

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK

GROUND INVESTIGATION & BASEMENT IMPACT ASSESSMENT REPORT

26 AMYAND PARK ROAD TWICKENHAM TW1 3HE

Unit 24 Sarum Complex, Salisbury Road, Uxbridge UB8 2RZ <u>www.jomasassociates.com</u> 0333-305-9054 <u>info@jomasassociates.com</u> Jomas Associates Ltd Registered in England and Wales No. 7095350

Report Title:	Ground Investigation & Basement Impact Assessment for 26 Amyand Park Road, Twickenham, TW1 3HE
Report Status:	Draft
Job No:	Р5802Ј3027/НАН
Date:	11 December 2024

QUALITY CONTROL - REVISIONS

Version	Date	Issued By	Comment
V1.1	11/12/24	НАН	Updated recommended further works.
V1.2	19/12/24	SC	Update specifics of proposed development

Prepared by: JOMAS ASSOCIATES LTD For: 05 GROUP LTD

Prepared by Hamza Hashi MEng (Hons) Geotechnical Engineer Reviewed by Josephine Whitehead MSci (Hons), FGS Senior Geotechnical Engineer

Approved by Derek Grange BSc, MSc, CGeol, FGS, RoGEP - Specialist

Senior Principal - Geotechnics

D.M. Greec

.....

Hamza

.....

Whitehead

.....

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0333 305 9054

info@jomasassociates.com

Page

Geotechnical Engineering and Environmental Services across the UK

CONTENTS

EXE	CUTIVE SUMMARYV
1	INTRODUCTION1
1.1	Terms of Reference1
1.2	Proposed Development1
1.3	Objectives1
1.4	Scope of Works2
1.5	Scope of Basement Impact Assessment2
1.6	Supplied Documentation
1.7	Limitations3
2	EXISTING INFORMATION4
2.1	Site Information4
2.2	Summary of Stage 1 & 2 Basement Impact Assessment4
2.3	Previous Ground Investigations6
3	GROUND INVESTIGATION
3.1	Scope of Works7
3.2	Geotechnical Testing7
4	ENCOUNTERED CONDITIONS9
4.1	General9
4.2	Ground Conditions9
4.3	Hydrogeology9
4.4	Limitations10
5	DERIVATION OF GEOTECHNICAL PARAMETERS 11
5.1	Introduction11

5.2	Plasticity of Cohesive Materials11
5.3	Standard Penetration Tests12
5.4	Undrained Shear Strength12
5.5	Coefficient of Compressibility13
5.6	Density14
5.7	Effective Angle of Shearing Resistance / Angle of Friction15
5.8	Stiffness Moduli15
5.9	Summary of Derived General Properties16
6	GEOTECHNICAL ENGINEERING RECOMMENDATIONS
6.1	General17
6.2	Proposed Foundations17
6.3	Retaining Walls18
6.4	Aggressive Ground Conditions19
6.5	Floor Slabs20
6.6	Excavations20
6.7	Groundwater Control20
7	BASEMENT IMPACT ASSESSMENT
7.1	Geological Impact22
7.2	Hydrology and Hydrogeology Impact22
7.3	Other Impacts23
7.4	Cumulative Impacts23
7.5	Conclusion23
8	REFERENCES

Geotechnical Engineering and Environmental Services across the UK

APPENDICES

APPENDIX 1 – FIGURES

- **APPENDIX 2 EXPLORATORY HOLE RECORDS**
- **APPENDIX 3 GEOTECHNICAL LABORATORY TEST RESULTS**
- **APPENDIX 4 CHEMICAL LABORATORY TEST RESULTS**
- **APPENDIX 5 GROUNDWATER MONITORING RESULTS**

EXECUTIVE SUMMARY

05 Group Ltd commissioned Jomas Associates Ltd to prepare a Geotechnical Ground Investigation and Basement Impact Assessment at the site located at 26 Amyand Park Road, Twickenham, TW1 3HE .

The principal objectives of the study were as follows:

- To establish the geotechnical conditions pertaining to the site;
- To assess the data from the investigation to inform preliminary design advice with respect to foundation design, concrete specification and excavation stability.
- To undertake a Basement Impact Assessment (BIA) based on the methodologies outlined in London Borough of Richmond on Thames "Planning Advice Note: Good Practice Guide on Basement Developments" (2015) and "Basement Assessment User Guide" (2021), with additional reference to the guidance given in the London Borough of Camden document "Camden Planning Guidance Basements" (CPGB) (January 2021).

It should be noted that the table below is an executive summary of the findings of this report and is for briefing purposes only. Reference should be made to the main report for detailed information and analysis.

	Site Information
Current Site Use	Two-storey residential property undergoing refurbishment
Proposed Site Use	The proposed development for this site is understood to comprise the creation of a basement beneath the entire building footprint and extending partially beneath the front garden.
Summary of Stage 1 & 2 BIA	A Stage 1 & 2 Basement Impact Assessment report has been produced for the site and issued separately (Jomas, June 2024). A brief overview of the findings is presented below. Reference should be made to the full report for detailed information.
	On the earliest available map (1865), the site is shown as largely vacant except for a small building shown to be extending into the site from the north-west. By the map dated 1912, the site is shown to be situated within a row of terraced housing. No observational changes then occur to the site until the most recent map dated 2024.
	Historically, the surrounding area has comprised mainly residential properties, with the only significant land use identified as a railway 80m north of site and the River Crane beyond at approximately 176m from site.
	The British Geological Survey indicates that the site is directly underlain by superficial deposits of the Langley Silt Member. Superficial deposits of the Kempton Park Gravel Member are anticipated to underlie the Langley Silt Member. These superficial deposits overlie solid deposits of the London Clay Formation.
	The underlying Langley Silt Member and the London Clay Formation are identified as Unproductive. The Kempton Park Gravel Member is reported (off-site) as a Principal Aquifer.
	A review of the EnviroInsight Report indicates that there are no Environment Agency Zone 2 or Zone 3 flood zones within 250m of the site.

	Site Information
	The River Crane is reported 176m north-west.
	The screening and scoping assessments concluded the following:
	 A ground investigation was recommended to confirm the ground conditions and groundwater levels (if any) beneath the site. The ground investigation should also determine the presence of Made Ground and/or clay. Atterberg Limits of the underlying clay should be determined by the ground investigation to establish shrink/swell potential. The proposed basement will underlie the existing building footprint/hardstanding; there will be no significant change in surface water run-off.
	Ground Investigation
Scope of Works	The ground investigation was undertaken on 10 October 2024, and consisted of the following:
	 1No cable percussive borehole, drilled to a depth of 10m below ground level (mbgl), with associated in-situ testing and sampling
	1No groundwater monitoring well, installed to 7.5mbgl
	Laboratory analysis for chemical and geotechnical purposes
	• 1No return visits to monitor groundwater levels has been carried out, and 1No further visit is due to be completed in February 2025
Ground Conditions	The results of the ground investigation revealed a ground profile comprising Made Ground to a depth of 1.9mbgl, underlain by granular deposits of the Kempton Park Gravel Member to 7.4mbgl, underlain by cohesive deposits of the London Clay Formation to a depth in excess of 10mbgl.
	During the investigation, groundwater was reported within the borehole at a depth of 6.2mbgl, and by the time the drilling had concluded, was sat at a level of 6.45mbgl.
	During return monitoring, groundwater was reported at 6.53mbgl. A second visit is due to take place in February 2025 and this report will be updated.
Foundations	Based upon the information obtained to date, it is considered that a cast in-situ cantilever retaining wall formed at least 3.5m below the existing ground level within the Kempton Park Gravel Member could be designed with an allowable bearing capacity of 200kPa. Total and differential settlements should be contained within tolerable limits.
	It is unlikely that the foundations would need to be deepened further due to NHBC building near trees requirements.
Sulphates	Based on the results of chemical testing, for foundations formed with the Kempton Park Gravel Member, the required concrete class for the site is DS-1 assuming an Aggressive Chemical Environment for Concrete classification of AC-1 in accordance with the procedures outlined in BRE Special Digest 1.
	If foundations are to be formed within the London Clay Formation, higher concrete classes are considered necessary, as detailed in Section 6.4.

Site Information			
Ground Floor Slabs	If a cantilever retaining wall is utilised, then a ground bearing floor slab could be used. If a piled option is utilised then suspended floor slabs will be required.		
Excavations	Temporary excavations are unlikely to remain stable and some form of temporary support or battering back to a safe angle and dewatering are likely to be required. Subject to seasonal variations, surface water/groundwater encountered during site works could likely be dealt with by conventional pumping from a sump used to collate waters.		
	Basement Impact Assessment		
Conclusions	The overall assessment of the site is that the creation of a basement for the proposed development should not adversely impact the site or its immediate environs, providing measures are taken to protect surrounding land and properties during construction.		
	The proposed basement excavation will be within 5m of a public pavement. It is also laterally within 5m of neighbouring properties.		
	Unavoidable lateral ground movements associated with the basement excavations must be controlled during temporary and permanent works so as not to impact adversely on the stability of the surrounding ground and any associated services.		
	During the construction phase careful and regular monitoring will need to be undertaken to ensure that the neighbouring properties are not adversely affected. This may mean that structures will need to be suitably propped and supported.		

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 05 Group Ltd ("The Client") has commissioned Jomas Associates Ltd ('Jomas'), to undertake an investigation of the geotechnical factors pertaining to the proposed redevelopment and to prepare a Basement Impact Assessment at a site referred to as 26 Amyand Park Road, Twickenham, TW1 3HE.
- 1.1.2 To this end a Stage 1 & 2 (Screening and Scoping) Basement Impact Assessment has been produced for the site and issued separately (Jomas, June 2024), followed by an intrusive investigation (detailed in this report).
- 1.1.3 Details of the previous report are provided below in Table 1.1:

Table 1.1: Previous Reports - Jomas

Title	Author	Reference	Date
Stage 1 & 2 Basement Impact Assessment (Screening and Scoping) for 26 Amyand Park Road, Twickenham, TW1 3HE	Jomas Associates Ltd	Р5802Ј3027/НАН	20 June 2024

1.1.4The intrusive investigation was undertaken in accordance with Jomas' proposal dated
17 September 2024.

1.2 Proposed Development

- 1.2.1 The proposed development for this site is understood to the creation of a basement beneath the entire building footprint and extending partially beneath the front garden.
- 1.2.2 Plans of the proposed development are included in Appendix 1.
- 1.2.3 For the purpose of geotechnical assessment, it is considered that the project could be classified as a Geotechnical Category (GC) 2 site in accordance with BS EN 1997.

1.3 Objectives

- 1.3.1 An intrusive investigation is proposed to establish geotechnical conditions pertaining to the site.
- 1.3.2 The data from the geotechnical investigation is to form the basis of preliminary design advice with respect to foundation design, concrete specification and excavation stability.
- 1.3.3 A Basement Impact Assessment will assess the potential impacts that the proposal may have on ground stability, the hydrogeology and hydrology on the site and its environs.

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 - An intrusive investigation to assess the underlying ground conditions;
 - Undertaking of laboratory chemical and geotechnical testing upon samples obtained;
 - Return groundwater monitoring;
 - Carrying out a Basement Impact Assessment (BIA);
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, conclusions and recommendations.

1.5 Scope of Basement Impact Assessment

- 1.5.1 The site lies within the remit of the London Borough of Richmond upon Thames. The council has published the documents "Planning Advice Note: Good Practice Guide on Basement Developments" (2015) and "Basement Assessment User Guide" (2021). These documents provide detail on the issues relevant to basements within London Borough of Richmond upon Thames and describe how these issues should be assessed.
- 1.5.2 Jomas has also used the guidance given in the London Borough of Camden document "Camden Planning Guidance Basements" (CPGB) (January 2021) as this is generally accepted as the best available guidance on the practicalities regarding how to undertake a BIA.
- 1.5.3 Jomas' BIA covers most items required under CPGB, with the exception of;
 - Plans and sections to show foundation details of adjacent structures.
 - Programme for enabling works, construction and restoration
 - Evidence of consultation with neighbours
 - Ground Movement Assessment (GMA), to include assessment of significant adverse impacts and Specific mitigation measures required, as well as a confirmatory and reasoned statement identifying likely damage to nearby properties according to Burland Scale
 - Construction Sequence Methodology
 - Proposals for monitoring during construction.
 - Drainage assessment

- 1.5.4 This Jomas BIA also takes into account the Campbell Reith pro forma BIA produced on behalf of and published by the London Borough of Camden as guidance for applicants to ensure that all of the required information is provided.
- 1.5.5 A number of the requirements set out in the London Borough of Camden document CPGB will need to be addressed in a construction management plan, this stage is not within the scope of work that Jomas Associates have been commissioned.

1.6 Supplied Documentation

1.6.1 Jomas Associates have not been supplied with any previously produced reports at the time of writing this report.

1.7 Limitations

- 1.7.1 Jomas Associates Ltd ('Jomas') has prepared this report for the sole use of 05 Group Ltd, in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas. No other third-party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- 1.7.2 The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas has actual knowledge to the contrary, information obtained from public sources or provided to Jomas by site personnel and other information sources, have been assumed to be correct. Jomas does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.
- 1.7.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.
- 1.7.4 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 EXISTING INFORMATION

2.1 Site Information

2.1.1 The site location plan is appended to this report in Appendix 1.

Name of Site	-
Address of Site	26 Amyand Park Road, Twickenham, Richmond upon Thames, TW1 3HE
Approx. National Grid Ref.	516307 173599
Site Area (Approx.)	0.01 hectares
Site Occupation	Residential
Local Authority	London Borough of Richmond upon Thames

Table 2.1: Site Information

2.2 Summary of Stage 1 & 2 Basement Impact Assessment

2.2.1 As detailed in Table 1.1, a report has been produced for the site by Jomas dated 20 June 2024, and issued separately. A brief overview of the findings is presented below. Reference should be made to the full report for detailed information.

Site Setting

- 2.2.2 On the earliest available map (1865), the site is shown as largely vacant except for a small building shown to be extending into the site from the north-west. By the map dated 1912, the site is shown to be situated within a row of terraced housing. No observational changes then occur to the site until the most recent map dated 2024.
- 2.2.3 Historically, the surrounding area has comprised mainly residential properties, with the only significant land use identified as a railway 80m north of site and the River Crane beyond at approximately 176m from site.
- 2.2.4 The British Geological Survey indicates that the site is directly underlain by superficial deposits of the Langley Silt Member. Superficial deposits of the Kempton Park Gravel Member are anticipated to underlie the Langley Silt Member. These superficial deposits overlie solid deposits of the London Clay Formation.
- 2.2.5 The underlying Langley Silt Member and the London Clay Formation are identified as Unproductive. The Kempton Park Gravel Member is reported (off-site) as a Principal Aquifer.
- 2.2.6 A review of the EnviroInsight Report indicates that there are no Environment Agency Zone 2 or Zone 3 flood zones within 250m of the site.
- 2.2.7 The River Crane is reported 176m north-west.

Basement Impact Assessment (Screening and Scoping)

- 2.2.8 Screening identifies the area that require further (usually intrusive) investigation whilst scoping is the activity of defining in further detail the matters to be investigated as part of the BIA process. Scoping comprises of the definition of the required investigation needed in order to determine in detail the nature and significance of the potential impacts identified during screening.
- 2.2.9 These issues are summarised below:
- 2.2.10 The site predominantly comprises hardstanding cover which includes the existing building on site, a driveway area and a rear external patio. Areas of gravel and small plants are present adjacent to the building. The proposed plans show that there will be a reduction in hardstanding area to the front of the building through provision of a new garden area, though the majority of this will be underlain by the basement.
- 2.2.11 The site was considered to be at low risk of flooding based on historic flooding.
- 2.2.12 No risk of flooding to the site from artificial sources was identified.
- 2.2.13 The published geological maps indicate that the site is directly underlain by superficial deposits of the Langley Silt Member and the Kempton Park Gravel Member. These superficial deposits are underlain by solid deposits of the London Clay Formation. This should be confirmed by an intrusive investigation. Geotechnical laboratory testing of soils should also be undertaken to establish their shrink/swell properties.
- 2.2.14 The proposed basement excavation will be within 5m of a public pavement, and within 5m of neighbouring properties.
- 2.2.15 Unavoidable lateral ground movements associated with the basement excavations must be controlled during temporary and permanent works so as not to impact adversely on the stability of the surrounding ground, any associated services and structures.
- 2.2.16 It is recommended that the site is supported by suitably designed temporary support with a basement box construction. This will ensure that the adjacent land is adequately supported in the temporary and permanent construction. Alternatively, the excavation should proceed in a manner that maintains the integrity of the ground on all sides.
- 2.2.17 Careful and regular monitoring of the structure will need to be undertaken during the construction phase to ensure that vertical movements do not adversely affect the above property and neighbouring structures. If necessary, the works may have to be carried out in stages with the above structure suitably propped and supported.
- 2.2.18 Full details of the suitable engineering design of the scheme in addition to an appropriate construction method statement should be submitted by the developer to the London Borough of Richmond upon Thames.

2.2.19 The overall assessment of the site is that the creation of a basement for the existing development will not adversely impact the site or its immediate environs, providing measures are taken to protect surrounding land and properties during construction.

2.3 Previous Ground Investigations

2.3.1 Jomas is not aware of any previous intrusive investigation works that have been undertaken on the site.

3 GROUND INVESTIGATION

3.1 Scope of Works

- 3.1.1 A ground investigation was undertaken on the 10 October 2024.
- 3.1.2 A summary of the fieldwork carried out at the site, with justifications for exploratory hole positions, is presented in Table 3.1 below.

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved	Justification
Cable Percussion Borehole	1	BH1	10mbgl	Obtain samples for laboratory geotechnical testing. To allow in-situ geotechnical testing.
Monitoring Well	1	BH1	7.5mbgl	Groundwater monitoring wells.

Table 3.1: Scope of Intrusive Investigation

- 3.1.3 The ground investigation was undertaken in accordance with British Standard BS5930:2015+A1:2020 "Code of practice for ground investigations", British Standard BS10175:2011+A2:2017 "Investigation of potentially contaminated sites - code of practice", NHBC Standards, Chapter 4.1 and AGS Guidelines for Good Practice in Site Investigations.
- The exploratory hole position is shown on the exploratory hole location plan presented in Figure 2, Appendix 1. The exploratory hole record is included in Appendix 2.

3.2 Geotechnical Testing

<u>In-situ</u>

3.2.1 In-situ geotechnical testing included Standard Penetration Tests (SPTs). The determined N-values have been used to determine the relative density of granular materials and have been used with standard correlations to infer various other derived geotechnical parameters including the undrained shear strength of the cohesive strata. The results of the individual tests are on the appropriate exploratory hole logs in Appendix 2.

Laboratory

- 3.2.2 Soil samples were obtained and submitted to the UKAS accredited laboratory of K4 Soils Ltd for a series of analyses.
- 3.2.3 This testing was designed to classify the samples; and to obtain parameters (either directly or sufficient to allow relevant correlations to be used) relevant to the technical objectives of the investigation.

3.2.4

The following laboratory geotechnical testing was carried out:

Methodology	Test Description	Number of tests
BS1377:1990	Moisture Content Determination	2
BS1377:1990	Liquid and Plastic Limit Determination (Atterberg Limits)	2
BS1377:1990	Particle Size Distribution - Sieving	3
BS1377:1990	Determination of the undrained shear strength in triaxial compression with single-stage loading and without measurement of pore pressure	1

Table 3.2 Laboratory Geotechnical Analysis

- 3.2.5 The geotechnical laboratory test results are included in Appendix 3.
- 3.2.6 In addition, 5No soil samples were sent to the UKAS and MCerts accredited laboratory of Derwentside Environmental Testing Services Ltd and analysed for a modified BRE Special Digest 1 suite (acid and water soluble sulphate, total sulphur and pH) to assist with the ACEC classification for buried concrete. The results of this chemical testing are included in Appendix 4.

4 ENCOUNTERED CONDITIONS

4.1 General

- 4.1.1 A factual record of the conditions encountered during the physical investigation of the site is presented in the following section.
- 4.1.2 For further details of the ground conditions, reference should be made to the exploratory hole location plan presented in Appendix 1, exploratory hole log presented in Appendix 2, and the laboratory testing results in Appendix 3 and 4.

4.2 Ground Conditions

4.2.1 The ground conditions encountered were broadly consistent with those anticipated, i.e. a thickness of Made Ground overlying the Langley Silt Member over the Kempton Park Gravel Member over the London Clay Formation, and are summarised in Table 4.1 below.

Stratum and Description	Encountered from (mbgl)	Base of strata (mbgl)	Thickness range (m)
Concrete over (dark) brown clayey silty gravelly sand. Sand is fine to coarse. Gravel consists of fine to coarse, angular to rounded flint, brick and concrete. (MADE GROUND)	0.0	1.9	1.9
Dense to very dense orangish brown slightly clayey very sandy GRAVEL. Sand is fine to coarse. Gravel consists of fine to coarse, angular to rounded flint. (KEMPTON PARK GARVEL MEMBER)	1.9	7.4	5.5
Firm to stiff consistency** dark grey CLAY. (LONDON CLAY FORMATION)	7.4	>10.0 [base not proven]	>2.6 [thickness not proven]

Table 4.1: Ground Conditions Encountered

**Consistency estimated using semi-empirical correlations with SPT N-values, Plasticity Indices and published literature

4.2.2 No visual or olfactory evidence of potential contamination was identified within the investigation positions.

4.3 Hydrogeology

4.3.1 Groundwater strikes and groundwater monitoring are summarised below.

Table 4.2: Groundwater Strikes During Investigation

Exploratory Hole ID	Depth Encountered (mbgl)	Depth Post- Drilling (mbgl)	Stratum
BH1	6.20	6.45	Kempton Park Gravel Member

4.3.2 1No return groundwater monitoring visit was undertaken on 18 October 2024, the results are presented in Appendix 5 and are summarised below. A second visit is due to take place in February 2025.

Exploratory Hole ID	Depth Encountered (mbgl)	Well response zone as installed (mbgl)	Depth base of well (mbgl)	Stratum targeted by response zone
BH1	6.53	1.00 - 7.50	8.02	Made Ground and Kempton Park Gravel Member

Table 4.3: Groundwater Monitoring Summary

- 4.3.3 While the monitoring well is understood to have been installed to 7.5mbgl, the depth to the base of the well measured during the return monitoring visit was 8.02mbgl. This is potentially due to an error when measuring the pipe for installation, and/or the top of the monitoring well being located below ground level.
- 4.3.4 It should be noted that changes in groundwater levels can occur for a number of reasons including seasonal effects and variations in drainage. Such fluctuations may only be recorded by the measurement of the groundwater level within a standpipe or piezometer installed within appropriate response zones. Changes in groundwater level can have a direct effect on excavation stability and dewatering requirements, and cohesive soils can soften under rising or high groundwater levels.

4.4 Limitations

4.4.1 During the intrusive ground investigation, no impenetrable obstructions were encountered. However, the possible presence of natural and/or manmade obstructions on site cannot be discounted.

5 DERIVATION OF GEOTECHNICAL PARAMETERS

5.1 Introduction

5.1.1 A summary of ground conditions obtained from the ground investigation and the derived geotechnical parameters is provided below.

5.2 Plasticity of Cohesive Materials

- 5.2.1 Atterberg Limit determination was undertaken on 1No sample of Made Ground at a depth of 1.7mbgl, and 1No sample of the London Clay Formation at a depth of 9.5mbgl.
- 5.2.2 Within the Made Ground, the plasticity index value was 8% and was indicative of low plasticity, as illustrated in Figure 5.1 below. The modified plasticity index value was 4.96%, indicating that these soils are non-shrinkable.
- 5.2.3 The plasticity index value within the London Clay Formation was 56% and was indicative of very high plasticity. The modified plasticity index value was 53.2%, indicating soils with high volume change potential.

Figure 5.1: Plasticity Chart

5.3 Standard Penetration Tests

- 5.3.1 Standard Penetration Tests were undertaken at regular intervals throughout the cable percussive borehole. The results of the SPTs are plotted against depth in Figure 5.2 below.
- 5.3.2 N_{equi} results have been calculated where the full 300mm of penetration could not be achieved for 50 or more blows

Figure 5.2: SPT N-Value v Depth

5.4 Undrained Shear Strength

5.4.1 As discussed above, the N values recorded in the clay vary with depth, this infers that the undrained shear strength of the clay similarly varies. Figure 5.3 below shows the undrained shear strength inferred by the correlation suggested by Stroud (1974);

 $c_u = f_1 x N$ can be applied,

in which c_u= mass shear strength (kN) f₁ = constant N= SPT value achieved during boring operations

5.4.2 In the above equation f_1 is dependent on the plasticity of the material that the SPT is being carried out in. As the plasticity indices were shown to be greater than 25% a value for f_1 of 4.5 has been adopted after Tomlinson (2001).

SECTION 5 DERIVATION OF GEOTECHNICAL PARAMETERS

5.4.3 The graph below shows the shear strength profile of the encountered cohesive materials at the site, based on the SPT to shear strength correlation described above, as well as the results of quick undrained triaxial (QUT) testing on undisturbed samples taken from the borehole.

Figure 5.3: Undrained Shear Strength v Depth

5.4.4 As shown above, a general trend of increasing undrained shear strength with depth can be seen within the limited results from the London Clay Formation.

5.5 Coefficient of Compressibility

5.5.1 Stroud and Butler (1974) developed a relationship between the coefficient of compressibility (m_v) and SPT N-value.

 $m_v = 1/f_2 \times N$ can be applied,

in which

- m_v = coefficient of compressibility (m²/MN)
- f₂ = constant dependent on the plasticity index
- N = SPT value achieved during boring operations

- 5.5.2 Using the plasticity indices obtained and the graphs provided in Tomlinson (2001) a value of f_2 of 0.45 has been taken and used with the SPT N-values to infer coefficient of compressibility (m_v).
- 5.5.3 Where the undrained shear strength of the clays was measured using the quick undrained triaxial methodology, the m_v value was calculated by rearranging the equations for f_1 and f_2 and substituting in the measured undrained shear strength.

Figure 5.4: Coefficient of Volume Compressibility (mv) v Depth

5.5.4 As shown above, the results from the London Clay Formation are of "medium compressibility".

5.6 Density

- 5.6.1 In order to calculate the undrained shear strength using the quick undrained triaxial methodology, the bulk density of the materials has to be calculated, which are provided on the testing certificates in Appendix 4. These values can be converted to a unit weight value in kN/m³.
- 5.6.2 In the absence of geotechnical laboratory test results, the correlations and suggested unit weight values for both cohesive and granular materials given in BS8004:2015 have been used.
- 5.6.3 The derived unit weights are summarised below in Table 5.1.

Table 5.1: Derived Unit Weights

Strata	Unit Weight (kN/m³)
Made Ground	17
Kempton Park Gravel Member	20
London Clay Formation	19.5

5.7 Effective Angle of Shearing Resistance / Angle of Friction

5.7.1 In cohesive soils, the effective angle of shearing resistance can be derived from the plasticity index of the soil, using the following equation presented in BS8004:2015.

$$\phi' = 42 - (12.5xLOG10(PI))$$

Where PI = Plasticity Index.

5.7.2 Values have been calculated for all available Plasticity Index results and are presented in Table 5.2.

Table 5.2: Derived Angles of Shearing Resistance

Sample	Stratum	Derived Angle of Shearing Resistance (°)
BH1 – 1.7m	Made Ground	30.7
BH1 – 9.5m	London Clay Formation	20.1

5.7.3 In granular materials, the effective angle of friction can be derived directly from shear box testing, or indirectly using the methodology outlined in Table 1 of BS8004:2015, using a combination of the SPT N-values, Particle Size Distribution of the soil, and the field descriptions of angularity of the gravel fraction. This method assumes that the fines content of the material is less than 15%. An alternative method is to refer to the correlation between angle of friction and SPT N-values postulated by Peck *et al* (1967) and reproduced in Tomlinson (2001).

5.8 Stiffness Moduli

5.8.1 In cohesive soils of the London Clay Formation, the undrained stiffness modulus (Young's Modulus) can be derived using the correlation with undrained shear strength as postulated by Jardine et al. (1985):

 $\underline{Eu} = 400 * Cu(kPa)$

SECTION 5 DERIVATION OF GEOTECHNICAL PARAMETERS

5.8.2 The drained Young's Modulus for the London Clay Formation can then be derived from E_u, as follows:

 $\underline{E'} = 0.6 * \underline{Eu}$

5.8.3 In granular materials, the drained Young's Modulus can be derived using the following correlation:

E' = N

5.9 Summary of Derived General Properties

5.9.1 Based on the analysis of the ground investigation data and past experience with similar deposits, the following derived general parameters are given in Table 5.3.

Table 5.3: Derived General Parameters

Property	Made Ground	Kempton Park Gravel Member	London Clay Formation
Unit Weight	17 ¹⁾	20 ¹⁾	19.5 ²⁾
Drained Friction, ϕ' (°)	30.7 ³⁾	364)	20.1 ³⁾
Drained Cohesion, c' (kPa)	0	-	0
SPT N-value	8	31 - 87	16 - 20
Undrained Young's Modulus, E _u (MPa) ⁵⁾	-	-	28.8 – 36
Drained Young's Modulus E' (MPa)	-	31.0 - 87.0 ⁶⁾	17.3 – 21.67)
Undrained Shear Strength, c_u (kPa) ⁸⁾	-	-	72 – 90
Undrained Shear Strength, c_u (kPa) ⁹⁾	-	-	85
Plasticity Index (%)	8	-	56
Modified Plasticity Index (%)	5	-	53.2
Volume Change Potential [NHBC]	Non-shrinkable	-	High
Modulus of Volume Compressibility, m _v (m²/MN) ¹⁰⁾	-	-	0.111 - 0.139

 $^{\rm 1)}$ Derived from Figures 1 and 2 of BS8004:2015

²⁾ Calculated from bulk density, measured during quick undrained triaxial (QUT) testing

³⁾ Calculated from: $\varphi' = (42^{\circ} - 12.5 \log 10 I_p)$ for 5% $\leq I_p \leq 100\%$ Where, I_p is the soil's plasticity index (BS8004:2015)

⁴⁾ Calculated from Table 1 of BS8004:2015

 $^{\rm 5)}$ Calculated from E_u = 0.4 x c_u MPa, based on the guidance given in Jardine et al 1985

 $^{6)}$ Calculated from: E' = 1.0 x N MPa, based on the guidance given in CIRIA Report 143

⁷⁾ Calculated from E' = 0.6 x Eu MPa, based on the guidance given in Jardine et al 1985

⁸⁾ The undrained shear strength (c_u) of the cohesive soils was correlated to the SPT N-values using Stroud (1974), where $c_u=f_1N$ and f_1 is factor related to the Plasticity Index (PI) of the clay (a value of f_1 equal to 5.0 for PI \leq 25% and a value of f_1 value equal to 4.5 for PI>25)

⁹⁾ These values have been determined from the unconsolidated undrained triaxial compression testing in accordance with BS1377: Part 7: 1990, Clause 8

¹⁰⁾ Calculated from: $m_v = 1/f_2 N m^2/MN$, f_2 is a coefficient proposed by Stroud and Butler (1975) and varies with Plasticity Index (PI) as presented in Figure 27 of CIRIA Report 27 or $10/c_u$

6 GEOTECHNICAL ENGINEERING RECOMMENDATIONS

6.1 General

- 6.1.1 Subsequent to intrusive investigation of the site and receipt of the laboratory test results, the following geotechnical assessments have been made.
- 6.2 Proposed Foundations

<u>General</u>

- 6.2.1 All topsoil is to be stripped from beneath proposed structures ahead of development.
- 6.2.2 The Made Ground is not considered to provide suitable bearing strata due to its variability and the unacceptable risk of total and differential settlement.
- 6.2.3 All foundations should be deepened beneath these deposits, soft clay, root or desiccated zones, or disturbed ground, and founded within underlying competent strata.

Conventional Foundations

- 6.2.4 Based on drawings provided, it is anticipated that the finished floor level of the basement would be approximately 3m below existing ground level and therefore formation level is anticipated to be ~3.5mbgl.
- 6.2.5 Based upon the information obtained to date, it is considered that a cast in-situ cantilever retaining wall formed at approximately 3.5m below the existing ground level within the Kempton Park Gravel Member could be designed with an allowable bearing capacity of 200kPa. Total and differential settlements should be contained within tolerable limits.
- 6.2.6 It is unlikely that the foundations would need to be deepened further due to NHBC building near trees requirements.
- 6.2.7 Where foundations need to change levels, the foundations should be stepped and reinforced. These steps should be no deeper than half of the width of the foundation and each step should not exceed 0.5m.
- 6.2.8 If foundations span different strata, e.g. sand and clay, they should either be deepened to terminate in a single soil stratum, or suitable reinforcement included (to be detailed by the Structural Engineer).
- 6.2.9 Foundations greater than 2.50m deep require structure-specific design by a structural engineer.
- 6.2.10 It is recommended that excavations to form the foundations should be undertaken using a toothless bucket to reduce the potential for disturbance of the underlying Kempton Park Gravel Member.

- 6.2.11 Foundations should not be formed in the granular materials until the granular materials have been proof compacted. Given the depth and likely size of these foundations, it is considered that this could be undertaken using a hydraulic "elephants foot" or if the whole basement founding layer is compacted at the same time a vibrating roller or "whacker plate" if the machinery can be easily taken into the excavation and the stability of the excavation/safety of any workers entering the excavation can be assured.
- 6.2.12 Where any unexpected or soft ground conditions are encountered during the groundworks, works in that area should cease and the advice of a suitably qualified geotechnical engineer sought.

6.3 Retaining Walls

- 6.3.1 It is anticipated that retaining structure(s) will be required.
- 6.3.2 Based on the analysis of the available site investigation data and past experience with similar deposits the parameters in Table 6.1 are considered appropriate for the potential retaining structure(s).

Table 6.1: Geotechnical Parameters for Retaining Wall Design

	Kempton Park Gravel Member	London Clay Formation
Critical state angle of shearing resistance $(\phi')^\circ$	36	20
Effective Cohesion kN/m ²	-	0
Saturated Bulk Weight (γ _{sat}) kN/m ³	21	19.5

- 6.3.3 In addition, the specialist contractor should ensure the stability of the cut-face during the temporary works.
- 6.3.4 As an alternative to cantilever retaining walls, fully embedded retaining walls comprising a contiguous/secant piled basement box could be formed. The piles would need to act as retaining walls as well as carry the structural loadings. The piles should be designed to withstand the earth pressures, and still meet the required structural requirements regarding issues such as deflection, deformation and bending.
- 6.3.5 To provide sufficient support for the excavation, it is recommended that un-propped piles are formed to at least three times the depth of excavation.
- 6.3.6 If these piles can be suitably propped, then this depth may be reduced. Suitable propping could be provided by the basement floor and the ground floor if they are suitably tied into the piles and suitably reinforced. This may require specialist construction techniques.

6.4 Aggressive Ground Conditions

- 6.4.1 Sulphate attack on building foundations occurs where sulphate solutions react with the various products of hydration in Ordinary Portland Cement (OPC) or converted High-Alumina Cement (HAC). The reaction is expansive, and therefore disruptive, not only due to the formation of minute cracks, but also due to loss of cohesion in the matrix.
- 6.4.2 In accordance with BRE Special Digest 1, the characteristic values of sulphate used to determine the concrete classification are determined using the methodology summarised in the table below.

Table 6.2: Concrete in the Ground Characteristic Value Determination

No Samples in the dataset	Method for determining the sulphate characteristic value
1 - 4	Highest value
5 - 9	Mean of the top 2No highest results
10 or greater	Mean of the top 20% highest results

6.4.3 Table 6.3 summarises the analysis of the aggressive nature of the ground for each of the strata encountered within the ground investigation.

Stratum	No Samples	pH range	Characteristic WS Sulphate (mg/l)	Characteristic Total Potential Sulphate (%) ¹⁾	Design Sulphate Class	ACEC Class
Made Ground	2	8-8.7	80	N/A	DS-1	AC-1
Kempton Park Gravel Member	2	8.4 - 8.7	<10	N/A	DS-1	AC-1
London Clay Formation	1	8.4	173	0.87	DS-3	AC-3

Table 6.3: Concrete in the Ground Classes

1) Applies to soils containing more than 0.3% of oxidisable sulphides, calculated in accordance with BRE SD-1

- 6.4.5 Where these deposits are not likely to be disturbed and exposed, but foundations are formed within them (such as piles), then a Design Class of DS-2 is recommended, with an Aggressive Chemical Environment for Concrete (ACEC) Classification of AC-2.
- 6.4.6 The concrete structures, including foundations, will need to be designed in accordance with BS EN 1992-1-1:2004+A1:2014. It is recommended that the advice of this publication be taken for the design and specification of all sub-surface concrete.

^{6.4.4} Analysis of the results indicates that the London Clay Formation contains significant concentrations of oxidisable sulphides (e.g. pyrite), which can be oxidised to form additional sulphate on disturbance and exposure to air as outlined in BRE SD-1:2005. The total potential sulphate must therefore also be considered in the designation of a Design Class, in cases where the London Clay Formation is to be disturbed and exposed to air.

6.5 Floor Slabs

- 6.5.1 It is anticipated that finished floor level of the proposed basement will be approximately 3m below the existing ground floor level.
- 6.5.2 If a cantilever retaining wall is utilised, then a ground bearing floor slab could be used. Given the material at these depths, it is considered likely that such floor slabs could be constructed on the in-situ natural granular materials. In this case, formations of the structures should be inspected by a competent person. Any loose or soft material should be removed and replaced with well-graded, properly compacted granular fill or lean mix concrete. The formation should be blinded if left exposed for more than a few hours or if inclement weather is experienced.
- 6.5.3 If a piled option is utilised then suspended floor slabs will be required. The loadings from the suspended floor slab will need to be carried by the foundations, which will need to be designed to not only carry the structural loadings but the additional floor loadings.
- 6.5.4 All floor slabs would also need to be suitably reinforced, not only to distribute the structural loading but also to ensure that the floor slab can prop the retaining walls and does not buckle from the lateral pressures imposed by the cantilever retaining walls.
- 6.5.5The floor slab (and basement walls) would need to be constructed to conform to BS:
8102 (2009).

6.6 Excavations

- 6.6.1 Temporary excavations within the Made Ground and granular soils are unlikely to remain stable and some form of temporary support or battering back to a safe angle and dewatering are likely to be required.
- 6.6.2 Temporary excavations within the cohesive soils are likely to remain relatively stable in the short term though some spalling may be anticipated.
- 6.6.3 Cantilever retaining walls should be installed in short sections to aid stability of the excavation during construction of the basement.
- 6.6.4 Ground works should always be designed in such a manner to avoid entry into excavations by construction or maintenance personnel. However, in the event that such works cannot be avoided or designed out, they should only be undertaken in accordance with a safe system of work, following an appropriate risk assessment and in accordance with any legislative requirements, e.g. Confined Spaces Regulations.

6.7 Groundwater Control

6.7.1 During the investigation, groundwater was reported within the borehole at a depth of 6.2mbgl, and by the time the drilling had concluded, was sat at a level of 6.45mbgl.

- 6.7.2 During return monitoring, groundwater was reported at 6.53mbgl. A second visit is due to take place in February 2025 and this report will be updated.
- 6.7.3 Subject to seasonal variations, any groundwater encountered during site works could be readily dealt with by conventional pumping from a sump used to collate waters.
- 6.7.4 Surface water or rainfall ingress is likely to freely drain through the granular materials. If this does not occur, then they too could be dealt with by traditional sump and pump.

7 BASEMENT IMPACT ASSESSMENT

7.1 Geological Impact

- 7.1.1 The published geological maps indicate that the site is directly underlain solid deposits of the Langley Silt Member and Kempton Park Gravel Member. These superficial deposits are underlain by solid deposits of the London Clay Formation
- 7.1.2 The ground conditions were confirmed by a ground investigation and comprise Made Ground to a depth of 1.9mbgl, underlain by granular deposits of the Kempton Park Gravel Member to 7.4mbgl, underlain by cohesive deposits of the London Clay Formation to a depth in excess of 10mbgl. The proposed basement will be founded within the Kempton Park Gravel Member at a depth of ca. 3.5mbgl.
- 7.1.3 Laboratory testing indicates that the London Clay Formation is of high volume change potential. However, with consideration of the depth of these deposits, it is not considered that they will have an impact on the proposed basement.

7.2 Hydrology and Hydrogeology Impact

- 7.2.1 Based on all the information available at the time of writing, the risk of flooding from groundwater is considered to be low to moderate. The site was shown on mapping to not be located within an area where there is increased potential for elevated groundwater due to permeable surface deposits. The site was identified to be located within an area with a susceptibility to groundwater flooding of <25%.
- 7.2.2 During the investigation, groundwater was reported at depths of between 6.2mbgl and 6.53mbgl. At this stage, on this basis, it is considered that the proposed basement is unlikely to have a detectable impact on the groundwater regime. However, an additional groundwater monitoring visit is due to be conducted in February 2025, and this report will be updated on receipt of the results.
- 7.2.3 Appropriate water proofing measures should be included within the whole of the proposed basement wall/floor design as a precaution.
- 7.2.4 The Kempton Park Gravel Member is classed as a Secondary A Aquifer but the creation of the basement is considered unlikely to have any impact upon the hydrogeology of the area.
- 7.2.5 The proposed development will lie outside of flood risk zones and is therefore assessed as being at low probability of fluvial flooding.
- 7.2.6 The River Crane is reported 176m north-west of the site.
- 7.2.7 The information available suggests that the site lies in an area that is at low risk of surface water flooding.

- 7.2.8 The proposed basement construction is unlikely to result in an increase in impermeable areas in the post development scenario.
- 7.2.9 No risk of flooding to the site from artificial sources has been identified.

7.3 Other Impacts

- 7.3.1 Impacts such as changes to areas of external hardstanding, past flooding, and impacts to adjacent properties and pavement are addressed within the Stage 1 & 2 (Screening and Scoping) Basement Impact Assessment for 26 Amyand Park Road, Twickenham, TW1 3HE (Jomas Associates Ltd, P5802J3027/HAH, June 2024).
- 7.3.2 Full details of the suitable engineering design of the scheme in addition to an appropriate construction method statement should be submitted by the Developer to the London Borough of Richmond upon Thames.

7.4 Cumulative Impacts

- 7.4.1 The above individual effects could potentially interact to form a greater issue.
- 7.4.2 The site has been identified as being directly underlain by a Secondary A Aquifer (Kempton Park Gravel Member).
- 7.4.3 However, no sensitive uses have been identified in the surrounding area.
- 7.4.4 Furthermore, the modest size of the proposed basement will not significantly alter the existing groundwater regime.
- 7.4.5 The development of the basement will therefore not significantly affect the groundwater flow on or surrounding the site.

7.5 Conclusion

- 7.5.1 The overall assessment of the site is that the creation of a basement for the existing development will not adversely impact the site or its immediate environs, providing measures are taken to protect surrounding land and properties during construction.
- 7.5.2 The proposed development is not expected to cause significant problems to the subterranean drainage.

8 **REFERENCES**

AGS Guidelines for Good Practice in Geotechnical Ground Investigation, 2016

BRE Report BR 470: Working platforms for tracked plant, 2004. BRE: Watford

BRE Special Digest 1: Concrete in Aggressive Ground, 2005. BRE: Watford

British Standards Institution BS 10175:2011+A2:2017 Code of practice for the investigation of potentially contaminated sites. BSI: London

British Standards Institution BS 5930:2015+A1:2020 Code of practice for ground investigations. BSI:London

British Standards Institution BS 8002:2015 Code of practice for earth retaining structures. BSI: London

British Standards Institution BS 8004:2015 Code of practice for foundations. BSI: London

British Standards Institution BS EN 1997-1:2004+A1:2013 Eurocode 7. Geotechnical design. General rules. BSI: London

CIRIA Report R143 The standard penetration test (SPT): methods and use, 1995: CIRIA: London

Ministry of Housing, Communities & Local Government: National Planning Policy Framework. February 2019.

NHBC Standards 2023. NHBC, Milton Keynes

Tomlinson M.J (2001): Foundation Design and Construction 7th Edition. Pearson prentice Hall: Harlow

APPENDICES

APPENDIX 1 – FIGURES

JUMAS ENGINEERING LAND REMEDIATION

	6 Amyand Park Poad TW/1 2HE	CLIENT	05 Group Ltd
	ite Location Plan		P580213027
		FIGURE NO.	1
DATE	une 2024	FIGURE NO.	1
Posts Posts Posts Posts Posts Posts Posts Posts Posts Posts Posts Posts Posts Posts Posts	ups foreuning peloug to upstrup teloug to upstrup teloug to upstrup teloug to upstrup	20	

TITLE Completed Exploratory Hole Plan DATE October 2024 PIGURE NO. 2 FIGURE NO. 2 F		26 Amyand Park Road TW/1 3HE	CLIENT	05 Group Ltd
DATE October 2024 FIGURE NO. 2		Completed Exploratory Hole Plan		P580213027
DATE OCTOBEL2024 TIGORE HC. 2		October 2024	FIGURE NO	2
Posts 22 Posts 24 Posts	PROJECT NAME TITLE DATE	26 Amyand Park Road, TW1 3HE Completed Exploratory Hole Plan October 2024	CLIENT PROJECT NO. FIGURE NO.	05 Group Ltd P5802J3027 2
puelous uentre	Posts	BH1 R R Poouos Areunid Dougs Areunid Areunid Dougs Areunid Dougs Areunid A	20	A A A A A A A A A A A A A A A A A A A
	An	puelo siliena		P.

PROJECT NAME	26 Amyand Park Rd, TW1 3HE	CLIENT	05 Group Ltd
TITLE	Walkover Photo Plan	FIGURE	3
Photo 1: Overview of	f front of site.	Photo 2: Overview of	front garden of site.
	<image/>		<image/>

PROJECT NAME	26 Amyand Park Rd, TW1 3HE	CLIENT	05 Group Ltd
TITLE	Walkover Photo Plan	FIGURE	3
Photo 3: Main living	room of site.	Photo 4: Site is conne	cted to electrics.

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	26 Amyand Park Rd, TW1 3HE	CLIENT	05 Group Ltd
TITLE	Walkover Photo Plan	FIGURE	3
Photo 5: Internal doo	prway leading to kitchen area of site.	Photo 6: Back doors o	f site.
	<image/>		

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	26 Amyand Park Rd, TW1 3HE	CLIENT	05 Group Ltd
TITLE	Walkover Photo Plan	FIGURE	3
Photo 7: Toilet of site	2.	Photo 8: Back garden	of site from the doorway.
			<image/>

PROJECT NAME	26 Amyand Park Rd, TW1 3HE	CLIENT	05 Group Ltd
TITLE	Walkover Photo Plan	FIGURE	3
Photo 9: Back garder	n of site from gate.	Photo 10: External wa	ter supply by front door.

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	26 Amyand Park Rd, TW1 3HE	CLIENT	05 Group Ltd
TITLE	Walkover Photo Plan	FIGURE	3
Photo 11: Drainage i	n back garden.	Photo 12: Alleyway lea	ading to back gate.
			<image/>

WE LISTEN, WE PLAN, WE DELIVER

PROJECT NAME	26 Amyand Park Rd, TW1 3HE	CLIENT	05 Group Ltd
TITLE	Walkover Photo Plan	FIGURE	3
Photo 13: Back gate	of site from alleyway.	Photo 14:	

Figure 4: Proposed Development Plan (Basement and Ground floor)

2.0M

3.0M

4.0M

1.0M

0

2. THIS DRAWING HAS BEEN DRAWN TO SCALE, AS SHOWN, @ A3 FOR THE PURPOSE OF OBTAINING LOCAL AUTHORITY APPROVAL. 1.0M Property Address: Date: Scale @ A3: Drawing Number:

MAY 2024 1:100 SC 23111 / AP / BA01

APPENDIX 2 – EXPLORATORY HOLE RECORDS

		5	С		Ρ	FRC	<u>רווי</u>	SIO	Ν	RF		חא	Borehol	e Numt	ber
			U	VDEL	•								D	ΠΙ	
Project N	Name: 26 A	Amyand	Park R	oad	Client	t: 05 Grou	p Ltd				Date: 10/10	/2024			
Location	: Twickenh	nam, TW	1 3HE		Logge	ed by: HA	H/BD				Drilling Equ	ipment: Ca	ble Percus	sion Dri	Ilina
	No. : P5802	2J3027	Hole	e Type	Crew	Name: R		Appro	ved By	v	Equipment Sci		Page	Numbe	er U
	FINAL		(CP		Lovor		S	SC SC	y	1:	50	Shee	et 1 of 1	
Well St	Vater S	Sample	and In	Situ Testing		Depth (m)	Level	Legend			Stratum	Descriptior	ı		
	De	pth (m)	Туре	Results		()	(,		Concre	ete. (M	ADE GROUN	D)		-	
		0.25	B			0.20 0.40	-0.20 -0.40		Dark b Gravel brick a Dark b Gravel	orown s I consis and con orown c I consis	ilty gravelly s sts of fine to c icrete. (MADE layey gravelly sts of fine to c	and. Sand is oarse, angu GROUND) / sand. Sand oarse, angu	s fine to coars lar to rounde d is fine to me lar to rounde	se. d flint, edium. d flint	- - - - -
		1.00 1.20	D SPT	N=8 (1,0/1,2,	1,4)	1.40	-1.40		Brown	nck. (M	v slightly grave	elly sand. Sa	and is fine. G	ravel	- - -
		1.70 1.70	B D			1.90	-1.90		with or Dense sandy	ccasior to very GRAV	al brick fragn y dense orang EL. Sand is fi	gish brown s ne to coarse	E GROUND)	very sists	-2
		2.50 2.50 2.50	B D SPT	N=48 (3,5/9,11,14,	14)				PARK	GRAVI	EL MEMBER))	nt. (KEMPTC	ארע - - - - - - - - - 	- 3
		3.50 3.50	B SPT	50 (7,11/50 t 172mm)	for										- 4
		4.50 4.50 4.50	B D SPT	50 (8,12/50 ⁻ 185mm)	for										- 5
	_	5.50 5.50	B SPT	N=33 (3,4/5,9,9,1	0)										-6
	—	7.50 7.50 8.00	B SPT U	N=16 (2,3/3,4	,4,5)	7.40	-7.40		Firm to CLAY	o stiff ca FORM	onsistency** o ATION)	dark grey CL	AY. (LONDC	N	- 7
		9.50 9.50 9.50	B D SPT	N=20 (3,3/4,5	,5,6)	10.00	-10.00				End of Bor	abole at 10.0	00m		- 9
Remarks:	<u> </u>		1	1	I		I	Ca	sing Diar	meter by	Depth	Death =	Chiselling		
*Field descr	iption	ising cami o	mnirical a	orrelations with SD	T N-vol-	ups Placticity	ndices and	Depth Top	Dept	tn Base	Diameter	Depth Top	Depth Base	Durat	non
published lit Groundwate	terature. er reported at f	5.2mbgl duri	ing drilling	g and at 6.45mbgl r	ost-dril	lling.	nuices dílü								
			U 1 1 1	,6		JOM	AS ASSC	DCIATES LI	rd			I	1		
				Unit 24 S	arum	n Comple	x, Salist	oury Road	l, Uxb	oridge	UB8 2RZ				
1			14/14/1	w iomacass	ociat	es com	0333-30	15-9054 ir	ւեսայ	iomas	associatos	com			

www.jomasassociates.com 0333-305-9054 info@jomasassociates.com Jomas Associates Ltd Registered in England and Wales No. 7095350

APPENDIX 3 – GEOTECHNICAL LABORATORY TEST RESULTS

K	SOILS	Summary of Natural Moisture Content, Liquid Limit									t and Plastic Limit Results			
Job No.			Project	Name							Prog	ramme		
361	Q /I		26 Amv	and D	ark Dd TW/1 3HE					Samples r	eceived	14/10)/2024	
301	04		20 Any							Schedule	received	14/10)/2024	
Project No.			Client							Project sta	arted	15/10)/2024	
J30	27		Jomas .	Associ	ates			1		Testing St	arted	23/10)/2024	
Hole No.	Def	Sa	mple		Soil Desc	ription	NMC	Passing 425µm	LL	PL	PI	Ren	narks	
	Rei	m	m	туре			%	%	%	%	%			
BH1	-	1.70		в	Brown slightly gravelly CLAY (gravel is fmc a sub-rounded)	y very sandy silty and angular to	19	62	23	15	8	Sample w obtain tes	ashed to t fraction	
BH1	-	9.50	-	U	High strength dark gro	ey silty CLAY	26	95	80	24	56			
K B B B B B B B B B B B B B B B B B B B	Test Natur Atterb	Method al Moistu berg Limit	Is: BS13 re Conten s: clause	77: Pa t : clau 4.3, 4.4	art 2: 1990: se 3.2 and 5.0	Test U	Report by Init 8 Olds Watford	K4 SOILS Close Old Herts WI	ELABOR Is Appro D18 9RU	RATORY bach		Check App	ed and roved	
	NOTE	E: The rep	port shall r	not be r	eproduced except in full	Tel: 01923 711 288 Date: 25/10/2024 Tull Email: James@k4soils.com Date: 25/10/2024								
2519	Appr	ut authori oved Sig	ty of the la natories:	aborato K.Phau	ry ire (Tech.Mgr) J.Phaure	(Lab.Mgr)						MSF	-5-R1	

K	1 SOILS)	Unc	onso	olidated Undrained Ti	iaxial	Com Su	npres mma	sion ry of	tests Resu	with Its	out n	neas	urem	ent o	of p	oore pressure		
			Tes	ts ca	arried out in accordar	nce w	ith B	51377	':Par	t7:1	990 c	laus	e 8 c	or 9 a	s ap	pro	priate to test		
				I		Ject Ivai	me						Sar	nples r	eceive	ograi ed	mme 14/10/2024		
36184			26 Am	/ana	Park Rd I W1 3HE								Schedule received 14/10/2024						
Project N	0.		Client										Project started 15/10/2024						
J3027			Jomas Associates Testing Started 21/										21/10/2024						
		Sar	mple			Test	Dei	nsity		Longth	Diamete	-3		At fail	ure				
Hole No.	Ref	Тор	Base	Туре	Soil Description	Туре	bulk dry		w	Length	Diamete	03	Axial strain	σ1 - σ	cu	M O	Remarks		
		m	m				Mg	/m3	%	mm	mm	kPa	%	kPa	kPa	d e			
BH1	-	8.00	-	U	High strength dark grey silty CLAY	UU	1.97	1.56	26	198	102	190	20	170	85	с			
Legend	 UU -	sinale et	age test	(sinala	and multiple specimens)	<u>σ</u> 3	Cell	oressure	 }	1	1	Mode	of failu	re ·	B - F	 Brittl₄	2		
	UUM suffix	- Multist	age test	on a s	mpacted	σ1 - σ3 cu	Maxii Undr	mum co ained sł	rrected near stro	deviato ength, ½	r stress 2⁄2 (σ1 - c	53)		- ,	P - I C - (Plast	pound		
	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: james@k4soils.com Email: james@k4soils.com									J.P 25/10/2024									
2519)	Appro	ved Sigi	natori	ies: K.Phaure (Tech.Mgr) J.F	haure (Lab.M	gr)			,						MSF-5-R7b		

APPENDIX 4 – CHEMICAL LABORATORY TEST RESULTS

Hamza Hashi Jomas Associates Limited 24 Sarum Complex Salisbury Road Uxbrdge UB8 2RZ

Normec DETS Limited Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 24-12235

Site Reference:	26 Amvand Park Road, TW1 3HE
Project / Job Ref:	J3027
Order No:	P5802J3027.5
Sample Receipt Date:	15/10/2024
Sample Scheduled Date:	15/10/2024
Report Issue Number:	1
Reporting Date:	21/10/2024

Authorised by:

5.62

Steve Knight Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. I his certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Normec DETS Limited Unit 1, Rose Lane Industrial Estate **Rose Lane** Lenham Heath Maidstone Kent ME17 2JN Tel: 01622 850410

0.08

0.03

< 0.01

< 0.01

0.17

0.29

Soli Analysis Certificate								
DETS Report No: 24-12235		۰	 Date Sampled 	10/10/24	10/10/24	10/10/24	10/10/24	10/10/24
Jomas Associates Limited		۲	Time Sampled	None Supplied				
~Site Reference: 26 Amyand Park		~TP / BH No	BH1	BH1	BH1	BH1	BH1	
				_	_	_		
~Project / Job Ref: J3027		2	Additional Refs	Jar	Jar	Jar	Jar	Jar
~Order No: P5802J3027.5			~Depth (m)	1.00	1.70	2.50	4.50	9.50
Reporting Date: 21/10/2024	D	ETS Sample No	743975	743976	743977	743978	743979	
Determinand	Unit	RL	Accreditation			(n)	(n)	
pH	pH Units	N/a	MCERTS	8.7	8.0	8.7	8.4	8.4
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	1217	493	< 200	< 200	618
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.12	0.05	< 0.02	< 0.02	0.06
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	80	34	< 10	< 10	173

Total Sulphur < 0.02 NONE 0.05 0.03 < 0.02 < 0.02 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion

MCERTS

W/S Sulphate as SO₄ (2:1)

Subcontracted analysis (S) ~Sample details provided by customer and can affect the validity of results (n) Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation

g/l

%

< 0.01

Normec DETS Limited Unit 1, Rose Lane Industrial Estate **Rose Lane** Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Sample Descriptions
DETS Report No: 24-12235
Jomas Associates Limited
~Site Reference: 26 Amyand Park Road, TW1 3HE
~Project / Job Ref: J3027
~Order No: P5802J3027.5
Reporting Date: 21/10/2024

DETS Sample No	~TP / BH No	~Additional Refs	~Depth (m)	Moisture Content (%)	Sample Matrix Description
743975	BH1	Jar	1.00	13.4	Brown sandy clay with stones and brick
743976	BH1	Jar	1.70	15.9	Brown sandy clay with stones
743977	BH1	Jar	2.50	6.2	Brown sandy gravel with stones
743978	BH1	Jar	4.50	5.2	Brown sandy gravel with stones
743979	BH1	Jar	9.50	22	Brown clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample VS Unsuitable Sample US ~Sample details provided by customer and can affect the validity of results

Normec DETS Limited Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

il Analysis Certificate - Methodology & Miscellaneous Information	
TS Report No: 24-12235	
mas Associates Limited	
ite Reference: 26 Amyand Park Road, TW1 3HE	
Project / Job Ref: J3027	
Order No: P5802J3027.5	
porting Date: 21/10/2024	

Soli 0 Boort Water Schlieb Design and schlar E001 Soli AR Bitter Schlar Bitter Schla	Matrix	Analysed	d Determinand Brief Method Description				
Sile AR Dots Effect Itelemination of Effect by Prantyspace (C-M) Itelemination of Effect by Prantyspace (C-M) Effect Soil D Chorida: Wate Soluble (C-L) Ottermination of Zhorida by extraction with water & analysed by incompany. E002 Soil AR Chorida: Wate Soluble (C-L) Ottermination of Zhorida by extraction with water & analysed by incompany. E003 Soil AR Chorida: Mate Soluble (C-L) Ottermination of Chorida by extraction with water & analysed by incompany. E015 Soil AR Chorida: The Difference of The Control by Addition followed by colorinetry. E015 Soil AR Chorida: The Difference of The Control by Addition followed by colorinetry. E015 Soil AR Desell Range Opanics (C): C - CA Itermination of electrical conductivity by addition of soluratic column by addition of soluraticol column by addition of soluratic column by addition of	Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 bot water extract followed by ICP-OFS	F012		
Soil D Cations Determination of cations is soil by acat-acid departum followed by CPC OSS PEOP Soil AR Chromum - Heavwell Similar the environment of classics of controls with water a stanked by ion chromatography PEOP Soil AR Chromum - Heavwell Similar the environment of classics of controls with water a stanked by ion chromatography PEOP Soil AR Corande - Free Determination of the condex by colorimetry PEOI Soil AR Corande - Free Determination of the condex by colorimetry PEOI Soil AR Corande - Free Determination of the condex by colorimetry PEOI Soil AR Detectrical conductivity Detectrical conductivity PEOI PEOI Soil AR Electrical conductivity Detectrical conductivity PEOI PEO	Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E012		
Sol D Chordse: Water Soluble (2:1) Intermination of chordse by software & numbers by increding the software for the numbers of the software for the software for the numbers of the software for the software for the numbers of the software for the software for the numbers of the software for the software software for the software software for the software fo	Soil	D	Cations	Ins Determination of cations in soil by agua-regia direction followed by ICP-OES			
Soil AR Chronium - Heavening Determination of heavenetic control by extraction in weter then by additional, addition of 15, 6 Addresscharzeke (filosofb by colorimetry) ED16 Soil AR Cyranie - Complex Otermination of Chronic cyrands by debilishion followed by colorimetry ED15 Soil AR Cyranie - Complex Otermination of Chronic cyrands by debilishion followed by colorimetry ED15 Soil AR Decolorbacene Extractable Matter (CEM) Careminic rule determination of extractable Mytocorons by GC-FID ED03 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of subarded calcium subplate followed by ED22 ED04 ED04 ED04 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of subarded calcium subplate followed by ED22 ED04 ED04 ED04 Soil AR Electrical Conductivity Determination of action/ficeane extractable hydrocorons by CC-FID ED04 Soil AR EPH TEW3 (Se6.010; CD-12). Determination of action/ficeane extractable hydrocorons by CC-FID ED04 Soil D Fibrade Weter State (CCH) CD0-CED.2 Determination of CDC conclustion analyser. ED22 Soil D Fibrade Weter State (CCH) CD	Soil	D	Chloride - Water Soluble (2:1)	2:1) Determination of chloride by extraction with water & analysed by ion chromatography			
Soli AR Conside - Complex Centre to determination of complex capacity by defailtion followed by colormetry. E015 Soli AR Cyanda - Teal Metrimation of tex canda by defailtion followed by colormetry. E015 Soli AR Cyanda - Teal Metrimation of tex canda by defailtion followed by colormetry. E015 Soli AR Decar Sampe Cyanna S. (16) - C30 Details Soli (16) - C30 E015 Soli AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcum surphate followed by electrometrix measurement. E023 Soli AR Electrical Conductivity Determination of acench pace excitacable hydrocarbons by CG-F1D E004 Soli AR Electrical Conductivity Determination of acench pace excitacable hydrocarbons by CG-F1D E004 Soli AR EPH Hodu To C400 Determination of acench pace excitabable hydrocarbons by CG-F1D E004 Soli AR EPH Hodu To C400 Determination of acench pace excitabable hydrocarbons by CG-F1D E004 Soli AR EPH Hodu To C400 Determination of acench pace excitabable hydrocarbons by CG-F1D E004 Soli AR EPH Hodu To C400 Dete	Soil	AR	Chromium - Hexavalent	um - Hexavalent Determination of hexavalent chromium in soil by extraction in water then by acidification, addition			
Soil AR Cyande - Free Determination of trac cyande by distitution followed by colorimetry ED15 Soil D Cyclobezane Extractable Matter (ER) Gravimetrically determined through extraction with cyclobezane ED11 Soil AR Desel Range Organics (EI)-CAID Determination of table cyande by dubition of subcarbos by CC-ID ED01 Soil AR Electrical Conductivity ED02 Soil AR Electrical Conductivity Education of subcarbactable indicachos by CC-ID ED02 Soil AR Electrical Conductivity Education of subcarbactable indicachos by CC-ID ED02 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of subcarbactable indicachos by CC-ID ED02 Soil AR Electrical Conductivity Determination of actors/hexare extractable indicachos by CC-ID for CR to C40. C6 to C8 by ED04 Soil AR EPM TEXX (C4C, C6: C10. C12). Determination of Toxic or gravic carbon by oxiciding with potassum dichromate followed by C2-ID for CR to C40. C6 to C8 by ED02 ED02 Soil D Freation Organic Carbon (ICC) Determination of Toxic or gravic carbon by oxiciding with potassum dichromate followed by ED02 Soil D	Soil	AR	Cvanide - Complex	Determination of complex cvanide by distillation followed by colorimetry	E015		
Soil AR Cycloheare (CR) Grande - Total Determination of total cyande by distillation followed by colonancy. ED15 Soil AR Disel Range Organics (CI0 - C41) Determination of hexanicatorise extradable hydrocarbors by CG-FID E004 Soil AR Electrical Conductivity Determination of extradic conductivity by datition of saturated calcium subhate followed by electronetric measurement E023 Soil AR Electrical Conductivity Determination of electrical conductivity by addition of saturated calcium subhate by colonance and calcium character and the colonance and the colonance and the colonance and the colonance and the colon	Soil	AR	Cvanide - Free	Determination of free cvanide by distillation followed by colorimetry	E015		
Soli D Cyclobicane Exactable Natter (ZEN) Genimication of second section with cyclobicane ED11 Soli AR Dised Rane Organics (ZIC) cr3/D dermination of decircular conductivity by addition of saturable durationarbos by CS-PID E002 Soli AR Electrical Conductivity Determination of decircular conductivity by addition of water followed by electrometric measurement E023 Soli AR Electrical Conductivity Determination of actors haves estractable hydrocarboss by CG-PID E004 Soli AR Electrical Conductivity Determination of actors haves estractable hydrocarboss by CG-PID E004 Soli AR EPH TEXE (CIC) - C4D) Determination of actors hydrocarbos by CG-PID E004 Soli AR EPH TEXE (CIC) - C4D) Determination of actors hydrocarbos by CG-PID E004 Soli AR EPH TEXE (CIC) - C1C) CD Determination of Tox CD works toxic analyzes. E027 Soli AR ED1000000000000000000000000000000000000	Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015		
Soil AR Diesel Range Organics (C10 - C24) Determination of excitation conductivity by addition of sutrated calcum subpate followed by E002 Soil AR Electrical Conductivity Determination of excitation conductivity by addition of water followed by electrometric measurement E003 Soil D Electrical Conductivity Determination of elemental subpate hy solvent extraction followed by GC+ID E004 Soil AR Electrical Conductivity Determination of elemental subpate hy solvent extraction followed by GC+ID E004 Soil AR EPH Product ID Determination of action/hexane extractable hydrocarbons by GC+ID E004 Soil AR EPH rotact ID Determination of totic hydrocarbons by GC+ID for C to C40. C6 to C8 by E004 E004 Soil D Foraction (FGC) Determination of TCC by combustion analyser. E002 Soil D Foraction (FGC) Determination of TCC by combustion analyser. E002 Soil D FOC (Fraction Organic Carbon Carbon Determination of TCC by combustion analyser. E002 Soil D FOC (Fraction Organic Carbon Determination of TCC by combustion analyser. E003 Soil D FOC (Fraction Organic Carbon Determination of TCC by combustion analyser. E	Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011		
Sail AR Electrical Conductive, Determination of electrical conductively by addition of suturated calcium sulphate followed by Get22 E022 Soil AR Betcrinical Conductive, Determination of electrical conductively by addition of suturated calcium sulphate followed by GetFID E023 Soil AR Electrical Conductive, Determination of acentor/hexane extractable hydrocarbons by GetFID E004 Soil AR EPH (CL0 - C40) Determination of acentor/hexane extractable hydrocarbons by GetFID E004 Soil AR EPH (CL2 - C40) Determination of acentor/hexane extractable hydrocarbons by GetFID for C8 to C40. C6 to C8 by E004 Soil D Flatofide- Water Solid& Determination of TOCE by combustion analyser. E002 Soil D Flatofide- (CAD) Determination of TOCE by combustion analyser. E002 Soil D Flotofide- (CAD) Determination of TOCE by combustion analyser. E002 Soil D Loss on Ignition # 4500 Determination of roganic carbon by oxidiany with bates analysed by ion chromatography E003 Soil D Maneal Minition of Maneal Moletine magnetismine with analysed. E003 Soil D Maneal Minition Mistoland Minition Mistoland Minition Mistoland Mini	Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004		
Soll AR Electrical Conductivity Determination of electrical conductivity by addition of water followed by electrometric measurement E023 Soll D Elemental Subplus Electrical Conductivity Determination of electronal buscular by solvert extraction followed by (C-MS) E020 Soll AR EPH TEXAS (G-C8, CFCID, C10-C12) Determination of electron/heane extractable hydrocarbons by GC-HD for C8 to C40. C6 to C8 by E004 E004 Soll D Fibration C12-C43 Determination of textor productive extractable hydrocarbons by GC-HD for C8 to C40. C6 to C8 by E004 E004 Soll D Fibration C12-C43 Determination of TOC by combustion analyser. E022 Soll D Fibration Crash Carbon Determination of TOC by combustion analyser. E023 Soll D FOC (Fraction Organic Carbon Determination of Organic Carbon Dy obding with potassium dichromate followed by E023 E003 Soll D FOC (Fraction Organic Carbon Determination of organic Carbon Potasic Mission analyser. E023 Soll D FOC (Fraction Organic Carbon Determination of regaric Carbon Potasic Mission analyser. E023 Soll D FOC (Fraction Organic Carbon Potasic Carbon Potasicarbanalysei Potasic Potasicarban Potasic Potasicarban Pot	Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022		
Sold D Elemental subture Determination of elemental subture by solvent extractable hydrocarbons by GC-MS ED00 Sold AR EPH TEXAS (G6-CR, GC-CI) (C1-CL). Elemental of action/hearne extractable hydrocarbons by GC-PID E004 Sold AR EPH TEXAS (G6-CR, GC-CI) (C1-CL). Elementation of action/hearne extractable hydrocarbons by GC-PID for CB to C40. G6 to C8 by E004 E004 Sold D Fraction. Elementation of action/hearne extractable hydrocarbons by GC-PID for CB to C40. G6 to C8 by E004 E004 Sold D Fraction. E004 E004 Sold D Fraction. E004 E004 Sold D Fraction. E007 E007 E007 Sold D Fraction. E004 E007 E007 E007 Sold D Fraction. Fraction. E007 E007 E007 E007 Sold D Loss on Ignition. E007	Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023		
Soil AR EPH (10 – C40) Determination of action/heane extractable hydrocarbons by CG-FID EB04 Soil AR EPH TEXAS (CG-C3); EV-10, C10-C12. Determination of action/heane extractable hydrocarbons by CG-FID E004 Soil D Fracts (CG-C3); EV-10, C10-C12. Determination of action/heane extractable hydrocarbons by CG-FID E004 Soil D Fracts (CG-C3); EV-10, C10-C12. Determination of TOC by combustion analyser. E027 Soil D Fracts (CG-C3); EV-10, C10-C12. Determination of TOC by combustion analyser. E027 Soil D Fracts (CG-C3); EV-00, C10-C13. Determination of TOC by combustion analyser. E023 Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxiding with potassium dichromate followed by ED-0ES E039 Soil D Loss on Liphtion @ 4500 E040 E002 E003 Soil AR Mineral OI (C10 - C40) Antil Determination of mater soluble magnesium by extraction with water followed by ICP-0ES E032 Soil AR Mineral OI (C10 - C40) Antil Determination of mater soluble magnesid digotin followed by ICP-0ES E033 </td <td>Soil</td> <td>D</td> <td>Elemental Sulphur</td> <td>Determination of elemental sulphur by solvent extraction followed by GC-MS</td> <td>E020</td>	Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020		
Soil AR EPH Product ID betermination of acction//exame extractable hydrocarbons by CC+ID E004 Soil AR EPH TEXAS (C6-43, C3-C10, C10-C12 Determination of acction//exame extractable hydrocarbons by CC+ID E004 E004 Soil D Fluction-Water Soluble Fluction-Water Soluble E004 E004 Soil D Fluction-Water Soluble Fluction-Water Soluble E007 E007 Soil D Total Care Soluble Environmentor of Total Care Soluble E007 E007 Soil D Total Care Soluble Environmentor of Total Care Soluble Environmentor of Soluble E002 Soil D FOC (Fraction Organic Carbon) Environmentor of Soluble Environmentor of Soluble E001 Soil D Magnesium - Water Soluble Environmentor of Nasca soluble in soil by gravimetrically with the sample being ignited in a muffle E002 Soil AR Minerol OII (C10 - C40) Metal Soluble (C10 - C40) E003 Soil AR Minerol OII (C10 - C40) E003 E004 E004 Soil AR <	Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004		
Soil AR EPH IEAK (bb-ts, ba-tl), t10-t12, betermination of actione/resente extractable hydrocarbons by Gk-H10 for Gt to Gt 0, to Gt 0, by Photolice - Water Soluble Determination of Photole by extraction with water & analysed by ion chromatography E009 Soil D Final Mater Soluble Determination of TGC by combustion analyser. E007 Soil D Foot Chall Craatic Carbon Determination of TGC by combustion analyser. E002 Soil D TOC (Total Craatic Carbon Determination of action of action of tags analysed by the sample being ignited in a nuffle E002 Soil D FOC (Fraction Organic Carbon Determination of analyser. E002 Soil D FOC (Fraction Organic Carbon Determination of analyser. E002 Soil D Loss on Ignition @ 4500 Determination of random analyser. E002 Soil D Magnesium - Water Soluble Carbon Determination or incates by aque regis digestion followed by ICP-OES E003 Soil AR Mineral OII (C10 - C40) E003 Soil AR Mineral OII (C10 - C40) E003 Soil D Nitrate - Water Soluble (C21) Determination of race analysed by ion chromatography E003 So	Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004		
Soil D Floride: Vater Soluble Determination of Ploride by extraction with water & analysed by ion chromatography E009 Soil D Fraction Organic Carbon (FOC) Determination of Ploride by extraction with water & analyser E007 Soil D Toroc (Foc) Determination of Coc (Determination of Coc) E007 Soil AR Exchangeable Ammonium Determination of Coc worth-busins malyser. E009 Soil D FOC (Fraction Organic Carbon) (Foc) (Determination of Carbon by oxiding with potassium dichromate followed by the ample being ignited in a nuffle function. E009 Soil D Magnesium. Water Soluble Determination of matca corbon by oxiding with potassium dichromate followed by (CP-OES E002 Soil D Magnesium. Water Soluble Determination of matca carbon extractible hydrocarbons by CCP-DES E002 Soil AR Minerol OI (CIO - C40) Eentimation of nearcatable toxicable hydrocarbons by CCP-DES E002 Soil D Nitrate- Water Soluble Determination of remaciacuble extractible hydrocarbons by CCP-DES E002 Soil AR Minerol OI (CIO - C40) Eentimation of remaciacuble extractible hydrocarbons by CF-DES E0023 Soil AR<	Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004		
Bot D Fractionality rates across potentiation of potentiation with additional water a analysed by on chronatography E037 Soil D Fractionality rates across potentiation of tools by consultation analyser. E037 Soil D Tool Cratal Grassic Cashon) Determination of Tools by combustion analyser. E037 Soil D FOC (Fraction Organic Carbon) Determination of Tocls by combustion analyser. E037 Soil D FOC (Fraction Organic Carbon) Determination of raction of organic carbon by oxidising with potassium dichromate followed by E010 Soil D Loss on Ignition @ 4500C Determination of matels by aquar-atoparising by carcaction with water followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40) Determination of matels by aquar-atoparising digestion followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40) Determination of natrate by extraction with water & analysed by ion chromatography E003 Soil AR Mineral Oil (C10 - C40) Determination of ratrate by extraction with moders & analysed by ion chromatography E003 Soil AR PAH - Speciated (PA L) Deteromination of ratrate by extraction	Coil	D	<u>C12-C16, C16-C21, C21-C40</u>) Elucrido Water Solublo	headspace GC-MS	E000		
Boil D Charles Matter (SOM) Determination of TOC by combustion analyser. E027 Gel D TOC (Troal of the Carbon) Determination of animonium by discrete analyser. E027 Soil AR Exchangeable Ammonium Determination of animonium by discrete analyser. E029 Soil D FOC (Fraction Organic Carbon) Determination of faction of organic carbon by oxidising with potassium dichromate followed by ICP-OES E029 Soil D Magnesium - Vares Soluble Edetamination of water soluble magnesium by extraction with water followed by ICP-OES E002 Soil AR Mileral Oil (Clo - Cq) Determination of hexane/acetone extractable hydrocarbons by ICP-OES E002 Soil AR Moisture Content; determination of reals by aqua-regia digestion with water followed by ICP-OES E002 Soil AR Moisture Content; determination of rayain extractable hydrocarbons by GC-FID fractionating with SPE E003 Soil D Nitrate - Water Soluble Carbon E003 Soil AR PAH - Speciated (EPA 16) E004 E003 Soil AR PAH - Speciated (EPA 16) E004	Soil		Fluonue - Water Soluble	Determination of TOC by combustion analyser	E009 E027		
Soil D TOC (Total Orasit: Carbon) Determination of TOC by combustion analyser. E027 Soil AR Exchangeable Ammonium Dy discrete analyser. E029 Soil D FOC (Fraction Organic Carbon) Determination of accrete analyser. E029 Soil D Loss on Ignition @ 4500c Determination of accrete analyser. E019 Soil D Magnesium - Water Soluble Determination of macks by acurerizing diagestion followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40) Determination of macks by acurerizing diagestion followed by ICP-OES E003 Soil AR Mineral Oil (C10 - C40) Determination of networks content; determinet aravimetrically E003 Soil AR Mineral Oil (C10 - C40) Determination of networks acuteric extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR Mineral Oil (C10 - C40) Determination of ratice by extraction with water 8 analysed by ion chromate followed by GC-MS E003 Soil AR PAH - Speciated (PA L) E004 E004 E004 E004 E004 E004 E004 E004<	Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027		
Soil AR Exchangeable Amnonium Determination of ammonium by discrete analyser. E029 Soil D FOC (Fraction Organic Carbon) Exchangeable Amnonium Determination of fraction of organic carbon by oxidising with potassium dichromate followed by E019 Soil D Loss on Ignition @ 4500c Exchangeable Amnonium Determination of fraction of organic carbon by oxidising with potassium dichromate followed by ICP-OES E025 Soil D Magnesium- Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES E022 Soil AR Minoral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR Moisture Content Molsture content; determined or organic matter by oxidising with potassium dichromate followed by ttration with E003 E003 Soil D Nitrate - Water Soluble (2:1) Determination of PAH compounds by extraction in acetone and hexane followed by ttration with E003 E003 Soil AR PAH - Speciated (EPA 16) Exercise organic matter by oxidising with potassium dichromate followed by CC-MS E006 Soil AR PAH - Speciated (EPA 16) Exercise organic matter by oxidising with potassium dichromaterefollowed by CC-MS E0036 </td <td>Soil</td> <td>D</td> <td>TOC (Total Organic Carbon)</td> <td>Determination of TOC by combustion analyser.</td> <td>E027</td>	Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027		
Soil D FOC (Fraction Organic Carbon) Determination of fraction of organic carbon by oxidising with potassium dichromate followed by E010 Soil D Loss on Ignition @ 450c Petermination of loss on lignition in soil by gravimetrically with the sample being ignited in a muffle E019 Soil D Magnesium - Water Soluble Determination of metals by quarrerejia digestion followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40) Metals Determination of nexal-regia digestion followed by ICP-OES E004 Soil AR Mineral Oil (C10 - C40) Determination of nitrate by extraction with water followed by ICP-OES E004 Soil AR Moisture Content Moisture content; determined or anitrate by extraction with water followed by ICP-OES E003 Soil D Nitrate - Water Soluble (2:1) Determination of organic matter by oxidising with potassium dichromate followed by ICP-OES E003 Soil AR PAH - Speciated (EPA 16) Determination of PAE by extraction with water followed by GC-MS E005 Soil AR PErelower There and Interal 2 standards. E003 E004 Soil AR PErelower There and Interala standards. E0031	Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029		
Soil D FOC (Fraction Organic Carbon) Itration with inon (II) subhate Construction ED10 Soil D Loss on Ignition @ 4500c Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle E019 Soil D Magnesium - Water Soluble Determination of metals by aqua-regia digestion followed by ICP-OES E025 Soil AR Mineral Oil (C10 - (40) Determination of hexate /sociable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR Mineral Oil (C10 - (40) Determination of nitrate by extraction with water & analysed by ion chromatoraphy E003 Soil D Organic Matter For any to determination of organic matter by oxidising with potassium dichromate followed by titration with E003 Soil AR PAH - Speciated (EPA 16) Determination of PAB to compounds by extraction with water & analysed by GC-MS E008 Soil AR PAT - Congenes Getarmination of PAB to compounds by extraction with water & analysed by GC-MS E003 Soil AR Petroleum Ether Extract (PEE Grammation of PAB to compounds by extraction with vater & analysed by GC-MS E003 Soil AR Pheole - Total (monohydic) Deter				Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	5040		
Soil D Loss on Ignition @ 450cc Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle E019 Soil D Magnesium - Water Soluble Determination of metals by aque-regia digestion followed by ICP-OES E025 Soil AR Mineral OII (C10 - C40) Determination of netals by aque-regia digestion followed by ICP-OES E003 Soil AR Moisture content; determined or antirate by extraction with water & analysed by ion chromatography E003 Soil D Nitrate - Water Soluble (21) Determination of organic matter by oxidising with potassium dichromate followed by ICP-OIS E003 Soil D Organic Matter Determination of organic matter by oxidising with potassium dichromate followed by ICP-MS E009 Soil AR PAH - Speciated (EPA 16) Determination of PAB by extraction in acetone and hexane followed by CC-MS E008 Soil AR PCB - 7 Congeners Determination of phenols by distillation followed by cloc-MS E006 Soil AR Perfoleum Ehrer Extract (PEB Gravimetrical) E007 E007 Soil AR Perfoleum Ehrer Extract (PEB Gravimetrical) E007 E007 <td>Soil</td> <td>D</td> <td>FOC (Fraction Organic Carbon)</td> <td>titration with iron (II) sulphate</td> <td>E010</td>	Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010		
Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES E025 Soil AR Mineral Oil (C10 - C40) Determination of metals by aqua-regia digestion followed by ICP-OES E004 Soil AR Moisture Content Moisture Content Moisture Content E003 Soil D Nitrate - Water Soluble (2:1) Determination of organic matter by oxidising with potassium dichromate followed by titration with followed by GC-MS E003 Soil D Organic Matter Determination of PAB compounds by extraction in acetone and hexane followed by GC-MS E006 Soil AR PAH - Speciated (EPA 16) Determination of PAB compounds by extraction with acetone and hexane followed by GC-MS E008 Soil AR PHenois - Total (monthydric) Determination of path acetaction with acetone and hexane followed by ICP-OES E003 Soil AR Phenois - Total (monthydric) Determination of path acetaction with acetaction with acetaction and hexane followed by ICP-OES E003 Soil D Phenois - Total (monthydric) Determination of path acetaction with acetaction and hexane followed by ICP-OES E003 Soil	Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019		
Soil D Metals Determination of metals by aqua-regul digestion followed by ICP-OES E002 Soil AR Mineral Oil (C10 - C40) Determination of hexane/acetone extractable hydrocarbons by GC-HID fractionating with SPE articlate. E004 Soil A Moisture Content: determined gravimetrically E003 Soil D Nitrate - Water Soluble (2:1) Determination of organic matter by oxidising with potassium dichromate followed by GC-MS E004 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS E005 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS E008 Soil AR Phenols - Total (monohydric) Detamination of PAH compounds by extraction with acetone and hexane followed by CC-MS E003 Soil AR Phenols - Total (monohydric) Detamination of phenols by distillation followed by colorimetry E001 Soil D Sulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chromatography E003 Soil D Sulphate (as SO4) - Water Soluble (2:1)	Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025		
Soil AR Mineral Oil (C10 - C40 artridge Determination of hexane/acctone extractable hydrocarbons by GC-FID fractionating with SPE artridge E004 Soil D Nitrate - Water Soluble (21) Determination of nitrate by extraction with water & analysed by ion chromatography E009 Soil D Organic Matter Determination of nitrate by extraction with water & analysed by ion chromatography E009 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS E008 Soil AR PCB - 7 Congenes Determination of PAH compounds by extraction with acetone and hexane followed by GC-MS E008 Soil AR PCB - 7 Congenes Determination of water followed by ectraction with acetone and hexane followed by GC-MS E008 Soil AR Phenols - Total (monohydric) Determination of hexane/aceton with acetone and hexane followed by CC-MS E001 Soil D Phonols - Total (monohydric) Determination of hexane/aceton with acetone and hexane followed by ICP-OES E017 Soil D Sulphate (as SO4) - Vater Soluble (21) Determination of sulphate hexane/aceton with water & analysed by ion chromatography E009 <t< td=""><td>Soil</td><td>D</td><td>Metals</td><td>Determination of metals by aqua-regia digestion followed by ICP-OES</td><td>E002</td></t<>	Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002		
Soil AR Moisture Content, determined gravimetrically E003 Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography E003 Soil D Organic Matter Determination of organic matter by extraction in acetone and hexane followed by titration with the E003 Soil AR PAH - Speciate(EPA 16) Determination of PCB by extraction with acetone and hexane followed by GC-MS with the use of surrocate and internal standards. E005 Soil AR PEroleum Ether Extract (PEE) Gravimetrically determination of PAB by extraction with acetone and hexane followed by GC-MS E008 Soil AR Phenols - Total (monorlyvici) Determination of phesib by distilation followed by electrometric measurement E001 Soil D Phenols - Total (monorlyvici) Determination of phesib by distilation followed by colorimetry E011 Soil D Sulphate (as SO4) - Vater Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OES E014 Soil D Sulphur - Total Determination of sulphate by extraction with water & a	Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	F004		
Soil D Mosture Content Mosture content, determined grammetrically E003 Soil D Nittate - Water Soluble (21). Determination of norganic matter by extraction with water & analysed by ion chromatography E003 Soil D Organic Matter Determination of organic matter by extraction with water & analysed by ion chromatography E003 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS E008 Soil AR PCB - 7 Congeners Determination of PAB compounds by extraction with acetone and hexane followed by GC-MS E008 Soil AR PCB - 7 Congeners Determination of phead by addition of water followed by electrometric measurement E007 Soil AR Pheosphate - Water Soluble (21). Determination of pheads by extraction with petroleum ether E011 Soil D Phosphate - Water Soluble (21). Determination of soluphate by extraction with acets analysed by ion chromatography E003 Soil D Sulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chromatography E003 Soil AR Sulphate (as SC4) E004 E014		10		cartridge			
Soil D Nullate - Water Soluble (2:1) Defermination of nurate by widel water & analysed by ion chromate/angly E009 Soil D Organic Matter Defermination of nurate by wideling with possibul dichromate followed by titration with ion (11) subhate E010 Soil AR PAH - Speciated (EPA 16) Defermination of PAH compounds by extraction with acetone and hexane followed by GC-MS with the use of surrogate and internal standards E005 Soil AR PCB - 7 Compares Defermination of PAH compounds by extraction with acetone and hexane followed by GC-MS E008 Soil AR PCB - 7 Compares Defermination of pLB by addition of water followed by electrometric measurement E001 Soil AR Phenols - Total (monohydric) Determination of phonols by distillation followed by ICP-OES E013 Soil D Sulphate (as SO4) - Vater Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E003 Soil AR Sulphate (as SO4) - Vater Soluble (2:1) Determination of sulphate by extraction with water B analysed by ion chromatography E004 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water B analysed by in chromatography E014 Soil	Soll	AR	Moisture Content	Moisture content; determined gravimetrically	E003		
Soil D Organic Matter Determination of using much potassium duct furthate followed by GC-MS with the internal standards E010 Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the general standards E005 Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by GC-MS E008 Soil D Petroleum Ether Extra (PEE) Gravimetrically determined through extraction with acetone and hexane followed by GC-MS E008 Soil AR Phenols - Total (monohydric) Determination of phosphate by extraction with acet a analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Vater Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with acu-regia followed by ICP-OES E014 Soil AR Sulphate - Total sulphate or semi-volatile organic compounds by extraction in aceatone and hexane followed by ac	5011	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography Determination of organic matter by ovidicing with petacejum dichromate followed by titration with	E009		
SoilARPAH - Speciated (EPA 16) Germination of PAH compounds by extraction in acetone and nexane followed by GC-MSE005SoilARPCB - 7 CongenersDetermination of PCB by extraction with acetone and hexane followed by GC-MSE008SoilDPetroleum Ether Extract (PEE)Gravimetrically determined through extraction with petroleum etherE011SoilARPhenols - Total (monolytic)Determination of phenols by extraction with water & analysed by ion chromatographyE009SoilDPhosphate - Water Soluble (2:1)Determination of bachabe by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - TotalDetermination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of valphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphate by extraction with water & analysed by ICP-OESE014SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphur by extraction with water followed by ICP-OESE014SoilARSulphate (as SO4)SulphateDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESE014SoilARThiocyanate (as SCN)Edetermination of total sulphur by extraction with aqua-regia followed by acidification followed byE007SoilARThiocyanate (as SCN)Determination of fortal sulphur by extraction with aqua-regia followed b	Soil	D	Organic Matter	iron (II) sulphate	E010		
Soil AR PCB-7 Congeness Determination of PCB by extraction with acctone and hexane followed by CLMS EU08 Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with pactoleum ether E011 Soil AR Phenols - Total (monohydric) Determination of phosphate by extraction with water & analysed by ion chromatography E009 Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with auereai followed by ICP-OES E014 Soil D Sulphate - Soluble (2:1) Determination of folds sulphaur by extraction with auer-regis followed by ICP-OES E024 Soil AR Sulphate (as SOK) Determination of thiczyanate is polyma	Soil	AR	PAH - Speciated (EPA 16)	use of surrogate and internal standards	E005		
SoilDPetroleum ether extract (PEE) Gravimetrically determined through extraction with perfordum etherE011SoilARPhenols - Total (monohydrc)Determination of phenols by distillation followed by colorimetryE0037SoilDPhosphate - Water Soluble (2:1)Determination of phonols by distillation followed by colorimetryE009SoilDSulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCI followed by ICP-OESE013SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with aqua-regia followed by ICP-OESE014SoilARSulphate as SulphideDetermination of sulphate by extraction with aqua-regia followed by ICP-OESE018SoilARSulphur - TotalDetermination of sulphate-love at analysed followed by ICP-OESE014SoilARSulphur - TotalDetermination of sulphate-love at analysed compounds by extraction in acetone and hexane followed by GC-MSE017SoilARThiocyanate (as SCN)Determination of foric nitrate followed by colorimetryE017SoilDTotal Organic Carbon (TOC) addition of ferric nitrate followed by colorimetryE011SoilDTotal Organic Carbon (TOC) consci carbon (TOC)Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C3, C12-C16, C16-C21, C21-C3, C35-C44, pet	Soll	AR	PCB - / Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008		
Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry E021 Soil D Phosphate - Water Soluble (2:1) Determination of phenols by distillation followed by colorimetry E021 Soil D Sulphate (as SO4) - Total (monohydric) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil AR Sulphate - Total Determination of sulphate by extraction with aqua-regia followed by CD-OES E014 Soil AR Sulphate - Total Determination of sulphate-valphate organic compounds by extraction in acetone and hexane followed by CD-OES E018 Soil AR Thiocyanate (as SCN) Determination of funcyanate by extraction in caustic soda followed by caldification followed by CD-OES E017 Soil D Total O	Soll		Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011		
SoilDInterference of photophateDetermination of photophate by extraction with water & analysed by ion chromatographyE021SoilDSulphate (as SO4) - TotalDetermination of photophate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of valer soluble sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of valer solubide sulphate by extraction with water & analysed by ion chromatographyE009SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of sulphate by extraction with water & analysed by ion chromatographyE018SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of valer solubide sulphide by extraction with water followed by ICP-OESE024SoilARSulphate (as SO4) - Water Soluble (2:1)Determination of total sulphate by extraction with auar-regia followed by ICP-OESE024SoilARSulphate (as SO4)Determination of semi-volatile organic compounds by extraction in acustic soda followed by acidification followed byE006SoilARThiocyanate (as SCN)Determination of organic matter by oxidising with potassium dichromate followed by tiration withE011SoilDTotal organic Carbon (TOC)Determination of nexane/acetone extractable hydrocarbons by GC-FID fractionating with SPEE004SoilARTPH CWG (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, <b< td=""><td>Soil</td><td></td><td>Phenols - Total (monohydric)</td><td>Determination of phenols by distillation followed by colorimetry</td><td>E007</td></b<>	Soil		Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E007		
Soil D Subplate (as SO4) - Total Determination of total subplate by extraction with 10% HCI followed by ICP-OES E013 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with aqua-regia followed by ICP-OES E014 Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with aqua-regia followed by ICP-OES E024 Soil AR Sulphate (as SO4) E014 E016 Soil AR Sulphate (as SO4) E014 E014 Soil AR Sulphate (as SO4) E014 E016 Soil AR Thiocyanate (as SCN) Determination of semi-volatile organic compounds by extraction in acustic soda followed by acidification followed by GC-MS E017 Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene E011 Soil D Total Organic Carbon (TOC) Craser (C1, C1	Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E021		
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E009 Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES E014 Soil AR Sulphur - Total Determination of sulphide by extraction with aqua-regia followed by ICP-OES E024 Soil AR Sulphur - Total Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-OES E024 Soil AR Svorc Determination of thiocyanate by extraction in caustic soda followed by acidification followed by acidification followed by addition of form-initrate followed by colorimetry. E016 Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of form: nitrate followed by colorimetry. E017 Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with ion (II) sulphate E011 Soil D Total Organic Carbon (TOC) C10-C12, C12-C16, C16-C21, C21-C34, actridge for C8 to C35. C5 to C8 by headspace GC-MS E004 Soil AR C10-C12, C12-C16, C16-C21, C21-C34, cartridge for C8 to C	Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013		
SoilDSulphate (as SO4) - Water Soluble (2:1)Determination of water soluble sulphate by extraction with water followed by ICP-OESE014SoilARSulphideDetermination of sulphide by distillation followed by colorimetryE018SoilDSulphur - TotalDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed byE004SoilARSVOCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed byE006SoilARThiocyanate (as SCN)Determination of ferric nitrate followed by colorimetryE006SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of seane/acetone extractable hydrocarbons by GC-FID fractionating with SPEE004SoilARC10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35E004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C8 & C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34E001SoilARVPH (C6-C8 & C8-C10) Determination of volatile	Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009		
SoilARSulphideDetermination of sulphide by distillation followed by colorimetryE018SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-reqia followed by ICP-OESE024SoilARSVOCDetermination of sulphur by extraction with aqua-reqia followed by ICP-OESE006SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric ritrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC) Petermination of praine intrate followed by colorimetryE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10) C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, c12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, c12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, c12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C8 & C8-C10)Determination of volatile organic compounds by headspace GC-MSE001SoilARVPH (C6-C8 & C8-C10) </td <td>Soil</td> <td>D</td> <td>Sulphate (as SO4) - Water Soluble (2:1)</td> <td>Determination of water soluble sulphate by extraction with water followed by ICP-OES</td> <td>E014</td>	Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014		
SoilDSulphur - TotalDetermination of total sulphur by extraction with aqua-regia followed by ICP-OESE024SoilARSVOCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry addition of ferric nitrate followed by colorimetry addition of ferric nitrate followed by colorimetry addition of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE011SoilDTotal Organic Carbon (TOC) C10-C12, C12-C16, C16-C21, C21-C34, C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35, C12-C16, C16-C23, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C3 & C8-C10, D C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44,Determination of volatile	Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018		
SoilARSVOCDetermination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MSE006SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35,Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35,E004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C8 & C8-C10) Determination of volatile organic compounds by headspace GC-MSE001SoilARVPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MSE001	Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024		
SoilARThiocyanate (as SCN)Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetryE017SoilDToluene Extractable Matter (TEM)Gravimetrically determined through extraction with tolueneE011SoilDTotal Organic Carbon (TOC)Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphateE010SoilARTPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MSE004SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, c12-C16, C16-C21, C21-C35, C35-C44Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVPH (C6-C8 & C8-C10, Determination of hoxane/acetone extractable hydrocarbons by GC-FID fractionating with SPE arridge for C8 to C44. C5 to C8 by headspace GC-MSE001SoilARVPH (C6-C8 & C8-C10, Determination of volatile organic compounds by headspace GC-MSE001	Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006		
Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene E011 Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate E010 Soil AR TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS E004 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS E004 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS E004 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS E004 Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS E004 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001	Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017		
Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate E010 Soil AR TPH CWG (ali: C5- C6, C6-C8, C8-C10, C11-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) E004 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Etermination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE (C10-C12, C12-C16, C16-C21, C21-C35) E004 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE (C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE (C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE (C12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE (C12-C16, C16-C21, C21-C35, C35-C44, Determination of volatile organic compounds by headspace GC-MS E004 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001	Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011		
Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE E004 Soil AR C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) E004 Soil AR VPH (C6-C8 & C8-C10) Determination of volatile organic compounds by headspace GC-MS E001 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001	Soil	р	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	F010		
Soil AR C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS E004 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS E004 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS E004 Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE c12-C16, C16-C21, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE c12-C16, C16-C21, C21-C35, C35-C44, Determination of volatile organic compounds by headspace GC-MS E004 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001	501	U	TPH CWG (ali: C5- C6, C6-C8, C8-C10,	iron (II) sulphate	2010		
Soil AR aro: C5-C7, C7-C8, C8-C10, C10-C12, (cartridge for C8 to C35. C5 to C8 by headspace GC-MS E001 Soil AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C21-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS E004 Soil AR VOCS Determination of volatile organic compounds by headspace GC-MS & C8-C10 by GC-FID E001 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001	Soil	AR	C10-C12, C12-C16, C16-C21, C21-C34,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	F004		
Soil AR VPH (C6-C8 & C8-C10, C12-C135) E001 Soil AR VPH (C6-C8 & C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE c12-C16, C16-C21, C12-C16, C16-C12, C12-C14, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE c12-C16, C16-C21, C12-C13, C10-C12, C12-C14, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE c12-C16, C16-C21, C12-C13, C35-C44) E001			aro: C5-C7, C7-C8, C8-C10, C10-C12,	cartridge for C8 to C35. C5 to C8 by headspace GC-MS			
SoilARTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MSE004SoilARVOCsDetermination of volatile organic compounds by headspace GC-MSE001SoilARVPH (C6-C8 & C8-C10)Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FIDE001	L		C12-C16, C16-C21, C21-C35)				
Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS E004 Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001			TPH LQM (ali: C5-C6, C6-C8, C8-C10,				
Soil AR VOCS Determination of volatile organic compounds by headspace GC-MS E001 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001	Soil	۸D	C10-C12, C12-C16, C16-C35, C35-C44,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	F004		
C12-C16, C16-C21, C21-C35, C35-C44) E001 Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001	301	An	aro: C5-C7, C7-C8, C8-C10, C10-C12,	cartridge for C8 to C44. C5 to C8 by headspace GC-MS	LUUT		
Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E001 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001			C12-C16, C16-C21, C21-C35, C35-C44)				
Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E001	Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001		
	Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001		

D Dried AR As Received

~Sample details provided by customer and can affect the validity of results

Normec DETS Limited Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

List of HWOL Acronyms and Operators DETS Report No: 24-12235 Jomas Associates Limited ~Site Reference: 26 Amyand Park Road, TW1 3HE ~Project / Job Ref: J3027 ~Order No: P5802J3027.5 Reporting Date: 21/10/2024

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
~	Sample details provided by customer and can affect the validity of results

Det - Acronym

APPENDIX 5 – GROUNDWATER MONITORING RESULTS

GROUNDWATER MONITORING BOREHOLE RECORD SHEET										
Site: 26 Amyand Park Road	Operative(s): DJH		Date: 18/10/2024	Time: 10:00		Round: 1	Page: 1			
MONITORING EQUIPMENT										
Instrument Type Instrument Make				Serial No.		Date Last Calibrated				
Dip Meter – Interface Probe		-			-					
MONITORING CONDITIONS										
Weather Conditions: Overcast	Ground	Ground Conditions: Damp		Temperature: 10°C						
Barometric Pressure (mbar): N/A	Baromet	Barometric Pressure Trend (24hr): Rising		Ambient Concentration: N/A						
	MONITORING RESULTS									
Monitoring Point Location	VOC	(ppm)	Depth to product	Depth to water (mbgl)		Depth to base of well (mbgl)	Comments			
	Peak	Steady	(mbgl)							
BH1	-	-	-	6.53		8.02				

JIMAS ENGINEERING ENVIRONMENTAL LAND REMEDIATION

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK

JOMAS ASSOCIATES LTD

Unit 24 Sarum Complex Salisbury Road Uxbridge UB8 2RZ

CONTACT US

Website: www.jomasassociates.com Tel: 0333 305 9054 Email: info@jomasassociates.com