

# Technical project overview

# Kew Gardens - Tractor & Log Store Building

| Building project  | Kew Gardens - Tractor & Log Store Building                      |
|-------------------|-----------------------------------------------------------------|
| Address           | Treetop Walkway , TW9 2AA                                       |
| Country           | United Kingdom                                                  |
| Module Type       | Shanghai JA Solar Technology Co. Ltd<br>JAM54S31-420/LR (1500V) |
| Number of modules | 75                                                              |
| Rated output      | 31.5 kWp                                                        |
| Mounting system   | MetaSole+                                                       |
| Editor            | Renusol Europe GmbH                                             |







# LOCATION

| Street  | Treetop Walkway |
|---------|-----------------|
| City    | TW9 2AA         |
| Country | United Kingdom  |

# SURROUNDINGS

| Code                                                             | Eurocode NA GB |
|------------------------------------------------------------------|----------------|
| Terrain height above sealevel                                    | 8,00 m         |
| Snow load zone                                                   | Zone 3         |
| Use Pressure coefficients from BRE<br>489 2014 roof pitch 0 -45° | yes            |
| Terrain category                                                 | Country        |
| Distance to coast                                                | 50,00 km       |
| Surroundings                                                     | normal         |
| Service life of PV system                                        | 25 years       |
| Failure consequence class                                        | 2              |
|                                                                  |                |

# LOAD CALCULATION RESULT

| 0,52 kN/m <sup>2</sup> |
|------------------------|
| 0,46 kN/m <sup>2</sup> |
| 0,36 kN/m <sup>2</sup> |
| 22,00 m/s              |
|                        |

# TOPOGRAPHY

Topography

Not exposed





### **ROOF PROPERTIES**

| Roof type              | Gable roof          |    | A) |    |
|------------------------|---------------------|----|----|----|
| Coverage type          | Trapezoidal profile | [  |    |    |
| A) Raised bead spacing | 333,00 mm           |    |    |    |
| First raised bead at   | 100,00 mm           | D) |    | B  |
| B) Raised bead width   | 20,00 mm            |    |    | 77 |
| C) Raised bead height  | 40,00 mm            | L  |    |    |
| Sheet quality          | Steel ≥ S320GD      |    |    |    |
| Sheet thickness        | 0.50mm              |    |    |    |
| C) Roof pitch          | 11,00 º             |    |    |    |
| D) Building height     | 4,46 m              |    |    |    |

# SUBSTRUCTURE

| Substructure type        | Purlins    |
|--------------------------|------------|
| Material of substructure | Wood       |
| Spacing of substructure  | 1200,00 mm |
| First substructure at    | 300,00 mm  |
| Substructure thickness   | 200,00 mm  |





# MODULE PARAMETERS

| Manufacturer | Shanghai JA Solar Technology Co.<br>Ltd. |    | C) X) |
|--------------|------------------------------------------|----|-------|
| Name         | JAM54S31-420/LR (1500V)                  |    | o o _ |
| Length       | 1762 mm                                  | A) |       |
| Width        | 1134 mm                                  |    |       |
| Height       | 30 mm                                    |    |       |
| Weight       | 20 kg                                    |    |       |
| Rated output | 420 W <sub>peak</sub>                    |    |       |
| Color        | black                                    |    |       |
| Datasheet    | Open datasheet                           |    |       |

Please check the compatibility of clamping positions with module manufacturer advice.

The module data was taken from a database. Please check whether this data corresponds to your actual module order. If necessary, please correct the data using the editing function.

### SYSTEM

System

MetaSole+



Please check the entered row distance for an ideal yield calculation with a correct calculation including consideration of the shading.





# **FASTENER DETAILS**

| Fastener type MS+: steel | 0.40-1.25mm |
|--------------------------|-------------|

# MODULE RAIL

| Optimize fasteners | Mounting optimized |
|--------------------|--------------------|

# CLAMPS

| Clamp type              | Mid clamps+ / End clamps+ |
|-------------------------|---------------------------|
| Clamp colour            | black                     |
| Max value middle clamps | 32 %                      |
| Max value end clamps    | 41 %                      |

# STATIC VALIDATION

Your project was validated by our statics check successfully.

Static utilization factor: 79%

Static utilization fastener: 79% Static utilization clamp: 41%

The predefined default values for input fields have to be compared with the conditions of the project. Necessary changes to adapt to local conditions must be carried out. The following relevant input fields contain their default value:

Service life of PV system: 25 years

• Failure consequence class: 2

• Sheet quality: Steel ≥ S320GD

# PROJECT DOCUMENTATION







ASSEMBLY PLAN









\*Measurements in mm





# CLAMP CAPACITY UTILIZATION PLAN

|   |      | 02.76  | 52.76 |                   |
|---|------|--------|-------|-------------------|
|   | 38%  | 26%    | 26%   | 38%               |
|   |      |        | - /*  | ار در             |
| - | 40%  | 29%    | 29%   | 40%               |
|   |      |        |       | Η                 |
|   | 6%   | 26%    | 26%   | 36%               |
|   | 35%  | 25%    | 25%   | 35%               |
|   |      |        |       | Ē                 |
| _ | 41%  | 10%    | 90%   | 4.4.0-            |
|   | 176  | 0076   | ou%   | 41%               |
|   | 37%  | 27%    | 27%   | 37%               |
|   |      |        |       | Ĺ                 |
|   |      |        |       | H                 |
| - | 39%  | 29%    | 29%   | 39%               |
|   | 38%  | 28%    | 28%   | 38%               |
| _ |      |        |       | Ē                 |
| _ | 17%  | 7%     | 7%    | 774               |
|   | 0176 | c / 76 | c176  | 3/%               |
|   | 40%  | 30%    | 30%   | 40%               |
|   |      |        |       | Ĥ                 |
|   |      |        |       | H                 |
|   | 35%  | 26%    | 26%   | 35%               |
|   | ~~~~ |        |       | 30%               |
|   |      |        |       |                   |
|   | 40%  | 30%    | 30%   | 40%               |
|   |      |        |       | Ĕ                 |
|   | 37%  | 27%    | 27%   | 379               |
|   |      |        |       | Η                 |
|   | 8%   | 28%    | 28%   | 38%               |
|   | 10%  | 90%    | 20%   | 200               |
|   |      | 70     | - 70  | 35°N              |
|   |      |        |       |                   |
|   | 36%  | 27%    | 27%   | 36%               |
|   | -    |        |       | Ē                 |
|   | 41%  | 30%    | 30%   | 41%               |
|   |      |        |       | H                 |
|   | 34%  | 25%    | 25%   | 34%               |
|   | 36%  | 26%    | 26%   | 36%               |
| _ |      |        | - /*  | ~~~               |
|   |      |        |       |                   |
|   | 40%  | C4%    | c#%   | 40%               |
|   | 8%   | 28%    | 28%   | 38%               |
|   |      |        |       | Γ                 |
|   |      |        |       | H                 |
|   | 8%   | 28%    | 28%   | 389               |
|   | 40%  | 29%    | 29%   | 40%               |
| _ |      | - ~    | ~ ~   | ~ 3               |
|   |      |        |       |                   |
|   | 36%  | 26%    | 26%   | 36%               |
|   | 5%   | 25%    | 25%   | 35%               |
|   | _    |        |       | A                 |
|   | 41%  | 30%    | 30%   | 41%               |
|   |      |        |       | Ľ                 |
|   | 37%  | 27%    | 27%   | 37%               |
|   |      |        |       | H                 |
|   | 10%  | 90%    | 90%   | 20-               |
|   | 03%  | c3./0  | co%   | 337               |
|   | 39%  | 28%    | 28%   | 399               |
|   |      |        |       | Ĥ                 |
| ; | 37%  | 27%    | 27%   | 37%               |
|   |      |        |       | Ľ.                |
|   | 40%  | 30%    | 30%   | 409               |
|   |      |        |       | Ľ                 |
|   | WAL. | NON.   | 96%   | 250               |
|   | 35%  | 26%    | 26%   | 359<br>359        |
| - |      |        |       | r I               |
|   |      |        |       | Η                 |
|   | 40%  | 30%    | 30%   | 409               |
| _ | 7%   | 7%     | 7%    | 27                |
|   | . 70 | . 70   | . 70  | 519               |
|   |      |        |       |                   |
|   | 38%  | 28%    | 28%   | 389               |
| ; | 39%  | 29%    | 29%   | 399               |
|   |      |        |       | Ľ                 |
|   |      |        |       | Η                 |
|   | 36%  | 27%    | 27%   | 369               |
|   | 34%  | 25%    | 25%   | 349               |
|   |      |        |       | H                 |
|   |      |        |       |                   |
|   | 41%  | 31%    | 31%   | 419               |
| ; | 36%  | 26%    | 26%   | 369               |
|   |      |        |       | Ľ                 |
|   | 40%  | 29%    | 29%   | 409               |
|   |      |        |       | Ľ                 |
|   | 38%  | 28%    | 28%   | 389               |
|   |      |        |       | Η                 |
|   |      |        |       |                   |
|   | s8%  | 28%    | 28%   | 389               |
|   | 10%  | 29%    | 29%   | 409               |
|   |      |        |       | ſ                 |
| ; | 36%  | 26%    | 26%   | 36%               |
|   |      |        |       | ľ.                |
|   | ou%  | 00%    | 00%   | 35 <sup>°</sup> N |
|   |      |        |       |                   |

41% 29%

28% 26% 26% 38%











# BILL OF MATERIAL

| Article No. | Article                                                                    | Quantity | Ordering Unit | Weight/Piece | Weight        |
|-------------|----------------------------------------------------------------------------|----------|---------------|--------------|---------------|
| R420081-BE  | End clamp+ (black)                                                         | 100      | 1             | 0,064 kg     | 6,400 kg      |
| R420082-BE  | Middle clamp+ (black)                                                      | 104      | 1             | 0,063 kg     | 6,552 kg      |
| R420402     | MetaSole+ metal sheet thickness:<br>steel 0.40-1.25mm; alu 0.50-2.00<br>mm | 204      | 1             | 0,084 kg     | 17,136 kg     |
|             |                                                                            |          |               | Total Weigł  | nt: 30,088 kg |





#### LOAD ASSUMPTIONS

#### Dead load

| Solar modules type JAM54S31-420/LR                        | R (1500V) are used.                                                          |
|-----------------------------------------------------------|------------------------------------------------------------------------------|
| The modules are angled horizontally of with module clamps | n the roof and are fastened on the larger module edges on the vertical rails |
| with module clamps.                                       |                                                                              |
| Dimensions:                                               | 1762 mm x 1134 mm                                                            |
| Weight:                                                   | G = 20.0 kg                                                                  |
| Load per longitudinal module side:                        | F <sub>G</sub> = 20.0 kg * 9.81 m/s² / 2 = 0.20 kN / 2 = 0.098 kN            |

#### Snow load

The determination of the snow load is carried out according to BS EN 1991-1-3:2003/NA:2010-06. Snow-trap formation or snow-load accumulations are not considered in the calculation. Please contact Renusol if necessary.

| Height above sea level:            | 8 m                                                                        |
|------------------------------------|----------------------------------------------------------------------------|
| Snow load zone:                    | 3                                                                          |
| Roof pitch:                        | $\alpha = 11^{\circ}$                                                      |
| Period of use:                     | 25 Year                                                                    |
| Snow load:                         | $s_k = s_{k, 50} * f_s = 0.50 \text{ kN/m}^2 * 0.93 = 0.46 \text{ kN/m}^2$ |
|                                    | μ1 = 0.800                                                                 |
|                                    | $s_1 = \mu_1 * s_k = 0.8 * 0.46 \text{ kN/m}^2 = 0.371 \text{ kN/m}^2$     |
|                                    | s <sub>1,11°</sub> = 0.371 kN/m² * cos(11.0°) = 0.364 kN/m²                |
| Load per longitudinal module side: | F <sub>s,k</sub> = 0.364 kN/m <sup>2</sup> * 1.76m * 1.13m / 2 = 0.364 kN  |
|                                    |                                                                            |

#### Wind load

The determination of the wind load is carried out according to BS EN 1991-1-4:2005/NA:2011-01.

| Building height roof ridge:     | 4 m                            |
|---------------------------------|--------------------------------|
| Terrain category:               | Country terrain                |
| Basic wind velocity:            | 22.00 m/s                      |
| Distance to shoreline:          | 50.000 km                      |
| Style of roof:                  | Gable roof                     |
| Period of use:                  | 25 Year                        |
| Pressure of the gusts velocity: | q(z) = 0.520 kN/m <sup>2</sup> |
|                                 |                                |





#### LOAD ASSUMPTIONS



The coefficients of pressure and suction for the individual roof areas are interpolated for the roof pitch of 11 obtained from the report BRE Digest 489.

Wind pressure:

| Edge area of roof (E)   | c <sub>p</sub> =0.12  | $W_{D} = 0.12*0.520$ kN/m <sup>2</sup> *1.76m*1.13m/2 = 0.062 kN   |
|-------------------------|-----------------------|--------------------------------------------------------------------|
| Middle area of roof (C) | c <sub>p</sub> =0.12  | W <sub>D</sub> = 0.12*0.520kN/m²*1.76m*1.13m/2 = 0.062 kN          |
| Wind suction:           |                       |                                                                    |
| Edge area of roof (E)   | c <sub>p</sub> =-1.76 | $W_s = (-1.76)*0.520 kN/m^{2*}1.76m*1.13m/2 = -0.914 kN$           |
| Middle area of roof (C) | c <sub>p</sub> =-0.60 | $W_s = (-0.60)*0.520$ kN/m <sup>2</sup> *1.76m*1.13m/2 = -0.311 kN |





Load cases and load case combinations

Load cases

The respective loads are taken from the load assumptions and converted to a reference system perpendicular to the roof area.

| LC 1                                                          |                                                                               |
|---------------------------------------------------------------|-------------------------------------------------------------------------------|
| LC 2                                                          | Snow load                                                                     |
| LC 3                                                          | Wind pressure (by roof area)                                                  |
| LC 4                                                          | Wind suction (by roof area)                                                   |
| Significant load case combinations according to: EN 1990:2012 |                                                                               |
| Ultimate state of load-bearing capacity                       |                                                                               |
| LCC 1                                                         | Predominant action wind pressure                                              |
|                                                               | $E_{d,LCC 1} = 1.35 * E_{GK,LC 1} + 1.50 * (E_{QK,LC 3} + 0.5 * E_{QK,LC 2})$ |
| LCC 2                                                         | Predominant action snow                                                       |
|                                                               | $E_{d,LCC2} = 1.35 * E_{Gk,LC1} + 1.50 * (E_{Qk,LC2} + 0.6 * E_{Qk,LC3})$     |
| LCC 3                                                         | Predominant action wind suction (lifting)                                     |
|                                                               | $E_{d,LCC3} = 1.00 * E_{Gk,LC1} + 1.50 * (E_{Qk,LC4})$                        |
| Ultimate state of serviceability                              |                                                                               |
| LCC 4                                                         | Predominant action wind pressure                                              |
|                                                               | $E_{d,LCC 4} = 1.00 * E_{Gk,LC 1} + 1.00 * (E_{Qk,LC 3} + 0.5 * E_{Qk,LC 2})$ |
|                                                               | Prodominant action show                                                       |
| 2003                                                          | $E_{d,LCC5} = 1.00 * E_{Gk,LC1} + 1.00 * (E_{Qk,LC2} + 0.6 * E_{Qk,LC3})$     |
|                                                               |                                                                               |
| LCC 6                                                         | Predominant action wind suction                                               |
|                                                               | $E_{d,LCC 6} = 1.00 * E_{Gk,LC 1} + 1.00 * (E_{Qk,LC 4})$                     |





#### Area load on module:

Due to the building geometry and the location, the following area loads result for the module surface according to the standard calculation.

| [kN/m²]                 |    | Section | Edge  |
|-------------------------|----|---------|-------|
| LCC 1                   | L  | 0.49    | 0.49  |
| Design                  | // | 0.08    | 0.08  |
| LCC 2<br>Design         | T  | 0.72    | 0.72  |
|                         | // | 0.13    | 0.13  |
| LCC 3<br>Design         | T  | -0.37   | -1.28 |
|                         | // | 0.02    | 0.02  |
| LCC 4<br>Characteristic | T  | 0.34    | 0.34  |
|                         | // | 0.05    | 0.05  |
| LCC 5<br>Characteristic | Т  | 0.49    | 0.49  |
|                         | // | 0.09    | 0.09  |
| LCC 6<br>Characteristic | T  | -0.22   | -0.82 |
|                         | // | 0.02    | 0.02  |

#### Maximum values

| [kN/m²]                | Characteristic | Design |
|------------------------|----------------|--------|
| Pressure               | 0.49           | 0.72   |
| Suction                | -0.82          | -1.28  |
| In parallel to the roo | 0.09           | 0.13   |





#### Middle clamp

#### General

The module clamps consist of extruded aluminium sheaths material grade EN-AW 6063 T66. The lower part of the module clamps consists of a click profile made of S500 MC, EN 10149-2, which is attached to the module carrying profile and transfers the loads by form closure. On it the module end clamp or module middle clamp is fastened by a screw. When tightening the screw the module clamp presses the module to the rail.

Sketch



#### Static analysis

The maximum loads established in the load combinations of the tension loads perpendicular to the roof area and the respective shear loads parallel to the roof area or the maximum shear loads in combination with the corresponding tensile loads perpendicular to the roof area are significant for the analysis. Pressure loads perpendicular to the roof area are transferred by contact bearing.

| Analysis         |  |
|------------------|--|
| Plate thickness: |  |

0,5 mm

LCC 1

Regarding the calculation the following module clamp at the following position is significant.

| Position:          | x = 3139 mm y = 37680 mm                |
|--------------------|-----------------------------------------|
| Loads:             | V <sub>x,d</sub> = 0.09 kN              |
| Comparison stress: | $V_{xd}/F_{Rdy} = 0.09/1.05 = 0.08 < 1$ |

LCC 2

Regarding the calculation the following module clamp at the following position is significant.

| Position:          | x = 3139 mm y = 37680 mm                   |
|--------------------|--------------------------------------------|
| Loads:             | $V_{x,d} = 0.14 \text{ kN}$                |
| Comparison stress: | $V_{x,d}/F_{R,d,y} = 0.14/1.05 = 0.14 < 1$ |

LCC 3

5.2.7.4)

Regarding the calculation the following module clamp at the following position is significant.

| Position:          | x = 3139 mm y = 1383 mm                                                  |
|--------------------|--------------------------------------------------------------------------|
| Loads:             | $N_{d} = -0.96 \text{ kN}$                                               |
|                    | V <sub>x,d</sub> = 0.01 kN                                               |
| Comparison stress: | $N_d/F_{R,d,x} + \ V_{x,d}/F_{R,d,y} = 0.96/3.22 + 0.01/0.84 = 0.32 < 1$ |



#### End clamp

#### General

The module clamps consist of extruded aluminium sheaths material grade EN-AW 6063 T66. The lower part of the module clamps consists of a click profile made of S500 MC, EN 10149-2, which is attached to the module carrying profile and transfers the loads by form closure. On it the module end clamp or module middle clamp is fastened by a screw. When tightening the screw the module clamp presses the module to the rail.

Sketch



#### Static analysis

The maximum loads established in the load combinations of the tension loads perpendicular to the roof area and the respective shear loads parallel to the roof area or the maximum shear loads in combination with the corresponding tensile loads perpendicular to the roof area are significant for the analysis. Pressure loads perpendicular to the roof area are transferred by contact bearing.

Analysis

LCC 1

Regarding the calculation the following module clamp at the following position is significant.

| Position:          | x = 4303 mm y = 37680 mm                   |
|--------------------|--------------------------------------------|
| Loads:             | $V_{x,d} = 0.04 \text{ kN}$                |
| Comparison stress: | $V_{x,d}/F_{R,d,y} = 0.04/0.81 = 0.05 < 1$ |

#### LCC 2

Regarding the calculation the following module clamp at the following position is significant.

| Position:          | x = 4303 mm y = 37680 mm                   |
|--------------------|--------------------------------------------|
| Loads:             | V <sub>x,d</sub> = 0.07 kN                 |
| Comparison stress: | $V_{x,d}/F_{R,d,y} = 0.07/0.81 = 0.09 < 1$ |

#### LCC 3

Regarding the calculation the following module clamp at the following position is significant.

| Position:          | x = 4303 mm y = 37680 mm                                               |
|--------------------|------------------------------------------------------------------------|
| Loads:             | $N_{d} = -0.70 \text{ kN}$                                             |
|                    | $V_{x,d} = 0.01 \text{ kN}$                                            |
| Comparison stress: | $N_d/F_{R,d,x} + V_{x,d}/F_{R,d,y} = 0.70/1.75 + 0.01/0.75 = 0.41 < 1$ |





#### MetaSole

#### General

To calculate the maximum load capacity per MetaSole, the support forces per longitudinal module side are used for the decisive combinations of loading cases. For this purpose, the exact position of the module clamp and with this, of the MetaSole is considered using a bar chart. The resulting support forces are checked against the permitted forces (for MetaSole and the module clamps).

Sketch



#### Analysis

The maximum loads established in the load combinations of the tension loads perpendicular to the roof area and the respective shear loads parallel to the roof area or the maximum shear loads in combination with the corresponding tensile loads perpendicular to the roof area are significant for the analysis. Pressure loads perpendicular to the roof area are transferred by contact bearing.

Plate thickness:

0,5 mm

LCC 1

Regarding the calculation the following fastener at the following position is significant.

| Position:          | x = 3139 mm y = 37680 mm                   |
|--------------------|--------------------------------------------|
| Loads:             | $N_{d} = 0.54 \text{ kN}$                  |
|                    | $V_{x,d} = 0.09 \text{ kN}$                |
| Comparison stress: | $V_{x,d}/F_{R,d,y} = 0.09/1.19 = 0.07 < 1$ |

I CC 2

Regarding the calculation the following fastener at the following position is significant.

| Position:          | x = 3139 mm y = 37680 mm                   |
|--------------------|--------------------------------------------|
| Loads:             | N <sub>d</sub> = 0.79 kN                   |
|                    | $V_{x,d} = 0.14 \text{ kN}$                |
| Comparison stress: | $V_{x,d}/F_{R,d,y} = 0.14/1.19 = 0.12 < 1$ |

LCC 3

Regarding the calculation the following fastener at the following position is significant.

| Position:          | x = 3139 mm y = 1383 mm                                                 |
|--------------------|-------------------------------------------------------------------------|
| Loads:             | $N_{d} = -0.96 \text{ kN}$                                              |
|                    | V <sub>x,d</sub> = 0.01 kN                                              |
| Comparison stress: | $N_d/F_{R,d,-x} + V_{x,d}/F_{R,d,y} = 0.96/1.23 + 0.01/1.19 = 0.79 < 1$ |

