Indu Industry Profi	le: Coal storage and depot ablished: 1912 ded: 1950s								



ld	Name	CURRENT_USE	Approx. distance (m)	Approx. Area (m2)	Grid Ref.				
Note: No Data Area: No Data									
Previous Indu	<i>rom database query <u>Istrial Uses</u> was found in the database</i>								
PCL001512	Richmond Railway Line		140.25	675451	516471, 173219				
Previous Indu Industry Profi	le: Railway land ablished: No Data led: No Data lo Data a								
Previous Indu	<i>iom database query <u>Istrial Uses</u> was found in the database</i>								
Identified Off-	site - Within 200-250m		-						
PCL000561	STATION ROAD TW12 10	Flats with no gardens	234.36	154	513449, 169768				
Previous Indu Industry Profi Year Use Est Year Use End Comments: s Note: No Data Area: 154 Information fr Previous Indu	Information from database query Previous Industrial Uses Industry Profile: Chemical Works: Soap & detergent manufacturing works Year Use Established: 1981 Year Use Ended: 1982 Comments: soap manufacturers Note: No Data Area: 154 Information from database query Previous Industrial Uses No comment was found in the database								
PCL000733	HARVEY DRIVE 1	Housing with gardens	230.19	26635	513522, 169658				
PCL000733 HARVEY DRIVE 1 Housing with gardens 230.19 26635 513522, 169658 Information from database query Previous Industrial Uses Industry Profile: Sewage works and sewage farms Year Use Established: 1890 Year Use Established: 1890 Year Use Ended: 1976 Comments: LM/0232,LM/0340.Sewage Year Use Industrial Diversity of the interval polygon data 1940-1960?s Landmark historical polygon data 1940-1960?s Landmark historical polygon data 1940-1960?s Landmark historical polygon data 1980-1990?s Landmark historical polygon data 1980-1990?s Landmark historical polygon data 1980-1990?s Landmark historical polygon data Area: 26736 Industry Profile: Unknown Filled Ground (Pond, marsh, river, stream,dock etc) Year Use Ended: 1872 Year Use Ended: 1872 Year Use Ended: 1880 Comments: LM/0423.Unknown Filled Ground (Pond, marsh, river) Note: LM infilled point data Area: 694 Information from database query Information from database query									
Previous Indu									
PCL000944	WENSLEYDALE ROAD 2	Housing with gardens	223.23	26	513615, 170193				

ld	Name	CURRENT_USE	Approx. distance (m)	Approx. Area (m2)	Grid Ref.
Information fr	om database query				
Previous Indu Industry Profil	<i>istrial Uses</i> le: Electricity distribution inc la	rge transformer			
Year Use Esta Year Use End	ablished: 1971 led: 2004				
Comments: E Note: No Data	lectrical Sub Station Facilities				
Area: 15	-				
	om database query				
Previous Indu No comment	<i>i<u>strial Uses</u> was found in the database</i>				

6. Layer Name: Recent Planning Consultations

GIS Attribute Data for Recent Planning Consultations 6.1

Selection Summary for layer 1 feature(s) identified on site. 2 feature(s) identified off site within 50 metres

ld	Name	Address	Approx. distance (m)	Approx. Area (m2)					
On Site									
PC/000352	Tudor Road 14-16		0.00	328					
Information from database query <u>Planning Comments</u> SITE_ID: PC/000352 SITE_NAME: Tudor Road 14-16 NOTE_TITLE: Description of the Proposal NOTE: Unknown as no access to planning documents. CASE_NO: PC-000443 COMMENTS: Planning Consultation APPL_RECEIVED: 15/03/2017 00:00:00 ACT_TYPE_NAME: Planning Consultation EXT_CASE_NO: 17/P0027/PREAPP									
Identified Off-site - W	ithin 50m								
PC/000075	2 Tudor Road	TUDOR ROAD	49.19	154					
Information from database query Planning Comments SITE_ID: PC/000075 SITE_NAME: 2 Tudor Road NOTE: TITLE: Description of the Proposal NOTE: Change of use from B1 office use to C3 dwellings (2 x 1 bed flats) Application contains parking areas. Previously reviewed for a planning application by TH with no comments attached. Same agent and developer. CASE_NO: PD-000014 COMMENTS: Permitted Development Notifcation APPL_RECEIVED: 25/04/2014 00:00:00 ACT_TYPE_NAME: Permitted Development Planning Consultation EXT_CASE_NO: 14/1569/P3JPA SITE_ID: PC/000075 SITE_NAME: 2 Tudor Road NOTE: Site previously a commercial printers (1991-1994) with a petrol station approximately 50m away (with historical tank and substation data). CASE_NO: PD-000014 COMMENTS: Permitted Development Notifcation APPL_RECEIVED: 25/04/2014 00:00:00 ACT_TYPE_NAME: Permitted Development Notifcation APPL_RECEIVED: 25/04/2014 00:00:00 ACT_TYPE_NAME: Permitted Development Planning Consultation EXT_CASE_NO: 14/1569/P3JPA SITE_ID: PC/00075 SITE_NAME: Permitted Development Notifcation APPL_RECEIVED: 25/04/2014 00:00:00 ACT_TYPE_NAME: Permitted Development Notifcation APPL_RECEIVED: 25/04/2014 00:00:00 ACT_TYPE_NAME: Permitted Development Planning Consultation EXT_CASE_NO: 14/1569/P3JPA									
PC/000288	PC/000288 Tudor Road 9/ Milton Road 27 Hampton 8.15 554								
Information from database query <u>Planning Comments</u> SITE_ID: PC/000288 SITE_NAME: Tudor Road 9/ Milton Road 27 NOTE_TITLE: Description of the Proposal NOTE: Demolition of canopy and removal of petrol storage tanks CASE_NO: PC-000286 COMMENTS: Demolition - Prior Notice APPL_RECEIVED: 09/02/2016 00:00:00									

ld	Name	Address	Approx. distance (m)	Approx. Area (m2)
ACT_TYPE_NAME: D EXT_CASE_NO: 16/0	Discharge of Conditions 0394/DEMPN			
NOTE_TITLE: Plannin NOTE: I can confirm t canopy and removal c is also consulted befo CASE_NO: PC-00028 COMMENTS: Demoli APPL_RECEIVED: 05	tion - Prior Notice 9/02/2016 00:00:00 Discharge of Conditions			
SITE_ID: PC/000288 SITE_NAME: Tudor F NOTE_TITLE: Descrip NOTE: Seven dwellin, CASE_NO: PREPL-0 COMMENTS: Pre-pla APPL_RECEIVED: 1 ⁻ ACT_TYPE_NAME: F EXT_CASE_NO: 16/F	gs 00029 nning Enquiry 1/02/2016 00:00:00 Pre-Planning Enquiry			
NOTE_TITLE: Plannii NOTE: I can confirm I There are also record	nning Enquiry 1/02/2016 00:00:00 Pre-Planning Enquiry	age in the vicinity of the s	site. Given the sensitivity of th	ne proposed use
NOTE_TITLE: Descri	nt of the site to provide seven hous 50 Ig Consultation 0/08/2016 00:00:00 Planning Consultation	es, associated landscapi	ng and parking following the	demolition of all existing
NOTE_TITLE: Plannin NOTE: I can confirm I There are also record	0 ig Consultation 0/08/2016 00:00:00 Planning Consultation	age in the vicinity of the s	site. Given the sensitivity of th	ne proposed use
NOTE_TITLE: Description NOTE: Redevelopment buildings. CASE_NO: PLF-0000 COMMENTS: Plannin APPL_RECEIVED: 06	nt of the site to provide seven hous 149 19 Application Follow Up 5/12/2016 00:00:00 Planning Application Follow Up	es, associated landscapi	ng and parking following the	demolition of all existing

	ld	Name	Address	Approx. distance (m)	Approx. Area (m2)
--	----	------	---------	----------------------	-------------------

SITE_ID: PC/000288

SITE_NAME: Tudor Road 9/ Milton Road 27

NOTE_TITLE: Planning Application Comments

NOTE: I can confirm that I have reviewed the application. Our records indicate that the site was formerly a garage and petrol filling station. A remediation validation report (ref: 100956/Validation Report/001 - Revision 2) written by Provectus Remediation Ltd was submitted to support the application. This report refers to previous site investigations and risk assessments undertaken in 2014 and 2016 by RSK and discusses the removal of petroleum storage tanks from the site and subsequent validation sampling of soils and groundwater. A letter from the Environment Agency dated 27 September 2016 (EA ref: SL/2016/116316/01-L01) confirming that they did not require any further information with regard to potential groundwater risks was also submitted. With regard to human health risks, the report states that the "results of the shallow soil samples have all been within the remediation criteria". Although the report considered VOC related risks to be "very low", following a discussion between myself and David Harman from Provectus on the 22nd December 2016, it was agreed that it would be prudent to install gas protection within buildings. Subsequently a revised remediation report was submitted on the 03/01/2017 (ref: 100956/Validation Report/001 - Revision 3) incorporating the gas protection measures within the development proposals.

I am satisfied with the remediation validation report submitted and can recommend that the an amended form of the standard contaminated land condition DV29F be applied to any planning permission granted. My suggested wording for the condition is as follows:

The building hereby permitted shall not be occupied until:

a) The remediation works approved as part of the remediation strategy (report reference 100956/Validation Report/001 - Revision 3 by Provectus) have been carried out in full and in compliance with the approved strategy. If during the remediation or development work new areas of contamination are encountered, which have not been previously identified, then the additional contamination should be fully assessed in accordance with part 1 (b, c) above of this condition and an adequate remediation scheme shall be submitted to and approved in writing by the Local Planning Authority and fully implemented thereafter;

b) a verification report, produced on completion of the remediation work, has been submitted to and approved in writing by the Local Planning Authority. Such report shall include

i) details of the remediation works carried out and

ii) results of verification sampling, testing and monitoring and iii) all waste management documentation showing the classification of waste, its treatment, movement and disposal in order to demonstrate compliance with the approved remediation strategy.

CASE_NO: PLF-000049 COMMENTS: Planning Application Follow Up APPL_RECEIVED: 06/12/2016 00:00:00 ACT_TYPE_NAME: Planning Application Follow Up EXT_CASE_NO: 16/3019/FUL

SITE_ID: PC/000288 SITE_NAME: Tudor Road 9/ Milton Road 27 NOTE TITLE: Remed\Verification Report Observations

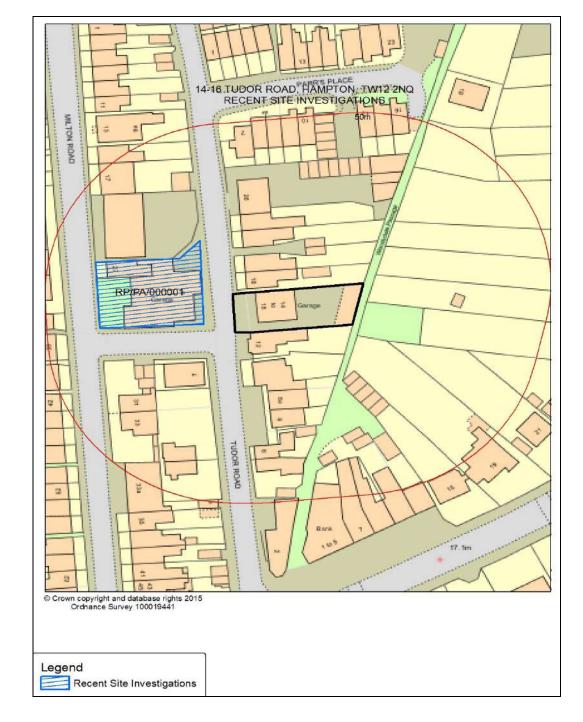
NOTE: The remedial works which have been undertaken to date by Provectus have included the following;

• Demolition of the former filling station canopy and associated hardstanding to facilitate the remediation works • Removal of five underground storage tanks (UST) and associated fuel lines • Removal of an above ground storage tank (AST) • Removal of an oil-water separator • Excavation and removal of soils that had been heavily impacted from hydrocarbons associated with the USTs and the oil-water separator • Excavation and removal of the Made Ground local to MW103 in the east of the site where loose chrysotile asbestos fibres have been identified • Installation of four sumps to reduce the LNAPL and associated dissolved phase hydrocarbon impact to the groundwater through a short duration period of total fluids pumping. • Extraction and treatment of groundwater from the four sumps using an Oil Water Separator prior to discharge of treated water to foul sewer. • Installation of an additional six injection wells and four monitoring wells. • Two rounds of in-situ chemical oxidation (ISCO) treatment in the four sumps and six injection wells.

Soils verification consisted of comparing shallow soil sample results to the remedial criteria in the RMS (Provectus 2016a) and collecting laboratory data of deeper soils at the sides and bases of the UST excavations. 15 shallow soil samples were tested for the suite below. There were no exceedances.

Deeper soil samples exceeded GACs for Arsenic, Lead, TPHs and Benzen and Xylene.

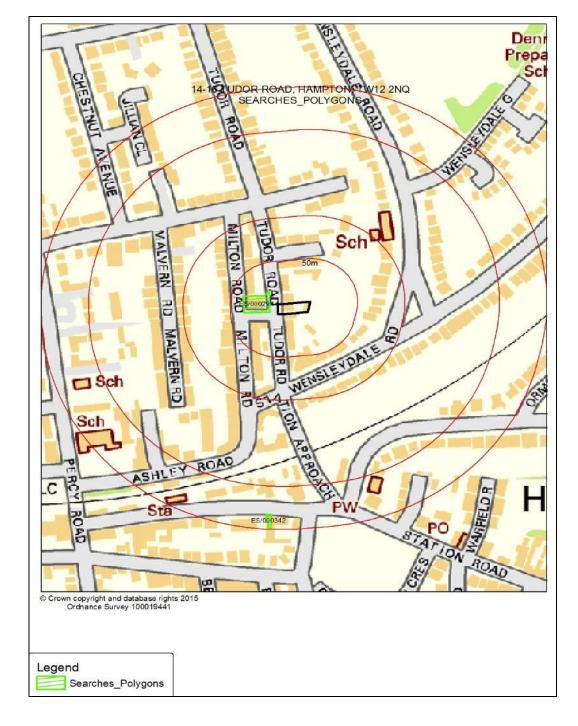
One of four scheduled gas monitoring events has occurred. This verification report will be revised as data on soil-vapour becomes available.


CASE_NO: PLF-000049 COMMENTS: Planning Application Follow Up APPL_RECEIVED: 06/12/2016 00:00:00 ACT_TYPE_NAME: Planning Application Follow Up EXT_CASE_NO: 16/3019/FUL

SITE_ID: PC/000288 SITE_NAME: Tudor Road 9/ Milton Road 27 NOTE_TITLE: General Case Management Note NOTE: Proposed amendment to remidiation condition:

ld	Name	Address	Approx. distance (m)	Approx. Area (m2)		
The building hereby permitted shall not be occupied until:						
a) The hydrocarbon vapour resistant membrane recommended within the remediation Validation Report (report reference 100956/Validation Report/001 - Revision 3 by Provectus) has been installed. If during the remediation or development work new areas of contamination are encountered, which have not been previously identified, then the additional contamination should be fully assessed in accordance with part 1 (b) of this condition and an adequate remediation scheme shall be submitted to and approved in writing by the Local Planning Authority and fully implemented thereafter;						
	 b) a verification report, produced on completion of the remediation work, has been submitted to and approved in writing by the Local Planning Authority. Such report shall include 					
 i) details of the remediation works carried out and ii) results of verification sampling, testing and monitoring and iii) all waste management documentation showing the classification of waste, its treatment, movement and disposal. 						
REASON: In order to demonstrate compliance with the approved remediation strategy.						
APPL_RECEIVED: 13	ng Application Follow Up 3/03/2017 00:00:00 Planning Application Follow Up					

7. Layer Name: Recent Site Investigations

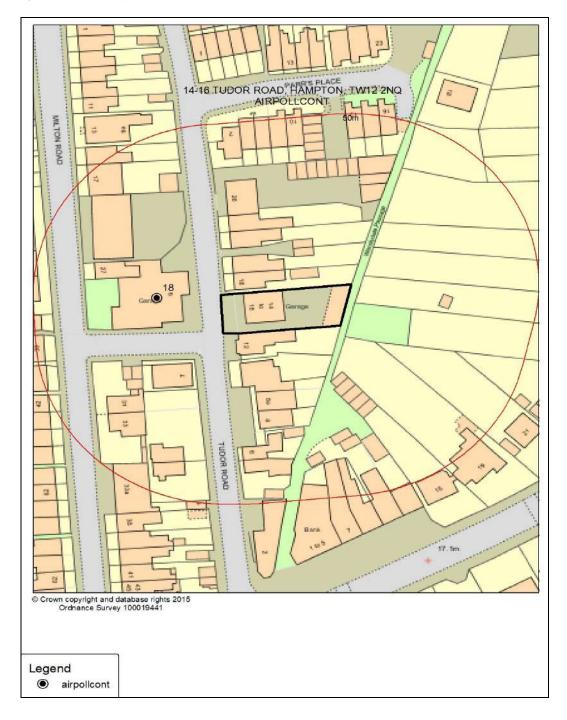


GIS Attribute Data for Recent Site Investigations 7.1

Selection Summary for layer 0 feature(s) identified on site. 1 feature(s) identified off site within 50 metres

id	name	address	type	Approx. distance (m)	Approx. Area (m2)	Grid Ref.
On Site						
None						
Identified Off-site - Within 50m						
RP/PA/000001	Tudor Road 9/ Milton Road 27		Planning/Redevelopment	8.11	552	513405, 170021

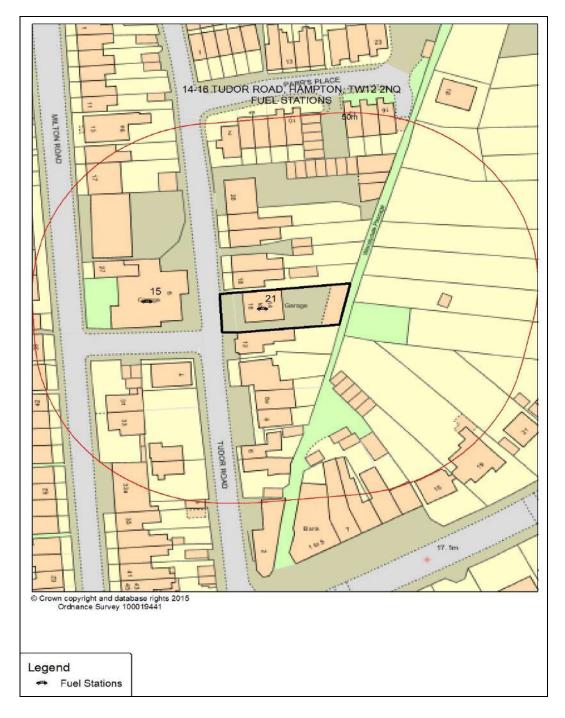
8. Layer Name: Searches_Polygons


8.1 GIS Attribute Data for Searches_Polygons

Selection Summary for layer 0 feature(s) identified on site. 1 feature(s) identified off site within 50 metres 0 feature(s) identified off site within 50 - 100 metres 0 feature(s) identified off site within 100 - 200 metres 1 feature(s) identified off site within 200 - 250 metres

ld	Name	Grid Ref.			
On Site					
None					
Identified Off-site - Within 50m					
ES/000294	Tudor Road 9/ Milton Road 27_Former Yates Garage	513405, 170021			
Identified Off-site - Within 50-100m					
None					
Identified Off-site - Within 100-200m					
None					
Identified Off-site - Within 200-250m					
ES/000342	Station Road 123	513418, 169770			

9. Layer Name: airpollcont


GIS Attribute Data for airpollcont 9.1

Selection Summary for layer 0 feature(s) identified on site. 1 feature(s) identified off site within 50 metres

ID	Name	Location	Approx. distance (m)	Grid Ref.		
On Site						
None						
Identified Off-site - Within 50m						
18	F A Yates Ltd	9 Tudor Road HAMPTON Middlesex TW12 2NH	No data	513410, 170020		

10. Layer Name: Fuel Stations

10.1 GIS Attribute Data for Fuel Stations

Selection Summary for layer

1 feature(s) identified on site.

1 feature(s) identified off site within 50 metres

ID	Name	Location	Brand	Approx. distance (m)	Grid Ref.		
On	On Site						
21	Tudor Road Garage	14-16 Tudor Road HAMPTON Greater London TW12 2NQ	OUT OF INDUSTRY	No data	513439, 170016		
Identified Off-site - Within 50m							
15	Yates Garage	9 Tudor Road HAMPTON Greater London TW12 2NH	OUT OF INDUSTRY	No data	513408, 170019		

NB: Total for layer Potential Contaminated Land Sites includes the search feature.

The Executors of Mrs M E Howard (Deceased) Estate

Yates Garage, Hampton, Middlesex

Environmental site investigation and quantitative risk assessment

26550 R02 (00)

AG Geo-Consultants Ltd

Appendix G

GAS MONIT Date: 16/10	TORING RESU 12024	<u>LTS</u>	Contract No: Contract Name	: Tudor Road				Contract Er Client name		Andre Gille	ard 07395 10	00 727				
Atmospher	onditions: Sun ic Wind Condi ure: 1003mb	ny spells mediun tions: Light	n level cloud cov	er, dry and low	wind			Equipment	used: GA500) (G501415), I	Dip Meter	Data Collec	ted By: Toby	McCusker o	of Enitial	Input Checked by (sign):
		ry, flooded, frost	snow):			Depth to water	Well depth					-			Top of	
Location	hours mins	Fime secs	Atmospheric Pressure (mb)	BH Pressure or differential (mb)	Flow (l/hr)	(m bgl) (if noted to vary during monitoring then record such)	(mbgl)	% Methane	by volume in Carbon Dioxide	Oxygen	LEL (%)	H2S	(ppm) CO	PID	Response zone (m bgl)	Notes (eg, samples taken, dual installation, odours, sheens, broken headworks).
DS1		0	Steady 1003mb	0.14mb	0.0 (initial as soon as tap opened)	1.71	2.2									BH in good condition
		45 Seconds			0.0 (steady state. Expected to be 0 l/hr)											
		0	-					ND ND	0.1	21.0 20.9	ND ND	ND ND	ND ND	NA NA	-	
		30	1					ND	0.1	20.8	ND	ND	ND	NA	1	
		60						ND	0.1	20.8	ND	ND	ND	NA		
		90 120	-					ND ND	0.1	20.8 20.8	ND ND	ND ND	ND ND	NA NA	-	
		##	1												1	
		##				Water level at end =										
						Water level 3mins										
DS2		0	Steady 1003mb	0.07mb	0.0 (initial as soon as tap opened)	after end =										BH in good condition
					(initial as soon as tap opened) 0.0 (steady state. Expected to be 0 liftr)	1.57	2.95									
		45 Seconds 0	1		(steady state. Expected to be 0 l/hr)			ND	0.1	21.2	ND	ND	ND	NA		
		15	1					ND	0.1	21.2	ND	ND	ND	NA	1	
		30 60	-					ND ND	0.1	21.2 21.1	ND ND	ND ND	ND ND	NA NA	-	
		90	1					ND	0.1	21.1	ND	ND	ND	NA	1	
		120	1					ND	0.1	21.1	ND	ND	ND	NA	1	
		##	{			Water level									-	
		##				at end = Water level 3mins										
DS3		0	Steady 1003mb	0.02	0.0	after end =										BH in good condition
		-			(initial as soon as tap opened)	2.38	2.87									
		45 _ Seconds	-		(steady state. Expected to be 0 l/hr)											
		0 15	1					ND ND	0.2	20.9 20.9	ND ND	ND ND	ND ND	NA NA	1	
		30	1					ND	0.9	19.6	ND	ND	ND	NA	1	
		60 90	-					ND ND	0.9	19.5 19.5	ND ND	ND ND	ND ND	NA NA	-	
		120	1					ND	0.9	19.5	ND	ND	ND	NA	1	
		##	-												-	
		##				Water level at end =										
DS5			Steady 1003mb	0.05mb		Water level 3mins after end =										BH in good condition
035		0	Steady 1003110	0.00110	0.1 (initial as soon as tap opened)	2.42	3.2									Br in good condition
		60Seconds			0.1 (steady state. Expected to be 0 l/hr)											
		0	4					ND	0.1	21.0	ND	ND	ND	NA	-	
		15 30	1					ND ND	0.1	21.0 17.8	ND ND	ND ND	ND ND	NA NA	1	
		60]					ND	2.2	17.4	ND	ND	ND	NA]	
		90 120	+					ND ND	2.3	17.4 17.4	ND ND	ND ND	ND ND	NA NA	-	
		##	1												1	
		##				Water level at end =										
						Water level 3mins after end =										
DS6		0	Steady 1003mb	0.07mb	0.0 (initial as soon as tap opened)	1.84	2.5									Odours? Sheens?
		45 Seconds			0.0 (steady state. Expected to be 0 lifhr)											Free Product?
		0	1					ND	0.2	21.1	ND	ND	ND	NA]	
		15	-					ND	0.2	21.1	ND	ND	ND	NA	-	
		30 60	1					ND ND	0.2	20.9 20.9	ND ND	ND ND	ND ND	NA NA	1	
		90	-					ND	0.2	20.9	ND	ND	ND	NA	-	
		120	+					ND	0.2	20.9	ND	ND	ND	NA	1	
		##	1			Water level at end =									1	
		##	i			Water level 3mins										
L						after end =										

Groundwater Monitoring

Low Flow - Sampling Record Sheet

CLIENT AG Geo.
DATE 16/10/2024
We ATHER Initial supercent observations for unreased in the wind spaced

Enitial

STE <u>Tudor Road</u> TIME <u>Ort: 09:45</u> Off: 15:00 MONITORING PERSONNEL <u>Toby McCusker</u>

Manifestar	Time	DTI	DTD	End	50	
WEATHER	Initially overcast changing	to sunny sp	ells. Drv and	Iwo wind s	peed.	

Monitoring	Time	DTL	DTB	End	EC	Temp	pH	DO	Dissolved Oxygen	ORP	Purge Volume	Odour	Sediment	Oil/grease	Colour	Turbidity	Comments
Location		m	m	m	mS/cm	С		%	PPM	mV	L	description	description	visible	description	description	
DS1	14:41	1.73	2.2	1.75	209.74	17.60	7.85	21.44	2.04	63.80	3	Weak Hydrocarbon	Fine in low volume	None	Cloudy	Moderate	BH initialy purged 2L prior to low flow test being conducted. Initial purge concluded that BH has good recharge and so a further low flow purge (3L) was conducted to determine stability. Samples taken are post-purge and post-low flow.
DS2	14:16	1.6	2.96	1.63	144.29	16.23	8.24	48.67	4.78	56.97	4	Weak Hydrocarbon	Fine in high volume	None	Cloudy grey	High	BH initialy purged 2L prior to low flow test being conducted. Initial purge concluded that BH has good recharge and so a further low flow purge (4L) was conducted to determine stability. Samples taken are post-jourge and post-low flow.
DS3	13:15	2.4	2.77	2.77	662.38	18.25	7.49	75.12	6.98	84.19	1.5	Weak Hydrocarbon	Fine to moderate in high volume	Very faint sheen	Brown	High	BH initially spot sampled - but only obtained 1.5L of sample. After waiting some time the BH had recharged to its previous GW level. Most of the sample already taken was discarded. Purge was 1.5L prior to sampling - after recharge another spot sample was taken as the recharge of the BH is not sufficient to alion a low forw test to be carried out. Sample was on the prime was post purge but only 1.5L
DS5	13:00	2.45	3.2	2.4	672.73	17.98	7.72	42.04	3.93	63.59	2	Weak Hydrocarbon	Fine to moderate in high volume	Very faint sheen	Brown	High	BH initially spot samplee, BH was drying out as sample suite was compiled. After waiting some time the BH had recharged to its previous GW level. Sample aiready taken was discarded. Purge was 2L prior to sampling - after recharge another spot sample was taken as the recharge of the BH is not sufficient allow a low flow tow tow test to be carried out. Sample was "post purge"
DS6	13:30	1.6	2.2	1.5	265.53	20.03	7.55	24.78	2.22	50.72	2	Hydrocarbon	Fine in high volume	Oil sheen	Grey/ brown	High	BH initially spot samplee, BH was drying out as sample suite was compited. After waiting some time the BH had recharged to its previous GW level. Sample already taken was discarded. Purge was 2L prior to sampling - after recharge another spot sample was taken as the recharge of the BH is not sufficient to allow a low flow text beta contracted.

Date: 25/10	2024		Contract No: Contract Name	: Tudor Road				Contract Er Client name	ngineer: e/contact	Andre Gillea	ard 07395 10	0 727				
Atmospher	onditions: Coo ic Wind Cond ure: 995mb	ol, dry, 14 degrees itions: Light	3					Equipment	used: GA500	(G501415), I	Dip Meter	Data Collect	ted By: Toby	McCusker o	f Enitial	Input Checked by (sign):
	nditions (eg d	Iry, flooded, frost,	snow): Dry	1	1	Depth to water (m bgl)	Well depth (mbgl)				1				Top of	Neter
Location	hours	Time secs	Atmospheric Pressure (mb)	BH Pressure or differential (mb)	Flow (l/hr)	(if noted to vary during monitoring then record such)	(insgi)	% Methane	by volume in Carbon Dioxide	oxygen	LEL (%)	H2S	(ppm) CO	PID	Response zone (m bgl)	Notes (eg, samples taken, dual installation, odours, sheens, broken headworks).
DS1		0	Steady 1014	0.03	0.0 (initial as soon as tap opened)	1.96	2.24									BH in good condition
		45 Seconds	1		0.0 (steady state. Expected to be 0 l/hr)											
		0	1					ND	0.1	21.3	ND	ND	ND	0		
		15 30	-					ND ND	0.1	21.3 20.7	ND ND	ND ND	ND ND	0.2		
		60	1					ND	0.6	20.7	ND	ND	ND	0.6		
		90 120	+					ND ND	0.6	20.7 20.6	ND ND	ND ND	ND ND	0.6		
		##	1													
		##				Water level at end =										
DS2			Steady 1014	0.05		Water level 3mins after end =										BH in good condition
0.02		0	Globady 1014	0.00	0.0 (initial as soon as tap opened)	1.83	2.95									on a good contailion
		45 Seconds			0.0 (steady state. Expected to be 0 l/hr)											
		0	-					ND ND	0.1	21.2 21.2	ND ND	ND ND	ND ND	0		
		30	1					ND	0.1	21.2	ND	ND	ND	0.2	1	
		60 90	-					ND ND	0.1	21.1 21.1	ND ND	ND ND	ND ND	0.2	-	
		120	1					ND	0.1	21.1	ND	ND	ND	0.2		
		##	-			Water level										
		##				at end = Water level 3mins										
DS3		0	Steady 1014	-0.03	0.0	after end =										BH in good condition
		45_Seconds			(initial as soon as tap opened) 0.0 (steady state. Expected to be 0 liftr)	2.57	2.9									
		0	1					ND	0.2	21.0	ND	ND	ND	0		
		15 30	-					ND ND	0.2	21.0 20.3	ND ND	ND ND	ND ND	0.3	-	
		60	1					ND	0.6	20.1	ND	ND	ND	0.5	1	
		90 120	-					ND ND	0.6	20.1 20.0	ND ND	ND ND	ND ND	0.5		
		##	1													
		##				Water level at end =										
DS5		0	Steady 1014	0.03		Water level 3mins after end =										BH in good condition
					0.0 (initial as soon as tap opened) 0.0	2.6	3.22									•
		60Seconds 0	-		(steady state. Expected to be 0 l/hr)			ND	0.1	20.9	ND	ND	ND	0		
		15	1					ND	0.1	20.8	ND	ND	ND	0.2	1	
		30 60	-					ND ND	2.5 2.5	17.8 17.4	ND ND	ND ND	ND ND	0.5		
		90	1					ND	2.5	17.3	ND	ND	ND	0.7	1	
	<u> </u>	120	{					ND	2.6	17.3	ND	ND	ND	0.7		
		##]			Water level at end =										
						Water level 3mins after end =										
DS6		0	Steady 1014	0.07	0.0 (initial as soon as tap opened)	2.18	2.45									BH in good condition
		45 Seconds			0.1 (steady state. Expected to be 0 liftr)											
		0	4					ND ND	0.1	21.1 21.1	ND ND	ND ND	ND ND	0		
		15 30	1					ND ND	0.1	21.1 20.9	ND ND	ND ND	ND ND	0.3		
		60 90	4					ND ND	0.2	20.9	ND	ND	ND ND	0.3		
		90 120	1					ND ND	0.2	20.9 20.9	ND ND	ND ND	ND ND	0.3		
		##	+			Meteo les 1										
		##				Water level at end =										
						Water level 3mins after end =										

GAS MONITORING RESULTS

Groundwater Monitoring

Low Flow - Sampling Record Sheet

	3																part of Chronic All
CLIENT DATE WEATHER	AG Geo 25/10/2024 Sunny spells for most with	one spell of	liaht rain. Lo	w wind spe	ed.										SITE TIME MONITORING PERSONNEL		Ludor Road On: 11.00 Off: 1500 Taby McCluker
Monitoring	Time	DTL	DTB	End	EC	Temp	рH	DO	Dissolved Oxygen	ORP	Purge Volume	Odour	Sediment	Oil/grease	Colour	Turbidity	Comments
Location		m	m	m	mS/cm	С		%	PPM	mV	L	description	description	visible	description	description	
DS1	13:48	1.96	2.24	2.05	780.15	16.30	7.16	14.04	1.37	70.33	4	Organic	Fine in low volume	None	Clear	Low	BH known to have good recharge - low flow test conducted straight away, took a while to stabilise purging 4L prior to sampling.
DS2	13:14	1.83	2.95	1.85	407.54	15.85	7.30	7.67	0.76	-12.22	8	Organic	Fine to medium size in low volume	None	Cloudy light grey	Moderate	BH known to have good recharge - low flow test conducted straight away, took a while to stabilise purging 8L prior to sampling.
DS3	14:05	2.57	2.9	2.57	690.75	16.35	7.36	55.84	5.46	126.06	1.5	Hydrocarbon	Fine to moderate in high volume	None	Cloudy brown	High	BH purged initially but only 1.5L before the well dried. Left to recharge prior to sampling - BH dried out again during sampling and was recharging slowly resulting in incomplete sample set (only 1L glass)
DS5	14:15	2.6	3.22	2.55	664.40	16.25	7.34	68.06	6.67	117.93	2	Hydrocarbon	Fine sediments in high volume	None	Light brown	High	BH initially purged ZL and then left to recharge. Sample taken post-purge of ZL as a spot sample
DS6	14:05	2.18	2.45	2.18	407.53	16.49	7.54	45.18	4.41	109.49	1	Hydrocarbon	Fine in high volume	Very faint sheen	Grey/ brown	High	BH purged initially but only 1L was purged before the well dried out. Left to recharge prior to sampling - BH dried out again during sampling and was recharging slowly resulting in incomplete sample set (only 1L glass)

Enitial

AG Geo-Consultants Ltd

Appendix H

ANALYTICAL TEST REPORT

Report Number	24-03111, issue number 0
Contract name:	14-16 Tudor Road
Client reference:	Not Supplied
Clients name:	AG Geo-Consultants Ltd
Clients address:	AGGEOCONLTD 58 Church Road Horfield
	BS7 8SE
Samples received:	18/10/2024
Analysis started:	21/10/2024
Analysis completed:	31/10/2024
Report issued:	31/10/2024 Preliminary Report

Key

- U UKAS accredited test
- M MCERTS & UKAS accredited test
- \$ Test carried out by an approved subcontractor
- I/S Insufficient sample to carry out test
- U/S Sample not suitable for testing
- NAD No Asbestos Detected

Approved by:

Sam Rogerson Manager

Unit 6 Parkhead, Greencroft Industrial Park, Stanley, County Durham, DH9 7YB

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Lab ref	Sample ID	Depth (m)	Sample description	Material removed	% Removed	% Moisture
18479	DS1	0.40	Brown Sandy Clay with Gravel.	-	-	14.1
18480	DS1	1.00	-	-	-	-
18481	DS1	1.20	Black Sand with Gravel.	-	-	28.3
18482	DS1	1.60	Brown Sandy Clay.	-	-	18.3
18483	DS1	2.50	Brown Sand with Gravel.	-	-	38.9
18484	DS2	0.40	Brown Clayey Loam with Gravel.	-	-	49.3
18485	DS2	2.00	Brown Clay with Gravel.	-	-	32.5
18486	DS3	0.20	Brown Clay with Gravel.	-	-	17.9
18487	DS3	1.00	Brown Clay with Gravel.	-	-	24.1
18488	DS3	2.00	-	-	-	-
18489	DS5	0.40	-	-	-	-
18490	DS5	1.00	-	-	-	-
18491	DS5	2.00	-	-	-	-
18492	DS6	0.20	-	-	-	-
18493	DS6	1.00	-	-	-	-
18494	DS6	2.00	Brown Clay with Gravel.	-	-	7.7
18495	DS6	2.60	Brown Clay with Gravel.	-	-	6.0

Page 2 of 11 Pages

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- a Sampling date not provided
- b Sampling time not provided (waters only)
- c Sample not received in appropriate containers
- d Storage Temperature
- e Headspace present in sample container
- f Sample exceeded sampling to reciept
- g Sample exceeded holding time(s)

Lab ref	Sample ID	Depth (m)	Deviating	Tests (Reason for deviation)
18479	DS1	0.40	Ν	
18481	DS1	1.20	Ν	
18482	DS1	1.60	Y	VPH in Soil(g), BTEX in solids(g)
18483	DS1	2.50	Ν	
18484	DS2	0.40	Ν	
18485	DS2	2.00	Ν	
18486	DS3	0.20	Ν	
18487	DS3	1.00	Y	W. Sol Metals(c)
18494	DS6	2.00	Ν	
18495	DS6	2.60	N	

Lab Number					18479	18481	18482	18483	18484
Client Reference					1	1	1	1	1
Sample ID					DS1	DS1	DS1	DS1	DS2
Depth (m)					0.40	1.20	1.60	2.50	0.40
Sampling Date					11/10/2024	11/10/2024	11/10/2024	11/10/2024	11/10/2024
Test	Method	Accred	LoD	Units					
Asbestos									
Asbestos Identification	SUBCON	SU	0	-	NAD	n/t	n/t	n/t	NAD
Metals									
Water Soluble Sulphate	CE061	М	10	mg/l	285	n/t	n/t	n/t	371
Arsenic	CE264	U	1.8	mg/kg	25.9	n/t	n/t	n/t	22.2
Cadmium	CE264	Μ	1.6	mg/kg	3.1	n/t	n/t	n/t	< 1.6
Chromium	CE264	U	2	mg/kg	115	n/t	n/t	n/t	298
Copper	CE264	М	1.6	mg/kg	32.2	n/t	n/t	n/t	37.4
Lead	CE264	U	2.3	mg/kg	266	n/t	n/t	n/t	180
Mercury	CE264	U	0.7	mg/kg	< 0.7	n/t	n/t	n/t	< 0.7
Nickel	CE264	Μ	2.1	mg/kg	37.6	n/t	n/t	n/t	36.1
Selenium	CE264	U	3	mg/kg	< 3.0	n/t	n/t	n/t	< 3.0
Zinc	CE264	М	4	mg/kg	538	n/t	n/t	n/t	210
Volatile Petroleum Hydrocarbons									
>C5-C6 Aliphatic (HS_1D_AL)	CE267	Ν	0.1	mg/kg	< 0.10	< 0.10	g < 0.10	< 0.10	< 0.10
>C6-C8 Aliphatic (HS_1D_AL)	CE267	Ν	0.1	mg/kg	< 0.10	< 0.10	g < 0.10	< 0.10	< 0.10
>C8-C10 Aliphatic (HS_1D_AL)	CE267	Ν	0.1	mg/kg	< 0.10	< 0.10	g < 0.10	0.17	< 0.10
>C8-C10 Aromatic (HS_1D_AR)	CE267	Ν	0.01	mg/kg	< 0.010	< 0.010	g < 0.010	< 0.010	< 0.010
>C6-C7 Aromatic (HS_1D_AR)	CE267	Ν	0.01	mg/kg	< 0.010	< 0.010	g < 0.010	< 0.010	< 0.010
>C7-C8 Aromatic (HS_1D_AR)	CE267	Ν	0.01	mg/kg	< 0.010	< 0.010	g < 0.010	< 0.010	< 0.010
>C5-C10 Total (HS_1D_Total)	CE267	Ν	0.1	mg/kg	< 0.10	n/t	n/t	n/t	< 0.10
Colourimetric									
Chromium VI	CE263	Ν	0.04	mg/kg	0.190	n/t	n/t	n/t	0.110
Combustion									
Moisture Content	CE001	Ν	0.1	%	14.1	28.3	18.3	38.9	49.3
Soil Organic Matter	CE072	Ν	0.1	%	2.66	n/t	n/t	n/t	3.31
TPH Ali/Aro									
>C10-C40 Total (EH_2D_Total)	CE250	Ν	11.5	mg/kg	17.9	n/t	n/t	n/t	1910
>C12-C16 Aliphatic (EH_2D_AL)	CE250	Ν	0.5	mg/kg	< 0.5	n/t	n/t	n/t	4.3
>C12-C16 Aromatic (EH_2D_AR)	CE250	Ν	1	mg/kg	1.8	n/t	n/t	n/t	81.7
>C16-C21 Aliphatic (EH_2D_AL)	CE250	Ν	0.7	mg/kg	< 0.7	n/t	n/t	n/t	17.7

>C16-C21 Aromatic (EH_2D_AR)	CE250	Ν	2	mg/kg	2.7	n/t	n/t	n/t	615
>C21-C35 Aliphatic (EH_2D_AL)	CE250	Ν	4	mg/kg	< 4.0	n/t	n/t	n/t	33.2
>C21-C35 Aromatic (EH_2D_AR)	CE250	Ν	4.5	mg/kg	11.1	n/t	n/t	n/t	975
>C35-C40 Aliphatic (EH_2D_AL)	CE250	Ν	0.5	mg/kg	< 0.5	n/t	n/t	n/t	5.5
>C35-C40 Aromatic (EH_2D_AR)	CE250	Ν	1.5	mg/kg	1.7	n/t	n/t	n/t	159
>C10-C12 Aliphatic (EH_2D_AL)	CE250	Ν	1	mg/kg	< 1.0	n/t	n/t	n/t	3.2
>C10-C12 Aromatic (EH_2D_AR)	CE250	Ν	0.6	mg/kg	0.7	n/t	n/t	n/t	10.2
Polyaromatic hydrocarbons									
Naphthalene	CE087	М	0.016	mg/kg	< 0.016	n/t	n/t	n/t	0.078
Acenaphthylene	CE087	М	0.015	mg/kg	< 0.015	n/t	n/t	n/t	0.255
Acenaphthene	CE087	Μ	0.013	mg/kg	< 0.013	n/t	n/t	n/t	2.41
Fluorene	CE087	U	0.013	mg/kg	< 0.013	n/t	n/t	n/t	1.68
Phenanthrene	CE087	М	0.014	mg/kg	0.070	n/t	n/t	n/t	28.2
Anthracene	CE087	U	0.017	mg/kg	0.021	n/t	n/t	n/t	8.33
Fluoranthene	CE087	Μ	0.017	mg/kg	0.233	n/t	n/t	n/t	38.2
Pyrene	CE087	Μ	0.016	mg/kg	0.207	n/t	n/t	n/t	32.3
Benzo(a)anthracene	CE087	U	0.012	mg/kg	0.132	n/t	n/t	n/t	14.9
Chrysene	CE087	М	0.028	mg/kg	0.143	n/t	n/t	n/t	14.3
Benzo(b)fluoranthene	CE087	Μ	0.02	mg/kg	0.190	n/t	n/t	n/t	13.5
Benzo(k)fluoranthene	CE087	М	0.025	mg/kg	0.074	n/t	n/t	n/t	6.20
Benzo(a)pyrene	CE087	U	0.019	mg/kg	0.143	n/t	n/t	n/t	10.3
Indeno(1,2,3-cd)pyrene	CE087	Μ	0.019	mg/kg	0.127	n/t	n/t	n/t	7.59
Dibenzo(a,h)anthracene	CE087	М	0.017	mg/kg	0.024	n/t	n/t	n/t	1.55
Benzo(g,h,i)perylene	CE087	Μ	0.019	mg/kg	0.107	n/t	n/t	n/t	5.75
Total PAH(16)	CE087	Ν	0.28	mg/kg	1.47	n/t	n/t	n/t	186
втех									
Benzene	CE192	U	0.01	mg/kg	< 0.010	< 0.010	g < 0.010	< 0.010	< 0.010
Toluene	CE192	U	0.01	mg/kg	< 0.010	< 0.010	g < 0.010	< 0.010	< 0.010
Ethylbenzene	CE192	U	0.01	mg/kg	< 0.010	< 0.010	g < 0.010	< 0.010	< 0.010
МТВЕ	CE192	Ν	0.02	mg/kg	< 0.020	< 0.020	g < 0.020	< 0.020	< 0.020
Total BTEX	CE192	N	0.06	mg/kg	< 0.060	< 0.060	g < 0.060	< 0.060	< 0.060
m,p-Xylene	CE192	U	0.02	mg/kg	< 0.020	< 0.020	g < 0.020	< 0.020	< 0.020
oXylenes	CE192	U	0.01	mg/kg	< 0.010	< 0.010	g < 0.010	< 0.010	< 0.010
Wet Chem									
рН	CE004	М	0.1	pH units	8.5	n/t	n/t	n/t	10.2
ЕРН									
>C10-C12 Soil (EH_1D_Total)	CE033	М	6	mg/kg	< 6.0	< 6.0	< 6.0	< 6.0	7.7

>C12-C16 Soil (EH_1D_Total)	CE033	М	6	mg/kg	< 6.0	< 6.0	< 6.0	< 6.0	21.6
>C16-C21 Soil (EH_1D_Total)	CE033	М	6	mg/kg	14.1	< 6.0	< 6.0	< 6.0	198
>C21-C35 Soil (EH_1D_Total)	CE033	М	15	mg/kg	91.8	< 15.0	< 15.0	< 15.0	721
>C35-C40 Soil (EH_1D_Total)	CE033	U	10	mg/kg	33.5	< 10.0	< 10.0	< 10.0	205
>C35-C44 Soil (EH_1D_Total)	CE033	U	10	mg/kg	59.2	< 10.0	< 10.0	< 10.0	380
>C40-C44 Soil (EH_1D_Total)	CE033	Ν	10	mg/kg	25.7	< 10.0	< 10.0	< 10.0	176
>C10-C44 Soil (EH_1D_Total)	CE033	М	19	mg/kg	169	19.1	19.4	< 19.0	1330

Lab Number					18485	18486	18487	18494	18495
Client Reference					1	1	1	1	1
Sample ID					DS2	DS3	DS3	DS6	DS6
Depth (m)					2.00	0.20	1.00	2.00	2.60
Sampling Date	T		-	1	11/10/2024	11/10/2024	11/10/2024	11/10/2024	11/10/2024
Test	Method	Accred	LoD	Units					
Asbestos									
Asbestos Identification	SUBCON	SU	0	-	n/t	NAD	NAD	n/t	n/t
Metals									
Water Soluble Sulphate	CE061	м	10	mg/l	n/t	258	c 89.0	n/t	n/t
Arsenic	CE264	U	1.8	mg/kg	n/t	42.6	25.0	n/t	n/t
Cadmium	CE264	М	1.6	mg/kg	n/t	4.8	< 1.6	n/t	n/t
Chromium	CE264	U	2	mg/kg	n/t	152	224	n/t	n/t
Copper	CE264	М	1.6	mg/kg	n/t	689	82.7	n/t	n/t
Lead	CE264	U	2.3	mg/kg	n/t	1100	281	n/t	n/t
Mercury	CE264	U	0.7	mg/kg	n/t	8.7	1.2	n/t	n/t
Nickel	CE264	М	2.1	mg/kg	n/t	54.1	42.3	n/t	n/t
Selenium	CE264	U	3	mg/kg	n/t	< 3.0	< 3.0	n/t	n/t
Zinc	CE264	М	4	mg/kg	n/t	1440	206	n/t	n/t
Volatile Petroleum Hydrocarbons									
>C5-C6 Aliphatic (HS_1D_AL)	CE267	Ν	0.1	mg/kg	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
>C6-C8 Aliphatic (HS_1D_AL)	CE267	N	0.1	mg/kg	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
>C8-C10 Aliphatic (HS_1D_AL)	CE267	N	0.1	mg/kg	11.5	< 0.10	< 0.10	< 0.10	383
>C8-C10 Aromatic (HS_1D_AR)	CE267	N	0.01	mg/kg	0.108	< 0.010	< 0.010	< 0.010	4.19
>C6-C7 Aromatic (HS_1D_AR)	CE267	N	0.01	mg/kg	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
>C7-C8 Aromatic (HS_1D_AR)	CE267	N	0.01	mg/kg	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
>C5-C10 Total (HS_1D_Total)	CE267	Ν	0.1	mg/kg	n/t	< 0.10	< 0.10	n/t	n/t
Colourimetric									
Chromium VI	CE263	Ν	0.04	mg/kg	n/t	< 0.040	< 0.040	n/t	n/t
Combustion									
Moisture Content	CE001	N	0.1	%	32.5	17.9	24.1	7.7	6.0
Soil Organic Matter	CE072	Ν	0.1	%	n/t	23.2	5.14	n/t	n/t
TPH Ali/Aro									
>C10-C40 Total (EH_2D_Total)	CE250	N	11.5	mg/kg	n/t	3130	376	n/t	n/t
>C12-C16 Aliphatic (EH_2D_AL)	CE250	N	0.5	mg/kg	n/t	10.2	2.6	n/t	n/t
>C12-C16 Aromatic (EH_2D_AR)	CE250	N	1	mg/kg	n/t	124	34.2	n/t	n/t
>C16-C21 Aliphatic (EH_2D_AL)	CE250	Ν	0.7	mg/kg	n/t	24.1	4.9	n/t	n/t

			-			-	-	-	
>C16-C21 Aromatic (EH_2D_AR)	CE250	Ν	2	mg/kg	n/t	820	30.8	n/t	n/t
>C21-C35 Aliphatic (EH_2D_AL)	CE250	Ν	4	mg/kg	n/t	149	33.6	n/t	n/t
>C21-C35 Aromatic (EH_2D_AR)	CE250	Ν	4.5	mg/kg	n/t	1680	203	n/t	n/t
>C35-C40 Aliphatic (EH_2D_AL)	CE250	Ν	0.5	mg/kg	n/t	19.7	2.3	n/t	n/t
>C35-C40 Aromatic (EH_2D_AR)	CE250	Ν	1.5	mg/kg	n/t	281	51.2	n/t	n/t
>C10-C12 Aliphatic (EH_2D_AL)	CE250	Ν	1	mg/kg	n/t	4.0	2.9	n/t	n/t
>C10-C12 Aromatic (EH_2D_AR)	CE250	Ν	0.6	mg/kg	n/t	12.1	10.3	n/t	n/t
Polyaromatic hydrocarbons									
Naphthalene	CE087	М	0.016	mg/kg	n/t	2.92	< 0.016	n/t	n/t
Acenaphthylene	CE087	М	0.015	mg/kg	n/t	4.97	< 0.015	n/t	n/t
Acenaphthene	CE087	М	0.013	mg/kg	n/t	7.06	< 0.013	n/t	n/t
Fluorene	CE087	U	0.013	mg/kg	n/t	12.4	0.073	n/t	n/t
Phenanthrene	CE087	Μ	0.014	mg/kg	n/t	136	0.649	n/t	n/t
Anthracene	CE087	U	0.017	mg/kg	n/t	33.4	0.280	n/t	n/t
Fluoranthene	CE087	М	0.017	mg/kg	n/t	216	1.10	n/t	n/t
Pyrene	CE087	М	0.016	mg/kg	n/t	174	0.939	n/t	n/t
Benzo(a)anthracene	CE087	U	0.012	mg/kg	n/t	75.2	0.679	n/t	n/t
Chrysene	CE087	М	0.028	mg/kg	n/t	72.7	0.552	n/t	n/t
Benzo(b)fluoranthene	CE087	М	0.02	mg/kg	n/t	76.6	1.03	n/t	n/t
Benzo(k)fluoranthene	CE087	М	0.025	mg/kg	n/t	35.7	0.369	n/t	n/t
Benzo(a)pyrene	CE087	U	0.019	mg/kg	n/t	47.7	0.674	n/t	n/t
Indeno(1,2,3-cd)pyrene	CE087	М	0.019	mg/kg	n/t	37.4	0.589	n/t	n/t
Dibenzo(a,h)anthracene	CE087	М	0.017	mg/kg	n/t	10.4	0.078	n/t	n/t
Benzo(g,h,i)perylene	CE087	М	0.019	mg/kg	n/t	28.9	0.488	n/t	n/t
Total PAH(16)	CE087	Ν	0.28	mg/kg	n/t	971	7.50	n/t	n/t
втех									
Benzene	CE192	U	0.01	mg/kg	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Toluene	CE192	U	0.01	mg/kg	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Ethylbenzene	CE192	U	0.01	mg/kg	0.047	< 0.010	< 0.010	< 0.010	0.208
МТВЕ	CE192	Ν	0.02	mg/kg	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Total BTEX	CE192	Ν	0.06	mg/kg	0.063	< 0.060	< 0.060	< 0.060	1.26
m,p-Xylene	CE192	U	0.02	mg/kg	< 0.020	< 0.020	< 0.020	< 0.020	0.613
oXylenes	CE192	U	0.01	mg/kg	0.016	< 0.010	< 0.010	< 0.010	0.441
Wet Chem									
рН	CE004	Μ	0.1	pH units	n/t	8.3	8.1	n/t	n/t
ЕРН									
>C10-C12 Soil (EH_1D_Total)	CE033	М	6	mg/kg	< 6.0	6.3	< 6.0	< 6.0	362

>C12-C16 Soil (EH_1D_Total)	CE033	М	6	mg/kg	< 6.0	41.4	11.1	< 6.0	466
>C16-C21 Soil (EH_1D_Total)	CE033	М	6	mg/kg	17.0	213	26.2	< 6.0	15.9
>C21-C35 Soil (EH_1D_Total)	CE033	М	15	mg/kg	94.6	1690	215	< 15.0	23.5
>C35-C40 Soil (EH_1D_Total)	CE033	U	10	mg/kg	26.8	451	131	< 10.0	< 10.0
>C35-C44 Soil (EH_1D_Total)	CE033	U	10	mg/kg	44.8	730	270	< 10.0	< 10.0
>C40-C44 Soil (EH_1D_Total)	CE033	Ν	10	mg/kg	18.1	279	139	< 10.0	< 10.0
>C10-C44 Soil (EH_1D_Total)	CE033	М	19	mg/kg	162	2680	526	< 19.0	876

METHOD DETAILS

METHOD	TESTNAME	METHOD SUMMARY	ANALYSIS BASIS
CE267	VPH in Soil	HS-GCFID	As submitted sample
SUBCON	Asbestos Solid	HSG248	Air Dried Sample
CE061	W. Sol Metals	ICPOES	Air dried sample
CE033	EPH in Solids	Acetone:Hexane Extraction and GCFID	As submitted sample
CE264	Metals by ICP in Soil	ICPOES	Air dried sample
CE192	BTEX in solids	Analysis by HSGCFID	As submitted sample
CE250	GCXGC in Solids	DCM Extraction and GCxGC-FID	As submitted sample
CE263	ChromiumVI by Discrete Analyser in Solid	Gallery	Air dried sample
CE087	PAH in Soil	DCM Extraction and GCMS	As submitted sample

REPORT INFORMATION

Report No.:24-03111, issue number 0

Key

- U ISO17025 Accredited Result
- M ISO17025 and MCERTS Accredited Result
- N Do not currently hold accreditation
- ^ MCERTS accreditation not applicable for sample matrix
- * ISO17025 accreditation not applicable for sample matrix
- S Subcontracted
- I/S Insufficient Sample
- U/S Unsuitable sample
- N/T Not tested
- < Means "less than"
- > Means "greater than"

LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.

This report shall not be reproduced except in full, without prior written approval.

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

The results relate only to the sample received.

Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Moisture Content Calculated on a Wet Weight basis

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Sampling was undertaken by Chemtech Environmental Limited and is outside the UKAS accreditation scope.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

BTEX compounds are identified by retention time only and may include interference from co-eluting compounds. For soils and solids, all results are reported on a dry basis. Samples dried at no more than 30°C in a drying

For soils and solids, analytical results are inclusive of stones, where applicable.

Sample Retention and Disposal

All soil samples will be retained for a period of 4 weeks from the point of receipt All water samples will be retained for a period of 2 weeks from the point of Reporting Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- 2D GC-GC Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
- MS Mass Spectrometry

Vat Reg No. 772 5703 18 Registered in England number 4284013

ANALYTICAL TEST REPORT

Report Number	24-03179, issue number 1
Contract name:	14-16, Tudor Road, T
Client reference:	Not Supplied
Clients name:	AG Geo-Consultants Ltd
Clients address:	AGGEOCONLTD 58 Church Road Horfield
	BS7 8SE
Samples received:	21/10/2024
Analysis started:	21/10/2024
Analysis completed:	24/10/2024
Report issued:	24/10/2024

Key

- U UKAS accredited test
- M MCERTS & UKAS accredited test
- \$ Test carried out by an approved subcontractor
- I/S Insufficient sample to carry out test
- U/S Sample not suitable for testing
- NAD No Asbestos Detected

-Bours ANJasnun

Approved by:

Abbie Neasham-Bourn Senior Reporting Administrator

Unit 6 Parkhead, Greencroft Industrial Park, Stanley, County Durham, DH9 7YB

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- a Sampling date not provided
- b Sampling time not provided (waters only)
- c Sample not received in appropriate containers
- d Storage Temperature
- e Headspace present in sample container
- f Sample exceeded sampling to reciept
- g Sample exceeded holding time(s)

Lab ref	Sample ID	Depth (m)	Deviating	Tests (Reason for deviation)
18753	DS1	2.15	Ν	
18754	DS2	2.90	Ν	
18755	DS3	2.85	Ν	
18756	DS5	3.15	N	
18757	DS6	2.45	Ν	

WATER

Lab Number	18753	18754	18755	18756	18757				
Client Reference	1	2	3	4	5				
Sample ID	DS1	DS2	DS3	DS5	DS6				
Depth (m)	2.15	2.90	2.85	3.15	2.45				
Sampling Date	16/10/2024	16/10/2024	16/10/2024	16/10/2024	16/10/2024				
Sampling Time					14:40	14:15	13:15	13:00	13:30
Test	Method	Accred	LoD	Units					
Volatile Petroleum Hydrocarbons									
>C5-C6 Aliphatic (HS_1D_AL)	CE266	Ν	1	µg/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
>C6-C8 Aliphatic (HS_1D_AL)	CE266	Ν	1	µg/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
>C8-C10 Aliphatic (HS_1D_AL)	CE266	Ν	1	µg/l	< 1.00	< 1.00	64.5	< 1.00	272
>C8-C10 Aromatic (HS_1D_AR)	CE266	Ν	1	µg/l	< 1.00	< 1.00	8.58	< 1.00	15.4
>C6-C7 Aromatic (HS_1D_AR)	CE266	Ν	1	µg/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
>C7-C8 Aromatic (HS_1D_AR)	CE266	Ν	1	µg/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
TPH Ali/Aro									
>C12-C16 Aliphatic (EH_2D_AL)	CE250	Ν	1	µg/l	10.9	< 1.0	< 1.0	< 1.0	1530
>C12-C16 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	313
>C16-C21 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C16-C35 Aliphatic (EH_2D_AL)	CE250	Ν	1	µg/l	9.3	< 1.0	< 1.0	< 1.0	36.9
>C21-C35 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C35-C40 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C35-C44 Aliphatic (EH_2D_AL)	CE250	Ν	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C35-C44 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
>C5-C40 Total (HS_1D+EH_2D_Total)	CE250	Ν	15	µg/l	< 15.0	< 15.0	< 15.0	< 15.0	3180
>C10-C12 Aliphatic (EH_2D_AL)	CE250	Ν	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	1180
>C10-C12 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	523
втех			n	n					
Benzene	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
МТВЕ	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m,p-Xylene	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
oXylenes	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

METHOD DETAILS

METHOD	TESTNAME	METHOD SUMMARY	ANALYSIS BASIS
CE266	VPH in Water	HS-GCFID	-
CE250	GCXGC in Water	DCM Extraction and GCxGC-FID	-
CE057	BTEX in waters	Analysis by HSGCFID	-

REPORT INFORMATION

Report No.:24-03179, issue number 1

Key

- U ISO17025 Accredited Result
- M ISO17025 and MCERTS Accredited Result
- N Do not currently hold accreditation
- ^ MCERTS accreditation not applicable for sample matrix
- * ISO17025 accreditation not applicable for sample matrix
- S Subcontracted
- I/S Insufficient Sample
- U/S Unsuitable sample
- N/T Not tested
- < Means "less than"
- > Means "greater than"

LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.

This report shall not be reproduced except in full, without prior written approval.

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

The results relate only to the sample received.

Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Moisture Content Calculated on a Wet Weight basis

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Sampling was undertaken by Chemtech Environmental Limited and is outside the UKAS accreditation scope.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

BTEX compounds are identified by retention time only and may include interference from co-eluting compounds. For soils and solids, all results are reported on a dry basis. Samples dried at no more than 30°C in a drying For soils and solids, analytical results are inclusive of stones, where applicable.

Sample Retention and Disposal

All soil samples will be retained for a period of 4 weeks from the point of receipt All water samples will be retained for a period of 2 weeks from the point of Reporting Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- 2D GC-GC Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
- MS Mass Spectrometry

ANALYTICAL TEST REPORT

Report Number	24-03639, issue number 1
Contract name:	14-16, Tudor Road, TW12
Client reference:	Not Supplied
Clients name:	AG Geo-Consultants Ltd
Clients address:	AGGEOCONLTD 58 Church Road Horfield
	BS7 8SE
Samples received:	31/10/2024
Analysis started:	31/10/2024
Analysis completed:	12/11/2024
Report issued:	12/11/2024

Key

- U UKAS accredited test
- M MCERTS & UKAS accredited test
- \$ Test carried out by an approved subcontractor
- I/S Insufficient sample to carry out test
- U/S Sample not suitable for testing
- NAD No Asbestos Detected

Approved by:

Sam Rogerson Manager

Unit 6 Parkhead, Greencroft Industrial Park, Stanley, County Durham, DH9 7YB

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- a Sampling date not provided
- b Sampling time not provided (waters only)
- c Sample not received in appropriate containers
- d Storage Temperature
- e Headspace present in sample container
- f Sample exceeded sampling to reciept
- g Sample exceeded holding time(s)

Lab ref	Sample ID	Depth (m)	Deviating	Tests (Reason for deviation)
20736	DS1	2.15	Y	VPH in Water(g), BTEX in waters(g)
20737	DS2	2.90	Y	VPH in Water(g), BTEX in waters(g)
20738	DS3	2.85	Y	VPH in Water(g), BTEX in waters(g)
20739	DS5	3.15	Y	VPH in Water(g), BTEX in waters(g)
20740	DS6	2.45	Y	BTEX in waters(g), VPH in Water(g)

WATER

Lab Number		20736	20737	20738	20739	20740			
Client Reference		1	1	1	1	1			
Sample ID		DS1	DS2	DS3	DS5	DS6			
Depth (m)				2.15	2.90	2.85	3.15	2.45	
Sampling Date Sampling Time		25/10/2024	25/10/2024	25/10/2024	25/10/2024	25/10/2024			
	v	σ			13:50	13:15	14:25	14:15	14:05
Test	Method	Accred	Гор	Units					
Volatile Petroleum Hydrocarbons									
>C5-C6 Aliphatic (HS_1D_AL)	CE266	Ν	1	µg/l	185	282	6880	26.1	64.8
>C6-C8 Aliphatic (HS_1D_AL)	CE266	Ν	1	µg/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
>C8-C10 Aliphatic (HS_1D_AL)	CE266	Ν	1	µg/l	71.4	83.6	< 1.00	6.41	543
>C8-C10 Aromatic (HS_1D_AR)	CE266	Ν	1	µg/l	< 1.00	< 1.00	< 1.00	< 1.00	55.7
>C6-C7 Aromatic (HS_1D_AR)	CE266	Ν	1	µg/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
>C7-C8 Aromatic (HS_1D_AR)	CE266	Ν	1	µg/l	< 1.00	< 1.00	< 1.00	< 1.00	< 1.00
Colourimetric				-					
Sulphate	CE257	U	0.3	mg/l	68.1	n/t	1460	n/t	n/t
TPH Ali/Aro									
>C12-C16 Aliphatic (EH_2D_AL)	CE250	Ν	1	µg/l	2.3	11.7	1.1	< 1.0	11200
>C12-C16 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	9.1	70.2	14.4	< 1.0	4400
>C16-C21 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	15.5	78.2	3.7	< 1.0	773
>C16-C35 Aliphatic (EH_2D_AL)	CE250	Ν	1	µg/l	41.2	212	3.7	< 1.0	2120
>C21-C35 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	48.7	512	10.5	< 1.0	4100
>C35-C44 Aliphatic (EH_2D_AL)	CE250	Ν	1	µg/l	1.8	15.0	< 1.0	< 1.0	123
>C35-C44 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	9.7	79.2	3.6	< 1.0	598
>C5-C40 Total (HS_1D+EH_2D_Total)	CE250	Ν	15	µg/l	357	1310	6950	23.8	36900
>C10-C12 Aliphatic (EH_2D_AL)	CE250	Ν	1	µg/l	2.9	11.9	< 1.0	< 1.0	9200
>C10-C12 Aromatic (EH_2D_AR)	CE250	Ν	1	µg/l	8.0	31.6	8.0	< 1.0	4640
ВТЕХ									
Benzene	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	3.7
МТВЕ	CE057	U	1	µg/l	185	282	< 1.0	26.1	< 1.0
m,p-Xylene	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	4.0
oXylenes	CE057	U	1	µg/l	< 1.0	< 1.0	< 1.0	< 1.0	6.1
Wet Chem									
рН	CE213	U	0.1	pH units	7.2	n/t	6.9	n/t	n/t

METHOD DETAILS

METHOD	TESTNAME	METHOD SUMMARY	ANALYSIS BASIS
CE266	VPH in Water	HS-GCFID	-
CE250	GCXGC in Water	DCM Extraction and GCxGC-FID	-
CE057	BTEX in waters	Analysis by HSGCFID	-
CE257	Anions by Discrete Analyser in Water	Gallery	-

REPORT INFORMATION

Report No.:24-03639, issue number 1

Key

- U ISO17025 Accredited Result
- M ISO17025 and MCERTS Accredited Result
- N Do not currently hold accreditation
- ^ MCERTS accreditation not applicable for sample matrix
- * ISO17025 accreditation not applicable for sample matrix
- S Subcontracted
- I/S Insufficient Sample
- U/S Unsuitable sample
- N/T Not tested
- < Means "less than"
- > Means "greater than"

LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.

This report shall not be reproduced except in full, without prior written approval.

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

The results relate only to the sample received.

Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.

Moisture Content Calculated on a Wet Weight basis

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

Sampling was undertaken by Chemtech Environmental Limited and is outside the UKAS accreditation scope.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

BTEX compounds are identified by retention time only and may include interference from co-eluting compounds. For soils and solids, all results are reported on a dry basis. Samples dried at no more than 30°C in a drying

For soils and solids, analytical results are inclusive of stones, where applicable.

Sample Retention and Disposal

All soil samples will be retained for a period of 4 weeks from the point of receipt All water samples will be retained for a period of 2 weeks from the point of Reporting Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- 2D GC-GC Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
- MS Mass Spectrometry

Vat Reg No. 772 5703 18 Registered in England number 4284013