

Basement Impact Assessment

Site Address:	146 Castelnau
	London
	SW13 9ET
Client Address:	The Basement Design Studio
	Michael J Wiseman
	Suite 17, Maple Court
	Grove Park, White Waltham
	Berkshire. SL6 3LW

	Report by	Sudeep Gurung Structural Engineer M.Sc. GMIStructE				
	Report Reviewed by	Concetta Cosenza Chartered Civil Engineer BEng, MSc, CEng, MICE				
Structur	ral Design Reviewed by	Chris Tomlin MEng CEng MIStructE				
Hydrogeolog	y, Soils &Above Ground Drainage Reviewed by	Vijaya Dubagunta M.Tech B.Tech CEng MICE				
Rev	Date	Rev By	Comment			
-	27/11/2024	SG	First Issue-Draft			
1	17/12/2024	SG	Updated with SI information			

Croft Structural Engineers Ltd Rear of 60 Saxon Road, London, SE25 5EH T: 020 8684 4744 E: <u>enquiries@croftse.co.uk</u> Reference: P:\2024\241104-146 Castlenau SW13\2. C

Reference: P:\2024\241104-146 Castlenau SW13\2. Calcs\2.6.BIA-Richmond\241104-146 Castlenau,SW13-BIA.docx

1. Contents

1. Ex	Executive Summary 1								
2. So	creening Assessment	2							
2.1.	Subterranean Characteristics	2							
2.2.	Land Stability	3							
2.3.	Flood Risk & Drainage 3								
3. D	Desk Study 4								
3.1.	Proposed Works 4								
3.2.	Site History	4							
3.3.	Listed Buildings	5							
3.4.	Adjacent Properties	6							
3.4.1.	148 Castlenau - Property to the Le	eft 6							
3.4.2.	144 Castlenau - Property to the Ri 7	ght							
3.4.3. the Re	148 Castlenau- Garden- Property	to							
3.5.	Topography	8							
3.6.	Highways, Rail & London Undergrou	nd9							
3.6.1.	Highways	9							
3.6.2. Rail	London Underground & Network 10								
3.7.	Trees	10							
3.7.1.	Special Precautions due to Trees	10							
3.8. Data	Geology – British Geological Survey 10								
3.9.	Flood Risk	12							
3.9.1.	Fluvial Flooding	12							
3.9.2.	Surface Water Flooding	13							
3.9.2. 3.9.3.	Surface Water Flooding Ground Water & Sewer Flooding	13 13							

CRØFT STRUCTURAL+ CIVIL

3.10.Ground Water, Surface Water &Drainage14								
4. Ground Movement Assessment &								
Predicted Damage Category	16							
4.1. Burland Scale 19								
4.2. Mitigation Measures 21								
5. Ground Investigation	22							
5.1. Ground Considerations	23							
5.2. Bearing Stress	23							
5.3. Ground Stability	23							
6. Engineering Considerations	23							
6.1. Surcharge Loading	24							
7. Temporary Works	24							
8. Noise, Vibration & Dust	24							
1. Preparation of site to fully contain th area 25	e							
2. Management and hours of working	26							
3. Excavation of basement	27							
Appendix A – Structural Design (Retaining								
Wall)	29							
Appendix B – Basement Method Statement	30							
Appendix C – Structural Plans & Detail	31							
Appendix D – Soil investigation 32								
Appendix E – Flood Risk Assessment (FRA) 33								

1. Executive Summary

Croft Structural Engineers has reviewed the scope of the proposed basement development at 146 Castlenau SW13 9ET

The Basement Impact Assessment (BIA) has been produced following the London Borough of Richmond *Good Practice Guide on Basement Developments (2015)*.

The key elements of the report are:

- Desk Study
- Inspection of Site and Adjacent Site
- Geology
- Hydrology
- Listed Buildings
- Soil investigation report
- Assessment of Ground Movements
- Anticipated movements are expected to be 0-1 on the Burland Scale.
- Engineering Design Work Completed by a Chartered Structural Engineer
- Initial Flood Risk, Drainage and SuDS completed by a Chartered Civil Engineer
- Construction Sequence
- Temporary works
- Structural GA's and Sections

Should the proposal receive planning permission and, ultimately, progress to site, the client has been informed that the services of a chartered structural engineer must be retained for the duration of the project.

Ø

2. Screening Assessment

2.1. Subterranean Characteristics

Does the recorded water table extend above the base of the proposed subsurface structure?

No, it does not. Water was struck at 4.7 m below ground level. Please refer to SI report by Fastrack (Appendix D)

Is the proposed subsurface development structure within 100m of a watercourse or spring line?

No. Proposed basement development is not within 100m of a watercourse or spring line.

Are infiltration methods proposed as part of the site's drainage strategy?

No. No infiltration methods are proposed.

Does the proposed excavation extend below the local water table level or spring line during the construction phase?

No, it does not.

Is the shallowest geological strata at the site London Clay?

No, the shallowest soil strata are of Kempton Park Gravel underlain by London clay as per BGS map viewer of site.

Is the site underlain by an aquifer and/or permeable geology?

The site is underlain by a secondary aquifer.

2.2. Land Stability

Does the site, or neighbouring area, topography include slopes that are greater than 7°?

No. It does not.

Will changes to the site's topography result in slopes greater than 7°?

No. Proposed new basement will not change site's topography.

Will the proposed subsurface structure extend significantly deeper underground compared to the foundations of the neighbouring properties?

No. Proposed subsurface structure will not extend deeper underground than neighbours foundations.

Will the construction of the proposed subsurface structure require the felling or uprooting of any trees?

No trees will be felled or uprooting of trees for the proposed construction.

Has the ground at the site been previously worked?

No. The existing site has been residential since 1890's and was an empty filed before that.

Refer to site history (3.2)

Is the site within the vicinity of any tunnels or railway lines?

No, it is not within vicinity of any tunnels or railway line.

2.3. Flood Risk & Drainage

Will the proposed subsurface development result in a change in impermeable area coverage on the site?

No change in impermeable area coverage.

Will the proposed subsurface development impact the flow profile of throughflow, surface water or ground water to downstream area?

The proposed subsurface development does not impact the flow.

Will the proposed subsurface development increase throughflow or ground water flood risk to neighbouring properties?

The proposed subsurface development will not increase throughflow or ground water flood risk to neighbouring properties.

3. Desk Study

3.1. Proposed Works

Proposed work on site includes creation of a new basement under the existing footprint of the building including lightwells at rear and front.

3.2. Site History

Age of property: Victorian.

The existing property is a Semidetached three storey house with a partial cellar at rear. Property has a front vehicle driveway at and large rear garden. It shares Party wall with No 148

Figure 1:Front view of property.

The historical maps show that the site was an empty field on map published in 1873 and residential development occurred between 1894 to .1896

Figure 2: Extract from 1873 map (Left) and 1894 to 1896 map (Source:maps.nls.uk)

Figure 3:Extract from layers of London bomb damage 1945

During the Blitz the local area was not bombed.

3.3. Listed Buildings

The existing property is not listed.

There are no listed buildings in the surrounding area.

3.4. Adjacent Properties

Visual inspections of the external façades of the adjacent buildings have been inspected to consider whether the proposed basement will significantly affect their structure.

Figure 4:Aerial view of property. Extract from google earth.

3.4.1. 148 Castlenau - Property to the Left

- Property age: Victorian
- Property use: Domestic
- Number of storeys: Three
- Basement present: Partial cellar might be present.
- Structural defects noted: No defects noted from outside visual survey.

Figure 5:Front View of building.

3.4.2. 144 Castlenau - Property to the Right

- Property age: Victorian
- Property use: Domestic
- Number of storeys: Three
- Basement present: Partial cellar might be present.
- Structural defects noted: No defects noted from outside visual survey.

Figure 6: Front view of property.

3.4.3. 148 Castlenau- Garden- Property to the Rear

3.5. Topography

Figure 7: Topography of Richmond upon Thames

Does the existing site include slopes, natural or manmade, greater than 7° (approximately 1:8)?

No. Site is approximately flat. There are no major falls within 20m which will increase the risk of land slip.

Will the proposed reprofiling of the site change slopes at the property boundary to more than 7° (approximately 1:8)?

No. The proposed landscaping does not affect the slope.

Does the development neighbour land include railway cuttings and the like with a slope greater than 7° (approximately 1:8)?

No. There are no railway cuttings adjacent to the property.

Is the site within a wider hillside setting in which the general slope is greater than 7° (approximately 1:8)?

No. The slope of the wider hillside setting is as per the property, approximately flat.

Is the London Clay the shallowest strata on site?

No. Kempton Park Gravel is the shallowest strata followed by London Clay formation as per BGS map viewer.

Will any tree(s) be felled as part of the proposed development and/or are any of the works proposed within any tree protection zones where trees are to be retained?

No. No local trees are to be felled.

Is there a history of seasonal shrink-swell subsidence in the local area and/ or evidence of such effects at the site?

No. Subsidence not considered as an issue on this site.

Is the site within an area of previously worked ground?

No. From the historical maps, the site has been residential for at least since 1890's.

3.6. Highways, Rail & London Underground

3.6.1. Highways

Is the site within 5m of a highway or pedestrian footway?

No. Site is not within 5m of the footpath/alleyway both footpath and the road surface are further than 5m from the front lightwell.

Highways loading – allow:

- 10kN/m² if within 45° of road
- 100kN point loads if under road or with in 1.5m
- 5kN/m² if within 45° of pavement
- Garden surcharge 2.5kN/m²
- Surcharge for adjacent property 1.5kN/m² + 4kN/m² for concrete ground bearing slab

3.6.2. London Underground & Network Rail

Is the site over (or within the exclusion zone) of any tunnels, e.g. railway lines?

No. Nearest is the Railway line is +800m from site.

Will the basement works affect any UK Power Network Assets (substations etc)?

No. No UK Power Networks assets were noted during the initial site visit. A utilities search has not been conducted.

3.7. Trees

There are two mature trees at the rear garden of the property. But nearest tree is farther than 6m of the rear wall of proposed basement Henceforth proposed basement wall falling outside of tree protection zone. However, as a precaution, the contractor should follow guidance from BS 5837: 2005 Trees in relation to construction.

Are any trees to be removed to make way for the proposed basement?

No. All existing trees are to remain.

3.7.1. Special Precautions due to Trees

The increased depth of the foundations necessary for the basement places the new foundations outside the effects of trees. The building will be more stable with the proposed basement.

3.8. Geology – British Geological Survey Data

Extract from BGS map viewer indicates that the property is underlain by Kempton Park Gravel with London clay formation below.

1		
ik	Geology	×
2	Bedrock geology	^
Z	London Clay Formation - Clay and silt. Sedimentary bedrock formed between 56 and 47.8 m years ago during the Palaeogene period.	illion
	Superficial deposits	~
1	Kempton Park Gravel Member - Sand and gravel. Sedimentary superficial deposit formed bet 116 and 11.8 thousand years ago during the Quaternary period.	ween
LEACGTAR, MLS, OS,I	More information	

Figure 8: Extract from BGS maps

Site specific soil investigation was done by Fastrack on 6th December 2024. Please refer to bore hole record below. Underlaying soil on site is of sand and gravel.

	FASTRACK		СК	Fastrack Site Investigations Ltd Unit 9, Tyndales Farm Southend Road			Borehol	e Log	Borehole No. BH1	
				Ma	Idon CMS	9 6TQ		Ŭ	Sheet 1 of 1	
Project N	lame:	N/A			Project 28624	No.	Site Date: 06/12/20	24	Hole Type BH	•
Location	:	146 Cas	stelnau. Long	don, SW1	13 9ET				Scale	
Clients		The D	.,						1:32 Logged B	у
Client:		The Bas	sement Desi	gn Studio)					1
Water Strikes	Samp	ble and In	n Situ Testing	g	Depth (m)	Legend	Stratu	um Description		
	Deput (III)	туре	Result	15	0.05		TONE SHINGLE			
	1.00	D	MP = 7/75 MP = 7/75 MP = 9/75 MP = 10/79	5mm 5mm 5mm 5mm	0.15		ark brown silty sandy MADE G	SROUND containing brick	stone	1
	2.00	D	MP = 17/7 MP = 19/7 MP = 19/7 MP = 21/7	75m 5mm 5mm 5mm	1.80		Vrange SAND & GRAVEL			2
	3.00	D	MP = 27/79 MP = 30/79 MP = 30/79 MP = 31/79	5mm 5mm 5mm 5mm						3
×	4.00	D	MP = 31/7 MP = 31/7 MP = 33/7 MP = 33/7	5mm 5mm 5mm 5mm						4
	5.00	D	MP = 35/7 MP = 37/7 MP = 37/7 MP = 37/7	5mm 5mm 5mm 5mm			en anniñe (hanne en 4, (ATT	_		5
	6.00	D	MP = 39/7 MP = 41/7 MP = 41/7 MP = 41/7	'5mm '5mm '5mm '5mm	6.00		End of B	orehole at 6.000m		6
Key: D	- Disturbed S	Sample	V - Insitu V	ane Test	MP -	Mackintosh P	robe Test			
Remark	s: Borehol Standing due to b	e closed g water r back fill. M	at 6.00m. noted at 4.70 No roots fou	0m below Ind.	v ground	level on con	pletion. Only 3.50m of st	andpipe in ground	AGS	

Figure 9: Borehole record from SI report by Fastrack

Ø

Assumed bearing pressure:100kN/m2.

3.9. Flood Risk

3.9.1. Fluvial Flooding

Figure 10: Extract from Flood map(Environment Agency)

Is the site in a fluvial or tidal flood risk zone?

Yes. Site lies within Flood zone 3. Meaning, it has high probability of flooding from river and the sea.

Ø

3.9.2. Surface Water Flooding

Figure 11: Extract of surface water flooding(Environment Agency)

Is the site in a surface water flood risk zone?

Yes. The site lies in medium zone flood risk zone due to surface water.

3.9.3. Ground Water & Sewer Flooding

Figure 12: Extract from Richmond Strategic Flood Risk Assessment - Ground Water Sewer Artificial Flood Risk Map

Is the site at risk of flooding due to ground water or sewers?

Yes. The proposed site lies within high-risk zone of flooding due ground water flood.

3.9.4. Flood Risk Desk Study Summary

The site is located in flood zone 3. Also, the site lies in medium zone of flooding due to surface water.

A site-specific flood risk assessment (FRA) is required. Separate FRA by Evans Rivers and Coastal Ltd. Please refer to Appendix E.

3.10. Ground Water, Surface Water & Drainage

The basement will be founded on gravels and will not act as a dam. There will be capacity for the water to be displaced around and under the property.

If clay is encountered at depth, a 150mm thick layer of compacted type I should be provided to prevent damming.

Figure 13: Extract from Arup report on ground water flow

The reinforced concrete retaining walls have been designed to withstand ground water flooding.

As part of the proposed site drainage, will surface water flows be materially changed from the existing route?

No. Surface water flow will not be changed.

Will the proposed basement development result in a change to the impermeable area of the site?

No. Proposed basement development will not change impermeable area of site.

Will the proposed basement result in changes to the instantaneous and long-term surface water being received by the adjacent properties or downstream water courses?

No. Proposed basement will not change surface water received by adjacent properties.

Will the proposed basement result in changes to the quality of the surface water being received by adjacent properties or downstream water courses?

No. Proposed basement will not change quality of surface water received by adjacent properties.

As part of the site drainage, will more surface water be discharged to the ground than currently?

No. More surface water will not be discharged to ground that currently.

4. Ground Movement Assessment & Predicted Damage Category

CIVIL Date Nov-24 Rev Date Description Chock Boy Mews By SG Index 125 St Index 12	CRØI STRU	FT JCTUR/	۹L+	Project:	241104	I-146 Cas	tlenau S	W13	Section		Sheet	GMA - 1
Clock Step Meet London S25 SEH (clocked By Cache Leeked SG Constrained Rev Constrained Neighbours bouid (condon S25 SEH (clocked Jab No 241104 Status Rev Image: Set	CIVIL			Date	Nov-24		Rev	Date	Description	ı		
Rear of 83 soon Road Checked Image: Checked Rev 1000 nt2535H 100 No 241104 Status Rev Ref Movement of closest neighbouring property (No-144) Status Rev Image: Checked Neighbours building width, L = 8000 mm Image: Checked Image: Checked Image: Checked Neighbours building width, L = 8000 mm Image: Checked Image: Checked Image: Checked Neighbours building width, L = 8000 mm Image: Checked Image: Checked Image: Checked Neighbours building width, L = 8000 mm Image: Checked Image: Checked Image: Checked L/H = 0.89 Image: Checked Image: Checked Image: Checked Image: Checked L/H = 0.89 Image: Checked Image: Checked Image: Checked Image: Checked L/H = 0.89 Image: Checked Image: Checked Image: Checked Image: Checked analysis depth, D = 3.8 m Image: Checked Image: Checked Image: Checked movement Type High Support Top & bottom Low Support Stiffness Canitlever	Clock Sho	p Mews		By	SG							
Income sequence Job No 241104 Status Rev Ref Movement of closest neighbouring property (No-144) Image: sequence sequence Image: sequence sequence Image: se	Rear of 60 Saxon Road			Checked								
Ref Movement of closest neighbouring property (No-144) Image: Conservative conservation of closest neighbouring property (No-144) Neighbouring building Image: Conservation of closest neighbouring conservation of closest neighbours building from excavation depth Image: Conservative closest neighbours from excavation from excavation from excavation from excavation depth L/H = 0.89 Image: Conservative closest neighbours from excavation depth Image: Closest neighbours from excavation from excavation from excavation from excavation depth L/H = 0.89 Image: Closest neighbours from excavation	T: 020 8684 W: <u>www.c</u>	4 4744 proffse.co.uk		Job No	241104	l.	Status				Rev	
Neighbours Building width, L = 8000 mm La La <thla< th=""> La La La</thla<>	Ref	Moveme	ent of closest	neighbo	uring pr	operty (N	o-144)					
Neighbours Building width, L = 8000 mm 10400 mm L1 Distance to furthest point of building from excavation & installation, L = 10400 mm L1 Neighbours building Height H= 9000 mm Image: Second		Neighbou	uring building									
Distance to furthest point of building from excavation & installation, L ₁ = 10400 mm L1 Neighbours building Height H= 9000 mm L/H = 0.89 Excav'n depth H _b = 3.8 m New Basement analysis depth, D = 3.8 m Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 High Support Top & bottom Prop walls Surface movement Surface movement Weighbour Distance behind wall Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Canitlever walls Surface movement Wall Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 Canitlever walls Surface movement Wall Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 High Support Top & bottom Prop walls Canitlever walls Surface movement Wall Note: the height of the neighbouring building waries. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 High Support Top & bottom Prop walls Canitlever walls Surface movement Wall Horzontal -0.15% 4 -0.40% 4 -0.40% 4	N	leiahbours Bu	ildina width. L =	8000	mm							
Neighbours building Height H= 9000 mm Neighbour Neighbour Neighbour L/H = 0.89 Excav'n depth H_b= 3.8 m New Basement analysis depth, D = 3.8 m Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 Canitlever walls Distance behind wall % of max excavation depth % of max excavation depth Worement % of max excavation depth Morement % of max excavation depth movement % of max excavation depth Morement % of max excavation depth movement % of max % of max		Distanc	e to furthest poir	nt of building	from exca	vation & inst	allation, L ₁	= 104	00 mm	L1		
L/H = 0.89 Excav'n depth H _b = 3.8 m analysis depth, D = 3.8 m New Basement Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 Table 2.4 of CIRIA C580 High Support Top & bottom Prop walls Distance behind wall % of max excavation depth % of max excavation depth % of max excavation depth Horzontal Horzontal 0.15% 4 0.3.5 0.35% 4 Neighbour Neighbour Neighbour Neighbour Neighbour Neighbour Low Support Stiffness Canitlever walls Distance behind wall % of max excavation depth Neighbour Nei	N	eighbours bu	ilding Height H=	9000	mm				←		▶	
L/H = 0.89 August and the second a			jj.									
L/H = 0.89 Image: constraint of the second constraint of the									<u>N</u>	<u>leighbour</u>		
Excavin depth Hb= 3.8 m analysis depth, D = 3.8 m Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 High Support Top & bottom Prop walls Low Support Surface movement wall Surface movement % of max excavation depth % of max excavation depth Horzontal -0.15% 4 -0.40% 4		L/H =	0.89)								
Excavin depth H _b = 3.8 m New Basement Image: Conservative of the conservat				↑					←→ L2=	2500	mm	
analysis depth, D = 3.8 m	Exca	v'n depth H _b =	3.8	m	-	New Basem	ent	-				
analysis depth, D = 3.8 m Image: Conservatively, the lowest height is used (height to eaves). Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 Top & bottom Prop walls Distance behind wall Surface movement % of max consequent % of max movement % of max -0.10% % of		1			-							
analysis depth, D = 3.8 m Image: conservatively, the lowest height is used (height to eaves). Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Image: conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 Image: conservatively, the lowest height is used (height to eaves). Image: conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 Image: conservatively, the lowest height is used (height to eaves). Image: conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 High Support Top & bottom Prop walls Low Support Surface movement Distance behind wall Surface movement Distance behind wall More movement % of max excavation depth fo negliable movement % of max excavation depth fo negliable movement More motional -0.15% 4 -0.40% 4 -0.40% 4					-							
Note: the height of the neighbouring building varies. Conservatively, the lowest height is used (height to eaves). Table 2.4 of CIRIA C580 Table 2.4 of CIRIA C580 Low Support Support Top & bottom Prop walls Low Support Canitlever walls Surface Distance behind wall Surface movement Distance behind wall Distance wall Distance movement Distance behind wall Horzontal -0.15% 4 -0.40% 4 Vertical -0.10% 3.5 -0.35% 4	analys	sis depth. D =	3.8	m								
movement Type High Support Top & bottom Prop walls Low Support Canitlever walls Image: Surface movement Surface movement Distance behind wall Surface movement Distance behind wall Surface movement Distance behind wall Image: Surface movement % of max excavation depth to negliable movement % of max excavation depth to negliable movement % of max excavation depth to negliable movement Image: Surface movement Horzontal -0.15% 4 -0.40% 4		Note: the he Table 2.4 of	eight of the neigl CIRIA C580	hbouring bui	Iding varie	s. Conservati	vely, the lo	west heigh	it is used (hei	ght to eaves).		
Image: Surface movement Distance behind wall Surface movement Distance behind wall Image: Surface movement Surface movement Surface movement Distance behind wall Image: Surface movement % of max excavation depth to negliable movement % of max excavation depth % of max excavation depth Image: Surface movement Image: Surface movement % of max excavation depth to negliable movement % of max excavation depth to negliable movement Image: Surface movement Image: Surface movement Image: Surface movement % of max excavation depth Image: Surface movement Image: Surface movement Image: Surface movement % of max excavation depth % of max excavation depth % of max excavation depth Image: Surface movement Image: Surface movement Image: Surface movement % of max excavation depth % of max excavation depth % of max excavation depth Image: Surface movement Image: Surface movement Image: Surface movement % of max excavation depth % of max excavation depth % of max excavation depth Image: Surface movement Image: Surface movement Image: Surface movement % of max excavation depth % of max excavation depth % of max excavation depth Image: Surface movement I		movement	Туре	High Supp	port	Top & bot Prop walls	tom		Low Sup Stiffness	port	Canitlever	walls
Model % of max excavation depth to negliable movement % of max excavation depth to negliable movement % of max excavation depth to negliable movement Horzontal -0.15% 4 -0.40% 4 Vertical -0.10% 3.5 -0.35% 4				Surface m	ovement	Distance k wall	pehind		Surface moveme	ent	Distance behind wa	I
Horzontal -0.15% 4 -0.40% 4 Vertical -0.10% 3.5 -0.35% 4				% of max excavation	n depth	to negliab movemen	le t		% of ma excavati	x on depth	to negliabl movement	e
Vertical -0.10% 3.5 -0.35% 4			Horzontal	-0.15%		4			-0.40%		4	
			Vertical	-0.10%		3.5			-0.35%		4	

Movement Assessment CIRIA C580: Embedded retaining walls - guidance for economic design

Potent	tial mov	ement due	e to exca	vation	of wall						
using pa	arameters	from Table 2.	4 of CIRIA	C580							
(hiah sti	ffness: exc	avation will b	e proppe	d durina	construction)					
Horizor	ntal Surfac	e Movement	/ excavat	ion dept	<u>h</u>				=	-0.15	5%
			1	max d _h =	-0.15%	6	x	3800	=	-5.7	mm
		Distance b	ehind wall	to neglig	jible movemen	t (multi	ple of exca	v'n deptł	n) =	4	
			1	L _{он} =	3800		x	4	=	15200) mm
Vertica	Surface	Movements									
Distance	behind		ible move	mont (m	ultiple of ever	u'n do	nth)	-	2.5		
Distance	e bennu w	an to neglig	Ible move	ment (m	uniple of exca	av n ue	pui)		5.5	_	
	$L_{ov} =$	38	800	х	3.5			=	13300	mm	
								L _{OH} :	= 15200	mm	
								1			
								1			
		New Ba	asement								
							11				
							1	Lov	= 13300	mm	
		i i		1		1		-00	15500	,	
Table B											
distance							P. a.				
from	t / max				0.0009	%	distant	ce from w	all / max exca	vation dept	.n
wall /	excavatio	Distance	horizontal	vertical	» -0.0109	%	-	2	/	4	
max	n depth	From	(d _h) in	(d _v) in	dept	2					
excavati	(%)	Excavatgion	mm	mm	ation	/0					
depth	[from Fig				-0.0309	%		/			
(x/D)	2.11b]				-0.0409	%					
0	-0.040%	0	-5.7	-1.5	0.0500						
0.2	-0.056%	760	-5.415	-2.1	-0.050; E	~					
0.4	-0.070%	1520	-5.13	-2.7	2030.0-	%	/				
0.6	-0.076%	2280	-4.845	-2.9	-0.0709	%					
0.637	-0.076%	2420.6	-4.79228	-2.9	h Sti	/					
0.8	-0.074%	3040	-4.56	-2.8		CIRIA	C580 Figur	e 2.11(B) of wall	Ground surfac	e moveme v	nt infront
1	-0.069%	3800	-4.275	-2.6	-0.0905	%		c		/	
1.1	-0.066%	4180	-4.1325	-2.5							
1.4	-0.057%	5320	-3.705	-2.2							
1.6	-0.050%	6080	-3.42	-1.9	Ve	eritical I	Movement		Horzontal M	ovement	
1.7	-0.046%	6460	-3.2775	-1.7	Di	iagonal	line				
1.8	-0.042%	6840	-3.135	-1.6	2500	-1.5	mm		2500	-5.7	mm
2	-0.035%	7600	-2.85	-1.3	10400	-0.5833	mm		10400	-1.8	mm
2.3	-0.027%	8/40	-2.4225	-1.0							
2.4	-0.024%	9120	-2.28	-0.9	7600	-1.33	Iteration val	ues	7600	-2.85	
2.8	-0.013%	10640	-1.71	-0.5	8740	-1.026			8740	-2.4225	
2.9	-0.011%	11020	-1.5675	-0.4				11			
3.4	-0.002%	12920	-0.855	-0.1	Movement whe	re vertica	al Max vertic	al line & d	agonal line in	tersect	
4	0.000%	15200	0	0.0	At	2420.6	-1.5294 r	nm			

0 2000 4000 6000 8000 10000 42000 14091 0 4000 6000 8000 10000 42000 14091 0 Near Edge						-			
Distance from Excavation in mm horizontal (dh) in mm Far edge building Distance from Excavation in mm horizontal (dh) in mm Far edge building Ifferential movement mm Far edge building from Graph 1, mm Far edge building Horiztonal movement at L2 = Far edge building	0	2000	4000	6000	8000 1	0000	12000	1400	0
Distance from Excavation in mm horizontal (dh) in mm Far edge building Distance from Excavation in mm horizontal (dh) in mm Far edge building Ifferential movement mm Far edge building from Graph 1, mm Far edge building Horiztonal movement at L2 =									
Distance from Excavation in mm ————————————————————————————————————	\backslash								
Distance from Excavation in mm horizontal (dh) in mm Far edge building Frem Graph 1, Far edge building Far edge building Horiztonal movement Far edge building Far edge building Total Horizontal Movement dh = 3.9 mm TOTAL STRAIN (EXCAVATION AND INSTALLATION) From Table 2.5 CIRIA C580 Below Category of Damage Normal Degree Limiting Tensile Strain $\%$ 0 1 Very slight 0.05% - 0.075% 0.15% 1 3 Moderate 0.15% - 0.30% - 0.30% -				/					
Distance from Excavation in mm borizontal (dh) in mm Far edge building Par edge building Far edge building Far edge building from Graph 1, Far edge building Far edge building Horiztonal movement at L2 =									
Image: second s									
Distance from Excavation in mmhorizontal (dh) in mm Far edge building Near Edge Far edge building mm Far edge building Near edge below gro Near edge below gro 									
Distance from Excavation in mm horizontal (dh) in mm Far edge building Far edge building Near edge below gree If rom Graph 1, Image: Standard Stand									
ifferential movementImage: select one of the select one of	Dictorico from	-		nc	rizontal (dn) in m	m	Ve	ar edge bui	ilding
from Graph 1,Image of the second	Distance ir on	1 Excavatior	n in mm	Ne	ear Edge		No	ear edge b	pelow gro
Horiztonal movement at L2 =-5.7Horiztonal movement at L1 =	fferential	moveme	nt	Ne	ear Edge		Ni	ear edge b	pelow gro
Horiztonal movement at L1=Image: state of the	fferential I	moveme	nt	Ne	ear Edge		Ni	ear edge b	pelow gro
Total Horizontal Movementdh =3.9mmTotal Vertical MovementD =1.5mmTotal Vertical MovementD =1.5mmTOTAL STRAIN (EXCAVATION AND INSTALLATION)From Table 2.5 CIRIA DegreeLimiting Tensile Strain %Category of DamageNormal DegreeLimiting Tensile Strain %Colspan="5">Image0Negligible0.00%-0.05%Image1Very slight0.05%-0.15%Image2Slight0.075%-0.15%Image3Moderate0.15%-0.30%Image	fferential i from Grap Horiztona	moveme bh 1, il movem	nt nent at L2 =	Ne	ear Edge		-5.7	ear edge b	pelow gro
Total Vertical MovementDD1.5mmImageIm	fferential i from Grap Horiztona	moveme ph 1, al movem	hent at L2 =		aar Edge		-5.7 -1.8	ear edge b	pelow gro
TOTAL STRAIN (EXCAVATION AND INSTALLATION)From Table 2.5 CIRIA C580 BelowCategory of DamageLimiting Tensile Strain %0Normal DegreeLimiting Tensile Strain %0Negligible0.00%-1Very slight0.05%2Slight0.075%3Moderate0.15%	fferential i from Grap Horiztona Horiztona	moveme oh 1, al movem al movem rizontal	nt nent at L2 = nent at L1=		eage building ear Edge	d _h =	Ni -5.7 -1.8 3.9	mm	
Category of Damage Normal Degree Limiting Tensile Strain % 0 Negligible 0.00% - 0.05% 1 Very slight 0.05% - 0.075% 2 Slight 0.075% - 0.15% 3 Moderate 0.15% - 0.30%	fferential i from Grap Horiztona Horiztona Total Ho r	moveme ph 1, al movem al movem rizontal l tical Mo	hent at L2 = hent at L1= Movement		eage building ear Edge	d _h = D =	-5.7 -1.8 3.9 1.5	mm mm	
0 Negligible 0.00% - 0.05% 1 Very slight 0.05% - 0.075% 2 Slight 0.075% - 0.15% 3 Moderate 0.15% - 0.30%	fferential I from Grap Horiztona Horiztona Total Ho Total Ver	moveme ph 1, al movem al movem rizontal l tical Mo RAIN (EXC	nnt nent at L2 = nent at L1= Movement ovement	D INSTALLATI	on)	d _h = D =	-5.7 -1.8 3.9 1.5 e 2.5 CIRIA	mm mm C580 Bel	low.
1 Very slight 0.05% - 0.075% 2 Slight 0.075% - 0.15% 3 Moderate 0.15% - 0.30%	fferential I from Grap Horiztona Horiztona Total Hor Total Ver TOTAL STI Category o	moveme ph 1, al movem al movem rizontal l rtical Mo RAIN (EXC f Damage	nnt nent at L2 = nent at L1= Movement cAVATION AN Normal	D INSTALLATI	ON) Limiting Tens	d _h = D = From Tabl	-5.7 -1.8 3.9 1.5 e 2.5 CIRIA	mm mm C580 Bel	low
2 Slight 0.075% - 0.15% 3 Moderate 0.15% - 0.30%	fferential I from Grap Horiztona Horiztona Total Hor Total Ver TOTAL STI Category o 0	moveme ph 1, al movem al movem rizontal l rtical Mo RAIN (EXC if Damage	In mm Int	D INSTALLATI I Degree ble	ON) Limiting Tens 0.00%	d _h = D = From Tabl sile Strain %	-5.7 -1.8 3.9 1.5 e 2.5 CIRIA	mm C580 Bel	low
3 Moderate 0.15% - 0.30%	fferential I from Grap Horiztona Horiztona Total Hou Total Ver TOTAL STI Category o 0 1	moveme ph 1, al movem al movem rizontal rtical Mo RAIN (EXC if Damage	int int inent at L2 = inent at L1= invement cAVATION AN Normal Negligi Very sli	D INSTALLATI I Degree ble ght	ON) Limiting Tens 0.00% 0.05%	d _h = D = From Tabl sile Strain % -		mm mm C580 Bel	low
	fferential I from Grap Horiztona Horiztona Total Ho Total Ver TOTAL STI Category o 0 1 2	moveme ph 1, al movem al movem rizontal l rtical Mo RAIN (EXC f Damage	int	D INSTALLATI I Degree ble ght	ON) Limiting Tens 0.00% 0.05%	d _h = D = From Tabl sile Strain % - -	-5.7 -1.8 3.9 1.5 e 2.5 CIRIA 6 0.05% 0.075% 0.15%	mm mm C580 Bel	low

4.1. Burland Scale

CIRIA C720 is currently the most widely used technical document advising on the design of retaining walls. This includes guidance on predicting the damage category associated with the construction of retaining walls. It is pertinent to note that this guidance relies on empirical evidence based on data from large developments.

From CIRIA C580 empirical tables. Our results are noted below. <u>The initial analysis **the anticipated**</u> <u>Movement Category on the Burland Scale is between 0 and 1.</u>

Category	Approximate	Limiting	Definitions of cracks and repair types/considerations
of	crack width	Tensile	
Damage		strain	
0	Up to 0.1	0.0-0.05	HAIRLINE – Internally cracks can be filled or covered by
			wall covering and redecorated. Externally, cracks rarely
			visible and remedial works rarely justified.
1	0.2 to 2	0.05-	FINE – Internally cracks can be filled or covered by wall
		0.075	covering and redecorated. Externally, cracks may be visible,
			sometimes repairs required for weather tightness or
			aesthetics.
			NOTE: Plaster cracks may, in time, become visible again if
			not covered by a wall covering.

Table 1: Extract from The Institution of Structural Engineers "Subsidence of Low-Rise Buildings" Table 6.2 Classification of visible damage to walls with particular reference to type of repair, and rectification consideration

0.8

building

 $\varepsilon_{\rm h}/\varepsilon_{\rm lim}$

1.2

1

0.4

0.2

0

0

0.2

0.4

0.6

<u>The maximum damage category, as set out in CIRIA C580, is not expected to be greater than</u> <u>Category 1</u>. As long as suitable mitigation measures are in place, any damage that may occur in the neighbouring buildings will be minor and can be repaired with standard decorative works.

4.2. Mitigation Measures

The basement will be constructed using standard underpinning procedures. A design and construction methodology is proposed and appended to this report. This aims to limit damage to the existing building on the site, and to the neighbouring buildings. Hit and miss installation of walls has been shown to provide 50% less movement than noted in CIRIA 720. The calculations presented in C720 are, therefore, over-estimate the movements for smaller scale excavations.

Croft would propose propping the sides of the excavations as they progress downwards from ground level. A method statement for the construction of the basement is appended. The procedures described in this have been formulated with Croft's experience of over 500 basements completed without error. The measures described in this statement will mitigate the impacts that the construction of the basement may have on nearby properties. Croft has been involved in a number of basement designs of a similar scale to the proposed development at 146 Castelnau. These previous projects have been followed through to the construction phase and have involved the use of regular movement monitoring before, during and after the basement works are complete.

To reduce the risk of damage associated with the development, the following measures are advised:

- Employ a reputable contractor that has extensive knowledge of basement works.
- Employ suitably qualified consultants.
- Provide method statements for the contractors to follow.
- Investigate the ground.
- Record and monitor the properties close-by. This is usually completed by a condition survey, under the Party Wall Act, before and after the works are completed. Refer to the end of the appended Basement Construction Method Statement.

With the measures listed above, the maximum level of cracking anticipated is 0-1 cracking. This can be repaired with normal decorative works. At detailed design stage, the Party Wall Application and the appointment of Party Wall Surveyors will ensure that the above measures are applied. Under the Party Wall Act, minor damage, although unwanted, can be tolerated; it is permitted to occur to a neighbouring property as long as repairs are suitability undertaken to rectify this. To mitigate this risk, the Party Wall Act is to be followed, and a Party Wall Surveyor will be appointed.

Temporary works are described further in the following section and a proposed construction sequence for the works is appended.

5. Ground Investigation

A site-specific ground investigation has been completed for this planning application by Fasttrack.

Borehole log shows that existing soil under the site is of sand and gravel nature. Please refer to Appendix D.

_	TEASTRACK		FIL F	Fastrack Site Investigations Ltd Unit 9, Tyndales Farm		Developing		Borehole No.				
	FAS	IRA	CK	Unit 9, Ty South Maldon	end Roa CM9 6	Farm ad TQ	B	orehole Log	BH1 Sheet 1 o	BH1 Sheet 1 of 1		
Project I	Name:	N/A	I	Pr	roject N	0.	Site Date:	06/12/2024	Hole Typ	e .		
Location		145 624	telesu lond	28	8624				BH Scale			
Locator		140 Cas	steinau, Lond	01, 34413 9	EI				1:32 Logged E	Зv		
Client: The Basement De				an Studio								
Water Strikes	Vater Sample and In Situ Testing trikes Depth (m) Type Results				m) l	Legend	egend Stratum Description					
				0.0	05	-	STONE SHINGLE TYPE 1					
							Dark brown silty s	andy MADE GROUND containing b	rick stone			
	1.00			0.3	70 000° * 41° *		Brown silty sandy	CLAY containing gravel				
			MP = 7/75n MP = 7/75n MP = 9/75n MP = 10/75n	רחים רחים רחים רחים	141414141							
	2.00	D	10-177	1.1	.80		Orange SAND &	GRAVEL		2		
			MP = 19/75 MP = 19/75 MP = 19/75 MP = 21/75	em men men men								
	3.00	D	MP = 27/75r MP = 30/75r MP = 30/75r MP = 31/75r	ווווו היה היה היה						3		
	4.00	D	MP = 31/75r MP = 31/75r MP = 33/75r MP = 33/75r	าวกา าหา าวกา าวกา						4		
¥	5.00	D	MP = 35/756 MP = 37/756 MP = 37/756	mm mm mm		ا	iater sirika noted at 4.	70m		5		
	6.00	D	MP = 39/75 MP = 41/75 MP = 41/75 MP = 41/75	6. നന നന നന നന	.00			End of Borehole at 6.000m		6		
Key: D	- Disturbed S	ample	V - Insitu Va	ine Test	MP - M	lackintosh	Probe Test			•		
Remar	ks: Borehole Standing	e closed water r	at 6.00m. noted at 4.70	m below gr	ound le	evel on co	mpletion. Only	3.50m of standpipe in grour	id AG	s		
1	due to b	ack fill.	No roots four	nd.								

Figure 14:Extract of bore hole log of site

In December 2024, Fast track carried out a ground investigation in the area of the proposed basement. The report for this (Ref:SI_Report_28624) is available as a separate document. The relevant conclusions of this are:

- 1. Groundwater is anticipated to be at 4.7m below ground level.
- 2. Underlaying soil is of sand and gravel formation.

5.1. Ground Considerations

The basement will be founded in sand and gravel. Croft has completed several basements in this type of ground. The basement can be completed with section underpins. Soft sand spots do occur. Croft would therefore recommend that all excavations are fully propped.

As a party wall is to be underpinned and will leave the party wall with a deeper footing than the neighbours other walls, the design should look at the available bearing capacity. As part of the Party Wall agreement, a pre-condition survey will be carried out. The design will consider the impact of the deeper footings.

5.2. Bearing Stress

In line with CP111 Assumed bearing Design stress = 100 kN/m^2

As explained previously, heave potential is considered low in this type of ground and an allowable bearing pressure of 100kN/m² may be used.

5.3. Ground Stability

Design overall stability to $K_a \& K_p$ values. Lateral movement necessary to achieve K_a mobilisation is height/500 (from Tomlinson). This is tighter than the deflection limits of the concrete wall.

The slope stability of gravels is in the region of 30°. The design of the RC retaining walls will take this into account. For the design of the retaining walls, an angle of friction of \emptyset = 30° can be used.

6. Engineering Considerations

New reinforced concrete retaining walls will form the perimeter of the basement. These will resist lateral forces and also transfer the loads from the existing structure to the ground, forming a new foundation to the property.

The design proposals in this report are intended to demonstrate feasibility to support the planning application. The information, drawings, calculations, method statement and other information in this report are for planning purposes. Croft provides no design warranty or insurances for the final

design. Further information and design considerations must be undertaken before Building Regulations submission. **The information provided in this document is not for construction.**

See Appendix A for initial calculations of retaining wall designs.

6.1. Surcharge Loading

The following loads should be accounted for:

Garden Surcharge 2.5kN/m²

Surcharge for adjacent property 1.5kN/m² + 4kN/m² for concrete ground bearing slab

Is the site within 5m of a highway or pedestrian footway?

No. Site is not within 5m of the footpath/alleyway and the road surface is further than 5m from the front lightwell.

7. Temporary Works

Localised dewatering to the pins may be necessary.

The basements can be completed with section underpins. Soft sand and gravel spots do occur. Croft would therefore recommend that all excavations are fully propped. To deal with soft sports during excavation a store of precast lintels should be maintained. Once inserted these can be grout injected behind to stabilise ground.

Walls are designed to be temporarily stable. Temporary propping details will be required for the ground and soil, and this must be provided by the contractor. Their details should be forwarded to the design engineer.

The contractor should pay particular attention should be paid to the point loads from above.

A proposed construction method statement is appended.

8. Noise, Vibration & Dust

Full investigations and reports (such as ground investigations and construction traffic and management plans) should be carried out ahead of building works to formalise the best practical means to be used.

Best practice construction methods should be chosen to reduce unnecessary noise, vibration and dust. The following table is a guidance to minimise the effect of the same.

CONSTRUCTION	CONSTRUCTION MITIGATION		DUST	VIBRATION					
	MEASURES								
METHOD									
In accordance with	h the best pract	ical means to be us	ad						
in accordance with the best practical means, to be used									
To minimize, noise, vibration and dust during the construction of the basement, including the									
excavation, that is	likely to affect	adjacent residentia	I premises and scho	ool(if any)					
	-	_							
1. Preparation of	Boarding to	Boarding keeps	Dust from debris	Any internal vibration is					
site to fully	front of	noise inside the	stored internally is	further reduced by					
contain the	house	house and keeps	contained within	additional boarding to					
area	enclosing	house more rigid	boarded up house	absorb before emitting					
	entrance, and	stopping	preventing it from	to neighbour: as timber					
	windows kept	attenuation,	escaping to	absorbs vibration better					
	in place for	absorbs sound	neighbours	than metal or glass. The					
	complete	and	before collection.	house is also more rigid,					
	duration of	C		stopping vibration					
	construction	Stops airborne							
		sound escaping							
	Windows	Airborne noise is	Airborne dust is	Windows being sealed					
	retained and	contained within	contained within	shut (taped) stops any					
	sealed shut	development	the development	rattling of windows or					
	durina			accentuation of any					
	construction.			vibrations on site					
	including								
	front door								
	and terrace								
	doors kent								
	closed								
	closed								
	Hording and	Covering with	Sheeting to roof	Hording and sheeting					
	sheeting to	hording and	terrace stops	stops vibration as best is					
	cover roof	sheeting restricts	window blowing	practicable.					
	terrace.	airborne noise	up dust from						
		from escaping as	excavation and						
		best can be.	any dust						
			generated from						

CONSTRUCTION	MITIGATION	NOISE	DUST	VIBRATION
	MEASURES			
METHOD				
			works escaping to vicinity.	
	Retention of internal floors and structure during excavation works	Keeping the internal floors in situ during works allows the house to work as a buffer to contain noise and reduces the site area to the smallest volume reducing the effect noise can have.	Dust is contained to a smaller area and has several filters (ie floors and walls) to pass through and thus get stopped before it can affect neighbours, thus reduced.	Retaining the existing structure reduces vibration by keeping the house rigid and secondly by having a mix of materials all with different attenuation frequencies; vibration is absorbed and not accentuated, lastly floors and walls act as a break in otherwise continuous structure which acts as a buffer to stop vibration continuing out to neighbours.
	Temporary works and structure	Temporary works allow the house to be kept rigid and allow for small scale, less noise emitting methods of construction to be used.	Temporary works keep the house rigid and safe so stop other areas of the house degenerating through works and thus dust being created.	Temporary works keep the house rigid which stops vibrations.
2. Management and hours of working	Project manager to manage all works on site, member of Considerate	Hours of working are restricted and staff supervised to use tools appropriately. No radio on site.	Hours of working are restricted and staff supervised to use tools appropriately with appropriate guarding to	Hours of working are restricted and staff supervised to use tools appropriately and reduced use of power

CONSTRUCTION	MITIGATION	NOISE	DUST	VIBRATION		
METHOD	MEASURES					
	Contractors Scheme	Small team working reducing noise. Coordination between workers ensured.	prevent dust migration.	tools to minimize vibration.		
3. Excavation of basement	Non- percussive tools used for excavation (ie hand dug)	Hand tools are quieter. Method chosen reduces need for any heavy noisy machinery	Less dust generated by hand tools than fast repetitive motor driven tools.	Vibration is minimized by not using percussive tools		
	Excavation limited to 1m runs and shuttered for reinforced concrete foundations.	Each underpin is restricted to 1m lengths containing noise and amount of work that can be done at once to small area thus reducing overall hubbub. Method is quieter than piling or machine methods.	Dust is contained within shuttering, area is dampened with water to allow digging and eliminate dust.	Shuttering contains any subsequent vibration from excavation and keeping surrounding area soil intact.		
	Removal of spoil	All spoil is hand bagged and stored internally by hand so no noise from skip or large refuse area, removed as per CTMP by small	Spoil hand bagged, not using electric conveyor belt, and reducing emission of dust.	Spoil bagged by hand (ie shovel) so no machinery to transmit vibration		

CONSTRUCTION	MITIGATION	NOISE	DUST	VIBRATION		
	MEASURES					
METHOD						
		van and hand				
		loaded				
	Removal of	Bagged debris is	Debris removed	Debris removed by		
	debris	stored internally	by hand; dust	hand, vibration		
		In a covered area	contained within	minimized, in bags.		
		and removed by	chut			
		as per CTMP	Shut.			
		timed to cause				
		least disruption				
	Mixing and	Concrete is mixed	Area set aside and	Concrete mixer put on		
	pouring of	on site for small	shuttered off for	level base in clear		
	concrete for	quantities for	mixing concrete	working area to avoid		
	underpins	underpin,	to contain dust.	vibration.		
		contained within	Only small			
		the site for noise	quantities mixed			
		and for short	at time. Only small			
		once undernin	concrete			
		and shuttering				
		formed (ie	Stored on site in			
			internal area to			
		Separate activity)	avoid unnecessary			
			dust.			
	Delivery of	Large quantities	No dust emitted	Large quantities of		
	concrete for	are not mixed on	from delivery of	concrete mixed off site		
	floor	site but delivered	liquid concrete,	to reduce continuous		
reinforced		and pumped by	area of road	vibration and delivered		
	floor slabs		washed down	to site.		
		site in speedy low	before and after			
		noise method	delivery. Area			
		trom tront of	cordoned off as			
		house through	per CIMP			
		noruing	(approx. 72 nour).			

Appendix A – Structural Design (Retaining Wall)

As part of the building control application, full calculations must be undertaken and provided at detailed design stage once planning permission is granted. The calculations must be completed to a recognised standard (British Standards or Euro Codes). The calculations must consider the findings of this report.

The design must resist:

- 1. Vertical loads from the proposed works and adjacent properties.
- 2. Lateral loads from wind, soil water and adjacent properties.
- 3. Loadings in the temporary condition.
- 4. All other applied loads on the building.
- 5. Uplift forces from hydrostatic effects and soil heave.

The final proposed scheme must:

- 1. Provide stability in the temporary condition to all forces.
- 2. Provide stability to all forces in the permanent condition.

As part of the planning process, Croft Structural Engineers has considered some of the pertinent parts of the basement structure to ensure that it can be constructed. The following calculations are not a full set of calculations for the final design. The structural calculations that Croft considers pertinent are included in this appendix. Calculations relevant to the temporary works are in the proposed method statement in the next appendix.

Project		146 CASTELNAU				ГТ СТІ	IDAI +
Structure	PLANN	IING STAGE CALCULA	TIONS	CIV	ΊL	CI	URALI
Job Nos	241104	Section/Page Rev	/ 1	Calc by Approved by	SG	Date	27/11/2024

MEMBER LOCATION INFORMATION (BASEMENT)

MEMBER CALCULATIONS

Timber Floor (GF,FF,SF) (DL)

Partition wall (GF.FF.SF) (DL)

This retaining wall will be supporting the party wall between 146 &148 Castelnau. The load will be doubled for all floors and roof to allow for neighbours.

Existing Masonry wall (325-GF+225-FF) (DL)

 $DLm=7kN/m^2 \times 3.6m + 5kN/m^2 \times 3.9m = 44.700kN/m$

Timber Floor (GF,FF,SF)(LL)	$LLf=1.5kN/m^2 \times 7.6m/4 \times 3 \times 2 = 17.100kN/m$
Existing Roof, DL	DLr=1.1kN/m ² ×7.6m/4×3×2 = 12.540 kN/m
Existing Roof, LL	$LLr = 0.6 kN/m^2 \times 7.6 m/4 \times 3 \times 2 = 6.840 kN/m$
Total DL	DL=DLm+DLp+DLf+DLr= 69.534 kN/m
Total LL	LL=LLf+LLr= 23.940 kN/m
Total Load	TL=DL+LL= 93.474 kN/m

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.23

Retaining wall details

Stem type

Cantilever

 $DLf=0.88kN/m^2 \times 7.6m/4 \times 3 \times 2 = 10.032kN/m$

 $DLp=0.52kN/m^2 \times 2.9m/4 \times 3 \times 2 = 2.262kN/m$

Project

Structure

146 CASTELNAU

CRØFT STRUCTURAL+ CIVII

PLANNING STAGE CALCULATIONS

Job Nos 241104	Section/Page Rev	/ 2	Calc by Approved by	SG	Date	27/11/2024
Stem height	h _{stem} = 3500 mm					
Stem thickness	t _{stem} = 350 mm					
Angle to rear face of stem	α = 90 deg					
Stem density	$\gamma_{stem} = 25 \text{ kN/m}^3$					
Toe length	l _{toe} = 1600 mm					
Base thickness	t _{base} = 350 mm					
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$					
Height of retained soil	h _{ret} = 3500 mm	Angle of soil	surface	β = 0 α	deg	
Depth of cover	$d_{cover} = 0 mm$					
Height of water	h _{water} = 2500 mm					
Water density	γ _w = 9.8 kN/m ³					
Retained soil properties	5					
Soil type	Medium dense coarse and	medium sand				
Moist density	γ_{mr} = 17.5 kN/m ³					
Saturated density	γ_{sr} = 20.8 kN/m ³					
Base soil properties						
Soil type	Medium dense coarse and	medium sand				
Soil density	γ_{b} = 17.5 kN/m ³					
Presumed bearing capacity	$P_{\text{bearing}} = 100 \text{ kN/m}^2$					
Loading details						
Variable surcharge load	Surcharge _Q = 5 kN/m ²					
Vertical line load at 1775 m	m	P _{G1} = 69.5 kN	/m			
	P _{Q1} = 23.9 kN/m					

General arrangement - sketch pressures relate to bearing check

Calculate retaining wall geometry

Base length	l _{base} = 1950 mm		
Saturated soil height	h _{sat} = 2500 mm		
Moist soil height	h _{moist} = 1000 mm		
Length of surcharge load	I _{sur} = 0 mm		
Vertical distance	x _{sur_v} = 1950 mm		
Effective height of wall	h _{eff} = 3850 mm		
Horizontal distance	x _{sur_h} = 1925 mm		
Area of wall stem	A _{stem} = 1.225 m ²	Vertical distance	x _{stem} = 1775 mm
Area of wall base	$A_{base} = 0.683 \text{ m}^2$	Vertical distance	x _{base} = 975 mm
Retained soil properties			
Design moist density	γ _{mr} ' = 17.5 kN/m ³	Design saturated density	$\gamma_{sr}' = 20.8 \text{ kN/m}^3$
Base soil properties			
Design soil density	γ _b ' = 17.5 kN/m ³		
Soil coefficients			

Coeff.friction to back of wall $K_{fr} = 0.325$

Project		146 CASTELNAU	J	CR	ØFT	
Structure	PLAN	NING STAGE CALCU	JLATIONS		RUCT /IL	URAL+
Job Nos	241104	Section/Page Rev	/ 4	Calc by Approved by	SG Date	27/11/2024
Coeff.friction	to front of wa	II K _{fb} = 0.325	Coeff.fr	ction beneath base	K _{fbb} = 0.325	
Active pressu	re coefficient	K _A = 0.333	Passive	pressure coefficient	K _P = 4.977	
Bearing pre	ssure check					
Vertical for	ces on wall					
Total		$F_{total_v} = F_{stem} + F_{base} +$	$F_{P_v} + F_{water_v} =$	141.2 kN/m		
Horizontal	forces on wa	all				
Total		$F_{total_h} = F_{sur_h} + F_{sat_h} +$	F _{water_h} + F _{moist}	$_{h} + F_{pass_{h}} = 75.3 \text{ kN}$	/m	
Moments o	n wall					
Total		$M_{total} = M_{stem} + M_{base}$	+ M _{sur} + M _P +	$M_{sat} + M_{water} + M_{mois}$	_{.t} = 139.7 kNm	/m
Check beari	ing pressure					
Propping force	ce	F _{prop_base} = 75.3 kN/m				
Bearing press	ure at toe	q _{toe} = 69.2 kN/m ²	Bearing	pressure at heel	q _{heel} = 75.6 k	N/m ²
Factor of safe	ty	FoS _{bp} = 1.323				
	PASS -	Allowable bearing p	oressure exce	eds maximum ap	plied bearin	ng pressure

End

Appendix B – Basement Method Statement

CRØFT STRUCTURAL+ CIVIL

Basement Method Statement

Site: 146 Castelnau

London

SW13 9ET

Client: The Basement Design Studio

Michael J Wiseman

Suite 17, Maple Court

Grove Park, White Waltham

Berkshire. SL6 3LW

	Report By	Sudeep Gurung Structural Engineer M.Sc. GMIStructE		
	Report Reviewed by	Concetta Cosenza Chartered Civil Engineer BEng, MSc, CEng, MICE		
Rev	Date	Rev By	Comment	
-	27-11-2024	SG	First Issue Draft	
-1	17-12-2024	SG	Updated with SI information	

Croft Structural Engineers Ltd Rear of 60 Saxon Road, London, SE25 5EH T: 020 8684 4744 E: <u>enquiries@croftse.co.uk</u>

The Institution of StructuralEngineers

Reference: P:\2024\241104-146 Castlenau SW13\2. Calcs\2.6.BIA-Richmond\Appendix B-Basement Method Statement.docx

Contents

1.	Preamble	3
2.	Enabling Works	4
3.	Basement Sequencing	5
4.	Approval	7
End		7

Project		146 CASTLENAU					
Structure	BASEMENT METHOD STATEMENT			CIVIL		JRAL	
Job Nos	241104	Section/Page Rev	/ 3	Calc by Approved by	SG	Date	07/03/2023
	146 Cas	stelnau					

1. Preamble

- 1.1. This method statement provides an approach that will allow the basement design to be correctly considered during construction. The statement also contains proposals for the temporary support to be provided during the works. The Contractor is responsible for the works on site and the final temporary works methodology and design on this site and any adjacent sites.
- 1.2. This method statement has been written by a Chartered Engineer. The sequencing has been developed using guidance from ASUC (Association of Specialist Underpinning Contractors).
 Croft Structural Engineers are an Associate Member of ASUC.
- 1.3. This method has been produced to allow for improved costings and for inclusion in the Party Wall Award. Final site conditions need there to be flexibility in the method statement: Should the site staff require alterations to the Method statement this is allowed once an alternative methodology, of the changes is provided, and an Addendum to the Party Wall Award will be required.
- 1.4. Contact Party Wall Surveyors to inform them of any changes to this method statement.
- 1.5. On this development, the approach is: construct the underpin segments that will support the permanent steel work insert the new steelwork remove load from above and place it onto new supporting steelwork cast the remainder of the retaining walls that will form the perimeter of the basement.
- 1.6. On this project the retaining walls are required to be propped at both the top and bottom of the wall in the final case. During construction, in the temporary condition, the edge of the slab is buttressed against the soil in the middle of the property: Temporary props will be provided near the head and will provide support until the concrete has gained sufficient strength. Skin friction between the concrete base and the soil provides further resistance. In the temporary case, the main lateral support is provided by back propping to the central soil mass. The central soil mass is to be removed in 1/3 portions and cross propping subsequently added.
- 1.7. A site-specific ground investigation has been undertaken by Fastrack. The soil present is of sand and gravel.

Project		146 CASTLENAU	CRØFT — STRUCTURAL+ CIVIL				
Structure	BASEM	ENT METHOD STATE					
Job Nos	241104	Section/Page Rev	/ 4	Calc by Approved by	SG	Date	07/03/2023

- 1.8. The local geological drift sheets show the ground to be Kempton Park Gravel member (Sand and gravel) with underlaying London clay formation.
- 1.9. The bearing pressures have been limited to 100kN/m2. This is standard loading for the local ground conditions and acceptable to Building Control and their approvals
- 1.10. During soil investigation the water was struck at 4.7 m BGL.
- 1.11. The structural Waterproofer (not Croft) must comment on the proposed design and ensure that he is satisfied that the proposals will provide adequate waterproofing. When using drained cavities Lime reduction additives should be added to the concrete surface.
- 1.12. Provide engineers with concrete mix, supplier, delivery and placement methods two weeks prior to the first pour. Site mixing of concrete should not be employed apart from in small volumes (less than 1m³). The contractor must provide a method on how to achieve site mixing to the correct specification. The contractor must undertake toolbox talks with staff to ensure site quality is maintained, and cubes are to be taken for all hand mixed sections.

2. Enabling Works

- 2.1. The site is to be hoarded with ply board sheets, at least 2.2m high, to prevent unauthorised public access.
- 2.2. Licences for skips and conveyors should be posted on the hoarding.
- 2.3. Provide protection to public where conveyor extends over footpath. Depending on the requirements of the local authority, construct a plywood bulkhead over the pavement. Hoarding to have a plywood roof covering over the footpath, night-lights and safety notices.
- 2.3.1. Place a bore hole to the front of the property down to a depth of 6m.
- 2.3.2. No significant dewatering is expected. Localised removal of water may be required to deal with rain from perched water or localised water. This is to be dealt with by localised pumping. Typically achieved by a small sump pump in a bucket.
- 2.4. On commencement of construction, the contractor will determine the foundation type, width and depth. Any discrepancies will be reported to the structural engineer in order that the detailed design may be modified as necessary.

Project		146 CASTLENAU					
Structure	BASEM	ENT METHOD STATE	MENT	CIVIL			
Job Nos	241104	Section/Page Rev	/ 5	Calc by Approved by	SG	Date	07/03/2023

3. Basement Sequencing

- 3.1. Excavate lightwell to front of property down to 600mm below external ground level.
- 3.2. Excavate first front corner of lightwell. Follow suggested underpin sequence.(PL-30).
- 3.3. Excavate second front corner of lightwell.
- 3.4. Continue excavating section pins to form front lightwell.
- 3.5. Place cantilevered retaining wall to the left side of front opening. After 48 hours place cantilevered retaining wall to the right side of front opening.
- 3.6. Needle and prop front bay wall. Insert support.

Figure 1 Example of needling to existing wall/bay window

- 3.7. Excavate out first 1.2m around front opening, prop floor and erect conveyor.
- 3.8. Continue cantilevered wall formation around perimeter of basement following the numbering sequence on the drawings.
 - 3.8.1. Excavation for the next numbered sequential sections of underpinning shall not commence until at least 8 hours after dry packing of previous works. Excavation of adjacent pin to not commence until 48 hours after dry packing. (24hours possible due to inclusion of Conbextra 100 cement accelerator to dry pack mix). No more than
 - 3.8.2. Floor over to be propped as excavation progresses. Steelwork to support floor above to be inserted as works progress.

Project		CR	ØF	Т СТІ		+		
Structure	BASEM	ENT METHOD STATE	CIVIL				1	
Job Nos	241104	Section/Page Rev	/ 6	Calc by Approved by	SG	Date	07/03/2023	

- 3.9. Excavate and cast column pad as work progresses. Install column and beam above supporting floor. Temporary props and timber to support floor above.
- 3.10. Needle and prop to internal walls and install steels as works progress.
- 3.11. Dry pack to steelwork. Ensure a minimum of 24 hours from casting cantilevered walls to dry-packing, Grout column bases
- 3.12. Excavate and cast floor slab.
 - 3.12.1. Excavate 1/3 of the middle section of basement floor. As excavation proceeds, place Slim Shore props at a maximum of 2m c/c across the basement. Locate props at a third of the height of the wall.
 - 3.12.2. For top propped and raising wall down. Fix top waler beams along head of wall. Excavate a 1/3 of the middle section of basement floor. As excavation proceeds place Slimhor props at a maximum of 2m c/c across the basement. Locate props at a 1m from the base of the wall and also to the waler beam at high level.

- 3.12.3. Continue excavating the next 1/3 and prop then repeat for the final 1/3.
- 3.12.4. Place below-slab drainage. Croft recommends that all drainage is encased in concrete below the slab and cast monolithically with the slab. Placing drainage on pea shingle below the slab allows greater penetration for water ingress.
- 3.12.5. Place reinforcement for basement slab.
- 3.12.6. Building Control Officer and Engineer are to be informed five working days before reinforcement is ready and invited for inspection.

Project		146 CASTLENAU					IDAL +
Structure	BASEM	ENT METHOD STATE	CIVIL				
Job Nos	241104	Section/Page Rev	/ 7	Calc by Approved by	SG	Date	07/03/2023

3.12.7. Once inspected, pour concrete.

3.13. Provide structure to ground floor and water proofing to retaining walls as required. It is recommended to leave 3-4 weeks between completion of the basement and installing drained cavity. This period should be used to locate and fill any localised leakage of the basement

4. Approval

- 4.1. Building Control Officer/Approved Inspector to inspect pin bases and reinforcement prior to casting concrete.
- 4.2. Contractor to keep list of dates of pins inspected and cast.
- 4.3. If the Party Wall Surveyors included requirements of engineers in their award, then the party wall surveyors on completing the award must issue an unsigned copy of the award to Croft Structural Engineers.
- 4.4. One month after the work is completed, the contractor is to contact Adjoining Party Wall Surveyor to attend site and complete final condition survey and to sign off works.

End

Ø

Appendix C – Structural Plans & Detail

Structural Drawings Plans 1:100

Structural Sections 1:50

Ø

Appendix D – Soil investigation

Geotechnical Survey Report

FSI Ref: Issue Date: 28624 December 2024

Risk Address:

146 Castelnau London SW13 9ET

Company: Claim Ref: The Basement Design Studio N/A

Managing Director: Finance Director:

Laboratory Manager:

Senior Geologist: Assistant Geologist: Geotechnical Assistant: Martin Rush MSc FGS Louise Banks BSc (Hons)

Jade McLellan

Thomas Lee BSc (Hons) Bradley Webb BSc (Hons) Sarah Brand

				Fastrac	k Site Inve	stigations Ltd		Borehole N	lo.		
FASTRACK			CK	Unit 9, Tyndales Farm Southend Road Maldon CM9 6TO			B	orehole Log	BH1		
				Project No.			St			[:] 1 e	
Project Name: N/A				28624			Site Date:	06/12/2024	ВН	BH	
Location: 146 Castelnau, Lo			stelnau, Lon	idon, SV	V13 9ET				Scale 1:32		
Client: The Basement De			ement Desi						Logged B	у	
Water	Samp	le and Ir	n Situ Testin	a	Denth						
Strikes	Strikes Depth (m) Type Rest				(m)	Legend		Stratum Description			
					0.05 0.15		STONE SHINGLI TYPE 1	E			
							Dark brown silty s	sandy MADE GROUND containing bric	k stone		
					0.70		Brown silty sandy	CLAY containing gravel			
						×	Liennienty earlay				
	1.00	D	MP = 7/7	5mm		××				1 -	
			MP = 7/7 MP = 9/7	5mm 5mm		××_					
			MP = 10/7	′5mm							
						××-					
					1.80	×	Orange SAND &	GRAVEL			
	2.00	D					g			2 -	
			MP = 17/ MP = 19/7	75m 75mm							
			MP = 19/7 MP = 21/7	75mm 75mm							
	3.00	D	MP = 27/7	75mm						3 -	
			MP = 30/7 MP = 30/7	75mm 75mm							
			MP = 31/7	′5mm							
	4.00	D	MD - 21/7	/E wa wa						4 -	
			MP = 31/7 MP = 31/7 MP = 32/7	75mm 75mm							
			MP = 33/7 MP = 33/7	75mm							
						Ш	′ater strike noted at 4	4.70m			
	5.00									5 -	
	5.00		MP = 35/7 MP = 37/7	75mm 75mm							
			MP = 37/7 MP = 37/7	75mm 75mm							
				onin							
6.00 D		MP = 39/7	75mm	6.00			End of Borehole at 6.000m		6 -		
			MP = 41/7 MP = 41/7 MP = 41/7	75mm 75mm 75mm							
Key: D	- Disturbed S	ample	V - Insitu V	/ane Tes	t MP·	- Mackintosh I	Probe Test			1	
Remark	s: Borehole	e closed	at 6.00m.								
	Standing	water n	noted at 4.7	0m belo	ow ground	d level on cor	mpletion. Only	/ 3.50m of standpipe in ground	AGS	5	
		аск III. ľ		and.							